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Abstract

We give an example of a Banach spateuch that# (X, X) is not an ideal in’" (X, X**). We prove
that if z* is a weak denting point in the unit ball oZ* and if X is a closed subspace of a Banach space
then the set of norm-preserving extensiehB(x* ® z*) < £ (Z*, Y)* of a functionak* ® z* € (Z® X)*

is equal to the sell B(x*) ® {z*}. Using this result, we show that X is anM-ideal inY andZ is a
reflexive Banach space, theld (Z, X) is anM-ideal in ¢ (Z, Y) whenever# (Z, X) is an ideal in
2 (Z,Y). We also show that? (Z, X) is an ideal (respectively, avi-ideal) in.#"(Z, Y) for all Banach
space< wheneverX is an ideal (respectively, ad-ideal) inY and X* has the compact approximation
property with conjugate operators.

2000Mathematics subject classificatioprimary 46B20, 46B28, 47L05.
Keywords and phrasesompact operator, ideal-ideal, approximation property.

1. Introduction

Let us recall that a closed subspdeef a Banach spack is anidealin E if F+, the
annihilator ofF in E*, is the kernel of a norm one projection &i. The notion of an
ideal was introduced and studied by Godefroy, Kalton, and Saph&}.in [

Let X andY be Banach spaces. We denote #(X, Y) the Banach space of
bounded linear operators frodd to Y, and by.Z (X, Y), .Z(X,Y), 2#(X,Y), and
7 (X, Y) its subspaces of finite rank operators, approximable operators (that is, norm
limits of finite rank operators), compact operators, and weakly compact operators.

In [15, Theorem 3] the following result was proved.

THEOREM 1.1. Z (X, X) is an ideal in.Z (X, X**) for every Banach spacX.
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In [15, page 455] it is stated as an open problem whetfgiX, X) is an ideal in
(X, X**) for every Banach spack.

ExamMPLE 1.2. There exists a separable Banach spéaeich that
e 7 (X, X*)is anideal inZ (X, X*),
e 7 (X, X)isnotanideal inZ(X, X),
e 7 (X, X) isnotanideal in (X, X**).

PROOF. LetX = (3 -, ®(Z*,|-]))2 be the space defined (relying on the famous
example due to Willis32]) and studied by Casazza and Jarchow3nTlheorem 1].
Recall thatZ** is a separable Banach spa¢e,|, is an equivalent norm oZ**,
the spaceX fails the metric compact approximation property, but its dual spéce
has the metric compact approximation property. Sidteis separable, the spaces
(Z*,] - ) have the Radon-Nikagah property. ThusX has the Radon-Nikgah
property. (The fact that the Radon-Nikod property is preserved undég-direct
sums (1< p < oo) is mentioned in§, page 219]. It can be proved following the idea
of the proof in B, pages 64—65] that a Banach space with a boundedly complete basis
has the Radon-Nikaah property.)

Since X* has the metric compact approximation property, by a well-known result
due to Johnsonl1p], ¢ (X*, X*) is an ideal inZ(X*, X*). Thus# (X, X**) is
an ideal inZ (X, X*). Since X has the Radon-Nikagah property but fails to have
the metric compact approximation property, [ Theorem 14],# (X, X) is not an
ideal inZ (X, X). Hence (X, X) isnotanideal inZ (X, X**). (General properties
of ideals that we are using here and below in this paper are immediate from the local
formulation of ideals (see Lemn#al, (ii), in Section 2).) If# (X, X) were an ideal
in 27 (X, X*), then2# (X, X) would be anideal inZ (X, X**) (because? (X, X**)
is an ideal inZ (X, X**)) which is impossible. O

In[15, page 471]itis stated as an open problen#if X, X) isanideal inZ (X, X)
whenever? (X*, X*)is anideal inZ (X*, X*). Examplel.2also solves this problem
in the negative.

Every Banach spac¥ is an ideal in its biduak** (with respect to the canonical
projection of X*** onto X*). Let us further assume that is a closed subspace of a
Banach spac¥. In Section 2 we make a preliminary study abo#t(Z, X) being
an ideal in.#'(Z,Y) for a Banach spac&. In Proposition2.4 we prove that if
2 (Z, X) is anideal in¢'(Z,Y) for someZ # {0}, thenX is an ideal inY. And
in Proposition2.5 we show that ifX is an ideal inY and.# (Z, X) is an ideal in
2 (Z, X*), then# (Z, X) is an ideal in# (Z,Y). We also prove that the last
property is separably determined (see Theor2ris?2.7, and2.8). In particular (see
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Theoren2.8), 7 (X, X) is an ideal in# (X, X**) whenever# (E, E) is an ideal in
2 (E, E*) for every separable ided in X.

The main lemma in this paper is Lemral. This is a general result describing
all norm-preserving extensions of certain important functionals on operator spaces.
We use Lemma.1, in particular, in Theoren3.4 to prove that ifZ is a reflexive
Banach space, iX is anM-ideal inY, and if ¢ (Z, X) is an ideal in¢ (Z,Y),
then 7 (Z, X) is an M-ideal in ¢ (Z, Y). Similar results hold fou-ideals (see
Theorems3.5and3.6).

