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Abstract

In this paper we show that iff .X/ ∈ Z[X] is a nonzero polynomial, then!.n/| f .n/ holds only on a set
of n of asymptotic density zero, where for a positive integern the number!.n/ counts the number of
distinct prime factors ofn.
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1. Introduction

Let n be a positive integer and let!.n/, �.n/, −.n/, �.n/ and¦.n/ be the classical
arithmetic functions ofn, that is,!.n/, �.n/, and−.n/ count the number of distinct
prime divisors ofn, the total number of prime divisors ofn, and the number of divisors
of n, respectively, while�.n/ and¦.n/ are the Euler function ofn and the sum of
divisors function ofn, respectively. We also letf .X/ ∈ Z[X] to be any nonzero
polynomial with integer coefficients.

In [2], it was shown that the set of positive integersn for which!.n/|n is of density
zero, and it was asked whether the same is true for the set of integersn for which
�.n/|n. This question was answered in a greater generality in [4]. In this paper, we
investigate the density of the sets of positive integersn on which one of the given
‘small’ arithmetic function ofn divide either f .n/, or the value off in some other
arithmetic function ofn.

We have the following result.

THEOREM 1.1. (1) The set of positive integers

{n | f .n/ ≡ 0 .mod!.n//}(1.1)
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is of asymptotic density zero. The same is true for the sets obtained if one replaces
!.n/ in (1.1) by either�.n/ or −.n/.
(2) The set of positive integers

{n | f .−.n// ≡ 0 .mod!.n//}(1.2)

is of asymptotic density zero. The same is true for the set obtained if one replaces
!.n/ in (1.2) by�.n/.
(3) The set of positive integers

{n | �.n/ ≡ 0 .mod!.n//}(1.3)

is of asymptotic density one. The same is true for the other five sets obtained from
(1.3) by independently replacing�.n/ by¦.n/, and!.n/ by either�.n/ or −.n/.
(4) The set of positive integers

{n | f .�.n// ≡ 0 .mod!.n//}(1.4)

has an asymptotic density for every polynomialf .X/ ∈ Z[X]. This density is zero
unless f has nonnegative integer roots, in which case it is positive. Similarly, the set
obtained if one interchanges�.n/ by!.n/ in (1.4) has an asymptotic density, which
is zero unlessf has integer roots which are either negative or zero, in which case it is
positive.

The densities of the sets appearing at part (4) of Theorem1.1 are computable.
Namely, the density of the set (1.4) is ∑

k≥0;k∈Z
f .k/=0

dk;

wheredk > 0 is the Rényi’s constant (see [11]) given by

dk := lim
x→∞

#{1 ≤ n ≤ x | �.n/ − !.n/ = k}
x

:

Similarly, the density of the set obtained if one interchanges�.n/ by!.n/ in (1.4) is∑
k≤0;k∈Z

f .k/=0

d|k|:

Theorem1.1gives information about the asymptotic densities of the sets of positive
integers{n | f .�.n// ≡ 0 .mod!.n//} and likewise when!.n/ is replaced by either
�.n/ or −.n/, or when�.n/ is replaced by¦.n/. Indeed, from part (3) of Theorem1.1



[3] On f .n/ modulo�.n/ and!.n/ when f is a polynomial 151

we get that the asymptotic density of such sets is zero unlessf .0/ = 0, in which case
the asymptotic density is one. We point out that if one replaces the polynomialf .n/
by thenth Fibonacci numberFn in (1.1), then the statement asserted at part (1) of
Theorem1.1still holds. This has been done in [5], and it is likely that a combination
of the arguments from the method of proof from there with our present arguments
and some results from [7] can yield a similar result whenFn is replaced by any
nondegenerate linearly recurrent sequence of integers.

2. Preliminary results

In this section, we point out a ‘large’ set of integers which is suitable for our
purposes, and then in the next section we verify that every positive integern from our
large set satisfies all the congruences or the incongruences asserted by the theorem.

