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Abstract

We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This
uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier
work onR" and Heisenberg groups.
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Introduction

A classical theorem of Hardy6] on Fourier transform pairs says that a non zero
function f on the real lineR and its Fourier transforni cannot both be very rapidly
decreasing. More precisely, let the Fourier transform be defined by

fA(y)=/ f(x)e?™dx, yeR.
R

Hardy’s theorem says that fiff (x)| < Ce*™ for all x € R and|f(y)| < Ce ™’
forally € R with o8 > 1thenf = 0 a.e. For a proof se&] or [4, Theorem 3.2].
The following is a generalization of this theorem due to Cowling and P8Ee [
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THEOREM (Cowling and Price)Let f : R — C be measurable and

(i) ”eafA”LP([R) < 00,

(i) lle fllLaw) < oo,
wherea, b > 0, g(x) = €* and1 < min(p,q) < oco. Ifab> 1, thenf =0
almost everywhere. Hb < 1, then there exist infinitely many linearly independent
functions satisfyingi) and (ii).

An analogue of the Cowling-Price Theorem has been proved] ifof Euclidean
spaces, the Heisenberg gradip and the Euclidean motion group of the plane. In this
paper we concern ourselves with results of this kind on certain nilpotent Lie groups,
thereby considerably extending the results&érandH.,.

Threadlike nilpotent Lie groups

For n > 3, let g, be then-dimensional real nilpotent Lie algebra with basis
X1, X5, ..., X, and non trivial Lie bracketeX,, Xp_1] = Xi_2, ..., [Xn, X2] = X;.
Hereg, is a(n — 1)-step nilpotent and is a semi-direct produc®oX,, and the abelian
ideaIZ'j‘;} RX;. Note thaty; is the Heisenberg Lie algebra. L&t, = expgL.

For& = ZTj & X; € g;, the coadjoint action dB, is given by

n-1
Ad (€*E =Y Pi(E, DX,

j=1

where, for 1< j <n — 1, P;(€, 1) is the polynomial irt defined by

j—1
PiE. 1) =) (1/KD (=Dt .
k=1
The orbit of¢ is generic with respect to the bagiX;, X3, ... , X:} if and only if
& # 0, and the jumping indices are 2o see P] for details. The cross sectioX;,
for the set of generic orbits is given by

Xo, = {6 = (61,0, &, ..., 6-1.0) 1 § € R, & # 0}

For ¢ € g, let w. denote the irreducible representation®f associated witl§.
Then the mapping — 7 is bijection of X, and the set of all generic irreducible
representations. Plancherel measur&gris supported by these..

Denoting by.Z the Fourier transform oR"-?, it follows that the Hilbert-Schmidt
norm of the operatat. (f), f € L* N L%(G,) is given by

e (F)fs = / | Z £ (P&, 1), ..., Poa(E, ), t — )| ds dt
R2
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(for details seed] and [5]).
Given a functionf : G, — Candy = (Y5, ..., Y, € R" 1, let f
be defined by

y,f;‘:[R{—>(C

fy(Xl) = f (eX1X1+Z?:2}’j Xj) )

and f;(xy) = fy(=x1).
The following lemma is proved in7[ Section 2 and Section 3].

LEMMA 1. Let f : G, — C be a measurable function such thdi(x)| < ce a7 IxI®
for somea,c > Oand allx € G,. Letg : R — C be defined by

9x) = / fy« £7(x0) dy.
[Rn—l
Then|g(x,)| < Ce /2 for someC > Oand allx; € R and
() 06 = ] [ () lfsd-di
RN-3

THEOREM 2. Leta, b andq be real numbers such thatb > Oandq > 2. Let
f : G, — C be a measurable function and suppose thaatisfies

(i) |f(x)| < Ce® X for someC > Oand allx € G,.
(i) Sz 1E21€9 10 e (£) I s &1 dE5 - - - dEq 4 < o0
Then the following hold

(1) Ifg=2andab> 1,thenf =0a.e.
(2) Ifg> 2andab> 1,thenf =0a.e.

PROOF. Fora € R, lete, : R — R denote the functiore,(t) = e**. Let
g : R — C be defined as in Lemmh We apply the Cowling-Price Theorer§] [to
conclude thag = 0. Then Lemma. shows thatr. (f) = 0 for almost alls € R"2,
whencef =0 a.e.

