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Abstract

We give an example of a Banach spaceX such thatK .X; X/ is not an ideal inK .X; X∗∗/. We prove
that if z∗ is a weak∗ denting point in the unit ball ofZ∗ and if X is a closed subspace of a Banach spaceY,
then the set of norm-preserving extensionsH B.x∗⊗z∗/ ⊆L .Z∗;Y/∗ of a functionalx∗⊗z∗ ∈ .Z⊗ X/∗

is equal to the setH B.x∗/ ⊗ {z∗}. Using this result, we show that ifX is an M-ideal in Y and Z is a
reflexive Banach space, thenK .Z; X/ is an M-ideal inK .Z;Y/ wheneverK .Z; X/ is an ideal in
K .Z;Y/. We also show thatK .Z; X/ is an ideal (respectively, anM-ideal) inK .Z;Y/ for all Banach
spacesZ wheneverX is an ideal (respectively, anM-ideal) inY andX∗ has the compact approximation
property with conjugate operators.

2000Mathematics subject classification: primary 46B20, 46B28, 47L05.
Keywords and phrases: compact operator, ideal,M-ideal, approximation property.

1. Introduction

Let us recall that a closed subspaceF of a Banach spaceE is anideal in E if F⊥, the
annihilator ofF in E∗, is the kernel of a norm one projection onE∗. The notion of an
ideal was introduced and studied by Godefroy, Kalton, and Saphar in [8].

Let X and Y be Banach spaces. We denote byL .X;Y/ the Banach space of
bounded linear operators fromX to Y, and byF .X;Y/, F .X;Y/, K .X;Y/, and
W .X;Y/ its subspaces of finite rank operators, approximable operators (that is, norm
limits of finite rank operators), compact operators, and weakly compact operators.

In [15, Theorem 3] the following result was proved.

THEOREM 1.1.F .X; X/ is an ideal inF .X; X∗∗/ for every Banach spaceX.
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In [15, page 455] it is stated as an open problem whetherK .X; X/ is an ideal in
K .X; X∗∗/ for every Banach spaceX.

EXAMPLE 1.2. There exists a separable Banach spaceX such that

• K .X; X∗∗/ is an ideal inL .X; X∗∗/,
• K .X; X/ is not an ideal inL .X; X/,
• K .X; X/ is not an ideal inK .X; X∗∗/.

PROOF. Let X = .
∑∞

n=1 ⊕.Z∗∗; | · |n//2 be the space defined (relying on the famous
example due to Willis [32]) and studied by Casazza and Jarchow in [3, Theorem 1].
Recall thatZ∗∗ is a separable Banach space,| · |n is an equivalent norm onZ∗∗,
the spaceX fails the metric compact approximation property, but its dual spaceX∗

has the metric compact approximation property. SinceZ∗∗ is separable, the spaces
.Z∗∗; | · |n/ have the Radon-Nikod´ym property. ThusX has the Radon-Nikod´ym
property. (The fact that the Radon-Nikod´ym property is preserved under`p-direct
sums (1≤ p < ∞) is mentioned in [6, page 219]. It can be proved following the idea
of the proof in [6, pages 64–65] that a Banach space with a boundedly complete basis
has the Radon-Nikod´ym property.)

SinceX∗ has the metric compact approximation property, by a well-known result
due to Johnson [12], K .X∗; X∗/ is an ideal inL .X∗; X∗/. ThusK .X; X∗∗/ is
an ideal inL .X; X∗∗/. SinceX has the Radon-Nikod´ym property but fails to have
the metric compact approximation property, by [15, Theorem 14],K .X; X/ is not an
ideal inL .X; X/. HenceK .X; X/ is not an ideal inL .X; X∗∗/. (General properties
of ideals that we are using here and below in this paper are immediate from the local
formulation of ideals (see Lemma2.1, (ii), in Section 2).) IfK .X; X/ were an ideal
inK .X; X∗∗/, thenK .X; X/ would be an ideal inL .X; X∗∗/ (becauseK .X; X∗∗/
is an ideal inL .X; X∗∗/) which is impossible.

In [15, page 471] it is stated as an open problem ifK .X; X/ is an ideal inL .X; X/
wheneverK .X∗; X∗/ is an ideal inL .X∗; X∗/. Example1.2also solves this problem
in the negative.

Every Banach spaceX is an ideal in its bidualX∗∗ (with respect to the canonical
projection ofX∗∗∗ onto X∗). Let us further assume thatX is a closed subspace of a
Banach spaceY. In Section 2 we make a preliminary study aboutK .Z; X/ being
an ideal inK .Z;Y/ for a Banach spaceZ. In Proposition2.4 we prove that if
K .Z; X/ is an ideal inK .Z;Y/ for someZ 6= {0}, thenX is an ideal inY. And
in Proposition2.5 we show that ifX is an ideal inY andK .Z; X/ is an ideal in
K .Z; X∗∗/, thenK .Z; X/ is an ideal inK .Z;Y/. We also prove that the last
property is separably determined (see Theorems2.6, 2.7, and2.8). In particular (see
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Theorem2.8),K .X; X/ is an ideal inK .X; X∗∗/ wheneverK .E; E/ is an ideal in
K .E; E∗∗/ for every separable idealE in X.

The main lemma in this paper is Lemma3.1. This is a general result describing
all norm-preserving extensions of certain important functionals on operator spaces.
We use Lemma3.1, in particular, in Theorem3.4 to prove that ifZ is a reflexive
Banach space, ifX is an M-ideal in Y, and ifK .Z; X/ is an ideal inK .Z;Y/,
thenK .Z; X/ is an M-ideal inK .Z;Y/. Similar results hold foru-ideals (see
Theorems3.5and3.6).

In Example1.2 the dual spaceX∗ fails to have the compact approximation prop-
erty with conjugate operators (althoughX∗ has the metric compact approximation
property). The main conclusions in this paper, Corollaries4.7 and4.8 in Section4,
show thatK .Z; X/ is an ideal (respectively, anM-ideal) inK .Z;Y/ for all Banach
spacesZ wheneverX is an ideal (respectively, anM-ideal) inY andX∗ has the com-
pact approximation property with conjugate operators. The proofs rely on results from
Section3, the description of the dual space of compact operators due to Feder and
Saphar [7], and the uniform isometric version of the Davis-Figiel-Johnson-Pełczy´nski
factorization theorem due to Lima, Nygaard, and Oja [17].

The notation we use is standard (see [21]). We consider Banach spaces over the
real fieldR. The closure of a setA is denoted byA, its linear span by spanA, and its
convex hull by convA. The closed unit ball of a Banach spaceE is denoted byBE

and the identity operator onE by I E.

