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Abstract

A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product
in product action. All such simple permutation groups are determined in this paper. This remarkable
conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the
permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijectiv
connections between them, are explored in greater generality, with specific future applications in mind.
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1. Introduction

The main result of this paper is that a transitive simple subgroup of a finite symmetric
group is very rarely contained in a full wreath product in product action, so rarely that
all such cases can be explicitly tabulated here. In other words, apart from a short list
of exceptions, a simple subgroup of a finite wreath product in product action can never
be transitive. A brief summary of the product action of wreath products is provided
at the beginning of Sectiah

THEOREM1.1. Let Q be a finite set, leT < W < Symg such thatT is a finite
simple group andV is permutationally isomorphic to a wreath produgymI’ wr S

in product action. Then eith€F is intransitive orT, W, and || are as in Tablel.
Moreover, ifT is transitive, therNgymq (T) is an almost simple group.
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TABLE 1. Transitive simple subgroups of wreath products

L T | W | [o] |
1 As SwrS, 36
2 My, SpwrS, 144
(dZ 4) 6( 4 1)2
3 P (9) S2ea@-o WS | /: (1 34 _1
4|Sp(Q), q>4,qeven| Spg WS g*(g? — 1)?

This classification is reached after observing that, in Thedreimthe set® can
be identified with the Cartesian product such that the action dfV is compatible
with this identification. In order to make this idea precise, we introduce the concept
of a ‘Cartesian decomposition’ of a set, and we also notice\WWhaan be viewed as
the full stabiliser in Synf2 of a Cartesian decomposition &f Hence we reduce the
problem of classifying the pairs, W in Theoreml.1to the problem of classifying
all Cartesian decompositions of finite sets that are invariant under the action of a
transitive, simple group of permutations.

LetT be afinite simple group acting on a $&t In the classification of -invariant
Cartesian decompositions 6f we use ideas that are familiar from the elementary
theory of permutation groups. Namely, we investigate how the subgroup lattice of
T might reflect the existence of &-invariant Cartesian decomposition &f In
Definition 1.3 we define the concept of a ‘Cartesian system of subgroups’, and in
Theoreml.4we establish a one-to-one correspondence between theBahedriant
Cartesian decompositions @fand the set of Cartesian systems with respect to a fixed
element ofQ2.

The concepts of Cartesian decompositions and Cartesian systems, and the bijectiv
connections between them, are explored in greater generality in Se2t#énOur
motivation in doing so is to provide with a theoretical background for a future inves-
tigation of Cartesian decompositions that are invariant under a transitive permutation
group.

Some of the concepts we use may be new to most of our readers. We define
a permutation group to bmnately transitiveif it has a transitive minimal normal
subgroup, and a transitive minimal normal subgroup of an innately transitive group is
referred to as glinth. Most of the results of this paper are expressed in the context of
innately transitive groups. The structure of innately transitive groups is investigated
in [4]. The problem of finding innately transitive subgroups of wreath products in
product action is studied more extensively §).[ Theoreml.1is equivalent to the
following result, which is formulated in terms of innately transitive groups. Here,
a permutation group isjuasiprimitiveif all of its minimal normal subgroups are
transitive.
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THEOREM1.2. LetQ be afinite set, leB < W < Sym& such thaiG is an innately
transitive group with a simple plintfi, and W is permutationally isomorphic to a
wreath productSymI" wr § in product action. Theff andW are as in Tablel, and
G is an almost simple quasiprimitive group.

Theoremsl.1and 1.2 are easy consequences of Theofkfas explained at the
end of Sectior®.

A Cartesian decompositiasf a finite sef2 is a collections” of partitionsl™y, ... , T}
of Q@ such thatjy, N ---Ny| = 1L forally; € I',...,y € I. A Cartesian
decomposition is said to Hemogeneoui$ its elements have the same size and this
common size is at least 2. The number of partitions in a Cartesian decomposition is
called theindex A Cartesian decomposition is said to ben-trivial if it has index
at least 2. In this paper, Cartesian decompositions are assumed to be non-trivial
unless itis explicitly stated otherwise.dfis a Cartesian decomposition Qf then$
can be identified with the Cartesian prodi§t_, I'. More information on Cartesian
decompositions is provided ii (], where a Cartesian decompositiénstabilised by
a permutation groufs such that the elements &fform a singleG-orbit is said to be
a system of product imprimitivity fo66. A maximal subgroupV of Sym or Alt @
is said to beof product action typeor simply PA type if W is the full stabiliser of a
non-trivial, homogeneous Cartesian decompositio®oflf a permutation groujs
is contained in such ¥/, then we also say th&¥ is amaximal overgroup oG with
product action typeor simply PA type

Itis, in general, a difficult problem to describe maximal overgroups with PA type of
a transitive permutation group. In the case wherigself is primitive, this question is
answered by13], but [2] leaves this problem open for a quasiprimiti@e Clearly our
Theoreml.2 gives a full classification of the maximal overgroups of product action
type for an innately transitive permutation groGwith a simple plinth. This is
achieved by listing all non-trivial, homogeneous Cartesian decompositions stabilised
by G. We found that such decompositions can be identified by information about the
subgroups of the plinth. This motivates the following definition.

DerINITION 1.3. Let M be a transitive permutation group on a Seandw € €.
We say thata s€Ky, ... , K,} of subgroups oM is aCartesian system of subgroups
of M with respect taw if

1) ﬂ K, =M, and

2) Ki <mKJ)=M forall ie{1,...,1}.

j#

A Cartesian system is said to bemogeneous its elements are proper subgroups
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and they have the same size. A Cartesian systemornstrivial if it has at least two
subgroups. IfM is an abstract group and” = {K, ... , K,} is a set of subgroups
satisfying @), then_#" is called a Cartesian system Igf.

