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Abstract

A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product
in product action. All such simple permutation groups are determined in this paper. This remarkable
conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the
permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective
connections between them, are explored in greater generality, with specific future applications in mind.
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1. Introduction

The main result of this paper is that a transitive simple subgroup of a finite symmetric
group is very rarely contained in a full wreath product in product action, so rarely that
all such cases can be explicitly tabulated here. In other words, apart from a short list
of exceptions, a simple subgroup of a finite wreath product in product action can never
be transitive. A brief summary of the product action of wreath products is provided
at the beginning of Section2.

THEOREM 1.1. Let� be a finite set, letT < W < Sym� such thatT is a finite
simple group andW is permutationally isomorphic to a wreath productSym0wr Sl

in product action. Then eitherT is intransitive orT, W, and |�| are as in Table1.
Moreover, ifT is transitive, thenNSym� .T/ is an almost simple group.
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TABLE 1. Transitive simple subgroups of wreath products

T W |�|
1 A6 S6 wr S2 36
2 M12 S12 wr S2 144

3 P�+
8 .q/ S.d=2/q3.q4−1/ wr S2

.d2=4/q6.q4 − 1/2

d = .4;q4 − 1/
4 Sp4.q/; q > 4;q even Sq2.q2−1/ wr S2 q4.q2 − 1/2

This classification is reached after observing that, in Theorem1.1, the set� can
be identified with the Cartesian product0l such that the action ofW is compatible
with this identification. In order to make this idea precise, we introduce the concept
of a ‘Cartesian decomposition’ of a set, and we also notice thatW can be viewed as
the full stabiliser in Sym� of a Cartesian decomposition of�. Hence we reduce the
problem of classifying the pairsT; W in Theorem1.1 to the problem of classifying
all Cartesian decompositions of finite sets that are invariant under the action of a
transitive, simple group of permutations.

Let T be a finite simple group acting on a set�. In the classification ofT-invariant
Cartesian decompositions of� we use ideas that are familiar from the elementary
theory of permutation groups. Namely, we investigate how the subgroup lattice of
T might reflect the existence of aT-invariant Cartesian decomposition of�. In
Definition 1.3 we define the concept of a ‘Cartesian system of subgroups’, and in
Theorem1.4we establish a one-to-one correspondence between the set ofT-invariant
Cartesian decompositions of� and the set of Cartesian systems with respect to a fixed
element of�.

The concepts of Cartesian decompositions and Cartesian systems, and the bijective
connections between them, are explored in greater generality in Sections2–4. Our
motivation in doing so is to provide with a theoretical background for a future inves-
tigation of Cartesian decompositions that are invariant under a transitive permutation
group.

Some of the concepts we use may be new to most of our readers. We define
a permutation group to beinnately transitiveif it has a transitive minimal normal
subgroup, and a transitive minimal normal subgroup of an innately transitive group is
referred to as aplinth. Most of the results of this paper are expressed in the context of
innately transitive groups. The structure of innately transitive groups is investigated
in [4]. The problem of finding innately transitive subgroups of wreath products in
product action is studied more extensively in [3]. Theorem1.1 is equivalent to the
following result, which is formulated in terms of innately transitive groups. Here,
a permutation group isquasiprimitive if all of its minimal normal subgroups are
transitive.



[3] Transitive simple subgroups of wreath products 57

THEOREM 1.2. Let� be a finite set, letG < W < Sym� such thatG is an innately
transitive group with a simple plinthT, and W is permutationally isomorphic to a
wreath productSym0wr Sl in product action. ThenT andW are as in Table1, and
G is an almost simple quasiprimitive group.

Theorems1.1 and1.2 are easy consequences of Theorem6.1 as explained at the
end of Section6.

A Cartesian decompositionof a finite set� is a collectionE of partitions01; : : : ; 0l

of � such that|
1 ∩ · · · ∩ 
l | = 1 for all 
1 ∈ 01; : : : ; 
l ∈ 0l . A Cartesian
decomposition is said to behomogeneousif its elements have the same size and this
common size is at least 2. The number of partitions in a Cartesian decomposition is
called theindex. A Cartesian decomposition is said to benon-trivial if it has index
at least 2. In this paper, Cartesian decompositions are assumed to be non-trivial,
unless it is explicitly stated otherwise. IfE is a Cartesian decomposition of�, then�
can be identified with the Cartesian product

∏
0∈E 0. More information on Cartesian

decompositions is provided in [10], where a Cartesian decompositionE stabilised by
a permutation groupG such that the elements ofE form a singleG-orbit is said to be
a system of product imprimitivity forG. A maximal subgroupW of Sym� or Alt�
is said to beof product action type, or simplyPA type, if W is the full stabiliser of a
non-trivial, homogeneous Cartesian decomposition of�. If a permutation groupG
is contained in such aW, then we also say thatW is amaximal overgroup ofG with
product action type, or simplyPA type.

It is, in general, a difficult problem to describe maximal overgroups with PA type of
a transitive permutation group. In the case whereG itself is primitive, this question is
answered by [13], but [2] leaves this problem open for a quasiprimitiveG. Clearly our
Theorem1.2 gives a full classification of the maximal overgroups of product action
type for an innately transitive permutation groupG with a simple plinth. This is
achieved by listing all non-trivial, homogeneous Cartesian decompositions stabilised
by G. We found that such decompositions can be identified by information about the
subgroups of the plinth. This motivates the following definition.

DEFINITION 1.3. Let M be a transitive permutation group on a set� and! ∈ �.
We say that a set{K1; : : : ; Kl } of subgroups ofM is aCartesian system of subgroups
of M with respect to! if

l⋂
i =1

Ki = M! and(1)

Ki

(⋂
j 6=i

K j

)
= M for all i ∈ {1; : : : ; l }:(2)

A Cartesian system is said to behomogeneousif its elements are proper subgroups
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and they have the same size. A Cartesian system isnon-trivial if it has at least two
subgroups. IfM is an abstract group andK = {K1; : : : ; Kl} is a set of subgroups
satisfying (2), thenK is called a Cartesian system ofM .

In this paper Cartesian systems are assumed to be non-trivial unless explicitly stated
otherwise.