In Examplel.2 the dual spac* fails to have the compact approximation prop-
erty with conjugate operators (althougti has the metric compact approximation
property). The main conclusions in this paper, Corollatiesand4.8in Section4,
show that#” (Z, X) is an ideal (respectively, avi-ideal) in.#"(Z, Y) for all Banach
space< wheneverX is an ideal (respectively, avi-ideal) inY and X* has the com-
pact approximation property with conjugate operators. The proofs rely on results from
Section3, the description of the dual space of compact operators due to Feder and
SapharT¥], and the uniform isometric version of the Davis-Figiel-Johnson-Pelsizy
factorization theorem due to Lima, Nygaard, and Qjg [

The notation we use is standard (sé&]]. We consider Banach spaces over the
real fieldR. The closure of a seA is denoted byA, its linear span by spah, and its
convex hull by convA. The closed unit ball of a Banach spa€éds denoted byBe
and the identity operator o by | ¢.

2. Ideals of compact operators

Let X be a closed subspace of a Banach spéceln this section we make a
preliminary study about?” (Z, X) being an ideal i’ (Z, Y) for a Banach spacg.
A first basic result, PropositioR.4, says that it (Z, X) is an ideal in#'(Z, Y) for
some Banach spa@ # {0}, thenX is anideal inY. In Proposition2.5we show that
the converse is true whenevéf (Z, X) is anideal in#’ (Z, X**). And we prove that
the last property is separably determined (see TheoPedr2.8).

In Propositior2.10we show that i7" (Z, X) is anM-ideal (respectively, a-ideal)
in ¢ (Z,Y) for some Banach spacé # {0}, thenX is anM-ideal (respectively, a
u-ideal) in.

Let F be a subspace of a Banach sp&ce linear operato : F* — E*is called
a Hahn-Banach extension operatbr(®x*)(x) = x*(x) and|®x*| = ||x*| for all
x € F and allx* € F*. The next result is well known. A proof can be found irb].

LEmMMA 2.1. Let F be a closed subspace of a Banach spé&ce The following
statements are equivalent.
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(i) FisanidealinE.
(i) Fislocally 1-complemented i, that s, for every finite dimensional subspace
G of E and for alle > 0, there is an operatotJ : G — F suchthafjU| <1+¢
andUx =xforallxe GNF.
(i) There exists a Hahn-Banach extension operdtarF* — E*.

In[31] (see alsol1, page 282]) Werner has shown thaXiis anM-ideal inY, then
the injective tensor produé®, Z is anM-ideal in Y®, Z for any Banach spacg.
Rao extended this to ideals i&g]. We have a short proof of this result.

PROPOSITION2.2. Let X be an ideal inY and letZ be an ideal inW. ThenX®,Z
is an ideal inY &, W.

PrROOF. Let¢ : X* — Y*andy : Z* — W* be Hahn-Banach extension operators.
Let Q : Z** — Z* be the canonical projection. We shall use the identifications
(X®.2)" = (X, Z* and (Y®.W)* = 1 (Y, W*) (see, for example,d]). Since
P*X =X,x € X,andy*z=12z¢€ Z,themapd : | (X, Z*) — | (Y, W*) defined by
®(T) =¥ o Qo T™ o ¢*|y is clearly a Hahn-Banach extension operator. O

Theoreml.1has an easy generalization.

CoROLLARY 2.3. Let X be a closed subspace of a Banach spécé&he following
statements are equivalent.

() XisanidealinY.
(i) Z(Z,X)isanideal inZ(Z,Y) for all Banach spaceZ.
(i) Z(Z,X) isanideal in.Z(Z,Y) for some Banach space # {0}.

In particular, Z (Z, X) is an ideal in.Z (Z, X**) for all Banach spaceX and Z.

ProOF. (i) = (ii) is immediate from Propositior2.2 becauseZ (Z, X) and
Z(Z,Y) can be canonically identified with*®. X andZ*®.Y.
(i) = (iii) is trivial.
(iii) = (i). SupposeZ (Z, X) is anideal inZ(Z,Y). Let F be a finite dimensional
subspace of . Letz € Z andz* € Z* be such thalz|| = ||z*|| = z*(2) = 1. Denote
G={zQy:ycF}C #(ZY). Lete > 0andletV : G — Z#(Z, X) be an
operator such thatV| < 1+ ¢ andV(S) = Sforall Se GN.Z(Z, X). Now define
amapU : F > XbyUy = (V(Z ® ¥))z. ThenU ‘locally 1-complements’X
inY. O

Examplel.2 shows that the implication (i}> (ii) of Corollary 2.3 fails if we
consider compact operators instead of approximable operators. However, by the
proof of the implication (iii)= (i), we also have the similar result in the case of
compact operators.
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PrROPOSITION2.4. Let X be a closed subspace of a Banach spécdf 7 (Z, X)
is an ideal in#"(Z, Y) for some Banach space # {0}, thenX is an ideal inY.

PrOPOSITION2.5. Let X be a closed subspace ¥fand assume that (Z, X) is
an ideal in#"(Z, X**) for some Banach spacé # {0}. ThenX is an ideal inY if
and only if 7' (Z, X) is an ideal in#" (Z,Y).

PrROOF. In view of Proposition2.4 we only need to prove the ‘only if’ part. Let
¢ : X* - Yand® : ¥ (Z, X)* — 2 (Z, X*)* be Hahn-Banach extension
operators. Defin@ : 7 (Z, X)* — ¢ (Z,Y)* by

WINT) =(@F)(@*|lyoT), fex(Z X, TeH(ZY).