In this paper Cartesian systems are assumed to be non-trivial unless explicitly statec
otherwise.

For a permutation grou@ < Symg, let CD(G) denote the set o&-invariant
Cartesian decompositions ©f. Cartesian systems provide a way of identifying the
set CO(G) from information internal tdG.

THEOREM1.4. Let G be an innately transitive permutation group @& with
plinth M. Then, for a fixed € 2, there is a one-to-one correspondence between the
setCD(G) and the set 06, -invariant Cartesian systems df with respect ta.

Theoreml.4is an immediate consequence of Theore@where an explicit one-
to-one correspondence is constructed.

The major results of this paper are presented in Seétidrhere we study innately
transitive permutation groups with a non-abelian, simple plinth that preserve a Carte-
sian decomposition of the underlying set. The main result of Seétgives rise to a
complete description of maximal overgroups with product action type for such an in-
nately transitive group. Theorerisl-1.2 follow immediately from Theorerf.1 (i),
where we give a detailed description Gfinvariant homogeneous Cartesian decom-
positions of for innately transitive group& with a simple plinthT. In particular,
Table3 contains the possibilities fd@s, T, W, |2|, and the isomorphism types of the
subgroups in the associated Cartesian system, as given by ThéateRart (ii) of
Theorem6.1 gives a detailed description of Cartesian decompositidraf Q with
index at least 3 that are invariant under the action of an innately transitive group
with a non-abelian, simple plinth. In Tabfe we list the possibilities for the plinth,
|©2], the full stabiliser of8” in Symg, and the isomorphism types of the elements in
the corresponding Cartesian system. In the case wBaseprimitive, Theoren®t.1
reduces to I3, Proposition 6.1 (ii)]. Problems similar to ours were also addressed
in [5].

Our notation concerning actions and permutation groups is standai@. idfa
group acting orf2 andA is a subset of2, thenG, andG,, denote the setwise and
the pointwise stabilisers af, respectively. 1{G, = G thenG* denotes the subgroup
of SymA induced byG. If w € , thenw® denotes th&-orbit {«? | g € G}.

2. Cartesian decompositions

LetT be a finite set with at least two elements< SymrI', | > 2 an integer, and
H < S. Thewreath productL wr H is the semidirect produdt' x H, where, for
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(X,...,%) € L'ando € S, (X1, ... ., %)° = (X, ..., %-). The product action
of L wr H is the action ofL wr H onT" defined by

(Vl, cee y|)(X1W”XI) = (le1’ L yIXI) and (yl’ s N )071 = (yl”’ cee VI")
forall (y1,...,y) eI'',andxy, ... ,x € L ando € H. The important properties of

wreath products can be found in most textbooks on permutation group theory, see for
instance Dixon and Mortimef].

The full stabiliserw in Sym of a homogeneous Cartesian decompositfoaf
Q is isomorphic to Syni" wr § acting in product action oft' for I' € &. Moreover,
if |T'] > 3 thenW is primitive on®2, and if |T'| > 5 thenW is a maximal subgroup
of SymQ or Alt 2. As mentioned in Sectioh, such maximal subgroups are usually
referred to asnaximal subgroups of product action typ€hey form one of several
classes of primitive maximal subgroups of Sgnand Alt$2, identified by the O’Nan—
Scott Theorem; seé P]. Thus an important part of classifying the primitive maximal
subgroups of Sy or Alt @ containing a given (innately transitive) subgro@ps
finding all homogeneous Cartesian decompositior 3 tifat are stabilised b§. Our
first result is that the plinth must leave invariant eachtipian in such a Cartesian
decomposition.

ProPOSITION2.1. If G is an innately transitive group on a s@twith plinth M and

ProOOF. We letT" € & and show that each element of t@eorbit I'® is stabilised
by M. Suppose thafls, ... , [y} is theG-orbit in & containingl’ € &. Set

=N NyYnlrel, ..., ¥m€lm}
and

Ii={oeX|oCy)|yeli} for i=1...,m
Then itis a routine calculation to check tfis aG-invariant partition of2, and that
(T, ..., ) is aG-invariant Cartesian decomposition Bf Moreover,|Ij| = |T}|
foralli,andsincé™y, ... , I',formaG-orbit, |T'j| = |I";| for alli andj. Itis also easy

to see thatij € G, theng € G,,. SinceGz, . r,, is a normal subgroup @ and
M is a minimal normal subgroup @, eitherM < G, ), or MNGy, .y = 1.
Suppose thaM N G, 5, = 1, SOM acts on the setls, ..., Ty} faithfully.
ThereforeM is isomorphic to a subgroup of,SNote thatj=| = |I"y|™, and letp be
a prime dividing|T"y|. Thenp™ divides|X|. SinceM is transitive onx, p™ | [M|.
However, M is isomorphic to a subgroup of,Sand sop™ dividesm!, which is a
contradiction to 13, Lemma 4.2]. Henc# < G, r.,, thatis, eaclt; is stabilised
by M, and so is each;. ThusM stabilisesI’, and, sincd” was chosen arbitrarily,
this shows that every elementéfis stabilised byM. O
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LEMMA 2.2. Let M be a transitive subgroup @ym< and leté& € CD(M) such
that M, = M. Suppose thad” = {T';,... , I}, letw € Q be a fixed element, and
fori =1,... .1 lety, € T} be such thatv € y;. Set’”, (&) = {K4, ..., K} where
Ki=M, fori =1,...,1. Then’#,(&) is a Cartesian system of subgroups\f
with respect tan. Moreover, ifo™ = ' for somem € M, then7,, (&) = ¢, (&)™.

