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Abstract

For a locally finite directed graphE, it is known that the graphC∗-algebraC∗.E/ has real rank zero if and
only if the graphE satisfies the loop condition (K). In this paper we extend this to an arbitrary directed
graph case using the desingularization of a graph due to Drinen and Tomforde.
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1. Introduction

The Cuntz-Krieger algebraOA associated with a finite{0;1}-matrix A has been
introduced in [5], and it is proved thatK ⊗ OA is an invariant of the isomorphism
type of an irreducible topological Markov chain together with the automorphisms
.id ⊗½z/z∈T, where.½z/z∈T is the gauge action onOA. If each entry of ann × n
matrix A is one then the algebra is the Cuntz algebraOn (n > 2), and it is well known
that for eachn > 2, On has real rank zero. But for Cuntz-Krieger algebras it is not
hard to find a matrixA for which the algebraOA has nonzero real rank. Nevertheless
one may still expect that many of the Cuntz-Krieger algebras have real rank zero since
they already contain enough projections and partial isometries as generators. The
Cuntz-Krieger algebraOA is now well understood as a graphC∗-algebraC∗.E/where
the matrixA is the vertex matrix of a finite directed graphE, or if B is the edge matrix
of E thenOA is isomorphic toOB. The graphC∗-algebraC∗.E/ is generated by a
family of partial isometries and projections satisfying the relations determined by the
graphE and thus it would be useful if one can find a necessary and sufficient condition
for R R.OA/ = 0 (or R R.C∗.E// = 0) in terms of the matrixA (or the graphE) itself.
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Recently, for graphC∗-algebras their ideal structures, simplicity criteria, and their
K-theory have been studied by many authors (see [10, 11, 13, 6, 1, 2, 9, 8] among
others), and we know from [9] and [8] that if E is a locally finite directed graph then
its graphC∗-algebraC∗.E/ has real rank zero exactly when the graphE satisfies
loop condition (K), which implies that for a Cuntz-Krieger algebraOB, where B
is the edge matrix of a finite graphE, R R.OB/ = 0 if and only if the matrixB
satisfies condition(II) considered in [4]. The purpose of this paper is to generalize
this result to an arbitrary graphE (see Theorem 3.5). To prove the theorem we need
to understand the ideal structure of graphC∗-algebras but the description of the ideal
structure of a directed graph which is not row-finite is quite complicated [1] while
it seems natural and convenient to work with row-finite graphs. Since the property
of having real rank zero is preserved under strong Morita equivalence (equivalently,
under stable isomorphism for separableC∗-algebras) it suffices to prove our theorem
only for row-finite graphs with no sinks by virtue of the result of Drinen and Tomforde
([6, Theorem 2.11]): For any directed graphE, the graphC∗-algebraC∗.E/ is a full
corner ofC∗.F/, whereF , thedesingularizationof E, is a row-finite graph with no
sinks.

In view of the fact that theC∗-algebrasC∗.E/ associated with arbitrary graphs
are much harder to understand than those associated with locally finite ones it would
be useful to present the proof of Theorem3.5 here applying several recently known
generalized facts for arbitrary graphs (or row-finite graphs) to handle the general case
even though the main idea of the proof is basically same as in [9, 8].

2. Directed graphs and theirC∗-algebras

A directed graphE = .E0; E1; r; s/ consists of the set of countable verticesE0,
the set of countable edgesE1, and range, source mapsr; s : E1 → E0. A vertexv
is called asink if it emits no edges,|s−1.v/| = 0. Following terminology in [6], we
call a vertexv an infinite-emitterif it emits infinitely many edges, andsingular if
it is either a sink or an infinite-emitter. A graphE with no infinite-emitters is said
to be row-finite, and if in additionr −1.v/ is finite for eachv then we callE locally
finite. If e1; : : : ;en .n ≥ 2/ are edges withr .ei / = s.ei +1/, 1 ≤ i ≤ n − 1, one can
form a (finite) pathÞ = .e1; : : : ;en/ of length|Þ| = n, and extend the mapsr; s by
r .Þ/ = r .en/; s.Þ/ = s.e1/. We denote the set of all finite paths byE∗ and infinite
paths byE∞. Note that vertices are regarded as finite paths of length zero. Aloop
at a vertexv is a finite pathÞ with |Þ| > 0 such thats.Þ/ = r .Þ/ = v. A graphE
is said to satisfycondition(L) if every loop in E has an exit, andcondition(K) if for
each vertexv on a loop there exist at least two distinct loops based atv. Note that
condition (K) is stronger than (L).
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For a directed graphE, a Cuntz-KriegerE-family consists of partial isometries
{Se | e ∈ E1} and mutually orthogonal projections{Pv | v ∈ E0} satisfying the
relations:

S∗
e Se = Pr .e/; SeS∗

e ≤ Ps.e/; and

Pv =
∑

s.e/=v
SeS∗

e if v is not a singular vertex.