2. Ideals of compact operators

Let X be a closed subspace of a Banach spaceY. In this section we make a
preliminary study aboutK .Z; X/ being an ideal inK .Z;Y/ for a Banach spaceZ.
A first basic result, Proposition2.4, says that ifK .Z; X/ is an ideal inK .Z;Y/ for
some Banach spaceZ 6= {0}, thenX is an ideal inY. In Proposition2.5we show that
the converse is true wheneverK .Z; X/ is an ideal inK .Z; X∗∗/. And we prove that
the last property is separably determined (see Theorems2.6–2.8).

In Proposition2.10we show that ifK .Z; X/ is anM-ideal (respectively, au-ideal)
in K .Z;Y/ for some Banach spaceZ 6= {0}, thenX is an M-ideal (respectively, a
u-ideal) inY.

Let F be a subspace of a Banach spaceE. A linear operator8 : F ∗ → E∗ is called
a Hahn-Banach extension operatorif .8x∗/.x/ = x∗.x/ and‖8x∗‖ = ‖x∗‖ for all
x ∈ F and allx∗ ∈ F∗. The next result is well known. A proof can be found in [15].

LEMMA 2.1. Let F be a closed subspace of a Banach spaceE. The following
statements are equivalent.
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(i) F is an ideal inE.
(ii) F is locally 1-complemented inE, that is, for every finite dimensional subspace

G of E and for all " > 0, there is an operatorU : G → F such that‖U‖ ≤ 1 + "

andU x = x for all x ∈ G ∩ F.
(iii) There exists a Hahn-Banach extension operator8 : F∗ → E∗.

In [31] (see also [11, page 282]) Werner has shown that ifX is anM-ideal inY, then
the injective tensor productX⊗̂žZ is anM-ideal inY⊗̂žZ for any Banach spaceZ.
Rao extended this to ideals in [28]. We have a short proof of this result.

PROPOSITION2.2. Let X be an ideal inY and letZ be an ideal inW. ThenX⊗̂žZ
is an ideal inY⊗̂žW.

PROOF. Let� : X∗ → Y∗ and : Z∗ → W∗ be Hahn-Banach extension operators.
Let Q : Z∗∗∗ → Z∗ be the canonical projection. We shall use the identifications
.X⊗̂žZ/∗ = I .X; Z∗/ and .Y⊗̂žW/∗ = I .Y;W∗/ (see, for example, [6]). Since
�∗x = x, x ∈ X, and ∗z = z, z ∈ Z, the map8 : I .X; Z∗/ → I .Y;W∗/ defined by
8.T/ =  ◦ Q ◦ T∗∗ ◦ �∗|Y is clearly a Hahn-Banach extension operator.

Theorem1.1has an easy generalization.

COROLLARY 2.3. Let X be a closed subspace of a Banach spaceY. The following
statements are equivalent.

(i) X is an ideal inY.
(ii) F .Z; X/ is an ideal inF .Z;Y/ for all Banach spacesZ.

(iii) F .Z; X/ is an ideal inF .Z;Y/ for some Banach spaceZ 6= {0}.
In particular,F .Z; X/ is an ideal inF .Z; X∗∗/ for all Banach spacesX and Z.

PROOF. (i) ⇒ (ii) is immediate from Proposition2.2 becauseF .Z; X/ and
F .Z;Y/ can be canonically identified withZ∗⊗̂žX andZ∗⊗̂žY.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). SupposeF .Z; X/ is an ideal inF .Z;Y/. Let F be a finite dimensional
subspace ofY. Let z ∈ Z andz∗ ∈ Z∗ be such that‖z‖ = ‖z∗‖ = z∗.z/ = 1. Denote
G = {z∗ ⊗ y : y ∈ F} ⊆ F .Z;Y/. Let ž > 0 and letV : G → F .Z; X/ be an
operator such that‖V‖ ≤ 1+ ž andV.S/ = S for all S∈ G ∩F .Z; X/. Now define
a mapU : F → X by U y = .V.z∗ ⊗ y//z. ThenU ‘locally 1-complements’X
in Y.

Example1.2 shows that the implication (i)⇒ (ii) of Corollary 2.3 fails if we
consider compact operators instead of approximable operators. However, by the
proof of the implication (iii)⇒ (i), we also have the similar result in the case of
compact operators.
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PROPOSITION2.4. Let X be a closed subspace of a Banach spaceY. If K .Z; X/
is an ideal inK .Z;Y/ for some Banach spaceZ 6= {0}, thenX is an ideal inY.

PROPOSITION2.5. Let X be a closed subspace ofY and assume thatK .Z; X/ is
an ideal inK .Z; X∗∗/ for some Banach spaceZ 6= {0}. ThenX is an ideal inY if
and only ifK .Z; X/ is an ideal inK .Z;Y/.

PROOF. In view of Proposition2.4 we only need to prove the ‘only if’ part. Let
� : X∗ → Y∗ and8 : K .Z; X/∗ → K .Z; X∗∗/∗ be Hahn-Banach extension
operators. Define9 : K .Z; X/∗ → K .Z;Y/∗ by

.9 f /.T/ = .8 f /.�∗|Y ◦ T/; f ∈ K .Z; X/∗; T ∈ K .Z;Y/:

Then9 is linear and‖9‖ ≤ 1. Since�∗x = x, x ∈ X, we have�∗|Y◦T = T whenever
T ∈ K .Z; X/. Consequently, for anyT ∈ K .Z; X/ and any f ∈ K .Z; X/∗,
.9 f /.T/ = .8 f /.T/ = f .T/ meaning that9 f is an extension off . Hence9 is a
Hahn-Banach extension operator.

From the last proposition it follows that it is important to decide whenK .Z; X/
is an ideal inK .Z; X∗∗/. Example1.2 in the Introduction shows that this is not true
for all X and allZ. If X is the range of a norm one projection inX∗∗, thenK .Z; X/
is an ideal inK .Z; X∗∗/ for all Z. (If P is the projection, thenT → P ◦ T is a norm
one projection fromK .Z; X∗∗/ ontoK .Z; X/.)

We shall prove in Theorem4.2 thatK .Z; X/ is an ideal inK .Z; X∗∗/ for all
Banach spacesZ if this is true for all separable reflexive Banach spacesZ.

The next three results show that the question about being an ideal, can be reduced
to the case of separable Banach spaces.

THEOREM 2.6. Let X and Z be Banach spaces. IfK .Z; E/ is an ideal in
K .Z; E∗∗/ for every separable idealE in X, thenK .Z; X/ is an ideal inK .Z; X∗∗/.