PROOF. Let us prove thaﬂ::l Ki = M,,. Since thel'; are M-invariant partitions
of , the stabiliser of a point stabilises the blocKinthat contains this point. Hence
M, < K for all i, and soM,, < (), Ki. Now suppose that € (. K;. Thenx
stabilisesyy, ... , y1. Sinced is a Cartesian decomposition, N --- Ny = {w}, and
sox stabilisesv. Thusx € M,,, and sq"), Ki = M,,.

Now we prove thatZ) also holds. We may suppose without loss of generality
thati = 1. Letx € M, 8; = ¢S, ....8 = ¥ and{&} = 8, N---N§. |f
{¢} =8:Ny.N---Ny then the transitivity oM on © implies that there existse M
with £ = ¢ and so8; = 81,85 = y», . .. ,8|Z=y|,whenceyj“= yiforj=2...,1
andy;>" = yy, thatisxz e (;_, K; andxzx* € K. It follows that

|
X = (xzxHt(xzxx) € K, <ﬂ KJ-) ,
j=2
and we deduce that the first factorisation ®f lfolds. The other factorisations can be
proved identically. Thus?,, (&) is a Cartesian system & with respect ta.
If me M ando’ = o™ then{w'} = y" N --- N y™ andM,» = M, which proves
that.z,, (&) = (&)™, O

If M < SymQ and& € CD(M) such thatM s, = M, then, for a fixedo € €,
we define the Cartesian syste#i, (&) with respect tav as in Lemma2.2. The last
result of this section establishes one direction of the one-to-one correspondence ir
Theoreml.4.

LEMMA 2.3. Let G be an innately transitive group with plintkl acting on$2, and
letw € Q. If & € CD(G), thenMs, = M. Assume that?, (&) is the Cartesian
system oMM with respect tav. Then.#, (&) is invariant under conjugation b,,,
and theG,-actions on’7, (&) and on&” are equivalent.

PrOOF. It follows from Proposition2.1 that Ms, = M, and so we can use
Lemma2.2 to construct’z, (&) for . Suppose tha# = {I'y,..., I}, and let
H,(&) = {Kyq, ..., K} such thatk; = M, wherey; is the unique element df;
containingw. If I, T} € & andg € G, such thatl? = I'; thenw® = w, and so
¥ = y;. Hence
)P =My =M, =K,

V4 Yi
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and sa7, (&) is invariant under conjugation bg,,. This argument also shows that
the G,-actions ons” and on%7,, (&) are equivalent. O

3. Cartesian systems

In this section we summarise the most important properties of Cartesian systems
of abstract groups. The following lemma is useful when working with Cartesian
systems. IffKy, ..., K} is a Cartesian system for a grolyp and| < {1,...,1}
then letK, denote the subgroug, = "), Ki. We use the convention thatlif= ¢

then),., Ki = M for any collection{K;}; of subgroups irM.
LEmmA 3.1. Let{Ky, ..., K|} be a(possibly trivia) Cartesian system for an ab-
stract groupM, and letl, J be subsets dfl, ..., I}.

(@) If xq,....,x € M, then),_, Kix is a coset moduld .
(b) IM:Ki|=T[ IM:Kj.

(C) K| KJ = KIﬂJ-

PrOOF. If an intersection of (right) cosets is nonempty then it is a (right) coset
modulo the intersection of the relevant subgroups. The statement of (a) above anc
the simple proof below make use of this fact. We prove the lemma by induction on
I. Notice that there is nothing to provelif= 1. Our inductive hypothesis is that
| > 1 and the lemma holds for all Cartesian systemsMowhich consist of fewer
thanl subgroups. Thus (a) and (b) only have to be proved for thelcasél, ..., I}.

PutL = (N),_, Ki, and note thatK,, L} is also a Cartesian system fbt (that is,
KiL = M).

We also know from the inductive hypothesis tfiat , K;x; is a coset moduld.,
so for (a) it is sufficient to show thdt;x; N Ly is never empty. In order to show this
we choose < L such thatk,z = Kyx;y%; this is possible, a&,L = M. Then
Ki;zy = KX, and sozy € K;Xy, and alsozy € Ly. Hencezy € K;x; N Ly, and
consequentl;x; N Ly is non-empty.

For (b), it is enough to show théM : K| = |[M : Ky||M : L], but this follows
from

IM| = [K.L| = [Kql[LI/IKe L] = [Kql[L]/Ky].
For an easy proof of (c) we first observe that
K Kol = [K K |/TK N Kl

Itis obvious thatk, K; € K;,; and, aK, N K; = K,3, one can calculate from (b)

and the last display tha, K ;| = |K,n;]. This completes the proof of the lemmal]
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Note that, in Lemma&.1 (a), if we choosex to be any element df,_, K;x;, then

Kix; = K;x holds, foralli € I.

iel

4. Cartesian systems and Cartesian decompositions

In a transitive grougM < Symg&, a subgrouK satisfyingM, < K < M for
somew € 2 determines aM -invariant partition ok2 comprising theM -translates of
the K -orbit wX.