We denote byC1;C2; : : : positive computable constants which are either absolute or
depend only on the polynomialf . For a positive integerk and positive real numberx,
we denote by logk x the recursively defined function given by log1 x := max{log x;1}
and logk x := max{log.logk−1 x/;1}, where log denotes the natural logarithm function.
Whenk = 1, we simply write log1 x as logx and we thus understand that it is always
≥ 1. We also use the Landau symbolsO ando and the Vinogradov symbols� and�
with their usual meanings. We write³.x/ for the number of prime numbersp ≤ x.
For a positive integern, we useP.n/ andp.n/ to denote the largest prime factor ofn
and the smallest prime factor ofn, respectively.

We setŽ.x/ := log5 x, and we use the notationsp, q, and r to denote prime
numbers. For a positive integern, we write!1.n/ and!3.n/ for the number of distinct
prime factors ofn which are congruent to 1 and 3 modulo 4, respectively. Thus, we
always have!.n/ = !1.n/ + !3.n/ + ", where" = 0 or 1 according to whethern is
odd or even.

We begin with the following claim.

LEMMA 2.1. Let x be a large positive real number and letA.x/ be the set of
all positive integersn in the range

√
x < n < x and which satisfy the following

conditions:

(1) max{|!.n/ − log2 x|; |�.n/− log2 x|} < Ž.x/ log1=2
2 x.

(2) min{!1.n/; !3.n/} > log2.x/=4:
(3) Write

n :=
∏
pap ‖n

pap:(2.1)

Then,maxp|n{ap} < log7 x andap = 1 whenp ≥ log7 x.
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Then the setA.x/ contains all positive integersn < x except foro.x/ of them.

REMARK. Note that ifn ∈ A.x/ then, by condition (3) of Lemma2.1, we have that
the inequality

�.n/ − !.n/ =
∑
ap>1

.ap − 1/ < ³.log7 x/.log7 x − 1/ < log2
7 x < log6 x(2.2)

holds for large values ofx.

PROOF OFLEMMA 2.1. It is obvious that there areb√xc = o.x/ numbersn < x
which are not in the range

√
x < n < x.

(1) Since both estimates∑
1≤n<x

.!.n/ − log2 x/2 = O.x log2 x/(2.3)

and ∑
1≤n<x

.�.n/ − log2 x/2 = O.x log2 x/(2.4)

hold (see [14]), it follows that there are at mostO.x=Ž2.x// = o.x/ positive integers
n < x which fail to satisfy the inequality asserted at part (1) of the lemma.
(2) Let E be any set of prime numbers and forx > 0 write

E.x/ :=
∑
p<x
p∈E

1

p
:(2.5)

For any positive integern, write !.E;n/ for the number of primes dividingn which
belong toE, and let 0< Þ < 1 be any fixed positive real number. Then, a result of
Norton (see [9, 10]), says that ifE.x/ > 0, then the number of positive integersn < x
such that|!.E;n/− E.x/| > ÞE.x/ is at mostC.Þ/x=E.x/1=2, whereC.Þ/ is some
computable number depending onÞ and E. TakeE = Ei := {p | p ≡ i .mod 4/}
with i = 1 or 3, takeÞ := 1=3, and assume thatx > 5. ThenEi .x/ 6= 0 and the
estimate

Ei .x/ =
∑

p≡i .mod 4/

1

p
= log2 x

2
+ O.1/(2.6)

holds for bothi = 1 and 3. And so, if we assume thatn < x fails condition (2) of
the lemma for somei = 1 or 3, then!i .n/ ≤ log2.x/=4 holds for suchn, and with
estimate (2.6) we conclude that!i .n/ < 2E.x/=3 holds for suchn < x and for large
values ofx. Thus, the inequality|!.Ei ;n/− E.x/| > E.x/=3 holds for suchn, and
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by the above result from [9, 10], we know that the number of such positive integers
n < x is

� x

E.x/1=2
� x

log1=2
2 x

= o.x/:

(3) Suppose first that there exists a prime numberp ≥ log7 x such thatp2|n. The
totality of suchn < x is at most

∑
p≥log7 x

x

p
= O

(
x

log7 x log8 x

)
= o.x/:

Assume now thatap ≥ log7 x holds for somep. Since we may assume thatp < log7 x,
it follows that the number of such positive integersn < x is at most

∑
2≤p<log7 x

x

plog7 x
<

x³.log7 x/

2log7 x
<

x log7 x

.log6 x/C1
= o.x/;

where we putC1 := log 2.