ThenVislinearand V| < 1. Sincep*x = X, x € X, we havep*|yoT = T whenever
T € 2 (Z, X). Consequently, for anff € ¢ (Z, X) and anyf e 27 (Z, X)*,
(Wf)(T) = (&f)(T) = f(T) meaning thatv f is an extension off. HenceW is a
Hahn-Banach extension operator. O

From the last proposition it follows that it is important to decide wb€rZ, X)
is an ideal in’ (Z, X**). Examplel.2in the Introduction shows that this is not true
for all X and allZ. If X is the range of a norm one projectionXi*, then.z’ (Z, X)
is anideal inz’(zZ, X**) for all Z. (If P is the projection, thel — P o T is anorm
one projection fromy” (Z, X**) onto ¢ (Z, X).)

We shall prove in Theorem.2 that 7 (Z, X) is an ideal in.# (Z, X**) for all
Banach spacez if this is true for all separable reflexive Banach spages

The next three results show that the question about being an ideal, can be reduce
to the case of separable Banach spaces.

THEOREM2.6. Let X and Z be Banach spaces. I##(Z, E) is an ideal in
2 (Z, E**)forevery separableided in X, thens# (Z, X) isanideal inz (Z, X**).

PrROOF. LetF C 7 (Z, X**) be afinite dimensional subspace andlet 0. Since
G={Tz:zeZ, T e FN_¥(Z, X)}is contained in a separable subspacX pby
a result of Sims and Yos2p] (see also 11, page 138]), there exists a separable ideal
E € X suchthatG C E. Let¢ : E* — X* be a Hahn-Banach extension operator.
Theng* : X** — E™ andF; = {¢* o T : T € F}is a finite dimensional subspace
of ' (Z, E*). LetU : F, — J¢(Z, E) be alinear operator such thil || < 1+ €
andU(¢*oT) =¢*oTforall T € F N2 (Z, X) (note thatifT € F N2 (Z, X),
thenT(Z) € E and¢* o T € #(Z,E)). NowV : F — #(Z, X) defined by
V(T) =U(¢* o T) ‘locally 1-complements’¢ (Z, X) in 2 (Z, X**). O
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REMARK 2.1. The assertion of Theore® 6 is not reversible: ¢ (X, X**) is al-
ways an ideal inZ (X, X***) (becauseX** is the range of a norm one projection
in X****) but, for the separable Banach spat¢a separable ideal iX**) described
in Examplel.2, ¢ (X, X) is not an ideal i’ (X, X**).

THEOREM2.7. Let X, Y, and Z be Banach spaces and assuiXeas a subspace
of Y. Theno#'(Z, X) is an ideal in2# (Z, Y) if and only if % (W, X) is an ideal in
22 (W, Y) for every separable idedV in Z.

PrROOF. Assume that# (Z, X) is anideal in#’(Z, Y) and letW be an ideal irZ.
Let ® : 27 (Z, X)* — ¢ (Z,Y)* and¢ : W* — Z* be Hahn-Banach extension
operators. Forf € 7 (W, X)* andS € .7 (Z, X), definef(S) = f(S|w). Finally,
define an operatob : 7 (W, X)* — ¢ (W, Y)* by

WfNT) = (D fA)(T** 0@*lz), Ffe W, X)", TeZ(WY).

ThenV is linear and|¥| < 1. ForT € 2 (W, X), we havel ** o ¢*|, € # (Z, X)
and therefore

(W)T) = (@) (T 0 p*|) = F(T™0¢%|2)
= f(T™ 0 p*lw) = f(T™|w) = f(T).

HenceV is a Hahn-Banach extension operator.

Conversely, assume that" (W, X) is an ideal in.# (W, Y) for every separable
idealWin Z. LetF C ¢ (Z,Y) be a finite dimensional subspace anclet 0. The
set{T*y* : T € F,y* € Y*} is separable. By a theorem due to Sims and Y&} [
(see also11, page 138]), we can find a separable idé&in Z with a Hahn-Banach
extension operatap : W* — Z* suchthaf{T*y* : T € F, y* € Y*} C ¢(W*). Let
i : W — Z be the natural embedding. Then: Z* — W* is the restriction operator
and we get,w- = (¢ o 1) |pwr)-

LetFy = {Toi : T € F} € (W, Y). We can find an operatdr : Fy —
20 (W, X) with [V < 14 € such thatv(S) = Sfor everyS € Fy N 22 (W, X).
Define an operatod : F — 27 (Z, X) by U(T) = (V(T o1))* o ¢*|z. Then
Ul < 14+e€ Foranyze Z,y* € Y* andT € F N7 (Z, X) we get (since
Toi e Fy N2 (W, X) andT*y* € ¢ (W*))

y'(U(M)2) =y ((V(T 0i))"(¢"2)
=Y ((T™ 0i™)(¢"2))
=Yy (T™oi™o0¢")2)
= (¢ oi" o THY)N()
=(T'y) (@2 =y (T2.
ThusU(T) = T. Hence#' (Z, X) is anideal in# (Z,Y). O
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It is clear from Theorem&.6 and 2.7 that 2# (X, X) is an ideal ino#" (X, X**)
whenever? (E, F) is an ideal in# (E, F**) for all separable idealg andF in X.
However, further developing the method of proofs of those theorems we obtain the
following stronger result.

THEOREM 2.8. Let X be a Banach space. I#'(E, E) is an ideal in.# (E, E**)
for every separable idedt in X, theno# (X, X) is an ideal in.#" (X, X**).

ProOOF. Assume that? (E, E) isanidealin (E, E**) for every separable ide&l
in X. LetF C 27 (X, X*) be a finite dimensional subspace anclet 0. Since the
sets{Tx:xe X, Te Fn#Z (X, X)} € Xand{T*x*: x* € X*, T € F} € X*
are separable, we can find a separable ide@ X together with a Hahn-Banach
extension operatap : E* — X*sothat{Tx: x e X, T e FNn.#(X,X)} C E
and{T*x*: x* € X*, T € F} C ¢(E*) (again we used the Sims-Yost theorem). Let
i : E — X be the natural embedding.