LEmMMA 4.1. LetG be an innately transitive group an with plinth M, and letw be
a fixed element 2. Suppose that? = {K,, ... , K} is a G,-invariant Cartesian
system of subgroups & with respect tav, and letl'y, ... , I} be theM-invariant
partitions of Q@ determined byK4, ... , K, respectively. Thed® = {I'y,... ,[}is
a G-invariant Cartesian decomposition 64, such that’z, (&) = .#. Moreover,
if M is non-abelian and the Cartesian syst¢i, ... , K,} is homogeneous, then
the stabiliserW in Sym< of & is a maximal subgroup dym or Alt € such that
G < W.

ProOF As M, < K; < M, eachTI; is an M-invariant partition ofQ2. For
i =1,...,1 let y; be the unique element df; containingw. In order to prove
thaté is a Cartesian decomposition, we only have to show that

|

ﬂai —1 whenever §,€Tly,....8 €T.

i=1
To see this, choos& € TI'y, ..., 8 € I. Now § = 3 for somex; € M, and by
Lemma3.1(a), there exists somee M suchthaK;x, = Kixfori =1,...,l. Then

§ =y ={o" ke K = {0 | K € Kix}
= {0" | K € Kix} = {0 | k e Ki} = p*.
Thus

and therefore we only have to prove tHem::lyi| = 1. Note thatw € y; for

i =1,...,1. Suppose that’ € y; N... Ny for somew’ € Q2. Then there is some
X € M such thatv* = «'. Thenx must stabilise, ... , 1, and hence € K; for all

i =1,...,1. SinceN_,K; = M,, it follows thatx € M,, and sow* = w. Thus
N _, 7 = {»}, and& is a Cartesian decomposition.
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Since eacH; is an M-invariant partition ofQ2, & is invariant undeM. Since
{Ki, ..., K} is G,-invariant, & is alsoG,-invariant, and saf is MG,-invariant.
SinceM is transitive MG, = G. Therefores” is G-invariant. Note that

A ={M,,....M,} and K, (&) ={M,.....M,}.

Thus? = .7,(£), as required.
SinceM is non-abelianM is a direct product of isomorphic non-abelian, simple

groups. Hence for=1,...,I, the groupM' is also isomorphic to a direct product
of non-abelian simple groups. Moreovt," is transitive and faithful oi;, and so
ITi| > 5foralli. As{Ky,..., K} is homogeneous is also homogeneous aid

is permutationally isomorphic to Syfmwr S in product action for some sét and
| > 2. Hence the results oflP] show thatW is a maximal subgroup of Sy if
W £ Alt @, andW is a maximal subgroup of A2 otherwise. Sincé&’ is G-invariant,
clearlyG < W. O

THEOREM4.2. Let G be an innately transitive group oft with plinth M. For a
fixedw € Q the maps — 7, (&) is a bijection between the s€D(G) and the set
of G,-invariant Cartesian systems of subgroupsvbfvith respect taw.

PROOF. Let% denote the set db,, -invariant Cartesian systems of subgroup#/of
with respect tan. In Lemmaz2.2, we explicitly constructed a map : CD(G) — %
for which W(&) = #,(&). We claim thatV is a bijection. Let’# e %, let
Iy, ..., I be theM-invariant partitions determined by the elemeHNts... , K, of
2, and let& = {I'y,...,I}. We proved in Lemmat.1 that& is a G-invariant
Cartesian decomposition 6f such that#, (&) = 2. HenceW is surjective.

Suppose now thaf;, £, € CD(G) is such that (&) = ¥ (&>) and let#” denote
this common Cartesian system. l&&be the set oM -invariant partitions determined
by the elements of#”. Then, by the definition o (&) in Lemma2.2, §; = & and
&, = &. ThusW is injective, and sab is a bijection. O

Theoreml.4is an immediate consequence of the previous result.

5. Some factorisations of finite simple groups

To prove Theoreni.1we need first to prove some results about factorisations of
certain finite simple groups. & is a group andA, B < G such thalG = AB, then
we say that the expressi@= AB orthe sef A, B} is afactorisationof G. In[1] full
factorisations of almost simple groups were classified up to the following equivalence
relation. The factorisation& = A;B; andG = A,B, of a groupG are said to be
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equivalentf there arex € Aut(G), andx, y € G such thafA;, B;} = {A%, By’}.
The following lemma shows that this equivalence relation can be expressed in a simplel
way.

LEmMMA 5.1. LetG be a group.

(i) If G = ABforsomeA, B < G, thenthe conjugation action &is transitive
on the conjugacy clasB®, and B is transitive onAC.

(i) The factorisationss = A;B; andG = A,B, of G are equivalent if and only
if there isg € Aut(G) such that{ A;, B,} = {A}, BS}.

PrOOF. (i) As AB = G, we also haveANg (B) = G. Since N; (B) is a point
stabiliser for the conjugation action Gfon the conjugacy clasB®, we obtain thatA
is a transitive subgroup @ with respect to this action. Similar argument shows that
B is transitive by conjugation oA°.

(ii) Itis clear thatif there i$8 € Aut(G) suchthafA,, By} = {As, BS} then the two
factorisations in the lemma are equivalent. SupposeGhat A;B; andG = A;B,
are equivalent factorisations. By assumption, there is Aut(G) andx, y € G
such thaf{A;, B;} = {A2%, By”}. Then we haveA = (A2)¢ andBS = (B%)®, or
A? = (B)® andBf = (A%)®. Suppose without loss of generality thaf = (A3)°
and B = (B%)®. SinceA; and A are conjugate, there is songee G such that
A} = A2, andB{ is conjugate taBy. As G = (A B,)Y = AB7, we have thatA
is transitive by conjugation ofB;)¢ = BE. Hence there is some € A? such that
A% = AY = A2, andB% = Bg. HenceA, = A 9 andB, = BY® ¢ . Thus we
may takes asa followed by the inner automorphism correspondingtég=. O

If G is agroup andA andB are subgroups then let
Ne ({A, B}) ={g € G | {A%, B9} = {A B}}.