LEMMA 2.2. Let x be a large positive real number and letA.x/ be the subset
appearing in Lemma2.1. Let B.x/ be the subset ofn ∈ A.x/ with the following
property.

Write

!.n/ := w1.n/w2.n/; where w1.n/ :=
∏

qbq ‖n
q≤log3 x log5 x

qbq :

Then,w2.n/ > log1=3
2 x is squarefree, coprime ton, and hasp.w2.n// < 2 log1=2

2 x.
Similarly, if one writes

�.n/ := W1.n/W2.n/; where W1.n/ :=
∏

r cr ‖�.n/
r ≤log3 x log5 x

r cr ;

thenW2.n/ > log1=3
2 x is squarefree, coprime ton, and hasp.W2.n// < 2 log1=2

2 x.
Then the setB.x/ contains all positive integersn < x except foro.x/ of them.

PROOF OFLEMMA 2.2. We shall deal only with the statement concerning the func-
tion !.n/ because the statement about�.n/ can be dealt with in an entirely similar
way.

Assume thatn ∈ A.x/ but thatw2.n/ ≤ log1=3
2 x. Then!.n/ = w1.n/w2.n/,

wherew1.n/ < log2 x + Ž.x/ log1=2
2 x < 2 log2 x, andP.w1.n// ≤ log3 x log5 x. We
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estimate the number of valuesw1.n/ can take. Suppose thaty > z > 0 and put
9.y; z/ := #{n ≤ y | P.n/ ≤ z}. We shall show that ifz := 2 log y log3 y, then
9.y; z/ = yo.1/. To see this, we put

Z := log y

log z
log

(
1+ z

log y

)
+ z

log z
log

(
1 + log y

z

)

and then, by [13, Theorem 2 on page 359], we know that the estimate

log .y; z/ = Z

(
1 + O

(
1+ 1

logz
+ 1

log2.2y/

))
(2.7)

holds uniformly iny > z > 0. It is clear that the factor that multipliesZ appearing
on the right-hand side of (2.7) is O.1/, and with our choice forz we have

Z � z

logz
+ log y

log z
� log y log3 y

log2 y
:

And thus, we have

 .y; z/ = exp.O.Z// = exp

(
O

(
log y log3 y

log2 y

))
= yo.1/:

Settingy := 2 log2 x, and noting that log3 x log5 x < 2 log y log3 y = z, we get

 .2 log2 x; log3 x log5 x/ = .2 log2 x/o.1/ = .log2 x/o.1/:(2.8)

In particular, the inequality

 .2 log2 x; log3 x log5 x/ < log1=12
2 x(2.9)

holds for large values ofx. Inequality (2.9) tells us thatw1.n/ can take no more
than log1=12

2 x values. Thus, the total number of values of!.n/ = w1.n/w2.n/
which are smaller than 2 log2 x and for whichw2.n/ ≤ log1=3

2 x holds is at most
.log2 x/1=3+1=12 = log5=12

2 x. However, from [3, page 303], we know that ifj is any
fixed positive integer, then the number of positive integersn < x having!.n/ = j is

� x

log1=2 x
:(2.10)

Since our j can take only log5=12
2 x values, we conclude that the number of positive

integersn < x for whichw2.n/ < log1=3 x is

� x

log1=2 x
log5=12

2 x = x

log1=12
2 x

= o.x/;
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which takes care of the first condition from the lemma.
We next show thatw2.n/ is squarefree for almost alln < x. Assume thatn ∈ A.x/

but w2.n/ is not squarefree. Notice thatp.w2.n// > log3 x log5 x. Pick a prime
numberp > log3 x log5 x and assume thatj := !.n/ is a number which is divisible
by p2. Since!.n/ < 2 log2 x, it follows that p ≤ C2 log1=2