DenoteG = {¢p* o T oi : T € F} C 2 (E, E**). Then there exists an operator
V:G— #(E,E)suchthat|]V| <1+e€andV(S) = Sforall Se GNn_7 (E, E).
DefineU : F — (X, X) by U(T) = (V(@* o T oi))* 0 ¢p*|x, T € F. Then
lU|l <1+ €. We conclude by showing th&k(T) =T forall T € F N2 (X, X).

LetT € Fno# (X, X). SinceTx € E, x € X, we haveinfactthat € 27 (X, E).
We also have thall (T) € ¢ (X, E) (thisistrue forallT € F). SinceT € 7 (X, E)
andg*e=e,ec E,wehavep*oToi € ¥ (E, E). HenceV(¢p*oToi) = ¢p*o T ol.
For anyx € X ande* € E*, we get

e U(M)x) =€ ((¢" o T oi)™(¢"X)) = (¢"X)((¢" o T 0 i)"€)
= (@) ("o T o)) = ((poi*oT"og)e)(X)
= (¢ o I)(T e (X) = (T Pe")(X) = (¢p€")(Tx) = €(TX)

sinceT*¢pe" € ¢(E*),poi* = lyE, andTx € E. ThusU(T) =T as desired. O

REMARK 2.2. The assertion of Theoreth8is not reversible: see Remazkl and
note that (X**, X**) is always an ideal in#"(X**, X****).

Some ideals have additional properties. Best known are proddhtieals defined
by Alfsen and Effros in]], see also11]. A more general type of ideals, theideals,
was firstintroduced by Casazza and Kaltordiignd thoroughly studied by Godefroy,
Kalton, and Saphar irf].

Let us recall that a closed subspde®ef a Banach spack is anM-ideal (respec-
tively, au-ideal) in E if there exists a linear projectioR on E* with kerP = F*
suchthat| f|| = ||Pf||+||f — Pf| forall f € E* (respectively|lg. — 2P| = 1).
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LEMMA 2.9 (seelb5, 8]). LetF be aclosed subspace of a Banach spac&henF
is an M-ideal (respectively, al-ideal) in E if and only if condition(M) (respectively,
condition(u)) below is satisfied.

(M) For every finite dimensional subspa@ein E and everyg > 0, there exists a
linear operatoilJ : G — F suchthat)x = xforall x e GNF and||Ux+y—-Uy| <
L+ e)ymax(||x]|, |lyl) forall x,y € G.

(u) For every finite dimensional subspaGein E and everyg > 0, there exists a
linear operatorU : G — F suchthatUx = xforall x e GN F and||x — 2UX| <
(1+ o) x| forall x € G.

PrROOF. See [L5 Theorem 4] and{, Proposition 3.6]. O

In the next section we shall need the following analogue of Propositién

ProPOSITION2.10. Let X be a closed subspace of a Banach spécé 7 (Z, X)
is an M-ideal (respectively, ai-ideal) in 2#"(Z, Y) for some Banach space # {0},
then X is an M-ideal (respectively, a-ideal) in Y.

PrOOF. We argue as in the proof of Corollag3, (iii) = (i), but we use the local
formulations ofM-ideals andu-ideals from Lemma.9. O

3. Hahn-Banach extension operators

Let X be a subspace of a Banach spaceror eachx* € X*, let HB(x*) denote
the set of norm-preserving extensionsxofto Y. Hahn-Banach extension operators
® : X* — Y* act as linear selection functions sind&* € HB(x*) for all x* € X*.

This shows that if we can describe the 988(x*), then we getimportant information
about possible Hahn-Banach extension operators.

The next lemma is fundamental for the results we obtain in this paper. It describes
all norm-preserving extensions of certain important functionals on operator spaces.
It also explains surprisingly well why some of those functionals have unique norm-
preserving extensions: the reason is that all their norm-preserving extensions mus
have a special form that makes them unique.

LEmmA 3.1. Let X, Y, and Z be Banach spaces and assume tKais a closed
subspace of. ConsiderZ ® X as a subspace o’ (Z*, Y). If z* is a weak denting
point of Bz andx* € X*, then, forx* ® z* € (Z ® X)*, the equality

HB(X* ® ) = HB(X") ® {Z*}

holds.



[9] Ideals of compact operators 99

PrROOF. It is clear thatH B(x*) ® {z*} € HB(x* ® z*). For the converse, let
¢ = x*® z* and lety € HB(¢). We may assume th@k*|| = 1. It suffices to prove

CLAM. ¥ € By. ® (Z]" in 2(Z*, Y)".

Assume that the claim has been proved. Choose ayjgtin By. such that
y* ® z* —  weak. By passing to a subnet, we may assume Wjat> y* € By-

weak. Letz € Z satisfyz*(z) = 1. Then for any € X,
X'(X) = X"(0Z'(2) = ¢z@x) =limy; ® Z)(z@X) =y (X)Z'(2) =y (X),

so we get thay*|x = x*. Thusy* € HB(x*).
For anyT € Z(Z*,Y),

Y(T) =lim(y; ®2)(T) = imy;(TZ) = y'(T2) = (v © 2)(T),
SOy = y* ® Z-. O

PROOF OF THE CLAIM Suppose for contradiction thgt ¢ By. ® {z*}w*. Then for
someT € Z(Z*,Y)with | T| = 1 and some > 0, we get

n(T) < ¢¥(T)—6¢ forall n € By. ® {z'}.

