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Abstract

For a locally finite directed graph, it is known that the grap@*-algebraC*(E) has real rank zero if and
only if the graphE satisfies the loop condition (K). In this paper we extend this to an arbitrary directed
graph case using the desingularization of a graph due to Drinen and Tomforde.
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1. Introduction

The Cuntz-Krieger algebr&, associated with a finitg0, 1}-matrix A has been
introduced in p], and it is proved that?” ® 0, is an invariant of the isomorphism
type of an irreducible topological Markov chain together with the automorphisms
(id ®A,).c1, Where(),),.7 is the gauge action o,. If each entry of am x n

matrix A is one then the algebra is the Cuntz alge®sdn > 2), and it is well known

that for eacn > 2, @,, has real rank zero. But for Cuntz-Krieger algebras it is not
hard to find a matrixA for which the algebr@ , has nonzero real rank. Nevertheless
one may still expect that many of the Cuntz-Krieger algebras have real rank zero since
they already contain enough projections and partial isometries as generators. The
Cuntz-Krieger algebré , is now well understood as a gragti-algebraC*(E) where

the matrixA is the vertex matrix of a finite directed graph or if B is the edge matrix

of E then&, is isomorphic tog. The graphC*-algebraC*(E) is generated by a
family of partial isometries and projections satisfying the relations determined by the
graphE and thus it would be useful if one can find a necessary and sufficient condition
for RR(@,) = 0 (or RR(C*(E)) = 0) in terms of the matriA (or the graptE) itself.
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Recently, for graplC*-algebras their ideal structures, simplicity criteria, and their
K-theory have been studied by many authors (d€e 11, 13, 6, 1, 2, 9, 8] among
others), and we know fron®] and [8] that if E is a locally finite directed graph then
its graphC*-algebraC*(E) has real rank zero exactly when the graptsatisfies
loop condition (K), which implies that for a Cuntz-Krieger algelara, where B
is the edge matrix of a finite grap, RR(¢s) = 0 if and only if the matrixB
satisfies conditiorfll) considered in §]. The purpose of this paper is to generalize
this result to an arbitrary graph (see Theorem 3.5). To prove the theorem we need
to understand the ideal structure of graphalgebras but the description of the ideal
structure of a directed graph which is not row-finite is quite complicatédvhile
it seems natural and convenient to work with row-finite graphs. Since the property
of having real rank zero is preserved under strong Morita equivalence (equivalently,
under stable isomorphism for separaBlealgebras) it suffices to prove our theorem
only for row-finite graphs with no sinks by virtue of the result of Drinen and Tomforde
([6, Theorem 2.11]): For any directed graghthe graphC*-algebraC*(E) is a full
corner ofC*(F), whereF, thedesingularizatiorof E, is a row-finite graph with no
sinks.

In view of the fact that theC*-algebrasC*(E) associated with arbitrary graphs
are much harder to understand than those associated with locally finite ones it would
be useful to present the proof of Theor&m here applying several recently known
generalized facts for arbitrary graphs (or row-finite graphs) to handle the general case
even though the main idea of the proof is basically same & B].[

2. Directed graphs and theirC*-algebras

A directed graphE = (E°, E', r, s) consists of the set of countable vertidey
the set of countable edg&s, and range, source mapss : E! — E°. A vertexv
is called asinkif it emits no edges|s*(v)| = 0. Following terminology in ], we
call a vertexv aninfinite-emitterif it emits infinitely many edges, ansingular if
it is either a sink or an infinite-emitter. A gragh with no infinite-emitters is said
to berow-finite, and if in additionr ~%(v) is finite for eachw then we callE locally
finite. If e,..., e, (n > 2) are edges with(e) = s(e41), 1 <i <n—1, one can
form a (finite) pathe = (e, ..., ,) of length|a| = n, and extend the mapss by
r(a) =r(e),s(x) = s(e)). We denote the set of all finite paths By and infinite
paths byE>. Note that vertices are regarded as finite paths of length zeldoop\
at a vertexv is a finite pathe with |«| > 0 such thas(e) = r (@) = v. A graphE
is said to satisfycondition(L) if every loop in E has an exit, andondition(K) if for
each vertex on a loop there exist at least two distinct loops based dtlote that
condition (K) is stronger than (L).
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For a directed grapl, a Cuntz-KriegerE-family consists of partial isometries
{S | e € E'} and mutually orthogonal projectiod®, | v € E°} satisfying the
relations:

%& = re» &% S Ps(e), and
P, = Z SS if v is not a singular vertex.

s(e)=v

For a row-finite directed graph, the existence of a universaf-algebra generated

by a Cuntz-KriegeE-family {s., p, | € € E*, v € E% is proved in L0, Theorem 1.2];
there is aC*-algebraC*(E) generated by a Cuntz-Krieg&rfamily {s., p, | e € E*,
v € E° of nonzero elements such that for every Cuntz-Kriegefamily {S., P, |
e c E!, v € E% inaC*-algebraA, there is a-homomorphismr : C*(E) — Asuch
thatr(s,) = S, n(p,) = P, foralle € E*, v € E°. For arbitrary directed graphs
and their associated universal-algebrasC*(E) (see [, 7]).

Let {s., p, | € € EY, v € E°} be a Cuntz-KriegeE-family generating theC*-
algebraC*(E). Then for eaclz € T we have another Cuntz-Kriegéz-family
{zs, p, | e € EY, v € E% in C*(E), and by the universal property &f(E) there
exists an isomorphism, : C*(E) — C*(E) such that,(s.) = zs andy,(p,) = p,.
Infact,y : z—~ y, € Aut(C*(E)) is a strongly continuous action @fon C*(E) and
it is called thegauge action It is known (seel, 2]) that for aC*-algebraC*(S,, P,)
generated by a Cuntz-Kriegéi-family of nonzero elements, the existence of the
gauge action o€*(S,, P,) implies thatC*(S,, P,) = C*(E). Also the ideal structure
of C*(E) is analyzed in, 2], which is essential to prove our theorem.

3. Real rank of graph C*-algebras

Recall that a&C*-algebraA is said to haveeal rank zerg RR(A) = 0, if the set of
all invertible self-adjoint elements iA is dense in the set of all self adjoint elements
of A, whereA is the smallest unitization oA. It then turns out3] that RR(A) = 0
if and only if every nonzero hereditay*-subalgebra ofA contains an approximate
identity of projections, hence every heredit&isubalgebra oA with RR(A) = 0
always has real rank zero.

Let E be a directed graph. Then for two verticesv we simply writew < v if
there is a patlx € E* from v to w. A subsetH of E° is said to behereditaryif
w < v € Himpliesw € H, and a subseH of E° is saturatedif every vertexv
such that O< |s™}(v)| < oo andr(e) € H for eache € s *(v) belongs toH. The
saturationof a hereditary seH is the smallest saturated subsetfcontainingH.
Let H be a saturated hereditary subse&Sf Then

spafs,s; | o, f € E*,r(a) =r1(p) € H}

In
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is an ideal generated by the projectidips | v € H}.

THEOREM 3.1 ([2, Theorem 4.1, 4.4])Let E be a row-finite directed graph.

(@) Let H be a saturated hereditary subset®fand letF be the quotient graph
F=(F":=E°\H, Fl:={ecE'|r(e) ¢ H}), thenC*(E)/l4 = C*(F).
(b) LetH be a hereditary subset &°, and let

G=(G’:=H, G':={ecE'|s(e) e H}.r1,5),

thenC*(G) is isomorphic to the subalgebi@*{s., p, | € € G, v € H} of C*(E),
and this subalgebra is a full corner of the idelg).

