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Abstract

We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This
uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier
work onRn and Heisenberg groups.
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Introduction

A classical theorem of Hardy [6] on Fourier transform pairs says that a non zero
function f on the real lineR and its Fourier transform̂f cannot both be very rapidly
decreasing. More precisely, let the Fourier transform be defined by

f̂ .y/ =
∫
R

f .x/e−2³ i x y dx; y ∈ R:

Hardy’s theorem says that if| f .x/| ≤ Ce−Þ³x2
for all x ∈ R and| f̂ .y/| ≤ Ce−þ³y2

for all y ∈ R with Þþ > 1 then f = 0 a.e. For a proof see [6] or [4, Theorem 3.2].
The following is a generalization of this theorem due to Cowling and Price [3].
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THEOREM (Cowling and Price).Let f : R → C be measurable and

(i) ‖ea f ‖L p.R/ < ∞,
(ii) ‖eb f̂ ‖Lq.R/ < ∞,

wherea; b > 0, ek.x/ = ek³x2
and 1 ≤ min.p;q/ < ∞. If ab ≥ 1, then f = 0

almost everywhere. Ifab < 1, then there exist infinitely many linearly independent
functions satisfying(i) and(ii) .

An analogue of the Cowling-Price Theorem has been proved in [1] for Euclidean
spaces, the Heisenberg groupHn and the Euclidean motion group of the plane. In this
paper we concern ourselves with results of this kind on certain nilpotent Lie groups,
thereby considerably extending the results forR

n andHn.

Threadlike nilpotent Lie groups

For n ≥ 3, let gn be then-dimensional real nilpotent Lie algebra with basis
X1; X2; : : : ; Xn and non trivial Lie brackets[Xn; Xn−1] = Xn−2; : : : ; [Xn; X2] = X1.
Heregn is a.n −1/-step nilpotent and is a semi-direct product ofRXn and the abelian
ideal

∑n−1
j =1RX j . Note thatg3 is the Heisenberg Lie algebra. LetGn = expgn.

For ¾ = ∑n−1
j =1 ¾ j X∗

j ∈ g∗
n, the coadjoint action ofGn is given by

Ad∗.et Xn/¾ =
n−1∑
j =1

Pj .¾; t/X∗
j ;

where, for 1≤ j ≤ n − 1, Pj .¾; t/ is the polynomial int defined by

Pj .¾; t/ =
j −1∑
k=1

.1=k!/.−1/k tk¾ j −k:

The orbit of¾ is generic with respect to the basis{X∗
1; X∗

2; : : : ; X∗
n} if and only if

¾1 6= 0, and the jumping indices are 2 ton; see [2] for details. The cross sectionX¾1

for the set of generic orbits is given by

X¾1 = {
¾ = .¾1;0; ¾3; : : : ; ¾n−1;0/ : ¾i ∈ R; ¾1 6= 0

}
:

For ¾ ∈ g∗
n, let ³¾ denote the irreducible representation ofGn associated with¾ .

Then the mapping¾ → ³¾ is bijection of X¾1 and the set of all generic irreducible
representations. Plancherel measure onĜn is supported by these³¾ .

Denoting byF the Fourier transform onRn−1, it follows that the Hilbert-Schmidt
norm of the operator³¾ . f /, f ∈ L1 ∩ L2.Gn/ is given by

‖³¾. f /‖2
H S =

∫
R2

∣∣F f .P1.¾; t/; : : : ; Pn−1.¾; t/; t − s/
∣∣2 ds dt
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(for details see [2] and [5]).
Given a functionf : Gn → C andy = .y2; : : : ; yn/ ∈ Rn−1, let f y; f ∗

y : R → C

be defined by

f y.x1/ = f
(

ex1X1+∑n
j=2 yj X j

)
;

and f ∗
y .x1/ = fy.−x1/.

The following lemma is proved in [7, Section 2 and Section 3].

LEMMA 1. Let f : Gn → C be a measurable function such that| f .x/| ≤ ce−a³‖x‖2

for somea; c > 0 and all x ∈ Gn. Letg : R → C be defined by

g.x1/ =
∫
Rn−1

fy ∗ f ∗
y .x1/dy:

Then|g.x1/| ≤ Ce−a³x2
1=2 for someC > 0 and all x1 ∈ R and

ĝ.¾1/ = |¾1|
∫
Rn−3

‖³¾ . f /‖2
H S d¾3 · · · d¾n−1:(∗)

THEOREM 2. Let a;b andq be real numbers such thata;b > 0 and q ≥ 2. Let
f : Gn → C be a measurable function and suppose thatf satisfies:

(i) | f .x/| ≤ Ce−a³‖x‖2
for someC > 0 and all x ∈ Gn.