For a permutation groupG 6 Sym�, let CD.G/ denote the set ofG-invariant
Cartesian decompositions of�. Cartesian systems provide a way of identifying the
set CD.G/ from information internal toG.

THEOREM 1.4. Let G be an innately transitive permutation group on� with
plinth M. Then, for a fixed! ∈ �, there is a one-to-one correspondence between the
setCD.G/ and the set ofG!-invariant Cartesian systems ofM with respect to!.

Theorem1.4 is an immediate consequence of Theorem4.2where an explicit one-
to-one correspondence is constructed.

The major results of this paper are presented in Section6. There we study innately
transitive permutation groups with a non-abelian, simple plinth that preserve a Carte-
sian decomposition of the underlying set. The main result of Section6 gives rise to a
complete description of maximal overgroups with product action type for such an in-
nately transitive group. Theorems1.1–1.2follow immediately from Theorem6.1(i),
where we give a detailed description ofG-invariant homogeneous Cartesian decom-
positions of� for innately transitive groupsG with a simple plinthT . In particular,
Table3 contains the possibilities forG, T , W, |�|, and the isomorphism types of the
subgroups in the associated Cartesian system, as given by Theorem1.4. Part (ii) of
Theorem6.1 gives a detailed description of Cartesian decompositionsE of � with
index at least 3 that are invariant under the action of an innately transitive group
with a non-abelian, simple plinth. In Table4, we list the possibilities for the plinth,
|�|, the full stabiliser ofE in Sym�, and the isomorphism types of the elements in
the corresponding Cartesian system. In the case whereG is primitive, Theorem6.1
reduces to [13, Proposition 6.1 (ii)]. Problems similar to ours were also addressed
in [5].

Our notation concerning actions and permutation groups is standard. IfG is a
group acting on� and1 is a subset of�, thenG1 andG.1/ denote the setwise and
the pointwise stabilisers of1, respectively. IfG1 = G thenG1 denotes the subgroup
of Sym1 induced byG. If ! ∈ �, then!G denotes theG-orbit {!g | g ∈ G}.

2. Cartesian decompositions

Let0 be a finite set with at least two elements,L 6 Sym0, l > 2 an integer, and
H 6 Sl . Thewreath productL wr H is the semidirect productLl o H , where, for
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.x1; : : : ; xl / ∈ Ll and¦ ∈ Sl , .x1; : : : ; xl /
¦−1 = .x1¦ ; : : : ; xl ¦ /. The product action

of L wr H is the action ofL wr H on0l defined by

.
1; : : : ; 
l /
.x1;::: ;xl / = (



x1

1 ; : : : ; 

xl

l

)
and .
1; : : : ; 
l /

¦−1 = .
1¦ ; : : : ; 
l ¦ /

for all .
1; : : : ; 
l / ∈ 0l , andx1; : : : ; xl ∈ L and¦ ∈ H . The important properties of
wreath products can be found in most textbooks on permutation group theory, see for
instance Dixon and Mortimer [7].

The full stabiliserW in Sym� of a homogeneous Cartesian decompositionE of
� is isomorphic to Sym0wr Sl acting in product action on0l for 0 ∈ E . Moreover,
if |0| > 3 thenW is primitive on�, and if |0| > 5 thenW is a maximal subgroup
of Sym� or Alt�. As mentioned in Section1, such maximal subgroups are usually
referred to asmaximal subgroups of product action type. They form one of several
classes of primitive maximal subgroups of Sym� and Alt�, identified by the O’Nan–
Scott Theorem; see [12]. Thus an important part of classifying the primitive maximal
subgroups of Sym� or Alt� containing a given (innately transitive) subgroupG is
finding all homogeneous Cartesian decompositions of� that are stabilised byG. Our
first result is that the plinth must leave invariant each partition in such a Cartesian
decomposition.

PROPOSITION2.1. If G is an innately transitive group on a set� with plinth M and
E ∈ CD.G/, thenM.E / = M.

PROOF. We let0 ∈ E and show that each element of theG-orbit 0G is stabilised
by M . Suppose that{01; : : : ; 0m} is theG-orbit in E containing0 ∈ E . Set

6 = {
1 ∩ · · · ∩ 
m | 
1 ∈ 01; : : : ; 
m ∈ 0m}
and

0̄i = {{¦ ∈ 6 | ¦ ⊆ 
 } | 
 ∈ 0i } for i = 1; : : : ;m:

Then it is a routine calculation to check that6 is aG-invariant partition of�, and that
{0̄1; : : : ; 0̄m} is a G-invariant Cartesian decomposition of6. Moreover,|0̄i | = |0i |
for all i , and since01; : : : ; 0m form aG-orbit, |0̄i | = |0̄ j | for all i and j . It is also easy
to see that ifg ∈ G.0̄i / theng ∈ G.0i /. SinceG.0̄1;::: ;0̄m/ is a normal subgroup ofG and
M is a minimal normal subgroup ofG, eitherM 6 G.0̄1;::: ;0̄m/ or M ∩ G.0̄1;::: ;0̄m/ = 1.
Suppose thatM ∩ G.0̄1;::: ;0̄m/ = 1, so M acts on the set{0̄1; : : : ; 0̄m} faithfully.
ThereforeM is isomorphic to a subgroup of Sm. Note that|6| = |0̄1|m, and letp be
a prime dividing|0̄1|. Then pm divides|6|. SinceM is transitive on6, pm | |M |.
However,M is isomorphic to a subgroup of Sm, and sopm dividesm!, which is a
contradiction to [13, Lemma 4.2]. HenceM 6 G.0̄1;::: ;0̄m/, that is, each̄0i is stabilised
by M , and so is each0i . ThusM stabilises0, and, since0 was chosen arbitrarily,
this shows that every element ofE is stabilised byM .
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LEMMA 2.2. Let M be a transitive subgroup ofSym� and letE ∈ CD.M/ such
that M.E / = M. Suppose thatE = {01; : : : ; 0l }, let ! ∈ � be a fixed element, and
for i = 1; : : : ; l let 
i ∈ 0i be such that! ∈ 
i . SetK!.E / = {K1; : : : ; Kl } where
Ki = M
i

for i = 1; : : : ; l . ThenK!.E / is a Cartesian system of subgroups ofM
with respect to!. Moreover, if!m = !′ for somem ∈ M, thenK!′.E / = K!.E /

m.

