J. Aust. Math. Soc. 77 (2004), 47-53

AN UNCERTAINTY PRINCIPLE LIKE HARDY'S THEOREM FOR NILPOTENT LIE GROUPS

AJAY KUMAR and CHET RAJ BHATTA

Dedicated to Eberhard Kaniuth on his 65th birthday

(Received 17 May 2002; revised 2 April 2003)

Communicated by A. H. Dooley

Abstract

We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier work on \mathbb{R}^n and Heisenberg groups.

2000 *Mathematics subject classification*: primary 22E25; secondary 43A30. *Keywords and phrases*: uncertainty principle, nilpotent Lie group, Fourier transform, Hilbert-Schmidt norm.

Introduction

A classical theorem of Hardy [6] on Fourier transform pairs says that a non zero function f on the real line \mathbb{R} and its Fourier transform \hat{f} cannot both be very rapidly decreasing. More precisely, let the Fourier transform be defined by

$$\hat{f}(y) = \int_{\mathbb{R}} f(x) e^{-2\pi i x y} dx, \quad y \in \mathbb{R}.$$

Hardy's theorem says that if $|f(x)| \leq Ce^{-\alpha\pi x^2}$ for all $x \in \mathbb{R}$ and $|\hat{f}(y)| \leq Ce^{-\beta\pi y^2}$ for all $y \in \mathbb{R}$ with $\alpha\beta > 1$ then f = 0 a.e. For a proof see [6] or [4, Theorem 3.2]. The following is a generalization of this theorem due to Cowling and Price [3].

The second author is supported by University Grants Commission under foreign national scheme at the University of Delhi.

^{© 2004} Australian Mathematical Society 1446-8107/04 \$A2.00 + 0.00

- (i) $\|e_a f\|_{L^p(\mathbb{R})} < \infty$,
- (ii) $\|e_b \hat{f}\|_{L^q(\mathbb{R})} < \infty$,

where a, b > 0, $e_k(x) = e^{k\pi x^2}$ and $1 \le \min(p, q) < \infty$. If $ab \ge 1$, then f = 0 almost everywhere. If ab < 1, then there exist infinitely many linearly independent functions satisfying (i) and (ii).

An analogue of the Cowling-Price Theorem has been proved in [1] for Euclidean spaces, the Heisenberg group \mathbb{H}_n and the Euclidean motion group of the plane. In this paper we concern ourselves with results of this kind on certain nilpotent Lie groups, thereby considerably extending the results for \mathbb{R}^n and \mathbb{H}_n .

Threadlike nilpotent Lie groups

For $n \ge 3$, let \mathbf{g}_n be the *n*-dimensional real nilpotent Lie algebra with basis X_1, X_2, \ldots, X_n and non trivial Lie brackets $[X_n, X_{n-1}] = X_{n-2}, \ldots, [X_n, X_2] = X_1$. Here \mathbf{g}_n is a (n-1)-step nilpotent and is a semi-direct product of $\mathbb{R}X_n$ and the abelian ideal $\sum_{j=1}^{n-1} \mathbb{R}X_j$. Note that \mathbf{g}_3 is the Heisenberg Lie algebra. Let $G_n = \exp \mathbf{g}_n$.

For $\xi = \sum_{j=1}^{n-1} \xi_j X_j^* \in \mathbf{g}_n^*$, the coadjoint action of G_n is given by

$$Ad^{*}(e^{tX_{n}})\xi = \sum_{j=1}^{n-1} P_{j}(\xi, t)X_{j}^{*},$$

where, for $1 \le j \le n - 1$, $P_j(\xi, t)$ is the polynomial in t defined by

$$P_j(\xi, t) = \sum_{k=1}^{j-1} (1/k!)(-1)^k t^k \xi_{j-k}.$$

The orbit of ξ is generic with respect to the basis $\{X_1^*, X_2^*, \dots, X_n^*\}$ if and only if $\xi_1 \neq 0$, and the jumping indices are 2 to *n*; see [2] for details. The cross section X_{ξ_1} for the set of generic orbits is given by

$$X_{\xi_1} = \{ \xi = (\xi_1, 0, \xi_3, \dots, \xi_{n-1}, 0) : \xi_i \in \mathbb{R}, \xi_1 \neq 0 \}.$$

For $\xi \in \mathbf{g}_n^*$, let π_{ξ} denote the irreducible representation of G_n associated with ξ . Then the mapping $\xi \to \pi_{\xi}$ is bijection of X_{ξ_1} and the set of all generic irreducible representations. Plancherel measure on \widehat{G}_n is supported by these π_{ξ} .