For q = 2 by hypothesis (ii),

lexdlls = / €x(81) (/ |§l|”77$(f)”2|-|sd§3"'d§n1) dé; < oo.
R R-3

Since|g(xy)| < Ce@™i/2 by Lemmal andab > 1 so the Cowling-Price Theorem
yieldsg = 0.
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Forq > 2 andab > 1, choose > 0 such thatb > 1,b" = b — €. Then for
& =(&,...,&_1), we have

Ilezb@lllgg=/eo/q(§1)|§1(§1)|q/2d€1
R

q/2
:/eo/q(gl)</ |§l|||7T$(f)”|2-|sd€/> dé;
R R-3

q/2
S/eo/q(gl)|§l|q/2</ eZb/(”“;:/”)”ns(f)|||2-|sd§/> dé,
R R-3

a/2
=/eo/q(§1)léllq/2</ ezb(IIS/II)IIJTs(f)IIﬁseze(llé/ll)d§/> dé;.
R RN-3

Applying Hélder’s inequality withg/2 andqg/(q — 2) we obtain

@/2-1
lex g/ < /R (eo/q@man/z ( /R e<zeq>/<q2><||5/||>ds/)
< [ el Dim (1’ )dis
< Ky [ (eu(en(eq 0l I
SRR T
<K [ elleDim (Dl de < o,

for certain positive constants; andK. Thusg = 0 by the Cowling-Price Theorem.
O

REMARK 3. If the formula ) in Lemmal reduces tqj(&;) = |& |7 (f)|1% ¢ for
someG,, then for 1< q < 2 andab > 2 along with the hypothesis in Theorein
implies thatf = 0 a.e. The proof can be given as it [Theorem 2.1]. The above
condition is satisfied if5,, = Gz, Gs 1, Gs3 andGse; see P] for the definitions and
structure of these groups.

THEOREMA4. Let a and b be positive real numbers antl < min(p,q) < oo.
Suppose thaf € L1(G,) N L?(G,) satisfies the following conditions

(i) [, €I O0PdX < oo,
(D) [ 1E21€7EP 7, (F) [}y s dE < 00.
If g >2andab> 1thenf =0a.e.
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PrOOF. Easy computations show that when, as before, identifyijgas a set
with R", the product of two elements= (yi, ..., Y,) andx = (X, ..., X,) of G,
is given byyx = y+ X + ZT;f(l/j DY (Xj 41y -y %1, 0, ..., 0). For x| > 1, this
implies

n—2 n—2
1 . 1 .
I RN Tivel’ = I (1— Iyl =>" Fnynl) :
j=1 " j=1 "

Definey : (0,00) — Rbyg(e) =1—¢€ — ZT;f(Gj/j D. Thus|lyx|| > [Ix[le(e),
whenevel|x| > 1 and|ly| < e.

Let g be a continuous function a8, such thag(y) = g(y™?) forally € G, and
g(y) = O for all y such that]y| > €. SinceG, is unimodular, forx € G, such that
x|l > 1,

(gl =&l fHeO = [ lgyledyxiDl f(yx)ldy

Gn

> | lgleadlixllgE) f(y )| dy
Gp

= e (lIxlle©) gl = [ fD(X).

By (i) &, f| is anLP-function andg| is anL” function(1/p+1/p = 1), sog*ey| f|
is anL > function. Thus withC = |||g] * €] f||l« < o0, we have

lg+ FOOI = 1gl* [ FI(X) = Cea(lIxllg(e))

forall x € G, such that|x| > 1. Sinceg * f is continuous, it follows that for some
constanC > 0,|g = f(X)] < Ce_a(|IX|l¢(e)) forall x € G,. In addition,

(@ * )llus < 7w (@I - I (D) llns < Ngllalime(Fllus

and hence, by hypothesis

/ |E1lenq(lIE Dl (g * PIYsdE < IIQII?/ |&1l@q(IE ID1l77e (F) 1}y s dE < o0
RN-2 RN-2

Now for ¢ > O sufficiently small,abp(e) > 1 so by Theoren? it follows that
g« f = 0. Taking forg an approximate identity, we conclude tfat=0a.e. O

The following result follows from Theore®, Remark3 and Theorem.

THEOREMDS. If G, = Gz, Gs1, Gs3 0r Gsg anda, b > 0. Suppose thap andq
are such thatl < min(p, q) < oo and f € LN L?(G,) satisfies
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(i) fpn €I F(x)|PdX < 00 if p < 0o and| f(x)| < Ce® X if p = oo,

(i) oo £ (£)fis0E < 00 if g < 00 and |l ()14 < CebrIel if
g = oo.
Then the following hold

(1) Ifg>2andab> 1,thenf =0a.e.
(2) If1<qg<2andab> 2,thenf =0a.e.

Let G = expg be a simply connected nilpotent Lie group. Letlenote the Zariski
open subset af* consisting of all elements in generic orbits with respect to the basis
{X;,..., X!} [2, Section 3.1, Theorem 3.1.9]. L8tbe the set of jump indices, and
setT ={1,2,...,n}\ Sandg; = >, ;R X].

ThenX = UNg; is a cross-section for the generic orbits gnd: § € X} supports
the Plancherel measure &

The following is a generalization of Morgan’s Theore&h fvhich can be proved
using [7, Lemma 2].

THEOREM 6. Let G = expg be a simply connected nilpotent Lie group. kep
andC be positive real numbers and suppose thatG — Cis a measurable function
such that

(i) [f(x)| < Ceomx’,

(i) Nme(H)llns < Ce P forall § = (&1, 65, ..., &) € X,
wherep > 2,1/p+1/q = 1. If (ap)¥P(Bq)/? > 2thenf =0a.e.
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