PROOF. Let us prove that
⋂l

i =1 Ki = M!. Since the0i areM-invariant partitions
of �, the stabiliser of a point stabilises the block in0i that contains this point. Hence
M! 6 Ki for all i , and soM! 6

⋂
i Ki . Now suppose thatx ∈ ⋂

i Ki . Thenx
stabilises
1; : : : ; 
l . SinceE is a Cartesian decomposition,
1 ∩ · · · ∩ 
l = {!}, and
sox stabilises!. Thusx ∈ M!, and so

⋂
i Ki = M!.

Now we prove that (2) also holds. We may suppose without loss of generality
that i = 1. Let x ∈ M , Ž1 = 
 x

1 ; : : : ; Žl = 
 x
l , and {¾ } = Ž1 ∩ · · · ∩ Žl . If

{� } = Ž1 ∩
2 ∩ · · · ∩
l then the transitivity ofM on� implies that there existsz ∈ M
with ¾ z = � and soŽz

1 = Ž1, Žz
2 = 
2; : : : ; Ž

z
l = 
l , whence
 xz

j = 
 j for j = 2; : : : ; l

and
 xzx−1

1 = 
1, that isxz ∈ ⋂l
j =2 K j andxzx−1 ∈ K1. It follows that

x = .xzx−1/−1.xzx−1x/ ∈ K1

(
l⋂

j =2

K j

)
;

and we deduce that the first factorisation of (2) holds. The other factorisations can be
proved identically. ThusK!.E / is a Cartesian system ofM with respect to!.

If m ∈ M and!′ = !m then{!′} = 
m
1 ∩ · · · ∩ 
m

l andM
m
i

= Mm

i

, which proves
thatK!′.E / = K!.E /

m.

If M 6 Sym� andE ∈ CD.M/ such thatM.E / = M , then, for a fixed! ∈ �,
we define the Cartesian systemK!.E / with respect to! as in Lemma2.2. The last
result of this section establishes one direction of the one-to-one correspondence in
Theorem1.4.

LEMMA 2.3. Let G be an innately transitive group with plinthM acting on�, and
let ! ∈ �. If E ∈ CD.G/, thenM.E / = M. Assume thatK!.E / is the Cartesian
system ofM with respect to!. ThenK!.E / is invariant under conjugation byG! ,
and theG!-actions onK!.E / and onE are equivalent.

PROOF. It follows from Proposition2.1 that M.E / = M , and so we can use
Lemma 2.2 to constructK!.E / for !. Suppose thatE = {01; : : : ; 0l }, and let
K!.E / = {K1; : : : ; Kl } such thatKi = M
i

where
i is the unique element of0i

containing!. If 0i ; 0 j ∈ E andg ∈ G! such that0g
i = 0 j then!g = !, and so



g

i = 
 j . Hence

K g
i = (

M
i

)g = M

g
i

= M
 j
= K j ;



[7] Transitive simple subgroups of wreath products 61

and soK!.E / is invariant under conjugation byG!. This argument also shows that
theG!-actions onE and onK!.E / are equivalent.

3. Cartesian systems

In this section we summarise the most important properties of Cartesian systems
of abstract groups. The following lemma is useful when working with Cartesian
systems. If{K1; : : : ; Kl} is a Cartesian system for a groupM and I ⊆ {1; : : : ; l }
then letK I denote the subgroupK I = ⋂

i ∈ I Ki . We use the convention that ifI = ∅
then

⋂
i ∈ I Ki = M for any collection{Ki }i of subgroups inM .

LEMMA 3.1. Let {K1; : : : ; Kl} be a(possibly trivial) Cartesian system for an ab-
stract groupM, and letI , J be subsets of{1; : : : ; l }.
(a) If x1; : : : ; xl ∈ M, then

⋂
i ∈ I Ki xi is a coset moduloK I .

(b) |M : K I | = ∏
i ∈ I |M : Ki |.

(c) K I K J = K I ∩J.

PROOF. If an intersection of (right) cosets is nonempty then it is a (right) coset
modulo the intersection of the relevant subgroups. The statement of (a) above and
the simple proof below make use of this fact. We prove the lemma by induction on
l . Notice that there is nothing to prove ifl = 1. Our inductive hypothesis is that
l > 1 and the lemma holds for all Cartesian systems forM which consist of fewer
thanl subgroups. Thus (a) and (b) only have to be proved for the caseI = {1; : : : ; l }.
Put L = ⋂

i>1 Ki , and note that{K1; L} is also a Cartesian system forM (that is,
K1L = M).

We also know from the inductive hypothesis that
⋂

i>1 Ki xi is a coset moduloL,
so for (a) it is sufficient to show thatK1x1 ∩ Ly is never empty. In order to show this
we choosez ∈ L such thatK1z = K1x1y−1; this is possible, asK1L = M . Then
K1zy = K1x1, and sozy ∈ K1x1, and alsozy ∈ Ly. Hencezy ∈ K1x1 ∩ Ly, and
consequentlyK1x1 ∩ Ly is non-empty.

For (b), it is enough to show that|M : K I | = |M : K1||M : L|, but this follows
from

|M | = |K1L| = |K1||L|=|K1 ∩ L| = |K1||L|=K I |:
For an easy proof of (c) we first observe that

|K I K J| = |K I ||K J|=|K I ∩ K J|:
It is obvious thatK I K J ⊆ K I ∩J and, asK I ∩ K J = K I ∪J, one can calculate from (b)
and the last display that|K I K J| = |K I ∩J|. This completes the proof of the lemma.
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Note that, in Lemma3.1 (a), if we choosex to be any element of
⋂

i ∈ I Ki xi , then
Ki xi = Ki x holds, for alli ∈ I .

4. Cartesian systems and Cartesian decompositions

In a transitive groupM 6 Sym�, a subgroupK satisfyingM! 6 K 6 M for
some! ∈ � determines anM-invariant partition of� comprising theM-translates of
the K -orbit!K .