By the description of denting points due to Wern&®,[Lemma 2], there exist > 0
andz € Z such thatz*(z) = 1, ||z|| < 1+ d¢, and

(Jw'l <landw*(z) >1-68) = |w' -7 <e.

Choose& € X suchthak*(x) = 1and|x|| < 1+68¢, and defineS = zx € ZQ X.
Sincey (S) = landy € Bgz:yy = tonv’ (By. ® Bz.) (the last equality being clear
from the bipolar theorem), we can finid € conv(By- ® B.) such that

Ye(S) > 1—6%2, Y (T) —¢(T)| <e.

Let us writey, = Y., Ay ® z*, wherez* € B, y* € By, 4 > 0, and
>, A = 1. We may suppose thgt(x) > Oforalli. Letd = {i : z'(2) > 1 - §}.
Then we get

1-8%2 < ¥.(9 =D LY (0Z (2

i=1

=Y WY 0Z@+ Y LY (07 (@)

ied igd
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< in(lwe)z+in(1+ae)(1—a)

ied igd

= (1+ 8¢) (1+86)ZA +(1—5)Zx]

ied i¢gd

= (1+ 8¢) 1+562A —BZA}

ied igd

< (1+8¢) 1+86—32A}
igd
Thus 1-8¢ < 148¢—58 Y.

A, meaningthal, A < 2¢. Letn =Y Ly @27

i¢d i¢d
Then we get
e —nll = | > My ®(z —2)
i=1

= D MIE =2+ ) hlZ =2 < e +4e = Be.

ied igd
Butn € By ® {z*}, so

Ve(T) =5 < n(T) < ¥(T) —

Thuse < ¥(T) — ¥.(T) < €, a contradiction. O

ReEMARK 3.1. The particular case of Lemn3alwith X = Y is precisely Lemma 4.3
in [18] stating thatx* ® z* has a unique norm-preserving extension€gz*, X).
Therefore, the proof of Lemma 1 provides, in particular, a new and simpler proof to
Lemma 4.3 in L8] and its earlier versionslp, Lemma 3.4], 0, Theorem 3.7],15,
Lemma 11], and 15 Lemma 12]. The uniqueness of norm-preserving extensions
have been used to obtain some main resultg,in, 16, 18, 20].

Let us point out the particular ca¥e= X** of Lemma3.1

COROLLARY 3.2. Let X and Z be Banach spaces. Considér X as a subspace
of Z(Z*, X*). If z*is a weak denting point oB,. andx* € X*, then, forx* ® z* €
(Z ® X)*, the equalityH B(x* ® z*) = H B(x*) ® {z*} holds.

We shall say that a closed subspatef a Banach spac¥ has theunique ideal
propertyin Y if there is at most one ideal projection, this is, at most one norm one
projectionz onY* with kerr = X*. From the relation between ideal projections and



[11] Ideals of compact operators 101

Hahn-Banach extension operators it is clear thdias the unique extension property
in Y if and only if there is at most one Hahn-Banach extension opegatot* — Y*.

An obvious example of subspaces having the unique ideal property is presented by
subspaces having propetty. X is said to havepropertyU in Y if every x* € X*
has a unique norm-preserving extensiorYt¢this notion is due to Phelp27]; for
a recent study of such subspaces s &nd [26]). It is well known thatM-ideals
(more generally, senmi -ideals andH B-subspaces) have propettlyand therefore
they also have the unique ideal property (for a study-ideals having property
see P2)).

In the case whelY = X**, let us note thap € .Z(X*, X***) is a Hahn-Banach
extension operator if and only ¢f*|x~ € .2 (X*™, X**) has norm one angl|x = Ix.

Thus the unique ideal property ¥fin X** is the same as the unique extension property
of X introduced and deeply studied by Godefroy and Sapha®]ifuging the term

‘* X'is uniquely decomposed’) andl(]. Let us recall thaiX is said to have thanique
extension propertyf the only operatorT € Z(X**, X**) such that|T| < 1 and
Tix = IxisT = lye.

In particular, the following Banach spaces have the unique extension property (see
[10)): spaces which have property in their bidual (Hahn-Banach smooth spaces),
those with a Fechet-differentiable norm, separable polyhedral Lindenstrauss spaces,
spaces of compact operato¥$(Z, X) for reflexiveZ and X.

CoROLLARY 3.3. Let X, Y, and Z # {0} be Banach spaces and assume tKat
a subspace oY having the unique ideal property M. If 2# (Z*, X) is an ideal in
2 (Z*,Y) with an ideal projectionP, then X is an ideal inY and its unique ideal
projectionz : Y* — Y* satisfies, for all weakdenting pointsz* € B,. and all
y* € Y*, the equalityP (y* ® z*) = (ny*) ® z*.

PrOOF. Proposition2.4yields thatX is an ideal inY. Letn : Y* — Y* denote its
unique ideal projection and lgt : X* — Y* be the unique Hahn-Banach extension
operator. Themr = ¢j*, wherej : X — Y is the natural embedding.