2 x, whereC2 := √
2. But

j is also a number in the interval

I := .log2 x − Ž.x/ log1=2
2 x; log2 x + Ž.x/ log1=2

2 x/(2.11)

whose length is 2Ž.x/ log1=2
2 x, and so the number of such numbersj which can be

multiples of p2 is

≤ 2Ž.x/ log1=2
2 x

p2
+ 1:(2.12)

For every one of these numbersj , the number of positive integersn < x with!.n/ = j
is, by (2.10), � x= log1=2

2 x. Thus, for a fixed prime numberp, the number of positive
integersn ∈ A.x/ and for whichp2|!.n/ is

� xŽ.x/

p2
+ x

log1=2
2 x

:

Summing up the above inequalities over all the prime numbersp in the range
log3 x log5 x < p ≤ C2 log1=2

2 x, we get that the totality of the positive integers
n ∈ A.x/ and for whichw2.n/ is not squarefree is

� xŽ.x/
∑

p>log3 x log5 x

1

p2
+ x³.C2 log1=2

2 x/

log1=2
2 x

:(2.13)

Since

∑
p>log3 x log5 x

1

p2
= O

(
1

log3 x log4 x log5 x

)
;(2.14)

and

³.C2 log1=2
2 x/

log1=2
2 x

= O

(
1

log3 x

)
;

it follows that (2.13) is bounded above by

� xŽ.x/

log3 x log4 x log5 x
+ x

log3 x
= o.x/:
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We now show thatn andw2.n/ are coprime for almost alln < x. Let n ∈ A.x/ and
let p be a prime number dividing bothn andw2.n/. We now have log3 x log5 x < p <
2 log2 x. Fix such a primep. By condition (3) from Lemma2.1, we know thatp ‖ n,
thereforen = pm and!.m/ = !.n/ − 1. Fix also j such that!.n/ = pj . Then
m < x=p and!.m/ = pj − 1 is fixed. The number of such numbersm is, by (2.9),

� x

p

1

log1=2
2 .x=p/

� x

p log1=2 x
;

where the last inequality above follows from the fact that the inequalitiesp <

2 log2 x < x1=2 hold for largex. Moreover, sincepj is a number in the interval
I shown at (2.11), it follows that j can take at most

2Ž.x/ log1=2
2 x

p
+ 1

values. Thus, the number of numbersn ∈ A.x/ for which p| gcd.n;w2.n// with a
fixed value ofp is

� xŽ.x/

p2
+ x

p log1=2
2 x

:

Summing up the above inequalities over all the possible values ofp, it follows that
the number of positive integersn ∈ A.x/ for whichw2.n/ andn are not coprime is

� xŽ.x/
∑

p>log3 x log5 x

1

p2
+ x

log1=2 x

∑
p<2 log2 x

1

p
:(2.15)

Since ∑
p<2 log2 x

1

p
� log4 x;(2.16)

we get, with (2.14) and (2.16), that (2.15) is bounded above by

� xŽ.x/

log3 x log4 x log5 x
+ x log4 x

log1=2
2 x

= o.x/:

Finally, we show that for almost alln < x we havep.w2.n// < 2 log1=2
2 x. Assume

that this is not so for somen ∈ A.x/. In this case, since!.n/ < 2 log2 x, it follows
thatw2.n/ is a prime numberp ≥ 2 log1=2

2 x, and!.n/ = pj , where j < log1=2
2 x has

P. j / ≤ log3 x log5 x. We now fix the numberj and notice that sincepj belongs to
the intervalI shown at (2.11), thenp must be a prime number in the interval

I j :=
(

log2 x

j
− 2Ž.x/ log1=2

2 x

j
;

log2 x

j
+ 2Ž.x/ log1=2

2 x

j

)
:(2.17)
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Let ³ j .x/ be the number of prime numbers in the intervalI j shown at (2.17). Then,
for j fixed, the number of values of!.n/ = pj is at most³ j .x/, and for each one
of these values, by (2.10), the number of positive integersn < x with !.n/ = pj is
� x= log1=2