In the proof of the following result we use the following simple fact, called Dedekind’s
modular law. IfK, L, H are subgroups of a group such thaik < L, then

(3) (HK)NL = (HNL)K.

LEMMA 5.2. LetT be a finite simple group and, B proper subgroups of such
that|Al = |B|andT = AB. Then the following hold.

(i) Theisomorphism types®f A, andB are as in Tabl&, and A, B are maximal
subgroups of.
(i) There is an automorphisth € Aut(T) such that? interchangesA and B.
(i) The groupA N B is self-normalising inT .
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TABLE 2. Factorisations of finite simple groups in Lemma

T A B
1 As As
2 M3, M
3 PQg () Q:(q)
4|Sp(q). q > 4even Sp(g?).2

(iv) If Tisasinrowl, 2, or4 of Table2, then
Nautry (AN B) = Naywery (A, B}) = N,

say, and moreovefr N = Aut(T).

PrOOF. (i) Note that, since A| = |B|, the factorisatiom = AB s a full factori-
sation ofT, that is, the sets of primes dividind |, | A|, and|B| are the same. It was
proved in L], that T, A, andB are as in {, Table I]. It is easy to see that the only
possibilities wheréA| = |B| are those in Tablg, and it follows that in these casés
andB are maximal subgroups @f.

(ii) In each line of Table?, the groupsA and B are not conjugate, but there is
an outer automorphism € Aut(T) which swaps the conjugacy class&sandB'
(see the Atlas€] for T = Ag, My, [9] for T = PQ{(q), and [L, page 155] for
T = Sp,(q)). By Lemmab5.1 (i), the groupA is transitive in its conjugation action
on the conjugacy clas8™ andB is transitive onAT. Thus there is an elemeatc A
such thatA”@ = B andB’? is conjugate ifl to A. SinceB is transitive onAT, there
is an elemenb e B such thatA’@* = B andB“2 = A. Therefore we can take as
o followed by the inner automorphism induced by the elenadmt

(i) Set C = AN B. First we prove thaC is self-normalising inT. If T is
isomorphic to A or My, then the information given in the Atlag][shows that ifN
is a proper subgroup &f properly containingC, thenN is isomorphic toA or B. In
all casesA andB are simple, and soNC) = C. If T = PQ{(q) then we obtain
from [9, 3.1.1 (vi)] thatC = G,(q) and P, 3.1.1 (iii)] yields that N (C) = C.

Now letT = Sp,(q) forq > 4,q even. Inthis cas& = B = Sp,(q?) - 2. Consider
the fieldslF, andFy. as subfields of the fiel;: and consider the field,: as a 4-
dimensional vector spadéoverFq. LetNg  r, : Fgs = Fqe @and Tk, ¢, : Fqz — [y
denote the norm and the trace map, respectively. For the basic properties of thes
maps seel[l, 2.3]. Using the fact thati , ¢, (X) = x@+1for all x € Fqe, We obtain
thatx — NE /5,2 (X) is anfFg-quadratic form orV, such that

(X, ¥) = Nepe (X +Y) 4+ Ner, (X) 4 Ne e, (Y)
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is a non-degenerate, symmetrig-bilinear form with Witt defect 1 (weecall that
q is a 2-power). Henc® = Try, 5, oNr 5, is anFq-quadratic formV. — Fq, and
f(X,y) = Q(x+y)+ Q(x)+ Q(y) is a non-degenerate, symmetFichilinear form
onV with Witt defect 1. Then without loss of generality we may assumeThatthe
stabiliser of f in GL4(q), A consists of elements df that aref.-semilinear, and
is the stabiliser of.

Fora e V\ {0} = [Fj;“ define the mas, : x — xa. Then it is well-known that
S={s. | a € [} is acyclic subgroup of Gi(q). A generator ofSis called a Singer
cycle; see Satz 11.7.3 in Huppef[ Let Z denote the subgroujs, | N, r,(2) = 1}
of S. Since the restriction o‘N[FW[qu to [F;;4 is an epimorphismkl[w[qu : [F;;4 — [Fj;z,
and Z is the kernel of this epimorphism, we have that = > + 1. If o is the
Frobenius automorphismi— x9 of F4 then(s,)” = s, for all s, € S. Thereforer
normalisesS, and, sinceSis cyclic,o also normaliseZ. We claim thatC = Z (o).
SinceT = AB, |C| = 4(¢g? + 1), and hence it suffices to prove thato) < C. Itis
clear thar is F-semilinear, and so € A. Also

Qo () = QUK = Tri s, (Noyrre X0 ) = Tri e, (N, 00°)
=Tre . (Nog e 00) = Q0.

Thereforeo € B, and s € C. Leta € Fq such thatNg, ¢, (@) = 1. Then

Q(8.00) = QUX@) = Try_ s, (Nyu/r,0 (X))
=Ty (Nog e OONe e @) = Tre sy (N (0) = Q00

Thuss, € B. Sinces, is alsoF-linear, we obtairs, € C. HenceC = Z (o).