Letd : 7 (Z*, X)* — % (Z*, Y)* be a Hahn-Banach extension operator satisfy-

ing
Pf=d(flyzx) feH(ZY)".
For any weakdenting pointz* of Bz., by Lemma3.1, we have
d(X* ®Z7Z) e HB(X") ® {z*}, x*e X*.
By the linearity of®, it is straightforward that the mafy. : X* — Y* defined by

PX*RZ) = (X)) ®Z, ¢-X"€ HB(X*), X" e X*,
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is linear and therefore it is a Hahn-Banach extension operator. @hus ¢. And for
anyy* € Y* we get

PY'®z)=2(j'y)®Z)=@]'Yy)®Z =(ny)®Z
as desired. O

In [31] Werner proved that i is anM-ideal inY andZ is a Banach space and if
Z* or Y has the approximation property, thefi(Z, X) is anM-ideal in_#"(Z,Y).
The next result shows that, for reflexide if 2#°(Z, X) is anideal in¢' (Z,Y), then
it is already arM -ideal without any requirement about the approximation property.

THEOREM 3.4. Let X be a closed subspace of a Banach spdcnd letZ # {0}
be a reflexive Banach space. Th#nh(Z, X) is anM-ideal in 2 (Z, Y) if and only if
XisanM-idealinY and.# (Z, X) is an ideal in¢" (Z,Y).

ProOOF. If 2#°(Z, X) is an M-ideal in ¢ (Z,Y), then X is an M-ideal in Y by
Proposition2.10

Assume thatX is an M-ideal inY and ¢ (Z, X) is an ideal in# (Z,Y). Let
P be a norm one projection or'(Z, Y)* with kerP = ¢ (Z, X)*. Letx denote
an M-ideal projection orY* with kerr = X*. By the uniqueness of Hahn-Banach
extensions in the case &fl-ideals,n is a unique ideal projection. Hence, for all
y* € Y* and all weak denting pointz € B, by Corollary3.3

Py'®2 = (ry") ®z
SinceZ = Spanw* -dentB;), we get that
PYy'®2=@my)®z Yy eY,zel
Consider now anyf € 7' (Z, Y)*. It suffices to prove that
IPFII+1f—PFflI<Ifl

By the description of’#’ (Z, Y)* due to Feder and Saphat, [Theorem 1] (here we
use once more that is reflexive), there exists an elemenin the projective tensor
productY*®, Z such that

f(T) =trac€Tu), T e #(ZY),

and|| f|| = |lull,. For anye > 0, letu be represented as= > -, y* ® z, so that

Iully +€ = > Iy;llizall-

n=1
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Defineg € ¢ (Z, Y)* by

g(T) =) ((ry; ®z)(T). TeX(ZY).

n=1

Since

f(T) =) ((y;®z)(T). TeH(ZY),

n=1

it is clear thaty = P f and

(F=g)(M) =) (Vi -7y ®z)(T), TeX(ZY).

n=1
Therefore,
Hl+e= Y lyallizall =D lwyallzal + Y llys — 7 yallizl
n=1 n=1 n=1
> llgll+ I f —gll = IPflI+ I f - Pf|
as desired. O

A closed subspacé& of a Banach spacg& is called asemiM-ideal (see [L4]
or [11, page 43)) if there is a (nonlinear) projectiéhfrom E* onto F*+ such that
P(Af + Pg) =APf+ Pgand| f| =|Pf|+|f —Pf|forall f,ge E*andall
scalarst.

REMARK 3.2. Theorenm3.4remains true if one replaceX'is anM-ideal inY’ by
the weaker conditionX is a semiM-ideal inY’. This is clear from the fact thaX
is anM-ideal inY if and only if X is an ideal inY and X is a semiM-ideal in Y
(see, for example,1fi, page 43]). In particularX is an M-ideal in its bidualX**
wheneverX is a semiM-ideal in X**. We do not know whetheg# (Z, X) is an
M-ideal in_# (Z, X**) whenever# (Z, X) is a semiM-ideal in_# (Z, X**).

The method of proof of Theore®4 enables us to extend the theorem friva
ideals to more general classes of ideals (for example, to ideaisE with respect
to an ideal projectiorP satisfying|laf + bPf| + c||Pf| < || f| for given numbers
a, b, c,andforall f € E*; these ideals were recently studied 28[and [24]) under
the assumption thaX has the unique ideal property h The corresponding result
onu-ideals reads as follows.

THEOREM 3.5. Let X be a closed subspace of a Banach spdd®ving the unique
ideal property inY and letZ # {0} be a reflexive Banach space. Then(Z, X) is
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au-ideal in_#'(Z,Y) if and only if X is au-ideal inY and 7 (Z, X) is an ideal in
H(Z,Y).

A closed subspacE of a Banach spack is called astrict u-ideal in E if there
exists a linear projectio® on E* with kerP = F* such thatl|lg. — 2P| = 1 and
the range raf® is a norming subspace &*. This notion was introduced and deeply
studied by Godefroy, Kalton, and Saphé}. [

THEOREM 3.6. Let X be either a separable Banach space or a Banach space
containing no copy of;. If X is a strictu-ideal in X** and ¢ (Z, X) is an ideal
in JZ (Z, X**) for a reflexive Banach spacg, then.#' (Z, X) is a strictu-ideal in
H(Z, X*).