(ii)
∫
Rn−2 |¾1|ebq³‖¾‖2‖³¾. f /‖q

H S d¾1 d¾3 · · · d¾n−1 < ∞.

Then the following hold:

(1) If q = 2 andab ≥ 1, then f = 0 a.e.
(2) If q > 2 andab> 1, then f = 0 a.e.

PROOF. For Þ ∈ R, let eÞ : R → R denote the functioneÞ.t/ = eÞ³ t 2
. Let

g : R → C be defined as in Lemma1. We apply the Cowling-Price Theorem [3] to
conclude thatg = 0. Then Lemma1 shows that³¾. f / = 0 for almost all¾ ∈ Rn−2,
whencef = 0 a.e.

For q = 2 by hypothesis (ii),

‖e2bĝ‖1 =
∫
R

e2b.¾1/

(∫
Rn−3

|¾1|‖³¾. f /‖2
H S d¾3 · · · d¾n−1

)
d¾1 < ∞:

Since|g.x1/| ≤ Ce−a³x2
1=2 by Lemma1 andab ≥ 1 so the Cowling-Price Theorem

yieldsg = 0.
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For q > 2 andab > 1, choosež > 0 such thatab′ > 1, b′ = b − ž. Then for
¾ ′ = .¾3; : : : ; ¾n−1/, we have

‖e2b′ĝ‖q=2
q=2 =

∫
R

eb′q.¾1/|ĝ.¾1/|q=2d¾1

=
∫
R

eb′q.¾1/

(∫
Rn−3

|¾1|‖³¾. f /‖2
H S d¾ ′

)q=2

d¾1

≤
∫
R

eb′q.¾1/|¾1|q=2

(∫
Rn−3

e2b′.‖¾ ′‖/‖³¾ . f /‖2
H S d¾ ′

)q=2

d¾1

=
∫
R

eb′q.¾1/|¾1|q=2

(∫
Rn−3

e2b.‖¾ ′‖/‖³¾ . f /‖2
H Se−2ž.‖¾ ′‖/d¾ ′

)q=2

d¾1:

Applying Hölder’s inequality withq=2 andq=.q − 2/ we obtain

‖e2b′ĝ‖q=2
q=2 ≤

∫
R

(
eb′q.¾1/|¾1|q=2

(∫
Rn−3

e−.2žq/=.q−2/.‖¾ ′‖/d¾ ′
).q=2/−1

×
∫
Rn−3

ebq.‖¾ ′‖/‖³¾. f /‖q
H S d¾ ′

)
d¾1

≤ K1

∫
R

(
eqb.¾1/.e−qž.¾1/|¾1|.q=2/−1

) |¾1|

×
(∫

Rn−3

ebq.‖¾ ′‖/‖³¾ . f /‖q
H S d¾ ′

)
d¾1

≤ K
∫
Rn−2

ebq.‖¾‖/‖³¾ . f /‖q
H S|¾1| d¾ < ∞;

for certain positive constantsK1 andK . Thusg = 0 by the Cowling-Price Theorem.

REMARK 3. If the formula (∗) in Lemma1 reduces tôg.¾1/ = |¾1|‖³¾. f /‖2
H S for

someGn, then for 1≤ q < 2 andab ≥ 2 along with the hypothesis in Theorem2
implies that f = 0 a.e. The proof can be given as in [1, Theorem 2.1]. The above
condition is satisfied ifGn = G3;G5;1;G5;3 andG5;6; see [9] for the definitions and
structure of these groups.

THEOREM 4. Let a and b be positive real numbers and1 ≤ min.p;q/ < ∞.
Suppose thatf ∈ L1.Gn/ ∩ L2.Gn/ satisfies the following conditions:

(i)
∫

Gn
epa³‖x‖2| f .x/|p dx < ∞,

(ii)
∫
Rn−2 |¾1|eb³q‖¾‖2‖³¾. f /‖q

H S d¾ < ∞.