LEMMA 4.1. LetG be an innately transitive group on�with plinth M, and let! be
a fixed element of�. Suppose thatK = {K1; : : : ; Kl} is a G!-invariant Cartesian
system of subgroups ofM with respect to!, and let01; : : : ; 0l be theM-invariant
partitions of� determined byK1; : : : ; Kl, respectively. ThenE = {01; : : : ; 0l } is
a G-invariant Cartesian decomposition of�, such thatK!.E / = K . Moreover,
if M is non-abelian and the Cartesian system{K1; : : : ; Kl } is homogeneous, then
the stabiliserW in Sym� of E is a maximal subgroup ofSym� or Alt � such that
G 6 W.

PROOF. As M! 6 Ki 6 M , each0i is an M-invariant partition of�. For
i = 1; : : : ; l let 
i be the unique element of0i containing!. In order to prove
thatE is a Cartesian decomposition, we only have to show that∣∣∣∣∣

l⋂
i =1

Ži

∣∣∣∣∣ = 1 whenever Ž1 ∈ 01; : : : ; Žl ∈ 0l :

To see this, chooseŽ1 ∈ 01; : : : ; Žl ∈ 0l . Now Ži = 

xi

i for somexi ∈ M , and by
Lemma3.1(a), there exists somex ∈ M such thatKi xi = Ki x for i = 1; : : : ; l . Then

Ži = 

xi

i = {!k | k ∈ Ki }xi = {!k′ | k′ ∈ Ki xi }
= {!k′ | k′ ∈ Ki x} = {!k | k ∈ Ki }x = 
 x

i :

Thus
l⋂

i =1

Ži =
l⋂

i =1


 x
i =

(
l⋂

i =1


i

)x

;

and therefore we only have to prove that
∣∣⋂l

i =1 
i

∣∣ = 1. Note that! ∈ 
i for
i = 1; : : : ; l . Suppose that!′ ∈ 
1 ∩ : : : ∩ 
l for some!′ ∈ �. Then there is some
x ∈ M such that!x = !′. Thenx must stabilise
1; : : : ; 
l , and hencex ∈ Ki for all
i = 1; : : : ; l . Since

⋂l
i =1 Ki = M!, it follows thatx ∈ M!, and so!x = !. Thus⋂l

i =1 
i = {!}, andE is a Cartesian decomposition.
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Since each0i is an M-invariant partition of�, E is invariant underM . Since
{K1; : : : ; Kl} is G!-invariant,E is alsoG!-invariant, and soE is MG!-invariant.
SinceM is transitive,MG! = G. ThereforeE is G-invariant. Note that

K = {M
1; : : : ;M
l
} and K!.E / = {M
1; : : : ;M
l

}:

ThusK = K!.E /, as required.
SinceM is non-abelian,M is a direct product of isomorphic non-abelian, simple

groups. Hence fori = 1; : : : ; l , the groupM0i is also isomorphic to a direct product
of non-abelian simple groups. Moreover,M0i is transitive and faithful on0i , and so
|0i | > 5 for all i . As {K1; : : : ; Kl } is homogeneous,E is also homogeneous andW
is permutationally isomorphic to Sym0 wr Sl in product action for some set0 and
l > 2. Hence the results of [12] show thatW is a maximal subgroup of Sym� if
W 66 Alt �, andW is a maximal subgroup of Alt� otherwise. SinceE is G-invariant,
clearlyG 6 W.

THEOREM 4.2. Let G be an innately transitive group on� with plinth M. For a
fixed! ∈ � the mapE 7→ K!.E / is a bijection between the setCD.G/ and the set
of G!-invariant Cartesian systems of subgroups ofM with respect to!.

PROOF. LetC denote the set ofG!-invariant Cartesian systems of subgroups ofM
with respect to!. In Lemma2.2, we explicitly constructed a map9 : CD.G/ → C

for which 9.E / = K!.E /. We claim that9 is a bijection. LetK ∈ C , let
01; : : : ; 0l be theM-invariant partitions determined by the elementsK1; : : : ; Kl of
K , and letE = {01; : : : ; 0l }. We proved in Lemma4.1 that E is a G-invariant
Cartesian decomposition of� such thatK!.E / = K . Hence9 is surjective.

Suppose now thatE1; E2 ∈ CD.G/ is such that9.E1/ = 9.E2/ and letK denote
this common Cartesian system. LetE be the set ofM-invariant partitions determined
by the elements ofK . Then, by the definition of9.Ei / in Lemma2.2, E1 = E and
E2 = E . Thus9 is injective, and so9 is a bijection.

Theorem1.4 is an immediate consequence of the previous result.

5. Some factorisations of finite simple groups

To prove Theorem1.1 we need first to prove some results about factorisations of
certain finite simple groups. IfG is a group andA; B 6 G such thatG = AB, then
we say that the expressionG = AB or the set{A; B} is afactorisationof G. In [1] full
factorisations of almost simple groups were classified up to the following equivalence
relation. The factorisationsG = A1B1 andG = A2B2 of a groupG are said to be
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equivalentif there areÞ ∈ Aut.G/, andx; y ∈ G such that{A1; B1} = {AÞx
2 ; BÞy

2 }.
The following lemma shows that this equivalence relation can be expressed in a simpler
way.

LEMMA 5.1. Let G be a group.

(i) If G = AB for someA; B 6 G, then the conjugation action ofA is transitive
on the conjugacy classBG, andB is transitive onAG.

(ii) The factorisationsG = A1B1 andG = A2B2 of G are equivalent if and only
if there isþ ∈ Aut.G/ such that{A1; B1} = {Aþ

2 ; Bþ

2 }.

PROOF. (i) As AB = G, we also haveANG .B/ = G. Since NG .B/ is a point
stabiliser for the conjugation action ofG on the conjugacy classBG, we obtain thatA
is a transitive subgroup ofG with respect to this action. Similar argument shows that
B is transitive by conjugation onAG.