PrROOF. Let 7w : X** — X** be the projection from the definition of a strict
u-ideal and letP denote the ideal projection og”(Z, X**)*. It follows from [8,
Propositions 5.2 and 2.7] th&t does not contain any proper norming closed subspace.
But thenX has the unique extension property (s&@ [Proposition 2.5]) and we can
apply Theoren3.5to conclude that? (Z, X) is au-ideal in.¢" (Z, X**). Moreover,
the proof of Theoren3.4 shows thatP is the desiredi-ideal projection and

PX*®2z) =#X"™)®z x"*eX™ zelZ

In view of the last equality raR contains the functionats™* ® z with x*** € ran
andz € Z. But these functionals give the norm of afye 7 (Z, X**) (by ||T| =
sug|x**(T2)| : x** € Bz, Z € Bz}) because ram is a norming subspace (for
XY in X*** (in fact, ranr = X* (see B])). O

4. ldeals of compact operators and the compact approximation property

Let X be a closed subspace of a Banach spada this section we shall prove that
2 (Z, X) is an ideal (respectively, akl-ideal) in 2# (Z, Y) for all Banach spaces
Z wheneverX is an ideal (respectively, akl-ideal) inY and X* has the compact
approximation property with conjugate operators. We begin by showing that if results
about# (Z, X) being anideal (from a given class of idealsyf(Z, Y) or #'(Z,Y)
are true for all reflexive Banach spacgsthen they are true for all Banach spaces
Z. The method of proof is based on the following version of a factorization result for
weakly compact operators by Lima, Nygaard, and Ojéliry Corollary 2.4].

LEMMA 4.1. Let Y and Z be Banach spaces and I& be a finite dimensional
subspace o##'(Z,Y). Then there exist a reflexive Banach spaéea norm one
operatorJ : Z — W, and a linear isometryd : G — # (W, Y) such thatT =
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®(T) o JandranT =ran®(T) in Y forall T € G. Moreover,T is compact if and
only if ®(T) is compact. In particular, i C 27 (Z,Y), thenW is separable.

PrOOF. Applying [17, Theorem 2.3], as in the proof of T, Corollary 2.4], we can
find a reflexive Banach spad#, a norm one operatdr : W* — Z*, and a linear
isometry® : G — # (W, Y) so thatranl* = W, T** = &(T)o I*forall T € G,
andT is compact if and only i¥b(T) is compact. As in17, Corollary 2.4], putting
J=1%7:2Z— W,we have|J|| =1 andT = &(T)o Jforall T € G. Clearly
ranT C ran®(T). On the other hand,

ran®(T) = (®(T))(W) = ((T))(I*(Z*))
C(P(TM))*(Z*)) =ranT* CranT

becausd is weakly compact. HenaanT = ran®(T).
In particular, ifG € .#(Z,Y), then by the proof of 17, Theorem 2.3] andj,
Lemma 1, (xi)]JW* is separable, hend# is also separable. O

THEOREM4.2. Let X be a closed subspace of a Banach spdc&hen# (Z, X)
is an ideal in.#"(Z, Y) for all Banach spaceg if and only if 2 (W, X) is an ideal
in 2¢ (W, Y) for all separable reflexive Banach spad&fs

PrOOF. The proof is similar to the proof ofl[7, Theorem 3.1]. Let? (W, X) be
an ideal in# (W, Y) for all separable reflexive spac¥é. For a Banach spaca,
let G be a finite dimensional subspace.#f(Z, Y) and lete > 0. By Lemma4.1,
we can find a separable reflexive spatye a norm one operatal : Z — W, and
a linear isometry® mappingG into # (W, Y) such thatT = ®(T) o J for all
TeG. IfU:®G) — (W, X) is an operator from the local formulation of the
notion of an ideal (see Lemmal), then the operatov : G — ¥ (Z, X) defined
by V(T) = U(®(T)) o J, T € G, has the same local propertieslds In particular,
if T e GN#(Z,X), thend(T) € # (W, X) because rad®(T) C ranT < X.
HenceV(T) = ®(T) o J =T. Thus,# (Z, X) is anideal in# (Z,Y). O

A similar result is true for special classes of (semi) ideals.

THEOREM4.3. Let X be a closed subspace of a Banach spdc&hen# (Z, X)
is an M-ideal (respectively, al-ideal or a semiM-ideal) in 2 (Z, Y) for all Banach
spacesZ if and only if 2Z (W, X) is an M-ideal (respectively, au-ideal or a semi
M-ideal) in 22" (W, Y) for all separable reflexive Banach spadéfs

PrOOF. The proof forM-ideals andi-ideals is similar to the proof of Theoref2.
Instead of the local formulation of ideals, it uses the local formulations! étleals
andu-ideals from Lemma.9.
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The proof for semiM-ideals will use the following characterization due to Lima
[14]: a closed subspade of a Banach spack is a semiM-ideal in E if and only if
forall x € Bg, ally € Be, and alle > 0, there existz € F satisfying

Ix+y—z| <l+e

Let 22 (W, X) be a semM-ideal in_# (W, Y) for all separable reflexive Banach
spacesVN. For a Banach spacg, letT € By (zy),, S € Bxzx), ande > 0. Put
G =spaidS, T} C #(Z,Y) and letW, J, and® be as in Lemma.1 Note thatw
is separable an@(S) € # (W, X). Sincez (W, X) is a semiM-ideal in_# (W, Y),
there existdJ € 7 (W, X) such that||®(T) &+ ®(S) — U|| < 1+ e. But then
IT£S—UoJ||<1+¢ andUoJ e ¥ (Z, X). This shows that?7 (Z, X) is a
semiM-ideal inJ¢ (Z,Y). O

By the same reasoning as in the proofs of Theo#edand Theorend.3, we can
prove the following result.

THEOREM4.4. Let X be a closed subspace of a Banach spdc&hen# (Z, X)
is an ideal(respectively, arM-ideal, au-ideal, or a semM-ideal) in #'(Z,Y) for
all Banach spaceg if and only if 2 (W, X) is an ideal(respectively, aiM-ideal, a
u-ideal, or a semiM-ideal) in # (W, Y) for all reflexive Banach spacét.