We will now prove tha€ is self-normalising ifT . First notice thatj>+1 is divisible
by an odd prime such that 1 (g — 1). Hence there is a unique subgroRgn Z
with orderr. SinceZ is the commutator subgroup ©f, it is a characteristic subgroup
of C. Also Ris the unique subgroup & with orderr, and soR is characteristic in
Z. ThusR is characteristic irC and N; (C) must normaliseR. By [8, Satz 11.7.3],
NeL.q (R) = SC= S(o).

Let us now determine how much &(o) is contained inT. Since TE .k, is
additive,

O, y9) = T e, (Noyrr O ¥ 4+ Neg s O + Nes ()
q
= Tr[qu/[Fq ((N[Fq4/[qu (X +Y) + Ner, (X) + Np e, (Y)) ) = f(X,y),

and hence the cyclic subgroup) isin T. Using @), we havg S(o))NT = (SNT)(o).
Thus we need to compu@N T. If x € [, such thatf (xa, xb) = f(a, b) for all
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a, be V then
4) Tr[qu/[Fq (N[Fq4/[qu (@a+b) + N[Fq4/[qu (@ + N[Fq4/[qu (b))
= Tr[qu/[Fq (N[Fq4/[qu (xa+ xb) + N2 (X&) + N r, (X b))
= Tr[qu/[Fq (N[Fq4/[qu (X) (N[Fq4/[qu (a+b)+ N[Fq4/[qu (@ + N[Fq4/[qu (b))) .
As observed above,
(U, v) — N[Fq4/[qu u+v) + N[Fq4/[qu () + N[Fq4/[qu(U)

is a non-degenerate, symmetrig,-bilinear form, and so it map¥ x V onto Fg.
Hence {) shows thay = N, s, (X) has the property that It ¢, (YU) = T, ¢, (U)
forallu e Fg, thatis,yu+yiu? = u+u9, forallu € Fg. Thus(yu+u)? = yu+u.
Henceu(y + 1) € F, for all u € Fg, and consequently = 1. Thus if the map
s« preservesf thenNg,/5,(X) = 1. On the other hand from) it is clear that if
Nr4/r,(X) = 1 then multiplication byx preservesf. Since the norm is a group
epimorphismNg , r, : Fze — [, it follows that the elements of norm 1 form a cyclic
group of ordem? + 1. HenceSNT = Z and Ny, (C) N T = C, thatis,C is
self-normalising inT .

(iv) Finally we assume thar is as in row 1, 2, or 4 of Tabl&, and we prove the
assertion thalN; = N, whereN; = Nayr) (C) andN, = Nayery ({A, B}). Itis clear
that N, < N, and so we only have to proy&;| < |N,|. Since A andB are not
conjugate inT, we have that\, N T = Nt (A) NNy (B) = An B = C, and, since
C is self-normalising inl, we also haveN; N T = C. Thus it suffices to prove that
TN; < TN,, which follows immediately once we show thatN, = Aut(T). Since
N, interchangesA and B, we have thatN, = (Naur) (A) N Nawr) (B)) () where
v € Aut(T) is as in (ii). If T = Ag then|Nayr) (A) : Nt (A)| = [Naw) (B) :
Nt (B)| =2, and sal N, = Aut(T) (see B]). If T = My, then Nyt (A) = Nt (A)
and Nat) (B) = Nt (B), and soT N, = Aut(T) (see B]). If T = Sp,(q) then the
field automorphism grou@® normalisesA andB. If 9 € Aut(T) is as in (i), then
Aut(T) = T® (¢), and so we obtain thatN, = Aut(T). HenceifT isasinrow 1, 2,
or 4 of Table2, thenT N, = Aut(T), andT N; < TN, clearly holds. Thus\; = N,
follows. O

We recall a couple of facts about automorphisms @f Ry). Let T = PQg (q).
Then, as shown in9 pp. 181-182], AufT) = © x &, where® is the group
of field automorphisms of , and® is a certain subgroup of A(T) containing the
commutator subgroup A(E)'. We also have O@T) = Aut(T)/T =@/T xdT/T,
and®/T = S, wherem = 3 for eveng, andm = 4 for oddq. Letzr : ® — S,
denote the natural epimorphism. The following lemma derives the information about
PQg (q) similar to that in Lemmd.2 (iv).
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LEMMA 5.3. LetT = PQ; (q), let A, B be subgroups of such thatA, B = Q,(q)
and AB =T, and selC = AN B. Then the following hold.

(i) We haved < Nayyr) (A) N Nayr) (B).
(i) The groupsNau) (A) NO)T/T and(Nay) (B)NO)T /T are conjugate to
the subgroup in columK of [9, Results Matrix] so that

7T (Nauer) (A) N O) = 7 (Nawr (B) N ©) = Z;, x Z,.

(i) We have® < Nayr) (C) and (Nawr (C) N ®)T/T is conjugate to the
subgroup in columivIl of [9, Results Matrix] so thatr (Nay ) (C) N ®) = S; and

(5) |NAut(T) (C) : Naur) {A, B})| =3

(iv) We havel Nayr) ({A, B}) = T ®(9), wherev is asin Lemm&.2 (i), so that
7T (Nawm (A, BH NO)/T = 7Z,.