Denoting by \mathscr{F} the Fourier transform on \mathbb{R}^{n-1} , it follows that the Hilbert-Schmidt norm of the operator $\pi_{\xi}(f)$, $f \in L^1 \cap L^2(G_n)$ is given by

$$\|\pi_{\xi}(f)\|_{HS}^{2} = \int_{\mathbb{R}^{2}} |\mathscr{F}f(P_{1}(\xi,t),\ldots,P_{n-1}(\xi,t),t-s)|^{2} ds dt$$

An uncertainty principle

(for details see [2] and [5]).

Given a function $f : G_n \to \mathbb{C}$ and $y = (y_2, \dots, y_n) \in \mathbb{R}^{n-1}$, let $f_y, f_y^* : \mathbb{R} \to \mathbb{C}$ be defined by

$$f_{y}(x_{1}) = f\left(e^{x_{1}X_{1}+\sum_{j=2}^{n}y_{j}X_{j}}\right),$$

and $f_y^*(x_1) = \overline{f_y(-x_1)}$.

The following lemma is proved in [7, Section 2 and Section 3].

LEMMA 1. Let $f : G_n \to \mathbb{C}$ be a measurable function such that $|f(x)| \leq ce^{-a\pi ||x||^2}$ for some a, c > 0 and all $x \in G_n$. Let $g : \mathbb{R} \to \mathbb{C}$ be defined by

$$g(x_1) = \int_{\mathbb{R}^{n-1}} f_y * f_y^*(x_1) \, dy.$$

Then $|g(x_1)| \leq Ce^{-a\pi x_1^2/2}$ for some C > 0 and all $x_1 \in \mathbb{R}$ and

(*)
$$\hat{g}(\xi_1) = |\xi_1| \int_{\mathbb{R}^{n-3}} \|\pi_{\xi}(f)\|_{HS}^2 d\xi_3 \cdots d\xi_{n-1}.$$

THEOREM 2. Let a, b and q be real numbers such that a, b > 0 and $q \ge 2$. Let $f: G_n \to \mathbb{C}$ be a measurable function and suppose that f satisfies:

- (i) $|f(x)| \leq Ce^{-a\pi ||x||^2}$ for some C > 0 and all $x \in G_n$.
- (ii) $\int_{\mathbb{R}^{n-2}} |\xi_1| e^{bq\pi \|\xi\|^2} \|\pi_{\xi}(f)\|_{HS}^q d\xi_1 d\xi_3 \cdots d\xi_{n-1} < \infty.$

Then the following hold:

- (1) If q = 2 and $ab \ge 1$, then f = 0 a.e.
- (2) If q > 2 and ab > 1, then f = 0 a.e.

PROOF. For $\alpha \in \mathbb{R}$, let $e_{\alpha} : \mathbb{R} \to \mathbb{R}$ denote the function $e_{\alpha}(t) = e^{\alpha \pi t^2}$. Let $g : \mathbb{R} \to \mathbb{C}$ be defined as in Lemma 1. We apply the Cowling-Price Theorem [3] to conclude that g = 0. Then Lemma 1 shows that $\pi_{\xi}(f) = 0$ for almost all $\xi \in \mathbb{R}^{n-2}$, whence f = 0 a.e.

For q = 2 by hypothesis (ii),

$$\|e_{2b}\hat{g}\|_{1} = \int_{\mathbb{R}} e_{2b}(\xi_{1}) \left(\int_{\mathbb{R}^{n-3}} |\xi_{1}| \|\pi_{\xi}(f)\|_{HS}^{2} d\xi_{3} \cdots d\xi_{n-1} \right) d\xi_{1} < \infty.$$

Since $|g(x_1)| \leq Ce^{-a\pi x_1^2/2}$ by Lemma 1 and $ab \geq 1$ so the Cowling-Price Theorem yields g = 0.