PROOF. Let F ⊆ K .Z; X∗∗/ be a finite dimensional subspace and letž > 0. Since
G = {T z : z ∈ Z; T ∈ F ∩K .Z; X/} is contained in a separable subspace ofX, by
a result of Sims and Yost [29] (see also [11, page 138]), there exists a separable ideal
E ⊆ X such thatG ⊆ E. Let � : E∗ → X∗ be a Hahn-Banach extension operator.
Then�∗ : X∗∗ → E∗∗ and F� = {�∗ ◦ T : T ∈ F} is a finite dimensional subspace
ofK .Z; E∗∗/. Let U : F� → K .Z; E/ be a linear operator such that‖U‖ ≤ 1 + ž

andU .�∗ ◦ T/ = �∗ ◦ T for all T ∈ F ∩K .Z; X/ (note that ifT ∈ F ∩K .Z; X/,
then T.Z/ ⊆ E and�∗ ◦ T ∈ K .Z; E/). Now V : F → K .Z; X/ defined by
V.T/ = U .�∗ ◦ T/ ‘locally 1-complements’K .Z; X/ inK .Z; X∗∗/.
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REMARK 2.1. The assertion of Theorem2.6 is not reversible:K .X; X∗∗/ is al-
ways an ideal inK .X; X∗∗∗∗/ (becauseX∗∗ is the range of a norm one projection
in X∗∗∗∗) but, for the separable Banach spaceX (a separable ideal inX∗∗) described
in Example1.2,K .X; X/ is not an ideal inK .X; X∗∗/.

THEOREM 2.7. Let X;Y, and Z be Banach spaces and assumeX is a subspace
of Y. ThenK .Z; X/ is an ideal inK .Z;Y/ if and only ifK .W; X/ is an ideal in
K .W;Y/ for every separable idealW in Z.

PROOF. Assume thatK .Z; X/ is an ideal inK .Z;Y/ and letW be an ideal inZ.
Let 8 : K .Z; X/∗ → K .Z;Y/∗ and� : W∗ → Z∗ be Hahn-Banach extension
operators. Forf ∈ K .W; X/∗ andS ∈ K .Z; X/, define f̂ .S/ = f .S|W/. Finally,
define an operator9 :K .W; X/∗ →K .W;Y/∗ by

.9 f /.T/ = .8 f̂ /.T ∗∗ ◦ �∗|Z/; f ∈ K .W; X/∗; T ∈ K .W;Y/:

Then9 is linear and‖9‖ ≤ 1. ForT ∈ K .W; X/, we haveT∗∗ ◦ �∗|Z ∈ K .Z; X/
and therefore

.9 f /.T/ = .8 f̂ /.T ∗∗ ◦ �∗|Z/ = f̂ .T∗∗ ◦ �∗|Z/

= f .T ∗∗ ◦ �∗|W/ = f .T∗∗|W/ = f .T/:

Hence9 is a Hahn-Banach extension operator.
Conversely, assume thatK .W; X/ is an ideal inK .W;Y/ for every separable

idealW in Z. Let F ⊆K .Z;Y/ be a finite dimensional subspace and letž > 0. The
set{T ∗y∗ : T ∈ F; y∗ ∈ Y∗} is separable. By a theorem due to Sims and Yost [29]
(see also [11, page 138]), we can find a separable idealW in Z with a Hahn-Banach
extension operator� : W∗ → Z∗ such that{T∗ y∗ : T ∈ F; y∗ ∈ Y∗} ⊆ �.W∗/. Let
i : W → Z be the natural embedding. Theni ∗ : Z∗ → W∗ is the restriction operator
and we getI�.W∗/ = .� ◦ i ∗/|�.W∗/.

Let FW = {T ◦ i : T ∈ F} ⊆ K .W;Y/. We can find an operatorV : FW →
K .W; X/ with ‖V‖ ≤ 1 + ž such thatV.S/ = S for everyS ∈ FW ∩K .W; X/.
Define an operatorU : F → K .Z; X/ by U .T/ = .V.T ◦ i //∗∗ ◦ �∗|Z. Then
‖U‖ ≤ 1 + ž. For anyz ∈ Z, y∗ ∈ Y∗, and T ∈ F ∩ K .Z; X/ we get (since
T ◦ i ∈ FW ∩K .W; X/ andT∗y∗ ∈ �.W∗/)

y∗.U .T /z/ = y∗..V .T ◦ i //∗∗.�∗z//

= y∗..T∗∗ ◦ i ∗∗/.�∗z//

= y∗..T∗∗ ◦ i ∗∗ ◦ �∗/z/

= ..� ◦ i ∗ ◦ T ∗/.y∗//.z/

= .T ∗y∗/.z/ = y∗.T z/:

ThusU .T/ = T . HenceK .Z; X/ is an ideal inK .Z;Y/.
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It is clear from Theorems2.6 and 2.7 thatK .X; X/ is an ideal inK .X; X∗∗/
wheneverK .E; F/ is an ideal inK .E; F ∗∗/ for all separable idealsE andF in X.
However, further developing the method of proofs of those theorems we obtain the
following stronger result.

THEOREM 2.8. Let X be a Banach space. IfK .E; E/ is an ideal inK .E; E∗∗/
for every separable idealE in X, thenK .X; X/ is an ideal inK .X; X∗∗/.

PROOF. Assume thatK .E; E/ is an ideal inK .E; E∗∗/ for every separable idealE
in X. Let F ⊆ K .X; X∗∗/ be a finite dimensional subspace and letž > 0. Since the
sets{T x : x ∈ X; T ∈ F ∩K .X; X/} ⊆ X and{T∗x∗ : x∗ ∈ X∗; T ∈ F} ⊆ X∗

are separable, we can find a separable idealE in X together with a Hahn-Banach
extension operator� : E∗ → X∗ so that{T x : x ∈ X; T ∈ F ∩K .X; X/} ⊆ E
and{T ∗x∗ : x∗ ∈ X∗; T ∈ F} ⊆ �.E∗/ (again we used the Sims-Yost theorem). Let
i : E → X be the natural embedding.

DenoteG = {�∗ ◦ T ◦ i : T ∈ F} ⊆ K .E; E∗∗/. Then there exists an operator
V : G → K .E; E/ such that‖V‖ ≤ 1+ ž andV.S/ = S for all S ∈ G ∩K .E; E/.
DefineU : F → K .X; X/ by U .T/ = .V.�∗ ◦ T ◦ i //∗∗ ◦ �∗|X, T ∈ F . Then
‖U‖ ≤ 1 + ž. We conclude by showing thatU .T/ = T for all T ∈ F ∩K .X; X/.