(ii) It is clear that if there isþ ∈ Aut.G/ such that{A1; B1} = {Aþ

2 ; Bþ

2 } then the two
factorisations in the lemma are equivalent. Suppose thatG = A1 B1 andG = A2B2

are equivalent factorisations. By assumption, there isÞ ∈ Aut.G/ and x; y ∈ G
such that{A1; B1} = {AÞx

2 ; BÞy
2 }. Then we haveAG

1 = .AÞ2/
G and BG

1 = .BÞ
2 /

G, or
AG

1 = .BÞ
2 /

G andBG
1 = .AÞ2/

G. Suppose without loss of generality thatAG
1 = .AÞ2/

G

and BG
1 = .BÞ

2 /
G. SinceA1 and AÞ

2 are conjugate, there is someg ∈ G such that
Ag

1 = AÞ
2, and Bg

1 is conjugate toBÞ
2 . As G = .A1 B1/

g = Ag
1 Bg

1 , we have thatAg
1

is transitive by conjugation on.Bg
1 /

G = BG
1 . Hence there is somea ∈ Ag

1 such that

Aga
1 = Ag

1 = AÞ
2, andBga

1 = BÞ
2 . HenceA1 = AÞa−1g−1

2 andB1 = BÞa−1g−1

2 . Thus we
may takeþ asÞ followed by the inner automorphism corresponding toa−1g−1.

If G is a group andA andB are subgroups then let

NG .{A; B}/ = {g ∈ G | {Ag; Bg} = {A; B}}:

In the proof of the following result we use the following simple fact, called Dedekind’s
modular law. IfK , L, H are subgroups of a groupG such thatK 6 L, then

.H K / ∩ L = .H ∩ L/K :(3)

LEMMA 5.2. Let T be a finite simple group andA; B proper subgroups ofT such
that |A| = |B| andT = AB. Then the following hold.

(i) The isomorphism types ofT, A, andB are as in Table2, andA, B are maximal
subgroups ofT.

(ii) There is an automorphism# ∈ Aut.T/ such that# interchangesA and B.
(iii) The groupA ∩ B is self-normalising inT.
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TABLE 2. Factorisations of finite simple groups in Lemma5.2

T A; B
1 A6 A5

2 M12 M11

3 P�+
8 .q/ �7.q/

4 Sp4.q/; q > 4 even Sp2.q
2/:2

(iv) If T is as in row1, 2, or 4 of Table2, then

NAut.T / .A ∩ B/ = NAut.T / .{A; B}/ = N;

say, and moreoverT N = Aut.T/.

PROOF. (i) Note that, since|A| = |B|, the factorisationT = AB is a full factori-
sation ofT , that is, the sets of primes dividing|T|, |A|, and|B| are the same. It was
proved in [1], that T , A, andB are as in [1, Table I]. It is easy to see that the only
possibilities where|A| = |B| are those in Table2, and it follows that in these casesA
andB are maximal subgroups ofT .

(ii) In each line of Table2, the groupsA and B are not conjugate, but there is
an outer automorphism¦ ∈ Aut.T/ which swaps the conjugacy classesAT and BT

(see the Atlas [6] for T ∼= A6; M12, [9] for T ∼= P�+
8 .q/, and [1, page 155] for

T ∼= Sp4.q/). By Lemma5.1 (i), the groupA is transitive in its conjugation action
on the conjugacy classBT andB is transitive onAT . Thus there is an elementa ∈ A
such thatA¦a = B andB¦a is conjugate inT to A. SinceB is transitive onAT , there
is an elementb ∈ B such thatA¦ab = B andB¦ab = A. Therefore we can take# as
¦ followed by the inner automorphism induced by the elementab.

(iii) Set C = A ∩ B. First we prove thatC is self-normalising inT . If T is
isomorphic to A6 or M12 then the information given in the Atlas [6] shows that ifN
is a proper subgroup ofT properly containingC, thenN is isomorphic toA or B. In
all casesA and B are simple, and so NT .C/ = C. If T ∼= P�+

8 .q/ then we obtain
from [9, 3.1.1 (vi)] thatC ∼= G2.q/ and [9, 3.1.1 (iii)] yields that NT .C/ = C.

Now letT ∼= Sp4.q/ for q > 4,q even. In this caseA ∼= B ∼= Sp2.q
2/ ·2. Consider

the fieldsFq andFq2 as subfields of the fieldFq4 and consider the fieldFq4 as a 4-
dimensional vector spaceV overFq. LetNFq4 =Fq2 : Fq4 → Fq2 and TrFq2=Fq

: Fq2 → Fq

denote the norm and the trace map, respectively. For the basic properties of these
maps see [11, 2.3]. Using the fact thatNFq4=Fq2 .x/ = xq2+1 for all x ∈ Fq4, we obtain
thatx 7→ NFq4=Fq2 .x/ is anFq2-quadratic form onV , such that

.x; y/ 7→ NFq4 =Fq2 .x + y/+NFq4=Fq2 .x/ +NFq4=Fq2 .y/
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is a non-degenerate, symmetric,Fq2 -bilinear form with Witt defect 1 (we recall that
q is a 2-power). HenceQ = TrFq2=Fq

◦NFq4=Fq2 is anFq-quadratic formV → Fq, and
f .x; y/ = Q.x + y/+ Q.x/+ Q.y/ is a non-degenerate, symmetricFq-bilinear form
on V with Witt defect 1. Then without loss of generality we may assume thatT is the
stabiliser of f in GL4.q/, A consists of elements ofT that areFq2 -semilinear, andB
is the stabiliser ofQ.