ProoF. Claims (i)—(ii) can easily be verified by inspection 8f Results Matrix].
In (iii) we only need to prove ). Let N; = Nayyr) (C) andN, = Nayr) ({A, B}).
Clearly N, < Nj. By [9, Proposition 3.1.1 (vi)]C = G(q), and P, Proposi-
tion 3.1.1 (iii)] shows thatr(N; N ®) = S;. From ]9, Results Matrix] we obtain
(N, N ®) = 7Z,. As in the proof of Lemm&.2, we haveN;N'T = N,NT =C. As
T = kerx thisimpliesN; Nkerr = N,Nkersw, and sdN;N®| = 3-|N,NO|. Since
® < Ny N N, we haveN;® = N,® = Aut(T), and so[N;| = 3 [N,|, as required.
In (iv) we notice thatl ®() < TNawr) ({A, B}). On the other hand, (iii) implies
that| T® ()| = |TNawr) ({A, B}) |, hence equality follows. O

6. Innately transitive groups with a non-abelian, simple plinth

In this section we prove our second main theorem, namely Thebrgmhich is
a consequence of the following result.

THEOREM6.1. LetG be an innately transitive permutation group @rwith a non-
abelian, simple plintiT, letw € @, & € CD(G), and letW be the stabiliser of in
SymQ. Then|&| < 3 and the following hold.

(i) Suppose tha#” is homogeneous. The#| = 2, W is a maximal subgroup of
SymQ or Alt Q, andG, T, W, the subgroupX € .7, (&), and|2] are as in Tables.
In particular, the set¥,, (&) contains two isomorphic subgroups. Moreover, the group
G is quasiprimitive andr is the unique minimal normal subgroup Gf Moreover
exactly one of the following holds

(@) ICDG)| =1;
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TABLE 3. Homogeneous Cartesian decompositions preserved by almost simple groups

Ll G [ T ] w [ K| [] |
2 M1, < G g Aut(My) M1, SowrS, M1 144

PQg (0) < G < P (@)@ ()

2
3 ®: field automorphisms PRy () Sg’/quf’ﬁ)zwl% Q7(q) (dz) q°(q* — 1)2
¥ is as in Lemmd.2 (ii) =&q
S
4l sp@ <c<ausp@) |(SAD 1 sieaws, [Spd2) gl -1
=

TABLE 4. Cartesian decompositions with index 3 preserved by almost simple groups

LT | w | Ho(&) | ]
Shy X Sy X S,
SPa(?) | N1 =[Spa(2) : Spa(® - 2|
az2 | N2=I[Sp,(2) : 02

N3 = [SP,a(2) : O (2)]

2 PSZ:{((S) S.LOBO X 81120 X 823431 97(3), Zg X PS'.4(3), PQ;(Z) 34, 39Q 137, 600

SF&a(4) -2, O;a(Z), OIa(Z) Ny -Ny-N3

Siz0 % Sza X Sas G:2. 0,. 0,2 120, 960
3| sr@ Sea0 X Sza x Sas G2/, 052, 02 241, 920
Siz0 % Sse X Sas G2, 05, O;( 241, 920
Siz0 X S8 X Sz G2, 052, OF (2 241, 920

(b) |ICD(G)| = 3, T is as in row3 of Table3, G < T® where® is the group of
field automorphisms oF .

(i) Suppose thats’| = 3. If W is the stabiliser inSym of £, thenT, W, the
elements of7,, (&), and|Q2| are as in Tablel.

PrROOF. Suppose thag € CD(G). Then Propositior2.1 implies thatTs, =
T. Letl be the index off’, and let7, (&) = {K4,..., K/} be the corresponding
Cartesian system fof. Then the definition of’7, (£) implies that ifl > 3 then
{Ky4, ..., K} is a strong multiple factorisation of the finite simple grolip Strong
multiple factorisations of finite simple groups are defined and classified]irin
particular it is proved thdt < 3.

(@) IfI = 3 then [L, Table V] shows thaK, K,, K5 have different sizes. Thus if
& is homogeneous thdn= 2 and the factorisatiolm = KK, is as in Lemma.2
HenceT, K;, K,, and|2| are as in Tabl&. The maximality of W follows from
Lemma4.1

Let us now prove thaG is quasiprimitive. AsT is transitive onQ2, we have
Csyma(T) =N+ (T,) /T,; see [, Theorem 4.2A]. On the other hanfl, = K; N K5,
and Lemméb.2 shows that N (K; N K;) = Ky N K, = T,. Hence Gyna(T) = 1,
and soT is the unique minimal normal subgroup®f HenceG is an almost simple
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guasiprimitive group acting of2.

Now we prove that the information given in ti&column of Table3 is correct.
SinceT is the unique minimal normal subgroup Gf we have that is an almost
simple group andl < G < Aut(T). Let N = Ny ({Ki, K2}). Note that
G =TG, andG, < N. On the other hand\ has the property that, sindeand B
are not conjugate ift,

T NN =N (Ky) NNy (Ky) =K NKy =T,

and so theT-action onQ2 can be extended t& N with point stabiliserN. Thus
G < TN. By Lemmas5.2(iv) and5.3 (iv), for T = Ag, Mo, PQg (q), and Sp(q),
we haveT N = PI'L,(9), Aut(M;,), PQg ()@ () (whered is the group of field
automorphisms and is as in Lemméab.2 (ii)), and Aut(Sp,(q)), respectively. Hence
the assertion follows.

Finally we prove the claim concernin€D(G)|. Suppose that,, L, < T is
such thaL,| = |L,|, L;L, = T andL; N L, = T,. By [1], the full factorisation
T = K;K; is unique up to equivalence, Lemnial (ii) shows that there is an
elemente € Aut(T) such that{K,, K,}* = {Ly, L}, and soax € Npyr) (T,) =
Naur) (K1 N Ky). Lemmab.2 (iii) implies that if T is as in row 1, 2, or 4 of Tabl8
then Nayr) ({K1, K2}) = Nawer) (To,) @and so[Ly, Lo} = {Ky, Ko} = {Ky, Kz} Thus
|CD(G)| = 1 in these cases, as asserted.