2 x. So, the number of positive integersn < x for which!.n/ = pj with
j fixed andp prime is� x³ j .x/= log1=2

2 x; and so the totality of the positive integers
n ∈ A.x/ for which p.w2.n// ≥ 2 log1=2

2 x is

� x

log1=2
2 x

∑
j<log1=2

2 x
P. j /≤log3 x log5 x

³ j .x/:(2.18)

Let us now notice that the intervalI j is an interval of length 2Ž.x/ log1=2
2 x= j , and,

by a result of Montgomery (see [8, page 34]), any interval of lengthy can contain
no more than 2y= log y prime numbers. Thus, sinceŽ.x/ > 1 and j < log1=2

2 x =
o.Ž.x/ log1=2

2 x/, we get the inequality

³ j .x/ � Ž.x/ log1=2
2 x

j log.2Ž.x/ log1=2
2 x= j /

(2.19)

�



Ž.x/ log1=2

2 x

j log3 x
; if j < log1=4

2 x;

Ž.x/ log1=2
2 x

j
; if log1=4

2 x ≤ j < log1=2
2 x:

In particular, (2.18) can be bounded from above by

� xŽ.x/

log3 x

∑
P. j /<log2

3 x

1

j
+ xŽ.x/

log1=4
2 x

 .log1=2
2 x; log3 x log5 x/:(2.20)

Clearly,  .log1=2
2 x; log3 x log5 x/ <  .2 log2 x; log3 x log5 x/ = .log2 x/o.1/ (see

(2.8)), therefore

xŽ.x/

log1=4
2 x

 .log1=2
2 x; log3 x log5 x/ = xŽ.x/

.log2 x/1=4+o.1/
= o.x/:(2.21)

Finally, note that

∑
P. j /<log2

3 x

1

j
=

∏
p<log2

3 x

(
1− 1

p

)−1

= exp


O.1/ +

∑
p<log2

3 x

1

p


 = exp.log5 x + O.1// � log4 x;
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therefore

xŽ.x/

log3 x

∑
P. j /<log2

3 x

1

j
� xŽ.x/ log4 x

log3 x
= o.x/;(2.22)

and now (2.21) and (2.22) imply that the right-hand side of (2.20) is o.x/.
Finally, the statement about�.n/ follows in an entirely similar way due to the fact

that a similar upper bound as (2.11) holds for the number of numbersn < x having a
fixed value of�.n/.

3. The proof of Theorem1.1

PROOF. We letx be a large positive real number and we shall assume thatn ∈ B.x/,
whereB.x/ is the set described in Lemma2.2. Part (1) of the theorem is the toughest
cookie in the jar and so we shall prove it last.
(2) Let n ∈ B.x/, and writen as in (2.1). Then− := −.n/ = 2!.n/−km, where
k := #{p|n | ap > 1} andm := ∏

ap>1.ap + 1/. Condition 3 of Lemma2.1 insures
thatk ≤ ³.log7 x/ < log7 x, and that the inequality

m< exp
(
³.log7 x/ log.log7 x + 1/

)
< exp.2 log7 x/ = log2

6 x

holds whenx is large. In particular, there are a number< log7 x log2
6 x < log5 x such

pairs.k;m/, and they all haveP.m/ < log7 x + 1. Let p be a prime number in the
intervalJ := .log3 x log5 x;2 log1=2