The above theorem for a locally finite graph was first provedlifj,[and is
generalized to arbitrary directed graphsih [

Let us recall §] the definition of the desingularizatidn of a graphE: Let v, be a
singular vertex oE. If vg is a sink then we add an (infinite) tail to v,

T:: (Toz{l}i || =O,1,...},Tl={e |S(Q)=Ui71,r(e)=1}i,i =1,2,})

If vy is an infinite emitter, first list the edges, 9., 0s, ... thatvy emits, then add a
tail T to vg, remove the edgds; }, and for eacly; draw an edgd; fromv;_; tor (g,).
This procedure is referred to agdding a tailto vo. Then thedesingularizationF of
a graphE is the graph obtained by adding a tail to each singular verté dfhen it
is clear that the desingularizatinis a row-finite graph with no sinks, arieland F
share the same loop condition, that i5,satisfies condition (L) (respectively, (K))
if and only if F satisfies condition (L) (respectively, (K)). Moreover it is proved
[6, Theorem 2.11] that the grapb*-algebraC*(E) is isomorphic to a full corner
pC*(F)p of C*(F), wherep := Y _.,q, is the projection in the multiplier algebra
of C*(F) andfts, g, | € € F*, v € F%isa Cuntz-KriegeF-family generatingC*(F).
HenceRR(C*(E)) = O ifand only if RR(C*(F)) = 0.

Recall B3] that if | is an ideal of aC*-algebraA then RR(A) = 0 if and only if
RR(l) = RR(A/1) = 0 and every projection ih\/| lifts to a projection inA. Then
we have the following proposition.

PrOPOSITION3.2 (see 9, Theorem 4.3])If RR(C*(E)) = 0thenE satisfies con-
dition (K).

PrOOF. By considering the desingularization & we may assume thd is a
row-finite graph with no sinks. |IE has a simple loop = a3, - - - @, With no exits,
the vertex subsel = {s(ej) | j = 1,...,n} is hereditary and by Theorefl (b)
the C*-algebraC*(G) is a full corner of the ideally, where

G:=(G°=H,G!'=(ec E*|s(e) € G%)).
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But G consists of the single loog and henceC*(G) is isomorphic toC(T) ® M,

and soRR(C*(G)) # 0. ThusRR(ly) # 0, which contradicts to the assumption
that RR(C*(E)) = 0. ThereforeE must satisfy condition (L). Suppode does not
satisfy condition (K), and leb be a vertex lying only one loop. Let H be the
smallest saturated hereditary vertex subset containing the range vertices of the exit
of «. Then clearlyH is a nonempty proper subset Bf. Then the quotient algebra
C*(E)/ly is isomorphic to the graph algebt(F) by Theorem 3.1 (a), where
F=(E°\ H,{e]|r(e) ¢ H}). SinceF has aloogx which has no exits i, we see

from the first argument tha® R(C*(F)) # 0. ThereforeR R(C*(E)) # 0. O

Let E be a subgraph d&. Then the subgrapB, of G obtained by adding t& all
the exits, that is, the edgess G* \ E! such thats(e) = s(f) for somef < E! and
their range vertices(e) is called theexit completiorof E.

PrOPOSITION3.3 (see 9, Theorem 4.6]) Let E satisfy conditior(K). If C*(E) has
only finitely many ideals theR R(C*(E)) = 0.

PrROOF. Let F be the desingularization &. ThenF also satisfies condition (K)
andC*(F) contains the same number of idealsG$E). SinceRR(C*(F)) = 0
implies RR(C*(E)) = 0 we may assume that the given grdpls row-finite and has
no sinks.

We prove the assertion by induction onthe number of nonzero ideals 6f (E).

If n=1, thatis,C*(E) is simple therRR(C*(E)) = 0 by [6, Remark 2.16]. Now let

n > 1, andly be a maximal ideal o€*(E) corresponding to a saturated hereditary
vertex subsetH of E°. ThenC*(E)/ly = C*(F), whereF = (E°\ H,{e |
re) ¢ H}). Let F, be the exit completion of in E. Then one can prove that
RR(C*(Fe)) = 0 by the same argument as in the proof@fTheorem 4.6]. Sinc€&,
satisfies condition (K), the subalgetBaof C*(E) generated byp,,s. | v € (Fe)°,

e € (Fe)'} is isomorphic toC*(Fe) by [2, Theorem 3.1]. Henc®& R(B) = 0. But
C*(E) = Iy + BandRR(Iy) = 0 by induction hypothesis. TherefoB(E) = 0

by [3, Proposition 3.18]. O

LEMMA 3.4 (see, Proposition 4.1])Let E be a graph andH be a saturated
hereditary vertex subset &°. If RR(I,;)=RR(C*(E)/1)=0, thenRR(C*(E))=0.