For a ∈ V \ {0} = F
∗
q4 , define the mapsa : x 7→ xa. Then it is well-known that

S = {sa | a ∈ F
∗
q4} is a cyclic subgroup of GL4.q/. A generator ofS is called a Singer

cycle; see Satz II.7.3 in Huppert [8]. Let Z denote the subgroup{sa | NFq4 =Fq2 .a/ = 1}
of S. Since the restriction ofNFq4=Fq2 to F∗

q4 is an epimorphismNFq4=Fq2 : F∗
q4 → F

∗
q2 ,

and Z is the kernel of this epimorphism, we have that|Z| = q2 + 1. If ¦ is the
Frobenius automorphismx 7→ xq of Fq4 then.sa/

¦ = sa¦ for all sa ∈ S. Therefore¦
normalisesS, and, sinceS is cyclic,¦ also normalisesZ. We claim thatC = Z〈¦ 〉.
SinceT = AB, |C| = 4.q2 + 1/, and hence it suffices to prove thatZ〈¦ 〉 6 C. It is
clear that¦ is Fq2 -semilinear, and so¦ ∈ A. Also

Q.¦ .x// = Q.xq/ = TrFq2=Fq

(
NFq4=Fq2 .x

q/
)

= TrFq2=Fq

(
NFq4 =Fq2 .x/

q
)

= TrFq2=Fq

(
NFq4=Fq2 .x/

)
= Q.x/:

Therefore¦ ∈ B, and so¦ ∈ C. Let a ∈ Fq4 such thatNFq4=Fq2 .a/ = 1. Then

Q.sa.x// = Q.xa/ = TrFq2=Fq

(
NFq4=Fq2 .xa/

)
= TrFq2=Fq

(
NFq4=Fq2 .x/NFq4=Fq2 .a/

)
= TrFq2=Fq

(
NFq4=Fq2 .x/

)
= Q.x/:

Thussa ∈ B. Sincesa is alsoFq2 -linear, we obtainsa ∈ C. HenceC = Z 〈¦ 〉.
We will now prove thatC is self-normalising inT . First notice thatq2+1 is divisible

by an odd primer such thatr - .q2 − 1/. Hence there is a unique subgroupR in Z
with orderr . SinceZ is the commutator subgroup ofC, it is a characteristic subgroup
of C. Also R is the unique subgroup ofZ with orderr , and soR is characteristic in
Z. ThusR is characteristic inC and NT .C/ must normaliseR. By [8, Satz II.7.3 ],
NGL4.q/ .R/ = SC= S〈¦ 〉.

Let us now determine how much ofS〈¦ 〉 is contained inT . Since TrFq2=Fq
is

additive,

f .xq; yq/ = TrFq2=Fq

(
NFq4 =Fq2 .x

q + yq/ +NFq4=Fq2 .x
q/+ NFq4=Fq2 .y

q/
)

= TrFq2=Fq

((
NFq4 =Fq2 .x + y/+NFq4=Fq2 .x/+ NFq4=Fq2 .y/

)q) = f .x; y/;

and hence the cyclic subgroup〈¦ 〉 is inT. Using (3), we have.S〈¦ 〉/∩T = .S∩T/〈¦ 〉.
Thus we need to computeS∩ T . If x ∈ F

∗
q4 such thatf .xa; xb/ = f .a;b/ for all
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a; b ∈ V then

TrFq2=Fq

(
NFq4 =Fq2 .a + b/+NFq4 =Fq2 .a/+NFq4 =Fq2 .b/

)
(4)

= TrFq2=Fq

(
NFq4=Fq2 .xa + xb/+NFq4=Fq2 .xa/+NFq4=Fq2 .xb/

)
= TrFq2=Fq

(
NFq4=Fq2 .x/

(
NFq4=Fq2 .a + b/+NFq4=Fq2 .a/+NFq4 =Fq2 .b/

))
:

As observed above,

.u; v/ 7→ NFq4 =Fq2 .u + v/ +NFq4=Fq2 .u/ +NFq4 =Fq2 .v/

is a non-degenerate, symmetric,Fq2-bilinear form, and so it mapsV × V onto Fq2 .
Hence (4) shows thaty = NFq4=Fq2 .x/ has the property that TrFq2=Fq

.yu/ = TrFq2=Fq
.u/

for all u ∈ Fq2, that is,yu+ yquq = u+uq, for all u ∈ Fq2. Thus.yu+u/q = yu+u.
Henceu.y + 1/ ∈ Fq for all u ∈ Fq2 , and consequentlyy = 1. Thus if the map
sx preservesf thenNFq4=Fq2 .x/ = 1. On the other hand from (4) it is clear that if
NFq4 =Fq2 .x/ = 1 then multiplication byx preservesf . Since the norm is a group
epimorphismNFq4=Fq2 : F∗

q4 → F
∗
q2 it follows that the elements of norm 1 form a cyclic

group of orderq2 + 1. HenceS∩ T = Z and NGL4.q/ .C/ ∩ T = C, that is,C is
self-normalising inT .

(iv) Finally we assume thatT is as in row 1, 2, or 4 of Table2, and we prove the
assertion thatN1 = N2, whereN1 = NAut.T / .C/ andN2 = NAut.T / .{A; B}/. It is clear
that N2 6 N1, and so we only have to prove|N1| 6 |N2|. Since A and B are not
conjugate inT , we have thatN2 ∩ T = NT .A/ ∩ NT .B/ = A ∩ B = C, and, since
C is self-normalising inT , we also haveN1 ∩ T = C. Thus it suffices to prove that
T N1 6 T N2, which follows immediately once we show thatT N2 = Aut.T/. Since
N2 interchangesA and B, we have thatN2 = .NAut.T / .A/ ∩ NAut.T / .B// 〈#〉 where
# ∈ Aut.T/ is as in (ii). If T ∼= A6 then |NAut.T/ .A/ : NT .A/ | = |NAut.T / .B/ :
NT .B/ | = 2, and soT N2 = Aut.T/ (see [6]). If T ∼= M12 then NAut.T / .A/ = NT .A/
and NAut.T / .B/ = NT .B/, and soT N2 = Aut.T/ (see [6]). If T ∼= Sp4.q/ then the
field automorphism group8 normalisesA and B. If # ∈ Aut.T/ is as in (ii), then
Aut.T/ = T8 〈#〉, and so we obtain thatT N2 = Aut.T/. Hence ifT is as in row 1, 2,
or 4 of Table2, thenT N2 = Aut.T/, andT N1 6 T N2 clearly holds. ThusN1 = N2

follows.