2 x/. By Lemma2.2, we know that!.n/ has such
a prime factor for alln ∈ B.x/. Assume now thatn is a number inB.x/ such that
p|!.n/, write!.n/ := pj , and assume further thatn satisfies congruence (1.2). With
the fixed value ofp, the congruencef .−/ ≡ 0 .mod p/ puts− into at mostd residue
classes modulop, whered := deg. f /. Let Þ be one of these residue classes. Since
− = 2!.n/−km ≡ 2j −km .mod p/, we get that 2j −km ≡ Þ .mod p/. Note that both 2
andm are invertible modulop. Put t .p/ for the multiplicative order of 2 modulop.
For fixed values ofÞ; k;m, the congruence 2j −km ≡ Þ .mod p/ puts j into a fixed
congruence class modulot .p/. In particular, withp fixed, the number!.n/ = pj
belongs to at mostd log5 x congruence classes modulopt.p/. Since this number is
also in the intervalI shown in (2.11), we get that the number of values thatpj can
assume for a fixed value ofp is

�
(
Ž.x/ log1=2

2 x

pt.p/
+ 1

)
log5 x = Ž.x/ log1=2

2 x log5 x

pt.p/
+ log5 x:

For everyone of these values ofpj , by inequality (2.10), there are� x= log1=2
2 x

numbers numbersn for which!.n/ = pj . Thus, for fixedp, the number of numbers
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n ∈ B.x/ satisfying congruence (1.2) and for whichp|!.n/ is

� xŽ.x/ log5 x

pt.p/
+ x log5 x

log1=2
2 x

:

Summing up the above inequalities over all the primesp in the intervalJ , and using
the obvious fact thatt .p/ � log p, we get that the number of numbersn ∈ B.x/
satisfying congruence (1.2) is

� xŽ.x/ log5 x
∑

p>log3 x

1

p log p
+ x log5 x

log1=2
2 x

³.2 log1=2
2 x/:(3.1)

Since the estimate
∑

p>y 1=.p log p/ � 1= log y holds for ally > 1, we get that (3.1)
is bounded from above by

� xŽ.x/ log5 x

log4 x
+ x log5 x

log3 x
= o.x/:

The same argument applies when!.n/ is replaced by�.n/.
(3) In [6, Lemma 2], it is shown that there exists an absolute constantC3 such that if
x is large and if we setg.x/ := C3 log2 x= log3 x, then both�.n/ and¦.n/ are divisible
by the least common multiple of all the prime powerspa < g.x/ for all n < x with
o.x/ exceptions (in [6, Lemma 2] this is only shown for the function� but the argument
from there can be adapted in a straightforwardway to yield the corresponding result for
the function¦ ). Let M.x/ denote the least common multiple of all the prime powers
up tog.x/. To get statement (3) of Theorem1.1for!.n/ and�.n/, we show that both
!.n/ and�.n/ divide M.x/. To see this, assume thatpa ‖ !.n/. If p ≤ log3 x log5 x,
then, by Lemma2.2, we havepa ≤ w1.n/ = !.n/=w2.n/ � log2=3

2 x = o.g.x//.
Assume now thatpa ‖ w2.n/. In this case, by Lemma2.2, we have thata = 1. If
w2.n/ is not prime, then there exists another prime numberq (necessarily larger than
log3 x log5 x) such thatpq|w2.n/. Thus, p ≤ w2.n/=q � log2 x=.log3 x log5 x/ =
o.g.x//. Finally, if w2.n/ is prime, thenw2.n/ = p.w2.n// < 2 log1=2

2 x = o.g.x//.
And thus, we have shown that!.n/ dividesM.x/, and therefore both�.n/ and¦.n/,
and a similar argument applies to�.n/.

To see that−.n/ divides both�.n/ and¦.n/, write

−.n/ :=
∏
pap ‖n

.ap + 1/ =
∏

qcq ‖−.n/
qcq :

We first assume thatq is an odd prime divisor of−.n/. Then, by condition (3) of
Lemma2.1,

qcq

∣∣∣ ∏
p<log7 x

pap ‖n

.ap + 1/;
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andap < log7 x, therefore we deduce that

log.qcq / ≤
∑

p<log7 x
pap ‖n

log.ap + 1/ � ³.log7 x/ log.log7 x + 1/ � log7 x < log6 x

holds for largex, and soqcq < exp.log6 x/ = log5 x = o.g.x//. Hence,qcq divides
M.x/. Assume now thatq = 2 and for everyp|n write dp for the exponent at
which 2 dividesap + 1. Then,c2 = ∑

p|n dp and, by condition (3) of Lemma2.1,
we havedp = 1 wheneverp ≥ log7 x anddp ≤ C4 log.log7 x + 1/ < log7 x with
C4 := 1= log 2, wheneverp < log7 x. Thus, with conditions (1) and (3) of Lemma2.1,
the inequality

c2 ≤ !.n/+
∑

p<log7 x
pap ‖n

dp(3.2)