ProOF. We show thatR R(C*(F)) = 0, whereF is the desingularization oE.
SinceC*(E) = pC*(F)p for a full projectionp in the multiplier algebra o€*(F),
there is an inclusion preserving bijectiprbetween the sets of ideals such that for an
ideal I in C*(E), p(l) (C*(F)/p(l), respectively) is strong Morita equivalent to
(C*(E)/I, respectively), in fact, the isomorphispris given byp (1) = plp. Also by
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[6, Lemma 3.2] the idedl, of C*(E) is mapped to the ideal
Jq =Spanis,s; | o, f € F*.r(a) =r () € H}

of C*(F), whereH is the saturated hereditary vertex subseE®bbtained fromE®°

by adding the vertices on a tail added to each singular vertéx.ilfNow by Theo-
rem3.1(a) the quotient algebi@*(F)/J, is the graph algebi@*(G) for the quotient
graphG. Since theK, group Ko(C*(F)) is generated by the equivalence classes
{[lp,] | v € F° subject to the relatiofp,] = Zs(e):v[pr(e)] by [12, Theorem 3.1],

it follows that the quotient mag*(F) — C*(F)/Js induces the surjection from
Ko(C*(F)) ontoKo(C*(F)/Jy). Thisimplies that every projection in the quotient al-
gebraC*(F)/Jy lifts to a projection inC*(F) [3, Proposition 3.15], and we conclude
that RR(C*(F)) = 0. O

Recall that for a subgraph of E the loop completiorée (F) is the subgraph of
E obtained by adding all the loops based at vertice& dfo the graphF, and the
loop contraction ¢c(F) of F is the graph obtained by shrinking each loopFn
to a loop consisting of a single edg®, Pefinition 3.1]. ThenF and¢c(F) have
the same isomorphic lattice structure of hereditary subsets of vertices. Mor8pver [
Lemma 3.1] holds for row-finite graphs.

THEOREM 3.5 (cf. [8, Theorem 4.1]) Let E be a directed graph. Then the follow-
ing are equivalent

(1) C*(E) has real rank zero.
(2) E satisfies conditioK).
(3) C*(E) has no quotients containing a corner thatissomorphic toM,(C(T)).

ProOOF. (1) = (3) and (3)= (2) can be proved by the same arguments as in the
proof of [8, Theorem 4.1].

(2) = (1). By considering the desingularization we may assumeBhiata row-
finite graph with no sinks. Since the linear span of the elements of thesfsis dense
inC*(E), o, B € E*, to proveRR(C*(E)) = Oit suffices to approximate a self-adjoint
elemenk = } .0 ApS,S;+A-1inC*(E) ™ by invertible self-adjointelements. LBt
be the loop completion of the finite subgraph consisting of edge&sa@ndg’s in the
expression ok and their source and range vertices, andrlgbe the exit completion
of F. Then we only need to prove th& R(C*(F.))(= RR(C*(F,)™)) = 0. But
the same proof ofd, Theorem 4.1] applies to show the assertion. T@&F,)™
can be identified with the unitization of the*-subalgebra o€*(E)™~ generated by
{s, p, | v € F2,e € F}} since the subgrapk, satisfies condition (K) and hence
the uniqueness theoren2([Theorem 3.1]) applies. We have shown that for each
self-adjoint elemenx € C*(E)~ there is aC*-subalgebrd8(= C*(F,)™) of C*(E)™
such thak € B andRR(B) = 0, which completes the proof. O
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