Let T ∈ F ∩K .X; X/. SinceT x ∈ E, x ∈ X, we have in fact thatT ∈ K .X; E/.
We also have thatU .T/ ∈ K .X; E/ (this is true for allT ∈ F). SinceT ∈ K .X; E/
and�∗e = e, e ∈ E, we have�∗ ◦T ◦ i ∈ K .E; E/. HenceV.�∗ ◦T ◦ i / = �∗ ◦T ◦ i .
For anyx ∈ X ande∗ ∈ E∗, we get

e∗.U .T/x/ = e∗..�∗ ◦ T ◦ i /∗∗.�∗x// = .�∗x/..�∗ ◦ T ◦ i /∗e∗/

= .�∗x/..i ∗ ◦ T∗ ◦ �/e∗/ = ..� ◦ i ∗ ◦ T∗ ◦ �/e∗/.x/

= ..� ◦ i ∗/.T∗�e∗//.x/ = .T∗�e∗/.x/ = .�e∗/.T x/ = e∗.T x/

sinceT∗�e∗ ∈ �.E∗/, � ◦ i ∗ = I�.E∗/, andT x ∈ E. ThusU .T/ = T as desired.

REMARK 2.2. The assertion of Theorem2.8 is not reversible: see Remark2.1and
note thatK .X∗∗; X∗∗/ is always an ideal inK .X∗∗; X∗∗∗∗/.

Some ideals have additional properties. Best known are probablyM-ideals defined
by Alfsen and Effros in [1], see also [11]. A more general type of ideals, theu-ideals,
was first introduced by Casazza and Kalton in [4] and thoroughly studied by Godefroy,
Kalton, and Saphar in [8].

Let us recall that a closed subspaceF of a Banach spaceE is anM-ideal (respec-
tively, a u-ideal) in E if there exists a linear projectionP on E∗ with ker P = F⊥

such that‖ f ‖ = ‖P f‖ + ‖ f − P f‖ for all f ∈ E∗ (respectively,‖I E∗ − 2P‖ = 1).
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LEMMA 2.9 (see [15, 8]). Let F be a closed subspace of a Banach spaceE. ThenF
is an M-ideal (respectively, au-ideal) in E if and only if condition(M) (respectively,
condition(u)) below is satisfied.

(M) For every finite dimensional subspaceG in E and everyž > 0, there exists a
linear operatorU : G → F such thatU x = x for all x ∈ G∩F and‖U x+y−U y‖ ≤
.1 + ž/max.‖x‖; ‖y‖/ for all x; y ∈ G.

(u) For every finite dimensional subspaceG in E and everyž > 0, there exists a
linear operatorU : G → F such thatU x = x for all x ∈ G ∩ F and‖x − 2U x‖ ≤
.1 + ž/‖x‖ for all x ∈ G.

PROOF. See [15, Theorem 4] and [8, Proposition 3.6].

In the next section we shall need the following analogue of Proposition2.4.

PROPOSITION2.10. Let X be a closed subspace of a Banach spaceY. If K .Z; X/
is an M-ideal (respectively, au-ideal) inK .Z;Y/ for some Banach spaceZ 6= {0},
thenX is an M-ideal (respectively, au-ideal) in Y.

PROOF. We argue as in the proof of Corollary2.3, (iii) ⇒ (i), but we use the local
formulations ofM-ideals andu-ideals from Lemma2.9.

3. Hahn-Banach extension operators

Let X be a subspace of a Banach spaceY. For eachx∗ ∈ X∗, let H B.x∗/ denote
the set of norm-preserving extensions ofx∗ to Y. Hahn-Banach extension operators
8 : X∗ → Y∗ act as linear selection functions since8x∗ ∈ H B.x∗/ for all x∗ ∈ X∗.
This shows that if we can describe the setsH B.x∗/, then we get important information
about possible Hahn-Banach extension operators.

The next lemma is fundamental for the results we obtain in this paper. It describes
all norm-preserving extensions of certain important functionals on operator spaces.
It also explains surprisingly well why some of those functionals have unique norm-
preserving extensions: the reason is that all their norm-preserving extensions must
have a special form that makes them unique.

LEMMA 3.1. Let X, Y, and Z be Banach spaces and assume thatX is a closed
subspace ofY. ConsiderZ ⊗ X as a subspace ofL .Z∗;Y/. If z∗ is a weak∗ denting
point of BZ∗ andx∗ ∈ X∗, then, forx∗ ⊗ z∗ ∈ .Z ⊗ X/∗, the equality

H B.x∗ ⊗ z∗/ = H B.x∗/⊗ {z∗}
holds.
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PROOF. It is clear thatH B.x∗/ ⊗ {z∗} ⊆ H B.x∗ ⊗ z∗/. For the converse, let
� = x∗ ⊗ z∗ and let ∈ H B.�/. We may assume that‖x∗‖ = 1. It suffices to prove

CLAIM .  ∈ BY∗ ⊗ {z∗}w∗
in L .Z∗;Y/∗.

Assume that the claim has been proved. Choose a net.y∗
Þ/ in BY∗ such that

y∗
Þ ⊗ z∗ →

Þ
 weak∗. By passing to a subnet, we may assume thaty∗

Þ → y∗ ∈ BY∗

weak∗. Let z ∈ Z satisfyz∗.z/ = 1. Then for anyx ∈ X,

x∗.x/ = x∗.x/z∗.z/ = �.z ⊗ x/ = lim
Þ
.y∗
Þ ⊗ z∗/.z ⊗ x/ = y∗.x/z∗.z/ = y∗.x/;

so we get thaty∗|X = x∗. Thusy∗ ∈ H B.x∗/.
For anyT ∈ L .Z∗;Y/,

 .T/ = lim
Þ
.y∗
Þ ⊗ z∗/.T/ = lim

Þ
y∗
Þ.T z∗/ = y∗.T z∗/ = .y∗ ⊗ z∗/.T/;

so = y∗ ⊗ z∗.

PROOF OF THE CLAIM. Suppose for contradiction that 6∈ BY∗ ⊗ {z∗}w∗
. Then for

someT ∈ L .Z∗;Y/ with ‖T‖ = 1 and somež > 0, we get

�.T/ <  .T/− 6ž for all � ∈ BY∗ ⊗ {z∗}:
By the description of denting points due to Werner [30, Lemma 2], there existŽ > 0
andz ∈ Z such thatz∗.z/ = 1, ‖z‖ ≤ 1+ Žž, and

.‖w∗‖ ≤ 1 andw∗.z/ > 1 − Ž/ ⇒ ‖w∗ − z∗‖ ≤ ž:

Choosex ∈ X such thatx∗.x/ = 1 and‖x‖ ≤ 1+Žž, and defineS= z⊗x ∈ Z⊗X.
Since .S/ = 1 and ∈ BL .Z∗;Y/∗ = convw

∗
.BY∗ ⊗ BZ∗/ (the last equality being clear

from the bipolar theorem), we can find ž ∈ conv.BY∗ ⊗ BZ∗/ such that

 ž.S/ > 1− Ž2ž2; | ž.T/−  .T/| < ž:
Let us write ž = ∑m

i =1½i y∗
i ⊗ z∗

i , wherez∗
i ∈ BZ∗ , y∗

i ∈ BY∗, ½i > 0; and∑m
i =1 ½i = 1. We may suppose thaty∗

i .x/ ≥ 0 for all i . Let J = {i : z∗
i .z/ > 1 − Ž}.