For a row-finite directed graphE, the existence of a universalC∗-algebra generated
by a Cuntz-KriegerE-family {se; pv | e ∈ E1; v ∈ E0} is proved in [10, Theorem 1.2];
there is aC∗-algebraC∗.E/ generated by a Cuntz-KriegerE-family {se; pv | e ∈ E1;

v ∈ E0} of nonzero elements such that for every Cuntz-KriegerE-family {Se; Pv |
e ∈ E1; v ∈ E0} in aC∗-algebraA, there is a∗-homomorphism³ : C∗.E/ → A such
that³.se/ = Se; ³.pv/ = Pv for all e ∈ E1; v ∈ E0. For arbitrary directed graphsE
and their associated universalC∗-algebrasC∗.E/ (see [1, 7]).

Let {se; pv | e ∈ E1; v ∈ E0} be a Cuntz-KriegerE-family generating theC∗-
algebraC∗.E/. Then for eachz ∈ T we have another Cuntz-KriegerE-family
{zse; pv | e ∈ E1; v ∈ E0} in C∗.E/, and by the universal property ofC∗.E/ there
exists an isomorphism
z : C∗.E/ → C∗.E/ such that
z.se/ = zse and
z.pv/ = pv.
In fact,
 : z 7→ 
z ∈ Aut(C∗.E/) is a strongly continuous action ofT on C∗.E/ and
it is called thegauge action. It is known (see [1, 2]) that for aC∗-algebraC∗.Se; Pv/
generated by a Cuntz-KriegerE-family of nonzero elements, the existence of the
gauge action onC∗.Se; Pv/ implies thatC∗.Se; Pv/ ∼= C∗.E/. Also the ideal structure
of C∗.E/ is analyzed in [1, 2], which is essential to prove our theorem.

3. Real rank of graph C∗-algebras

Recall that aC∗-algebraA is said to havereal rank zero, R R.A/ = 0, if the set of
all invertible self-adjoint elements iñA is dense in the set of all self adjoint elements
of Ã, whereÃ is the smallest unitization ofA. It then turns out [3] that R R.A/ = 0
if and only if every nonzero hereditaryC∗-subalgebra ofA contains an approximate
identity of projections, hence every hereditaryC∗-subalgebra ofA with R R.A/ = 0
always has real rank zero.

Let E be a directed graph. Then for two verticesv;w we simply writew ≤ v if
there is a pathÞ ∈ E∗ from v to w. A subsetH of E0 is said to behereditary if
w ≤ v ∈ H impliesw ∈ H , and a subsetH of E0 is saturatedif every vertexv
such that 0< |s−1.v/| < ∞ andr .e/ ∈ H for eache ∈ s−1.v/ belongs toH . The
saturationof a hereditary setH is the smallest saturated subset ofE0 containingH .
Let H be a saturated hereditary subset ofE0. Then

I H = span{sÞs∗
þ | Þ; þ ∈ E∗; r .Þ/ = r .þ/ ∈ H }
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is an ideal generated by the projections{pv | v ∈ H }.
THEOREM 3.1 ([2, Theorem 4.1, 4.4]).Let E be a row-finite directed graph.

(a) Let H be a saturated hereditary subset ofE0and let F be the quotient graph
F = .F0 := E0 \ H; F1 := {e ∈ E1 | r .e/ =∈ H }/; thenC∗.E/=I H

∼= C∗.F/.
(b) Let H be a hereditary subset ofE0, and let

G = (
G0 := H; G1 := {e ∈ E1 | s.e/ ∈ H }; r; s

)
;

thenC∗.G/ is isomorphic to the subalgebraC∗{se; pv | e ∈ G1; v ∈ H } of C∗.E/,
and this subalgebra is a full corner of the idealI H .

The above theorem for a locally finite graph was first proved in [11], and is
generalized to arbitrary directed graphs in [1].