For q > 2 and ab > 1, choose $\epsilon > 0$ such that ab' > 1, $b' = b - \epsilon$. Then for $\xi' = (\xi_3, \ldots, \xi_{n-1})$, we have

$$\begin{split} \|e_{2b'}\hat{g}\|_{q/2}^{q/2} &= \int_{\mathbb{R}} e_{b'q}(\xi_{1})|\hat{g}(\xi_{1})|^{q/2}d\xi_{1} \\ &= \int_{\mathbb{R}} e_{b'q}(\xi_{1}) \left(\int_{\mathbb{R}^{n-3}} |\xi_{1}| \|\pi_{\xi}(f)\|_{HS}^{2} d\xi' \right)^{q/2} d\xi_{1} \\ &\leq \int_{\mathbb{R}} e_{b'q}(\xi_{1})|\xi_{1}|^{q/2} \left(\int_{\mathbb{R}^{n-3}} e_{2b'}(\|\xi'\|) \|\pi_{\xi}(f)\|_{HS}^{2} d\xi' \right)^{q/2} d\xi_{1} \\ &= \int_{\mathbb{R}} e_{b'q}(\xi_{1})|\xi_{1}|^{q/2} \left(\int_{\mathbb{R}^{n-3}} e_{2b}(\|\xi'\|) \|\pi_{\xi}(f)\|_{HS}^{2} e_{-2\epsilon}(\|\xi'\|) d\xi' \right)^{q/2} d\xi_{1}. \end{split}$$

Applying Hölder's inequality with q/2 and q/(q-2) we obtain

$$\begin{split} \|e_{2b'}\hat{g}\|_{q/2}^{q/2} &\leq \int_{\mathbb{R}} \left(e_{b'q}(\xi_{1})|\xi_{1}|^{q/2} \left(\int_{\mathbb{R}^{n-3}} e_{-(2\epsilon q)/(q-2)}(\|\xi'\|) d\xi' \right)^{(q/2)-1} \\ &\times \int_{\mathbb{R}^{n-3}} e_{bq}(\|\xi'\|) \|\pi_{\xi}(f)\|_{HS}^{q} d\xi' \right) d\xi_{1} \\ &\leq K_{1} \int_{\mathbb{R}} \left(e_{qb}(\xi_{1})(e_{-q\epsilon}(\xi_{1})|\xi_{1}|^{(q/2)-1}) |\xi_{1}| \\ &\times \left(\int_{\mathbb{R}^{n-3}} e_{bq}(\|\xi'\|) \|\pi_{\xi}(f)\|_{HS}^{q} d\xi' \right) d\xi_{1} \\ &\leq K \int_{\mathbb{R}^{n-2}} e_{bq}(\|\xi\|) \|\pi_{\xi}(f)\|_{HS}^{q} |\xi_{1}| d\xi < \infty, \end{split}$$

for certain positive constants K_1 and K. Thus g = 0 by the Cowling-Price Theorem.

REMARK 3. If the formula (*) in Lemma 1 reduces to $\hat{g}(\xi_1) = |\xi_1| ||\pi_{\xi}(f)||_{HS}^2$ for some G_n , then for $1 \le q < 2$ and $ab \ge 2$ along with the hypothesis in Theorem 2 implies that f = 0 a.e. The proof can be given as in [1, Theorem 2.1]. The above condition is satisfied if $G_n = G_3, G_{5,1}, G_{5,3}$ and $G_{5,6}$; see [9] for the definitions and structure of these groups.

THEOREM 4. Let a and b be positive real numbers and $1 \le \min(p,q) < \infty$. Suppose that $f \in L^1(G_n) \cap L^2(G_n)$ satisfies the following conditions:

- (i) $\int_{G_n} e^{pa\pi ||x||^2} |f(x)|^p dx < \infty$,
- (ii) $\int_{\mathbb{R}^{n-2}}^{\infty} |\xi_1| e^{b\pi q \|\xi\|^2} \|\pi_{\xi}(f)\|_{HS}^q d\xi < \infty.$
- If $q \ge 2$ and ab > 1 then f = 0 a.e.