REMARK 4.1. The particular case of Theorefnd for ideals and forX = Y was
proved in [L7, Theorem 3.1].

Let us point out the following quite surprising observation.

COROLLARY 4.5. LetX be asemM-ideal(respectively, a-ideal having the unique
ideal property in a Banach spac®’. If 2# (W, X) is an ideal in.# (W, Y) for all
separable reflexive Banach spad#fs then.z'(Z, X) is an M-ideal (respectively, a
u-ideal) in #(Z, Y) for all Banach spaceZ.

PrOOF. The proof is immediate from Theore®&4 together with RemarB.2 (re-
spectively, Theorer.5 and Theorerd.3. O

We conclude by showing that Corollady5 applies if X* has thecompact approxi-
mation property with conjugate operatothat is, there exists a nék,) in ¢ (X, X)
such thai(K}) converges tdx- uniformly on compact subsets &*.

THEOREM4.6. Let X be anidealin a Banach spadewith an ideal projectionr and
let Z be a reflexive Banach space.Xf has the compact approximation property with
conjugate operators, thert (Z, X) is an ideal in.Z(Z, Y) with an ideal projection
P satisfyingP(y* ® 2 = (ny*) ® zforall y* e Y*and allz € Z.
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PROOF. Let¢ : X* — Y* be a Hahn-Banach extension operator satisfying
¢j*, wherej : X — Y is the natural embedding. We shall use the description of
2 (Z, X)* due to Feder and Saphaf, [Theorem 1] (we can use it becaug&eis
reflexive). For anyg € ¢ (Z, X)*, there existsl € X*®, Z such that

g(S) =trace&Su, Se .7 (Z,X),

and|g|| = |lull,. Letthisu = > x*®z, with [|x}]| — 0and}_ ", [1z,]| < co. We
assume that a néK?) with K, € ¢ (X, X) converges tdy- uniformly on compact
subsets oX*. If T € £(Z,Y), thenK}* o ¢* o T**|; € #(Z, X) and

|traceT (pu)) — g(K* 0 ¢™ o T™|)|
= |traceT (¢u)) — trace&K:;* o ¢* o T*|,)u|

D @) (Tz) = Y xi(K'¢ Tz)
n=1

n=1

D (@ Tz 06 — Kix)
n=1

< supl|(Ix- = KDODIITID 11z —0

n=1
becausdO0, x;, X5, ...} is a compact subset &f*.
Letd : 7 (Z, X)* — Z(Z,Y)* be defined by
(@g)(T) = limg(K;" 0 9" 0 T™2)
=trace&T (pu)), ge 2 (Z, X)), T e ZL(ZY).

The existence of the limit implies the linearity @ for all g € 2# (Z, X)* and of®.
Moreover,||®g| < ||g| forall g € 2# (Z, X)* because

[traceT (pu))| < [[T(@WI. < [ITIl¢ul. < ITHl@lull =TIl
Since, foranyg € 7 (Z, X)* andS e ¢ (Z, X), we have

(0Q)(S) =traceS(pu)) = tracel > ¢x; ® szq)

n=1
= ij;(Sz]) = tracéSu) = g(S),
n=1

meaning thatbg extendsy, we conclude tha® is a Hahn-Banach extension operator
from ¢ (Z, X)*t0 £ (Z,Y)*. Thus,.¢ (Z, X) is anideal InZ(Z,Y).
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Let P be the ideal projection o’ (Z, Y)* defined by®, that is,
Pf=&(flrzx) feZ(ZY)"

Consideringx* ® ze. 2 (Z, X)* with x*e X* andze Z, we get, for anyTe.Z(Z,Y),
that(® (X* ® 2))(T) = traceT (¢ (X* ® 2))) = (¢px*)(T2) = ((¢Xx*) ® 2)(T). Hence

PX*®2 =(@X)®z x'eX,zel,
and therefore, for af* € Y*andz € Z,
Py ®2=2{(j"'y)®2 =(9]'y)®z=(ny) ®2
as desired. O

COROLLARY 4.7. Let X be an ideal in a Banach spacé. If X* has the com-
pact approximation property with conjugate operators, tben(Z, X) is an ideal in
W (Z,Y) (and therefore also i#’(Z, Y)) for all Banach spaceg.

PrOOF. The proof is immediate from Theorefm6 and Theorerd .4, O

REMARK 4.2. Examplel.2shows that the assumptiok* has the compact approxi-
mation property with conjugate operators’is essential in Coroflafgnd Theorerd.6
(recall thatX is always an ideal irX**) and cannot be replaced by the assumptih *
has the metric compact approximation property’.

COROLLARY 4.8. Let X be anM-ideal (respectively, ai-ideal having the unique
ideal property in a Banach spac¥. If X* has the compact approximation property
with conjugate operators, therr' (Z, X) is an M-ideal (respectively, au-ideal) in
2 (Z,Y) for all Banach spaceg.

PrROOF. By Corollary4.7, ¢ (Z, X) is an ideal in (Z, Y) for all Banach spaces
Z and therefore Corollarg.5applies to obtain the desired conclusion. O

REMARK 4.3. The assumptionX* has the compact approximation property with
conjugate operators’ is also essential in Corollarg (see Remarkd.2). Namely,
if X is the closed subspace af constructed by Johnson and Schechtman (%8¢ [
Corollary JS]), therX is anM-ideal in X**, X has a basis, and* does not have the
approximation property. Moreover, as it will be shown in a forthcoming paper of the
authors, based on the present article drgji here exists a separable reflexive Banach
spaceZ such that# (Z, X) is not an ideal i (Z, X**).
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