Then we get

1 − Ž2ž2 <  ž.S/ =
m∑

i =1

½i y
∗
i .x/z

∗
i .z/

=
∑
i ∈J

½i y
∗
i .x/z

∗
i .z/+

∑
i 6∈J

½i y
∗
i .x/z

∗
i .z/
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≤
∑
i ∈J

½i .1 + Žž/2 +
∑
i 6∈J

½i .1 + Žž/.1 − Ž/

= .1 + Žž/

[
.1 + Žž/

∑
i ∈J

½i + .1 − Ž/
∑
i =∈J

½i

]

= .1 + Žž/

[
1 + Žž

∑
i ∈J

½i − Ž
∑
i 6∈J

½i

]

≤ .1 + Žž/

[
1 + Žž − Ž

∑
i 6∈J

½i

]
:

Thus 1−Žž < 1+Žž−Ž∑i 6∈J ½i , meaning that
∑

i 6∈J ½i < 2ž. Let� =∑m
i =1 ½i y∗

i ⊗z∗.
Then we get

‖ ž − �‖ =
∥∥∥∥∥

m∑
i =1

½i y
∗
i ⊗ .z∗

i − z∗/

∥∥∥∥∥
≤
∑
i ∈J

½i ‖z∗
i − z∗‖ +

∑
i 6∈J

½i ‖z∗
i − z∗‖ < ž + 4ž = 5ž:

But � ∈ BY∗ ⊗ {z∗}, so

 ž.T/− 5ž ≤ �.T/ <  .T/− 6ž:

Thusž <  .T/−  ž.T/ < ž, a contradiction.

REMARK 3.1. The particular case of Lemma3.1with X = Y is precisely Lemma 4.3
in [18] stating thatx∗ ⊗ z∗ has a unique norm-preserving extension toL .Z∗; X/.
Therefore, the proof of Lemma3.1provides, in particular, a new and simpler proof to
Lemma 4.3 in [18] and its earlier versions [16, Lemma 3.4], [20, Theorem 3.7], [15,
Lemma 11], and [15, Lemma 12]. The uniqueness of norm-preserving extensions
have been used to obtain some main results in [2, 15, 16, 18, 20].

Let us point out the particular caseY = X∗∗ of Lemma3.1.

COROLLARY 3.2. Let X and Z be Banach spaces. ConsiderZ ⊗ X as a subspace
ofL .Z∗; X∗∗/. If z∗ is a weak∗ denting point ofBZ∗ andx∗ ∈ X∗, then, forx∗ ⊗ z∗ ∈
.Z ⊗ X/∗, the equalityH B.x∗ ⊗ z∗/ = H B.x∗/ ⊗ {z∗} holds.

We shall say that a closed subspaceX of a Banach spaceY has theunique ideal
property in Y if there is at most one ideal projection, this is, at most one norm one
projection³ onY∗ with ker³ = X⊥. From the relation between ideal projections and
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Hahn-Banach extension operators it is clear thatX has the unique extension property
in Y if and only if there is at most one Hahn-Banach extension operator� : X∗ → Y∗.

An obvious example of subspaces having the unique ideal property is presented by
subspaces having propertyU : X is said to havepropertyU in Y if every x∗ ∈ X∗

has a unique norm-preserving extension toY (this notion is due to Phelps [27]; for
a recent study of such subspaces see [25] and [26]). It is well known thatM-ideals
(more generally, semiM-ideals andH B-subspaces) have propertyU and therefore
they also have the unique ideal property (for a study ofu-ideals having propertyU
see [22]).

In the case whenY = X∗∗, let us note that� ∈ L .X∗; X∗∗∗/ is a Hahn-Banach
extension operator if and only if�∗|X∗∗ ∈ L .X∗∗; X∗∗/ has norm one and�∗|X = I X .
Thus the unique ideal property ofX in X∗∗ is the same as the unique extension property
of X introduced and deeply studied by Godefroy and Saphar in [9] (using the term
‘ X is uniquely decomposed’) and [10]. Let us recall thatX is said to have theunique
extension propertyif the only operatorT ∈ L .X∗∗; X∗∗/ such that‖T‖ ≤ 1 and
T |X = I X is T = I X∗∗ .

In particular, the following Banach spaces have the unique extension property (see
[10]): spaces which have propertyU in their bidual (Hahn-Banach smooth spaces),
those with a Fr´echet-differentiable norm, separable polyhedral Lindenstrauss spaces,
spaces of compact operatorsK .Z; X/ for reflexiveZ andX.

COROLLARY 3.3. Let X, Y, and Z 6= {0} be Banach spaces and assume thatX is
a subspace ofY having the unique ideal property inY. If K .Z∗; X/ is an ideal in
K .Z∗;Y/ with an ideal projectionP, then X is an ideal inY and its unique ideal
projection³ : Y∗ → Y∗ satisfies, for all weak∗ denting pointsz∗ ∈ BZ∗ and all
y∗ ∈ Y∗, the equalityP.y∗ ⊗ z∗/ = .³y∗/⊗ z∗.

PROOF. Proposition2.4yields thatX is an ideal inY. Let³ : Y∗ → Y∗ denote its
unique ideal projection and let� : X∗ → Y∗ be the unique Hahn-Banach extension
operator. Then³ = � j ∗, where j : X → Y is the natural embedding.

Let8 :K .Z∗; X/∗ → K .Z∗;Y/∗ be a Hahn-Banach extension operator satisfy-
ing

P f = 8. f |K .Z∗;X//; f ∈ K .Z∗;Y/∗:

For any weak∗ denting pointz∗ of BZ∗ , by Lemma3.1, we have

8.x∗ ⊗ z∗/ ∈ H B.x∗/ ⊗ {z∗}; x∗ ∈ X∗:

By the linearity of8, it is straightforward that the map�z∗ : X∗ → Y∗ defined by

8.x∗ ⊗ z∗/ = .�z∗ x∗/ ⊗ z∗; �z∗ x∗ ∈ H B.x∗/; x∗ ∈ X∗;
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is linear and therefore it is a Hahn-Banach extension operator. Thus�z∗ = �. And for
any y∗ ∈ Y∗ we get

P.y∗ ⊗ z∗/ = 8.. j ∗ y∗/ ⊗ z∗/ = .� j ∗ y∗/⊗ z∗ = .³y∗/⊗ z∗

as desired.