If q ≥ 2 andab> 1 then f = 0 a.e.
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PROOF. Easy computations show that when, as before, identifyingGn as a set
with Rn, the product of two elementsy = .y1; : : : ; yn/ andx = .x1; : : : ; xn/ of Gn

is given byyx = y + x +∑n−2
j =1.1= j !/y j

n.xj +1; : : : ; xn−1;0; : : : ;0/. For‖x‖ ≥ 1, this
implies

‖yx‖ ≥ ‖x‖ − ‖y‖ − ‖x‖
n−2∑
j =1

1

j ! |yn| j ≥ ‖x‖
(

1 − ‖y‖ −
n−2∑
j =1

1

j !‖y‖ j

)
:

Define' : .0;∞/ → R by '.ž/ = 1 − ž −∑n−2
j =1.ž

j = j !/. Thus‖yx‖ ≥ ‖x‖'.ž/,
whenever‖x‖ ≥ 1 and‖y‖ ≤ ž.

Let g be a continuous function onGn such thatg.y/ = g.y−1/ for all y ∈ Gn and
g.y/ = 0 for all y such that‖y‖ ≥ ž. SinceGn is unimodular, forx ∈ Gn such that
‖x‖ ≥ 1,

.|g| ∗ ea| f |/.x/ =
∫

Gn

|g.y/|ea.‖yx‖/| f .yx/| dy

≥
∫

Gn

|g.y/|ea.‖x‖'.ž//| f .y−1x/| dy

= ea.‖x‖'.ž//.|g| ∗ | f |/.x/:

By (i) ea| f | is anL p-function and|g| is anL p′
function.1=p+1=p′ = 1/, sog∗ea| f |

is anL∞ function. Thus withC = ‖|g| ∗ ea| f |‖∞ < ∞, we have

|g ∗ f .x/| ≤ |g| ∗ | f |.x/ ≤ Ce−a.‖x‖'.ž//

for all x ∈ Gn such that‖x‖ ≥ 1. Sinceg ∗ f is continuous, it follows that for some
constantC > 0, |g ∗ f .x/| ≤ Ce−a.‖x‖'.ž// for all x ∈ Gn. In addition,

‖³¾.g ∗ f /‖H S ≤ ‖³¾.g/‖ · ‖³¾ . f /‖H S ≤ ‖g‖1‖³¾. f /‖H S

and hence, by hypothesis∫
Rn−2

|¾1|ebq.‖¾‖/‖³¾.g ∗ f /‖q
H S d¾ ≤ ‖g‖q

1

∫
Rn−2

|¾1|ebq.‖¾‖/‖³¾ . f /‖q
H S d¾ < ∞:

Now for ž > 0 sufficiently small,ab'.ž/ > 1 so by Theorem2 it follows that
g ∗ f = 0. Taking forg an approximate identity, we conclude thatf = 0 a.e.

The following result follows from Theorem2, Remark3 and Theorem4.

THEOREM 5. If Gn = G3;G5;1;G5;3 or G5;6 anda;b > 0. Suppose thatp andq
are such that1 ≤ min.p;q/ < ∞ and f ∈ L1 ∩ L2.Gn/ satisfies
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(i)
∫
Rn epa³‖x‖2| f .x/|pdx < ∞ if p < ∞ and| f .x/| ≤ Ce−a³‖x‖2

if p = ∞,
(ii)

∫
Rn−2 |¾1|eb³q‖¾‖2‖³¾. f /‖q

H Sd¾ < ∞ if q < ∞ and‖³¾. f /‖H S ≤ Ce−b³‖¾‖2
if

q = ∞.

Then the following hold:

(1) If q ≥ 2 andab> 1, then f = 0 a.e.
(2) If 1 ≤ q < 2 andab> 2, then f = 0 a.e.

Let G = expg be a simply connected nilpotent Lie group. LetU denote the Zariski
open subset ofg∗ consisting of all elements in generic orbits with respect to the basis
{X∗

1; : : : ; X∗
n} [2, Section 3.1, Theorem 3.1.9]. LetS be the set of jump indices, and

setT = {1;2; : : : ;n} \ Sandg∗
T = ∑

j ∈T R X∗
j .

ThenX = U∩ g∗
T is a cross-section for the generic orbits and{³¾ : ¾ ∈ X} supports

the Plancherel measure on̂G.
The following is a generalization of Morgan’s Theorem [8] which can be proved

using [7, Lemma 2].

THEOREM 6. Let G = expg be a simply connected nilpotent Lie group. LetÞ; þ

andC be positive real numbers and suppose thatf : G → C is a measurable function
such that

(i) | f .x/| ≤ Ce−Þ³‖x‖p
,

(ii) ‖³¾ . f /‖H S ≤ Ce−þ³‖¾‖q
for all ¾ = .¾1; ¾2; : : : ; ¾n/ ∈ X,

wherep ≥ 2, 1=p + 1=q = 1. If .Þp/1=p.þq/1=q > 2 then f = 0 a.e.
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