An uncertainty principle

PROOF. Easy computations show that when, as before, identifying G_n as a set with \mathbb{R}^n , the product of two elements $y = (y_1, \ldots, y_n)$ and $x = (x_1, \ldots, x_n)$ of G_n is given by $yx = y + x + \sum_{j=1}^{n-2} (1/j!) y_n^j (x_{j+1}, \ldots, x_{n-1}, 0, \ldots, 0)$. For $||x|| \ge 1$, this implies

$$||yx|| \ge ||x|| - ||y|| - ||x|| \sum_{j=1}^{n-2} \frac{1}{j!} |y_n|^j \ge ||x|| \left(1 - ||y|| - \sum_{j=1}^{n-2} \frac{1}{j!} ||y||^j\right).$$

Define $\varphi : (0, \infty) \to \mathbb{R}$ by $\varphi(\epsilon) = 1 - \epsilon - \sum_{j=1}^{n-2} (\epsilon^j / j!)$. Thus $||yx|| \ge ||x|| \varphi(\epsilon)$, whenever $||x|| \ge 1$ and $||y|| \le \epsilon$.

Let g be a continuous function on G_n such that $g(y) = g(y^{-1})$ for all $y \in G_n$ and g(y) = 0 for all y such that $||y|| \ge \epsilon$. Since G_n is unimodular, for $x \in G_n$ such that $||x|| \ge 1$,

$$(|g| * e_a |f|)(x) = \int_{G_n} |g(y)|e_a(||yx||)|f(yx)| dy$$

$$\geq \int_{G_n} |g(y)|e_a(||x||\varphi(\epsilon))|f(y^{-1}x)| dy$$

$$= e_a(||x||\varphi(\epsilon))(|g| * |f|)(x).$$

By (i) $e_a |f|$ is an L^p -function and |g| is an $L^{p'}$ function (1/p + 1/p' = 1), so $g * e_a |f|$ is an L^{∞} function. Thus with $C = ||g| * e_a |f||_{\infty} < \infty$, we have

$$|g * f(x)| \le |g| * |f|(x) \le Ce_{-a}(||x||\varphi(\epsilon))$$

for all $x \in G_n$ such that $||x|| \ge 1$. Since g * f is continuous, it follows that for some constant C > 0, $|g * f(x)| \le Ce_{-a}(||x||\varphi(\epsilon))$ for all $x \in G_n$. In addition,

$$\|\pi_{\xi}(g * f)\|_{HS} \le \|\pi_{\xi}(g)\| \cdot \|\pi_{\xi}(f)\|_{HS} \le \|g\|_{1} \|\pi_{\xi}(f)\|_{HS}$$

and hence, by hypothesis

$$\int_{\mathbb{R}^{n-2}} |\xi_1| e_{bq}(\|\xi\|) \|\pi_{\xi}(g*f)\|_{HS}^q d\xi \leq \|g\|_1^q \int_{\mathbb{R}^{n-2}} |\xi_1| e_{bq}(\|\xi\|) \|\pi_{\xi}(f)\|_{HS}^q d\xi < \infty.$$

Now for $\epsilon > 0$ sufficiently small, $ab\varphi(\epsilon) > 1$ so by Theorem 2 it follows that g * f = 0. Taking for g an approximate identity, we conclude that f = 0 a.e.

The following result follows from Theorem 2, Remark 3 and Theorem 4.