In [31] Werner proved that ifX is anM-ideal inY andZ is a Banach space and if
Z∗ or Y has the approximation property, thenK .Z; X/ is anM-ideal inK .Z;Y/.
The next result shows that, for reflexiveZ, if K .Z; X/ is an ideal inK .Z;Y/, then
it is already anM-ideal without any requirement about the approximation property.

THEOREM 3.4. Let X be a closed subspace of a Banach spaceY and letZ 6= {0}
be a reflexive Banach space. ThenK .Z; X/ is anM-ideal inK .Z;Y/ if and only if
X is an M-ideal in Y andK .Z; X/ is an ideal inK .Z;Y/.

PROOF. If K .Z; X/ is an M-ideal inK .Z;Y/, then X is an M-ideal in Y by
Proposition2.10.

Assume thatX is an M-ideal in Y andK .Z; X/ is an ideal inK .Z;Y/. Let
P be a norm one projection onK .Z;Y/∗ with kerP = K .Z; X/⊥. Let ³ denote
an M-ideal projection onY∗ with ker³ = X⊥. By the uniqueness of Hahn-Banach
extensions in the case ofM-ideals,³ is a unique ideal projection. Hence, for all
y∗ ∈ Y∗ and all weak∗ denting pointsz ∈ BZ, by Corollary3.3,

P.y∗ ⊗ z/ = .³y∗/⊗ z:

SinceZ = span.w∗ -dentBZ/, we get that

P.y∗ ⊗ z/ = .³y∗/⊗ z; y∗ ∈ Y∗; z ∈ Z:

Consider now anyf ∈ K .Z;Y/∗. It suffices to prove that

‖P f‖ + ‖ f − P f ‖ ≤ ‖ f ‖:
By the description ofK .Z;Y/∗ due to Feder and Saphar [7, Theorem 1] (here we
use once more thatZ is reflexive), there exists an elementu in the projective tensor
productY∗⊗̂³ Z such that

f .T/ = trace.T u/; T ∈ K .Z;Y/;

and‖ f ‖ = ‖u‖³ : For anyž > 0, letu be represented asu = ∑∞
n=1 y∗

n ⊗ zn so that

‖u‖³ + ž ≥
∞∑

n=1

‖y∗
n‖‖zn‖:
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Defineg ∈ K .Z;Y/∗ by

g.T/ =
∞∑

n=1

..³y∗
n ⊗ zn/.T//; T ∈ K .Z;Y/:

Since

f .T/ =
∞∑

n=1

..y∗
n ⊗ zn/.T//; T ∈ K .Z;Y/;

it is clear thatg = P f and

. f − g/.T/ =
∞∑

n=1

...y∗
n − ³y∗

n/⊗ zn/.T//; T ∈ K .Z;Y/:

Therefore,

‖ f ‖ + ž ≥
∞∑

n=1

‖y∗
n‖‖zn‖ =

∞∑
n=1

‖³y∗
n‖‖zn‖ +

∞∑
n=1

‖y∗
n − ³y∗

n‖‖zn‖

≥ ‖g‖ + ‖ f − g‖ = ‖P f‖ + ‖ f − P f ‖
as desired.

A closed subspaceF of a Banach spaceE is called asemi M-ideal (see [14]
or [11, page 43]) if there is a (nonlinear) projectionP from E∗ onto F⊥ such that
P.½ f + Pg/ = ½P f + Pg and‖ f ‖ = ‖P f‖ + ‖ f − P f‖ for all f; g ∈ E ∗ and all
scalars½.

REMARK 3.2. Theorem3.4 remains true if one replaces ‘X is anM-ideal inY’ by
the weaker condition ‘X is a semiM-ideal in Y’. This is clear from the fact thatX
is an M-ideal in Y if and only if X is an ideal inY and X is a semiM-ideal in Y
(see, for example, [11, page 43]). In particular,X is an M-ideal in its bidualX∗∗

wheneverX is a semiM-ideal in X∗∗. We do not know whetherK .Z; X/ is an
M-ideal inK .Z; X∗∗/ wheneverK .Z; X/ is a semiM-ideal inK .Z; X∗∗/.

The method of proof of Theorem3.4 enables us to extend the theorem fromM-
ideals to more general classes of ideals (for example, to idealsF in E with respect
to an ideal projectionP satisfying‖a f + bP f‖ + c‖P f‖ ≤ ‖ f ‖ for given numbers
a;b; c, and for all f ∈ E∗; these ideals were recently studied in [23] and [24]) under
the assumption thatX has the unique ideal property inY. The corresponding result
on u-ideals reads as follows.

THEOREM 3.5. Let X be a closed subspace of a Banach spaceY having the unique
ideal property inY and let Z 6= {0} be a reflexive Banach space. ThenK .Z; X/ is
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a u-ideal inK .Z;Y/ if and only if X is a u-ideal in Y andK .Z; X/ is an ideal in
K .Z;Y/.

A closed subspaceF of a Banach spaceE is called astrict u-ideal in E if there
exists a linear projectionP on E∗ with kerP = F⊥ such that‖I E∗ − 2P‖ = 1 and
the range ranP is a norming subspace ofE∗. This notion was introduced and deeply
studied by Godefroy, Kalton, and Saphar [8].

THEOREM 3.6. Let X be either a separable Banach space or a Banach space
containing no copy of̀ 1. If X is a strict u-ideal in X∗∗ andK .Z; X/ is an ideal
in K .Z; X∗∗/ for a reflexive Banach spaceZ, thenK .Z; X/ is a strict u-ideal in
K .Z; X∗∗/.

PROOF. Let ³ : X∗∗∗ → X∗∗∗ be the projection from the definition of a strict
u-ideal and letP denote the ideal projection onK .Z; X∗∗/∗. It follows from [8,
Propositions 5.2 and 2.7] thatX∗ does not contain any proper norming closed subspace.
But thenX has the unique extension property (see [10, Proposition 2.5]) and we can
apply Theorem3.5 to conclude thatK .Z; X/ is au-ideal inK .Z; X∗∗/. Moreover,
the proof of Theorem3.4shows thatP is the desiredu-ideal projection and

P.x∗∗∗ ⊗ z/ = .³x∗∗∗/⊗ z; x∗∗∗ ∈ X∗∗∗; z ∈ Z:

In view of the last equality ranP contains the functionalsx∗∗∗ ⊗ z with x∗∗∗ ∈ ran³
andz ∈ Z. But these functionals give the norm of anyT ∈ K .Z; X∗∗/ (by ‖T‖ =
sup{|x∗∗∗.T z/| : x∗∗∗ ∈ Bran³ ; z ∈ BZ}) because ran³ is a norming subspace (for
X∗∗) in X∗∗∗ (in fact, ran³ = X∗ (see [8])).