We recall a couple of facts about automorphisms of P�+
8 .q/. Let T = P�+

8 .q/.
Then, as shown in [9, pp. 181–182], Aut.T/ = 2 o 8, where8 is the group
of field automorphisms ofT , and2 is a certain subgroup of Aut.T/ containing the
commutator subgroup Aut.T/′. We also have Out.T/ = Aut.T/=T = 2=T ×8T=T ,
and2=T ∼= Sm wherem = 3 for evenq, andm = 4 for oddq. Let ³ : 2 → Sm

denote the natural epimorphism. The following lemma derives the information about
P�+

8 .q/ similar to that in Lemma5.2(iv).
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LEMMA 5.3. LetT = P�+
8 .q/, let A, B be subgroups ofT such thatA; B ∼= �7.q/

and AB = T, and setC = A ∩ B. Then the following hold.

(i) We have8 6 NAut.T / .A/ ∩ NAut.T / .B/.
(ii) The groups.NAut.T / .A/∩2/T=T and.NAut.T / .B/∩2/T=T are conjugate to

the subgroup in columnX of [9, Results Matrix], so that

³.NAut.T/ .A/ ∩2/ ∼= ³.NAut.T / .B/ ∩ 2/ ∼= Z2 × Z2:

(iii) We have8 6 NAut.T / .C/ and .NAut.T/ .C/ ∩ 2/T=T is conjugate to the
subgroup in columnVII of [9, Results Matrix], so that³.NAut.T / .C/ ∩2/ ∼= S3 and∣∣NAut.T / .C/ : NAut.T / .{A; B}/∣∣ = 3:(5)

(iv) We haveTNAut.T / .{A; B}/ = T8〈#〉, where# is as in Lemma5.2(ii) , so that
³.NAut.T / .{A; B}/ ∩2/=T ∼= Z2.

PROOF. Claims (i)–(ii) can easily be verified by inspection of [9, Results Matrix].
In (iii) we only need to prove (5). Let N1 = NAut.T / .C/ and N2 = NAut.T / .{A; B}/.
Clearly N2 6 N1. By [9, Proposition 3.1.1 (vi)],C ∼= G2.q/, and [9, Proposi-
tion 3.1.1 (iii)] shows that³.N1 ∩ 2/ ∼= S3. From [9, Results Matrix] we obtain
³.N2 ∩2/ = Z2. As in the proof of Lemma5.2, we haveN1 ∩ T = N2 ∩ T = C. As
T = ker³ this impliesN1∩ker³ = N2∩ker³ , and so|N1∩2| = 3· |N2∩2|. Since
8 6 N1 ∩ N2 we haveN12 = N22 = Aut.T/, and so|N1| = 3 · |N2|, as required.
In (iv) we notice thatT8〈#〉 6 TNAut.T/ .{A; B}/. On the other hand, (iii) implies
that|T8〈#〉| = |TNAut.T / .{A; B}/ |, hence equality follows.

6. Innately transitive groups with a non-abelian, simple plinth

In this section we prove our second main theorem, namely Theorem1.1, which is
a consequence of the following result.

THEOREM 6.1. LetG be an innately transitive permutation group on� with a non-
abelian, simple plinthT, let! ∈ �, E ∈ CD.G/, and letW be the stabiliser ofE in
Sym�. Then|E | 6 3 and the following hold.

(i) Suppose thatE is homogeneous. Then|E | = 2, W is a maximal subgroup of
Sym� or Alt �, andG, T, W, the subgroupsK ∈ K!.E /, and|�| are as in Table3.
In particular, the setK!.E / contains two isomorphic subgroups. Moreover, the group
G is quasiprimitive andT is the unique minimal normal subgroup ofG. Moreover
exactly one of the following holds:

(a) |CD.G/| = 1;
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TABLE 3. Homogeneous Cartesian decompositions preserved by almost simple groups

G T W K |�|
1 A6 6 G 6 P0L2.9/ A6 S6 wr S2 A5 36
2 M12 6 G 6 Aut.M12/ M12 S12 wr S2 M11 144

3
P�+

8 .q/ 6 G 6 P�+
8 .q/8 〈#〉

8: field automorphisms
# is as in Lemma5.2(ii)

P�+
8 .q/

S.d=2/q3.q4−1/ wr S2

d = .4;q4 − 1/
�7.q/

(
d2

4

)
q6.q4 − 1/2

4 Sp4.q/ 6 G 6 Aut.Sp4.q//
Sp4.q/

q > 4 even
Sq2.q2−1/ wr S2 Sp2.q

2/:2 q4.q2 − 1/2

TABLE 4. Cartesian decompositions with index 3 preserved by almost simple groups

T W K!.E / |�|

1
Sp4a.2/
a > 2

Sn1 × Sn2 × Sn3

n1 = |Sp4a.2/ : Sp2a.4/ · 2|
n2 = |Sp4a.2/ : O−

4a.2/|
n3 = |Sp4a.2/ : O+

4a.2/|
Sp2a.4/ · 2; O−

4a.2/; O+
4a.2/ n1 · n2 · n3

2 P�+
8 .3/ S1080 × S1120 × S28431 �7.3/; Z6

3o PSL4.3/; P�+
8 .2/ 34; 390;137; 600

3 Sp6.2/

S120 × S28 × S36

S240 × S28 × S36

S120 × S56 × S36

S120 × S28 × S72

G2.2/; O−
6 .2/; O+

6 .2/
G2.2/′; O−

6 .2/; O+
6 .2/

G2.2/; O−
6 .2/

′; O+
6 .2/

G2.2/; O−
6 .2/; O+

6 .2/
′

120; 960
241; 920
241; 920
241; 920

(b) |CD.G/| = 3, T is as in row3 of Table3, G 6 T8 where8 is the group of
field automorphisms ofT.

(ii) Suppose that|E | = 3. If W is the stabiliser inSym� of E , thenT, W, the
elements ofK!.E /, and|�| are as in Table4.

PROOF. Suppose thatE ∈ CD.G/. Then Proposition2.1 implies thatT.E / =
T . Let l be the index ofE , and letK!.E / = {K1; : : : ; Kl} be the corresponding
Cartesian system forT . Then the definition ofK!.E / implies that if l > 3 then
{K1; : : : ; Kl} is a strong multiple factorisation of the finite simple groupT . Strong
multiple factorisations of finite simple groups are defined and classified in [1]; in
particular it is proved thatl 6 3.