THEOREM 5. If $G_n = G_3$, $G_{5,1}$, $G_{5,3}$ or $G_{5,6}$ and a, b > 0. Suppose that p and q are such that $1 \le \min(p, q) < \infty$ and $f \in L^1 \cap L^2(G_n)$ satisfies

(i) $\int_{\mathbb{R}^n} e^{pa\pi \|x\|^2} |f(x)|^p dx < \infty$ if $p < \infty$ and $|f(x)| \le C e^{-a\pi \|x\|^2}$ if $p = \infty$, (ii) $\int_{\mathbb{R}^{n-2}} |\xi_1| e^{b\pi q \|\xi\|^2} \|\pi_{\xi}(f)\|_{HS}^q d\xi < \infty$ if $q < \infty$ and $\|\pi_{\xi}(f)\|_{HS} \le C e^{-b\pi \|\xi\|^2}$ if $q = \infty$.

Then the following hold:

(1) If $q \ge 2$ and ab > 1, then f = 0 a.e.

(2) If $1 \le q < 2$ and ab > 2, then f = 0 a.e.

Let $G = \exp \mathbf{g}$ be a simply connected nilpotent Lie group. Let U denote the Zariski open subset of \mathbf{g}^* consisting of all elements in generic orbits with respect to the basis $\{X_1^*, \ldots, X_n^*\}$ [2, Section 3.1, Theorem 3.1.9]. Let S be the set of jump indices, and set $T = \{1, 2, \ldots, n\} \setminus S$ and $\mathbf{g}_T^* = \sum_{j \in T} \mathbb{R} X_j^*$.

Then $X = U \cap \mathbf{g}_T^*$ is a cross-section for the generic orbits and $\{\pi_{\xi} : \xi \in X\}$ supports the Plancherel measure on \widehat{G} .

The following is a generalization of Morgan's Theorem [8] which can be proved using [7, Lemma 2].

THEOREM 6. Let $G = \exp g$ be a simply connected nilpotent Lie group. Let α , β and C be positive real numbers and suppose that $f : G \to \mathbb{C}$ is a measurable function such that

(i) $|f(x)| \le C e^{-\alpha \pi ||x||^p}$,

(ii) $\|\pi_{\xi}(f)\|_{HS} \leq Ce^{-\beta\pi \|\xi\|^{q}}$ for all $\xi = (\xi_{1}, \xi_{2}, \dots, \xi_{n}) \in X$,

where $p \ge 2$, 1/p + 1/q = 1. If $(\alpha p)^{1/p} (\beta q)^{1/q} > 2$ then f = 0 a.e.

Acknowledgements

The first author is indebted to Professor E. Kaniuth, Mathematik Informatik, Universität Paderborn, Germany for many valuable discussions. The authors thank the referee for useful comments and suggestions.

References

- S. C. Bagchi and S. K. Ray, 'Uncertainty principles like Hardy's theorem on some Lie groups', J. Austral. Math. Soc. (Series A) 65 (1998), 289–302.
- [2] L. Corwin and F. P. Greenleaf, *Representations of nilpotent Lie groups and their applications, Part I. Basic theory and examples* (Cambridge University Press, 1990).
- [3] M. G. Cowling and J. F. Price, 'Generalizations of Heisenberg inequality' in: *Harmonic Analysis* (*Cartona 1982*), Lecture Notes in Math. 992 (Springer, Berlin, 1983) pp. 443–449.
- [4] H. Dym and H. P. Mckean, Fourier series and integrals (Academic Press, New York, 1972).
- [5] G. B. Folland, A course in abstract harmonic analysis (CRC Press, Boca Raton, 1995).

[7]

An uncertainty principle

- [6] G. H. Hardy, 'A theorem concerning Fourier transforms', J. London Math. Soc. 8 (1993), 227-231.
- [7] E. Kaniuth and A. Kumar, 'Hardy's theorem for simply connected nilpotent Lie groups', *Math. Proc. Cambridge Philos. Soc.* 131 (2001), 487–494.
- [8] G. W. Morgan, 'A note on Fourier transform', J. London Math. Soc. 9 (1934), 187-192.
- [9] O. A. Nielson, Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, Queens Papers in Pure and Appl. Math. (Queen's Univ., Kingston, ON, 1983).

Department of Mathematics Rajdhani College (University of Delhi) Raja Garden, New Delhi - 110 015 India e-mail: ajaykr@bol.net.in Department of Mathematics University of Delhi Delhi - 110 007 India e-mail: crbhatta@yahoo.com