4. Ideals of compact operators and the compact approximation property

Let X be a closed subspace of a Banach spaceY. In this section we shall prove that
K .Z; X/ is an ideal (respectively, anM-ideal) inK .Z;Y/ for all Banach spaces
Z wheneverX is an ideal (respectively, anM-ideal) in Y and X∗ has the compact
approximation property with conjugate operators. We begin by showing that if results
aboutK .Z; X/ being an ideal (from a given class of ideals) inK .Z;Y/ orW .Z;Y/
are true for all reflexive Banach spacesZ, then they are true for all Banach spaces
Z. The method of proof is based on the following version of a factorization result for
weakly compact operators by Lima, Nygaard, and Oja in [17, Corollary 2.4].

LEMMA 4.1. Let Y and Z be Banach spaces and letG be a finite dimensional
subspace ofW .Z;Y/. Then there exist a reflexive Banach spaceW, a norm one
operator J : Z → W, and a linear isometry8 : G → W .W;Y/ such thatT =
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8.T/ ◦ J andranT = ran8.T/ in Y for all T ∈ G. Moreover,T is compact if and
only if8.T/ is compact. In particular, ifG ⊆ K .Z;Y/, thenW is separable.

PROOF. Applying [17, Theorem 2.3], as in the proof of [17, Corollary 2.4], we can
find a reflexive Banach spaceW, a norm one operatorI : W∗ → Z∗, and a linear
isometry8 : G → W .W;Y/ so thatranI ∗ = W, T∗∗ = 8.T/ ◦ I ∗ for all T ∈ G,
andT is compact if and only if8.T/ is compact. As in [17, Corollary 2.4], putting
J = I ∗|Z : Z → W, we have‖J‖ = 1 andT = 8.T/ ◦ J for all T ∈ G. Clearly
ranT ⊆ ran8.T/. On the other hand,

ran8.T/ = .8.T//.W/ = .8.T//.I∗.Z∗∗//

⊆ .8.T//.I ∗.Z∗∗// = ranT∗∗ ⊆ ranT

becauseT is weakly compact. HenceranT = ran8.T/.
In particular, if G ⊆ K .Z;Y/, then by the proof of [17, Theorem 2.3] and [5,

Lemma 1, (xi)]W∗ is separable, henceW is also separable.

THEOREM 4.2. Let X be a closed subspace of a Banach spaceY. ThenK .Z; X/
is an ideal inK .Z;Y/ for all Banach spacesZ if and only ifK .W; X/ is an ideal
inK .W;Y/ for all separable reflexive Banach spacesW.

PROOF. The proof is similar to the proof of [17, Theorem 3.1]. LetK .W; X/ be
an ideal inK .W;Y/ for all separable reflexive spacesW. For a Banach spaceZ,
let G be a finite dimensional subspace ofK .Z;Y/ and letž > 0. By Lemma4.1,
we can find a separable reflexive spaceW, a norm one operatorJ : Z → W, and
a linear isometry8 mappingG into K .W;Y/ such thatT = 8.T/ ◦ J for all
T ∈ G. If U : 8.G/ → K .W; X/ is an operator from the local formulation of the
notion of an ideal (see Lemma2.1), then the operatorV : G → K .Z; X/ defined
by V.T/ = U .8.T// ◦ J, T ∈ G, has the same local properties asU . In particular,
if T ∈ G ∩K .Z; X/, then8.T/ ∈ K .W; X/ because ran8.T/ ⊆ ran T ⊆ X.
HenceV.T/ = 8.T/ ◦ J = T . Thus,K .Z; X/ is an ideal inK .Z;Y/.

A similar result is true for special classes of (semi) ideals.

THEOREM 4.3. Let X be a closed subspace of a Banach spaceY. ThenK .Z; X/
is an M-ideal (respectively, au-ideal or a semiM-ideal) inK .Z;Y/ for all Banach
spacesZ if and only ifK .W; X/ is an M-ideal (respectively, au-ideal or a semi
M-ideal) inK .W;Y/ for all separable reflexive Banach spacesW.

PROOF. The proof forM-ideals andu-ideals is similar to the proof of Theorem4.2.
Instead of the local formulation of ideals, it uses the local formulations ofM-ideals
andu-ideals from Lemma2.9.
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The proof for semiM-ideals will use the following characterization due to Lima
[14]: a closed subspaceF of a Banach spaceE is a semiM-ideal in E if and only if
for all x ∈ BE, all y ∈ BF , and allž > 0, there existsz ∈ F satisfying

‖x ± y − z‖ ≤ 1 + ž:

LetK .W; X/ be a semiM-ideal inK .W;Y/ for all separable reflexive Banach
spacesW. For a Banach spaceZ, let T ∈ BK .Z;Y/, S ∈ BK .Z;X/, andž > 0. Put
G = span{S;T} ⊆ K .Z;Y/ and letW, J, and8 be as in Lemma4.1. Note thatW
is separable and8.S/ ∈ K .W; X/. SinceK .W; X/ is a semiM-ideal inK .W;Y/,
there existsU ∈ K .W; X/ such that‖8.T/ ± 8.S/ − U‖ ≤ 1 + ž. But then
‖T ± S− U ◦ J‖ ≤ 1 + ž, andU ◦ J ∈ K .Z; X/. This shows thatK .Z; X/ is a
semiM-ideal inK .Z;Y/.

By the same reasoning as in the proofs of Theorem4.2 and Theorem4.3, we can
prove the following result.

THEOREM 4.4. Let X be a closed subspace of a Banach spaceY. ThenK .Z; X/
is an ideal(respectively, anM-ideal, au-ideal, or a semiM-ideal) in W .Z;Y/ for
all Banach spacesZ if and only ifK .W; X/ is an ideal(respectively, anM-ideal, a
u-ideal, or a semiM-ideal) in W .W;Y/ for all reflexive Banach spacesW.

REMARK 4.1. The particular case of Theorem4.4 for ideals and forX = Y was
proved in [17, Theorem 3.1].

Let us point out the following quite surprising observation.

COROLLARY 4.5. LetX be a semiM-ideal(respectively,au-ideal having the unique
ideal property) in a Banach spaceY. If K .W; X/ is an ideal inK .W;Y/ for all
separable reflexive Banach spacesW, thenK .Z; X/ is an M-ideal (respectively, a
u-ideal) inK .Z;Y/ for all Banach spacesZ.