Let us recall [6] the definition of the desingularizationF of a graphE: Let v0 be a
singular vertex ofE. If v0 is a sink then we add an (infinite) tailT to v0,

T := (
T 0 = {vi | i = 0;1; : : : };T 1 = {ei | s.ei / = vi −1; r .ei / = vi ; i = 1;2; : : : }):

If v0 is an infinite emitter, first list the edgesg1; g2; g3; : : : thatv0 emits, then add a
tail T to v0, remove the edges{gi }, and for eachgi draw an edgefi from vi −1 to r .gi /.
This procedure is referred to asadding a tailto v0. Then thedesingularizationF of
a graphE is the graph obtained by adding a tail to each singular vertex ofE. Then it
is clear that the desingularizationF is a row-finite graph with no sinks, andE andF
share the same loop condition, that is,E satisfies condition (L) (respectively, (K))
if and only if F satisfies condition (L) (respectively, (K)). Moreover it is proved
[6, Theorem 2.11] that the graphC∗-algebraC∗.E/ is isomorphic to a full corner
pC∗.F/p of C∗.F/, wherep := ∑

v∈E0 qv is the projection in the multiplier algebra
of C∗.F/ and{te;qv | e ∈ F1; v ∈ F0} is a Cuntz-KriegerF-family generatingC∗.F/.
HenceR R.C∗.E// = 0 if and only if R R.C∗.F// = 0.

Recall [3] that if I is an ideal of aC∗-algebraA then R R.A/ = 0 if and only if
R R.I / = R R.A=I / = 0 and every projection inA=I lifts to a projection inA. Then
we have the following proposition.

PROPOSITION3.2 (see [9, Theorem 4.3]).If R R.C∗.E// = 0 thenE satisfies con-
dition (K).

PROOF. By considering the desingularization ofE we may assume thatE is a
row-finite graph with no sinks. IfE has a simple loopÞ = Þ1Þ2 · · · Þn with no exits,
the vertex subsetH = {s.Þ j / | j = 1; : : : ;n} is hereditary and by Theorem3.1 (b)
theC∗-algebraC∗.G/ is a full corner of the idealIH , where

G := (
G0 = H;G1 = {e ∈ E1 | s.e/ ∈ G0}):
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But G consists of the single loopÞ and henceC∗.G/ is isomorphic toC.T/ ⊗ Mn

and soR R.C∗.G// 6= 0. ThusR R.IH/ 6= 0, which contradicts to the assumption
that R R.C∗.E// = 0. ThereforeE must satisfy condition (L). SupposeE does not
satisfy condition (K), and letv be a vertex lying only one loopÞ. Let H be the
smallest saturated hereditary vertex subset containing the range vertices of the exits
of Þ. Then clearlyH is a nonempty proper subset ofE0. Then the quotient algebra
C∗.E/=I H is isomorphic to the graph algebraC∗.F/ by Theorem 3.1 (a), where
F = .E0 \ H; {e | r .e/ =∈ H }/: SinceF has a loopÞ which has no exits inF , we see
from the first argument thatR R.C∗.F// 6= 0. ThereforeR R.C∗.E// 6= 0.

Let E be a subgraph ofG. Then the subgraphEe of G obtained by adding toE all
the exits, that is, the edgese ∈ G1 \ E1 such thats.e/ = s. f / for some f ∈ E1 and
their range verticesr .e/ is called theexit completionof E.

PROPOSITION3.3 (see [9, Theorem 4.6]).Let E satisfy condition(K). If C∗.E/ has
only finitely many ideals thenR R.C∗.E// = 0.

PROOF. Let F be the desingularization ofE. ThenF also satisfies condition (K)
andC∗.F/ contains the same number of ideals asC∗.E/. SinceR R.C∗.F// = 0
implies R R.C∗.E// = 0 we may assume that the given graphE is row-finite and has
no sinks.

We prove the assertion by induction onn, the number of nonzero ideals ofC∗.E/.
If n = 1, that is,C∗.E/ is simple thenR R.C∗.E// = 0 by [6, Remark 2.16]. Now let
n > 1, andIH be a maximal ideal ofC∗.E/ corresponding to a saturated hereditary
vertex subsetH of E0. Then C∗.E/=I H

∼= C∗.F/, where F = .E0 \ H; {e |
r .e/ =∈ H }/. Let Fe be the exit completion ofF in E. Then one can prove that
R R.C∗.Fe// = 0 by the same argument as in the proof of [9, Theorem 4.6]. SinceFe

satisfies condition (K), the subalgebraB of C∗.E/ generated by{pv; se | v ∈ .Fe/
0;

e ∈ .Fe/
1} is isomorphic toC∗.Fe/ by [2, Theorem 3.1]. HenceR R.B/ = 0. But

C∗.E/ = IH + B andR R.I H / = 0 by induction hypothesis. ThereforeC∗.E/ = 0
by [3, Proposition 3.18].