< log2 x + Ž.x/ log1=2
2 x + ³.log7 x/ log7 x < log2 x + 2Ž.x/ log1=2

2 x

holds for large values ofx. However, the power at which 2 which divides�.n/ is, by
Lemma2.1, at least

!.n/ + !1.n/− 1 ≥ 5 log2 x

4
− Ž.x/ log1=2

2 x − 1;(3.3)

and it is clear that the right-hand side of (3.3) is larger than the right-hand side of (3.2)
for largex. Thus, 2c2|�.n/. To see the statement for¦ , notice that by Lemma2.1, we
have that the power at which 2 divides¦.n/ is at least

!.n/ + !3.n/− 1 − 2³.log7 x/ >
5 log2 x

4
− 1 − Ž.x/ log1=2

2 x − log7 x;(3.4)

and it is clear that the right-hand side of (3.4) is also larger than the right-hand side of
(3.2) for largex. This shows that 2c2 divides¦.n/ as well. We point out that the fact
that the set shown at (1.3) with �.n/ replaced by¦.n/ and!.n/ replaced by−.n/ is
of asymptotic density zero has also been proved in [1].
(4) Write1.n/ := �.n/− !.n/. If n satisfies congruence (1.4), then f .1.n// ≡ 0
.mod !.n//. By the remark following Lemma2.1, we know that1.n/ < log6 x,
therefore| f .1.n//| � logd

6 x, where we use againd for the degree of the polyno-
mial f . However, by condition (1) of Lemma2.1, we know that!.n/ � log2 x, and
therefore| f .1.n//| < !.n/ holds whenn ∈ B.x/ andx is large. Thus, except for
a set of asymptotic density zero of positive integersn, the congruence (1.4) forces
f .1.n// = 0. Since1.n/ is a nonnegative integer, this will happen only iff has
nonnegative integer rootsk, and1.n/ = k for suchn and withk one of these nonneg-
ative integer roots. Conversely, iff has nonnegative integer rootsk, then any number
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n with 1.n/ = k will satisfy congruence (1.4). The corresponding statement about
f .!.n// being a multiple of�.n/ can be dealt with in a similar way.
(1) Letw2 be a squarefree number belonging to the intervalK := .log1=3

2 x;2 log2 x/
having p.w2/ > log3 x log5 x, and assume thatn satisfies congruence (1.1) and that
w2.n/ = w2. By Lemma2.2, we know that ifn ∈ B.x/, thenn has such a factor
w2 which is moreover coprime ton. Sincew2 is squarefree and its smallest prime
factor is large, it follows that for largex the congruencef .n/ ≡ 0 .modw2/ implies
that we may replacef by the product of all its primitive nonassociated factors in
Z[X], that is, we may assume thatf .X/ is primitive and squarefree as an element
of Z[X]. Write againd for the degree off . The congruencef .n/ ≡ 0 .modw2/

putsn into at mostd!.w2/ congruence classes modulow2. LetÞ .modw2/ be such a
congruence class. Thenn = Þ + w2m holds with some nonnegative integerm, and
since by Lemma2.2we know thatw2 andn are coprime, it follows thatÞ andw2 and
coprime. We also write!.n/ = w2 j . Fixing j andÞ, we conclude thatn < x is in
the arithmetic progressionÞ .modw2/, and has a fixed value of!.n/ = w2 j . It is
known that for every fixed positive integerl , the number of positive integersn < x
with n ≡ Þ .modw2/ having!.n/ = l is