PROOF. The proof is immediate from Theorem3.4 together with Remark3.2 (re-
spectively, Theorem3.5) and Theorem4.3.

We conclude by showing that Corollary4.5applies ifX∗ has thecompact approxi-
mation property with conjugate operators, that is, there exists a net.KÞ/ inK .X; X/
such that.K ∗

Þ/ converges toIX∗ uniformly on compact subsets ofX∗.

THEOREM 4.6. LetX be an ideal in a Banach spaceY with an ideal projection³ and
let Z be a reflexive Banach space. IfX∗ has the compact approximation property with
conjugate operators, thenK .Z; X/ is an ideal inL .Z;Y/ with an ideal projection
P satisfyingP.y∗ ⊗ z/ = .³y∗/⊗ z for all y∗ ∈ Y∗ and all z ∈ Z.
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PROOF. Let � : X∗ → Y∗ be a Hahn-Banach extension operator satisfying³ =
� j ∗, where j : X → Y is the natural embedding. We shall use the description of
K .Z; X/∗ due to Feder and Saphar [7, Theorem 1] (we can use it becauseZ is
reflexive). For anyg ∈K .Z; X/∗, there existsu ∈ X∗⊗̂³ Z such that

g.S/ = trace.Su/; S∈ K .Z; X/;

and‖g‖ = ‖u‖³ . Let thisu = ∑∞
n=1 x∗

n ⊗zn with ‖x∗
n‖ → 0 and

∑∞
n=1 ‖zn‖ < ∞. We

assume that a net.K ∗
Þ/ with KÞ ∈ K .X; X/ converges toIX∗ uniformly on compact

subsets ofX∗. If T ∈ L .Z;Y/, thenK ∗∗
Þ ◦ �∗ ◦ T∗∗|Z ∈ K .Z; X/ and∣∣ trace.T.�u// − g.K ∗∗
Þ ◦ �∗ ◦ T∗∗|Z/

∣∣
= ∣∣ trace.T.�u// − trace.K ∗∗

Þ ◦ �∗ ◦ T∗∗|Z/u
∣∣

=
∣∣∣∣∣

∞∑
n=1

.�x∗
n/.T zn/ −

∞∑
n=1

x∗
n.K

∗∗
Þ �

∗T zn/

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
n=1

.�∗T zn/.x
∗
n − K ∗

Þx∗
n/

∣∣∣∣∣
≤ sup

n
‖.IX∗ − K ∗

Þ/.x
∗
n/‖‖T‖

∞∑
n=1

‖zn‖ →
Þ

0

because{0; x∗
1; x∗

2; : : : } is a compact subset ofX∗.
Let8 :K .Z; X/∗ → L .Z;Y/∗ be defined by

.8g/.T/ = lim
Þ

g.K ∗∗
Þ ◦ �∗ ◦ T ∗∗|Z/

= trace.T.�u//; g ∈ K .Z; X/∗; T ∈ L .Z;Y/:

The existence of the limit implies the linearity of8g for all g ∈K .Z; X/∗ and of8.
Moreover,‖8g‖ ≤ ‖g‖ for all g ∈ K .Z; X/∗ because

| trace.T.�u//| ≤ ‖T.�u/‖³ ≤ ‖T‖‖�u‖³ ≤ ‖T‖‖�‖‖u‖³ = ‖T‖‖g‖:
Since, for anyg ∈ K .Z; X/∗ andS∈ K .Z; X/, we have

.8g/.S/ = trace.S.�u// = trace

( ∞∑
n=1

�x∗
n ⊗ Szn

)

=
∞∑

n=1

x∗
n.Szn/ = trace.Su/ = g.S/;

meaning that8g extendsg, we conclude that8 is a Hahn-Banach extension operator
fromK .Z; X/∗ toL .Z;Y/∗. Thus,K .Z; X/ is an ideal inL .Z;Y/.
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Let P be the ideal projection onL .Z;Y/∗ defined by8, that is,

P f = 8. f |K .Z;X//; f ∈ L .Z;Y/∗:

Consideringx∗ ⊗ z∈K .Z; X/∗ with x∗∈X∗ andz∈Z, we get, for anyT∈L .Z;Y/,
that.8.x∗ ⊗ z//.T/ = trace.T.�.x∗ ⊗ z/// = .�x∗/.T z/ = ..�x∗/⊗ z/.T/. Hence

8.x∗ ⊗ z/ = .�x∗/⊗ z; x∗ ∈ X∗; z ∈ Z;

and therefore, for ally∗ ∈ Y∗ andz ∈ Z,

P.y∗ ⊗ z/ = 8.. j ∗ y∗/⊗ z/ = .� j ∗ y∗/ ⊗ z = .³y∗/⊗ z;

as desired.

COROLLARY 4.7. Let X be an ideal in a Banach spaceY. If X∗ has the com-
pact approximation property with conjugate operators, thenK .Z; X/ is an ideal in
W .Z;Y/ (and therefore also inK .Z;Y/) for all Banach spacesZ.

PROOF. The proof is immediate from Theorem4.6and Theorem4.4.

REMARK 4.2. Example1.2shows that the assumption ‘X∗ has the compact approxi-
mation property with conjugate operators’ is essential in Corollary4.7and Theorem4.6
(recall thatX is always an ideal inX∗∗) and cannot be replaced by the assumption ‘X∗

has the metric compact approximation property’.

COROLLARY 4.8. Let X be anM-ideal (respectively, au-ideal having the unique
ideal property) in a Banach spaceY. If X∗ has the compact approximation property
with conjugate operators, thenK .Z; X/ is an M-ideal (respectively, au-ideal) in
K .Z;Y/ for all Banach spacesZ.

PROOF. By Corollary4.7,K .Z; X/ is an ideal inK .Z;Y/ for all Banach spaces
Z and therefore Corollary4.5applies to obtain the desired conclusion.

REMARK 4.3. The assumption ‘X∗ has the compact approximation property with
conjugate operators’ is also essential in Corollary4.8 (see Remark4.2). Namely,
if X is the closed subspace ofc0 constructed by Johnson and Schechtman (see [13,
Corollary JS]), thenX is anM-ideal in X∗∗, X has a basis, andX∗ does not have the
approximation property. Moreover, as it will be shown in a forthcoming paper of the
authors, based on the present article and [19], there exists a separable reflexive Banach
spaceZ such thatK .Z; X/ is not an ideal inK .Z; X∗∗/.
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[18] Å. Lima and E. Oja, ‘Ideals of finite rank operators, intersection properties of balls, and the
approximation property’,Studia Math.133(1999), 175–186.

[19] , ‘Hahn-Banach extension operators and spaces of operators’,Proc. Amer. Math. Soc.130
(2002), 3631–3640.
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