LEMMA 3.4 (see [8, Proposition 4.1]).Let E be a graph andH be a saturated
hereditary vertex subset ofE0. If R R.I H/=R R.C∗.E/=I H /=0, thenR R.C∗.E//=0.

PROOF. We show thatR R.C∗.F// = 0, whereF is the desingularization ofE.
SinceC∗.E/ ∼= pC∗.F/p for a full projectionp in the multiplier algebra ofC∗.F/,
there is an inclusion preserving bijection² between the sets of ideals such that for an
ideal I in C∗.E/, ².I / (C∗.F/=².I /, respectively) is strong Morita equivalent toI
(C∗.E/=I , respectively), in fact, the isomorphism² is given by².I / = pI p. Also by
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[6, Lemma 3.2] the idealI H of C∗.E/ is mapped to the ideal

JH̃ = span{sÞs∗
þ | Þ; þ ∈ F ∗; r .Þ/ = r .þ/ ∈ H̃ }

of C∗.F/, whereH̃ is the saturated hereditary vertex subset ofF0 obtained fromE0

by adding the vertices on a tail added to each singular vertex inH . Now by Theo-
rem3.1(a) the quotient algebraC∗.F/=JH̃ is the graph algebraC∗.G/ for the quotient
graphG. Since theK0 group K0.C∗.F// is generated by the equivalence classes
{[pv] | v ∈ F0} subject to the relation[pv] = ∑

s.e/=v[pr .e/] by [12, Theorem 3.1],
it follows that the quotient mapC∗.F/ → C∗.F/=JH̃ induces the surjection from
K0.C∗.F// ontoK0.C∗.F/=JH̃ /. This implies that every projection in the quotient al-
gebraC∗.F/=JH̃ lifts to a projection inC∗.F/ [3, Proposition 3.15], and we conclude
that R R.C∗.F// = 0.

Recall that for a subgraphF of E the loop completioǹ E.F/ is the subgraph of
E obtained by adding all the loops based at vertices ofF0 to the graphF , and the
loop contraction `c.F/ of F is the graph obtained by shrinking each loop inF
to a loop consisting of a single edge, [8, Definition 3.1]. ThenF and`c.F/ have
the same isomorphic lattice structure of hereditary subsets of vertices. Moreover [8,
Lemma 3.1] holds for row-finite graphs.

THEOREM 3.5 (cf. [8, Theorem 4.1]).Let E be a directed graph. Then the follow-
ing are equivalent:

(1) C∗.E/ has real rank zero.
(2) E satisfies condition(K).
(3) C∗.E/ has no quotients containing a corner that is∗-isomorphic toMn.C.T//.

PROOF. (1) ⇒ (3) and (3)⇒ (2) can be proved by the same arguments as in the
proof of [8, Theorem 4.1].

(2) ⇒ (1). By considering the desingularization we may assume thatE is a row-
finite graph with no sinks. Since the linear span of the elements of the formsÞs∗

þ is dense
in C∗.E/, Þ; þ ∈ E∗, to proveR R.C∗.E// = 0 it suffices to approximate a self-adjoint
elementx = ∑

finite½ÞþsÞs∗
þ+½·1 in C∗.E/∼ by invertible self-adjoint elements. LetF

be the loop completion of the finite subgraph consisting of edges ofÞ′s andþ ′s in the
expression ofx and their source and range vertices, and letFe be the exit completion
of F . Then we only need to prove thatR R.C∗.Fe//.= R R.C∗.Fe/

∼// = 0. But
the same proof of [8, Theorem 4.1] applies to show the assertion. ThenC∗.Fe/

∼

can be identified with the unitization of theC∗-subalgebra ofC∗.E/∼ generated by
{se; pv | v ∈ F0

e ;e ∈ F 1
e } since the subgraphFe satisfies condition (K) and hence

the uniqueness theorem ([2, Theorem 3.1]) applies. We have shown that for each
self-adjoint elementx ∈ C∗.E/∼ there is aC∗-subalgebraB.∼= C∗.Fe/

∼/ of C∗.E/∼

such thatx ∈ B andR R.B/ = 0, which completes the proof.
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