Suppose now thak = PQ; (q) for someq. Then we obtain from Lemm& 3 (jii)
that |[Nawr (T.)  Nawer (K1, K2}) | = 3, and so the Ny (T,)-orbit containing
{K1, K} has 3 elements, which gives rise to 3 different choices of Cartesian systems
with respect taw. Let &3, &5, andé; denote the corresponding Cartesian decompo-
sitions of 2, such thats" = &;. We computed above thats(ro(T) = 1, and this
implies that Nyme (T) = Aut(T) N Sym<. In other wordsN = Ngymq (T) is the
largest subgroup of A@T) that extends th@ -action on2. SinceT is a transitive
subgroup ofN, we haveN = TN,. AsT, is a normal subgroup df,,, it follows that
N < TNauT) (T,). On the other hand,

|TNAut(T) (T,) : NAut(T) (TH=IT:TnN NAut(T) (T =T :Ns(T) | =T :T,l,

by Lemmab.2(iii). This shows thatthd& -action orQ2 can be extended N ayr) (T,,)
with point stabiliser Nyt (T,). In other wordsT Ny (T,,) is the largest subgroup
of Aut(T) that extends thd& -action on2. The stabiliser o#? in TNay) (T,,) IS
TNauw (K1, K2}). Hence ifG < Aut(T) is such thaiT < G andG leaves the
Cartesian decompositiofi invariant, thenG < TNayr ({Ki, Ka}) = T®(9), by
Lemmab.3(iii). If CD (G) # {&} then,G leavessy, 45, andé&; invariant. Therefore
G lies in the kernel of the action GfNay ) (T,) On{é1, &3, &3}. HenceG < T, as
required.
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(b) Suppose thatg’| = 3. Then{K, K,, K3} is a strong multiple factorisation
of T. Therefore usingl, Table V] we obtain tha®, K;, K,, Ks, and the degree
Q2] =T : Kin K, N Ks| of G are as in Tabld. O

The proof of Theorem.1is now easy, as Theorednlimplies that Gyme(T) = 1,
and so Nymq (T) is an almost simple group with socle For the proof of Theorerh.2,
notice thatw is the full stabiliser of a Cartesian decompositifrof Q2. AsG < W,
the Cartesian decompositiehis alsoG-invariant. Hence Theoref 1implies the
required result.

7. Acknowledgments

This paper forms part of an Australian Research Council large grant project. We are
grateful to Cai Heng Li for his valuable advice. We also wish to thank the anonymous
referee for his or her many suggestions that much improved our exposition: in partic-
ular for recommending that we draw attention to Theofeiy and for suggesting a
new version of Lemma&.1

References

[1] R.W.Baddeley and C. E. Praeger, ‘On classifying all full factorisations and multiple-factorisations
of the finite almost simple groups), Algebra204(1998), 129-187.
[2] ———, ‘On primitive overgroups of quasiprimitive permutation grougs’Algebra263(2003),
234-344.
[3] R.W.Baddeley, C. E. Praeger and C. Schneider, ‘Innately transitive subgroups of wreath products
in product action’, preprinarxiv.org/abs/math.GR/0312352
[4] J. Bamberg and C. E. Praeger, ‘Finite permutation groups with a transitive minimal normal sub-
group’,Proc. London Math. Sogcto appear.
[5] Barbara Baumeister, ‘Factorizations of primitive permutation groupsAlgebral94 (1997),
631-653.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilsktigs of finite groups
(Oxford University Press, Oxford, 1985).
[7] J.D. Dixon and B. MortimerPermutation groupgSpringer, New York, 1996).
[8] B.Huppert,Endliche Gruppen (Springer, Berlin, 1967).
[9] P. B. Kleidman, ‘The maximal subgroups of the finite 8-dimensional orthogonal gre@3q)
and of their automorphism groupd’, Algebral10(1987), 173-242.
[10] L. G. Kovacs, ‘Wreath decompositions of finite permutation grousl|. Austral. Math. Soc40
(1989), 255-279.
[11] R. Lidl and H. NiederreiterFinite fields 2nd edition (Cambridge University Press, Cambridge,
1997).
[12] M. W. Liebeck, C. E. Praeger and J. Saxl, ‘A classification of the maximal subgroups of the finite
alternating and symmetric groupd’,Algebral11(1987), 365-383.


arxiv.org/abs/math.GR/0312352

72 Robert W. Baddeley, Cheryl E. Praeger and Csaba Schneider [18]

[13] C.E. Praeger, ‘The inclusion problem for finite primitive permutation grolgyst. London Math.
Soc. (3)60(1990), 68—88.

32 Arbury Road School of Mathematics and Statistics
Cambridge CB4 2JE The University of Western Australia
UK 35 Stirling Highway
e-mail: robert.baddeley@ntlworld.com Crawley 6009 WA
Australia

e-mail: praeger@maths.uwa.edu.au
URL: www.maths.uwa.edu.aupraeger

Informatics Laboratory

Computer and Automation Research Institute
The Hungarian Academy of Sciences

1111 Budapest, agynanyosi u. 11

Hungary

e-mail: csaba.schneider@sztaki.hu

URL: www.sztaki.hutschneider


mailto:robert.baddeley@ntlworld.com
mailto:praeger@maths.uwa.edu.au
http://www.maths.uwa.edu.au/~praeger
mailto:csaba.schneider@sztaki.hu
http://www.sztaki.hu/~schneider