(a) If l = 3 then [1, Table V] shows thatK1, K2, K3 have different sizes. Thus if
E is homogeneous thenl = 2 and the factorisationT = K1K2 is as in Lemma5.2.
HenceT , K1, K2, and |�| are as in Table3. The maximality ofW follows from
Lemma4.1.

Let us now prove thatG is quasiprimitive. AsT is transitive on�, we have
CSym�.T/ ∼= NT .T!/ =T!; see [7, Theorem 4.2A]. On the other hand,T! = K1 ∩ K2,
and Lemma5.2 shows that NT .K1 ∩ K2/ = K1 ∩ K2 = T!. Hence CSym�.T/ = 1,
and soT is the unique minimal normal subgroup ofG. HenceG is an almost simple
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quasiprimitive group acting on�.
Now we prove that the information given in theG-column of Table3 is correct.

SinceT is the unique minimal normal subgroup ofG, we have thatG is an almost
simple group andT 6 G 6 Aut.T/. Let N = NAut.T / .{K1; K2}/. Note that
G = T G! andG! 6 N. On the other hand,N has the property that, sinceA andB
are not conjugate inT ,

T ∩ N = NT .K1/ ∩ NT .K2/ = K1 ∩ K2 = T!;

and so theT-action on� can be extended toT N with point stabiliserN. Thus
G 6 T N. By Lemmas5.2 (iv) and5.3 (iv), for T ∼= A6, M12, P�+

8 .q/, and Sp4.q/,
we haveT N = P0L2.9/, Aut.M12/, P�+

8 .q/8〈#〉 (where8 is the group of field
automorphisms and# is as in Lemma5.2(ii)), and Aut.Sp4.q//, respectively. Hence
the assertion follows.

Finally we prove the claim concerning|CD.G/|. Suppose thatL1; L2 6 T is
such that|L1| = |L2|, L1L2 = T and L1 ∩ L2 = T!. By [1], the full factorisation
T = K1K2 is unique up to equivalence, Lemma5.1 (ii) shows that there is an
elementÞ ∈ Aut.T/ such that{K1; K2}Þ = {L1; L2}, and soÞ ∈ NAut.T / .T!/ =
NAut.T / .K1 ∩ K2/. Lemma5.2 (iii) implies that if T is as in row 1, 2, or 4 of Table3
then NAut.T / .{K1; K2}/ = NAut.T/ .T!/ and so{L1; L2} = {K1; K2}Þ = {K1; K2}. Thus
|CD.G/| = 1 in these cases, as asserted.

Suppose now thatT ∼= P�+
8 .q/ for someq. Then we obtain from Lemma5.3(iii)

that
∣∣NAut.T / .T!/ : NAut.T / .{K1; K2}/

∣∣ = 3, and so the NAut.T / .T!/-orbit containing
{K1; K2} has 3 elements, which gives rise to 3 different choices of Cartesian systems
with respect to!. Let E1, E2, andE3 denote the corresponding Cartesian decompo-
sitions of�, such thatE = E1. We computed above that CSym�.T/ = 1, and this
implies that NSym� .T/ = Aut.T/ ∩ Sym�. In other words,N = NSym� .T/ is the
largest subgroup of Aut.T/ that extends theT -action on�. SinceT is a transitive
subgroup ofN, we haveN = T N!. As T! is a normal subgroup ofN!, it follows that
N 6 TNAut.T / .T!/. On the other hand,

|TNAut.T / .T!/ : NAut.T / .T!/ | = |T : T ∩ NAut.T / .T!/ | = |T : NT .T!/ | = |T : T!|;

by Lemma5.2(iii). This shows that theT -action on� can be extended toTNAut.T/ .T!/
with point stabiliser NAut.T / .T!/. In other words,TNAut.T / .T!/ is the largest subgroup
of Aut.T/ that extends theT-action on�. The stabiliser ofE1 in TNAut.T / .T!/ is
TNAut.T / .{K1; K2}/. Hence ifG 6 Aut.T/ is such thatT 6 G and G leaves the
Cartesian decompositionE1 invariant, thenG 6 TNAut.T/ .{K1; K2}/ = T8〈#〉, by
Lemma5.3 (iii). If CD .G/ 6= {E } then,G leavesE1, E2, andE3 invariant. Therefore
G lies in the kernel of the action ofTNAut.T/ .T!/ on {E1;E2;E3}. HenceG 6 T8, as
required.
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(b) Suppose that|E | = 3. Then{K1; K2; K3} is a strong multiple factorisation
of T . Therefore using [1, Table V] we obtain thatT , K1, K2, K3, and the degree
|�| = |T : K1 ∩ K2 ∩ K3| of G are as in Table4.

The proof of Theorem1.1is now easy, as Theorem6.1implies that CSym�.T/ = 1,
and so NSym� .T/ is an almost simple group with socleT. For the proof of Theorem1.2,
notice thatW is the full stabiliser of a Cartesian decompositionE of �. As G 6 W,
the Cartesian decompositionE is alsoG-invariant. Hence Theorem6.1 implies the
required result.
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[10] L. G. Kovács, ‘Wreath decompositions of finite permutation groups’,Bull. Austral. Math. Soc.40
(1989), 255–279.

[11] R. Lidl and H. Niederreiter,Finite fields, 2nd edition (Cambridge University Press, Cambridge,
1997).

[12] M. W. Liebeck, C. E. Praeger and J. Saxl, ‘A classification of the maximal subgroups of the finite
alternating and symmetric groups’,J. Algebra111(1987), 365–383.

arxiv.org/abs/math.GR/0312352


72 Robert W. Baddeley, Cheryl E. Praeger and Csaba Schneider [18]

[13] C. E. Praeger, ‘The inclusion problem for finite primitive permutation groups’,Proc. London Math.
Soc. (3)60 (1990), 68–88.

32 Arbury Road
Cambridge CB4 2JE
UK
e-mail: robert.baddeley@ntlworld.com

School of Mathematics and Statistics
The University of Western Australia

35 Stirling Highway
Crawley 6009 WA

Australia
e-mail: praeger@maths.uwa.edu.au

URL: www.maths.uwa.edu.au/∼praeger

Informatics Laboratory
Computer and Automation Research Institute
The Hungarian Academy of Sciences
1111 Budapest, L´agymányosi u. 11
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