� x

�.w2/ log1=2
2 x

(3.5)

and that estimate (3.5) above is uniform in our rangel < 2 log2 x andw2 < 2 log2 x.
Indeed, this can be obtained from the main result in [15] together with inequality
(2.10). Now!.n/ = w2 j is a number in the intervalI shown at (2.11), and so the
number of numbersj whenw2 is fixed is

≤ 2Ž.x/ log1=2
2 x

w2
+ 1:

Summing up the above inequalities over all the allowable values ofj , we conclude
that if w2 andÞ are fixed, then the number of such numbersn ∈ B.x/ which are
congruent toÞ modulow2 is

� xŽ.x/

w2�.w2/
+ x

�.w2/ log1=2
2 x

:

Summing up the above inequalities over all the possible values ofÞ, we conclude
that the number of numbersn ∈ B.x/ satisfying congruence (1.1) and for which
w2.n/ = w2 is fixed is

� xŽ.x/d!.w2/

w2�.w2/
+ xd!.w2/

�.w2/ log1=2
2 x

:(3.6)
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Finally, summing up inequalities (3.6) over all the allowable values ofw2, we get that
the number of numbersn ∈ B.x/ satisfying congruence (1.1) is

� xŽ.x/
∑
w2∈K

d!.w2/

w2�.w2/
+ x

log1=2
2 x

∑
w2∈K

d!.w2/

�.w2/
:(3.7)

Notice that thatd!.w2/ = .2!.w2//C5 < .−.w2//
C5 , with C5 := logd= log 2. Since for

every" > 0 the inequality−.t/ < t" holds for all positive integerst > t", it follows
that if we set" := .6C5/

−1, then the inequalityd!.w2/ < w
1=6
2 holds for allw2 ∈ K

and for sufficiently large values ofx. Since we also know that�.m/ � m= log2 m
holds for all positive integersm, it follows that the inequality�.w2/ > w

5=6
2 holds

for all w2 ∈ K and whenx is sufficiently large. Thus, ifx is large the expression
appearing at (3.7) can be bounded above by

� xŽ.x/
∑
w2∈K

1

w
5=3
2

+ x

log1=2
2 x

∑
w2∈K

1

w
2=3
2

� xŽ.x/
∫ 2 log2 x

log1=3
2 x

ds

s5=3
+ x

log1=2
2 x

∫ 2 log2 x

log1=3
2 x

ds

s2=3

� xŽ.x/

log2=9
2 x

+ x

log1=6
2 x

= o.x/:

The same argument applies when!.n/ is replaced by�.n/.
Finally, to see the statement with!.n/ replaced by−.n/ in (1.1), write h.x/ :=

b.log2 x/=2dc and letn ∈ B.x/ be a number satisfying congruence (1.1) with −.n/
instead of!.n/. By condition (3) of Lemma2.1, if we set againc2 to be the exponent
at which 2 divides−.n/, we have that the inequality

c2 ≥ !.n/ − ³.log7 x/ ≥ log2 x − Ž.x/ log1=2
2 x − log7 x >

log2 x

2
(3.8)

holds for largex. We write K for the number of irreducible factors off , and we
write f1; : : : ; fK for these irreducible factors. The congruencef .n/ ≡ 0 .mod 2c2/

together with the lower bound (3.8) on c2, imply that there existsi = 1; : : : ; K such
that fi .n/ ≡ 0 .mod 2h.x// holds. Since all thefi ’s are irreducible, withi fixed the
above congruence putsn into at mostC6 arithmetic progressions of ratio 2h.x/, where
one can chooseC6 to be an upper bound for the absolute values of all the discriminants
of the polynomialsfi for i = 1; : : : ; K . Thus, ifn ∈ B.x/ satisfies (1.1) with !.n/
replaced by−.n/, thenn is in at mostC7 := K C6 arithmetic progressions of ratio 2h.x/.
Each one of these arithmetic progressions will contain at most

x

2h.x/
+ 1
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positive integersn < x, thus the total number of numbersn ∈ B.x/ satisfying
f .n/ ≡ 0 .mod −.n// is at most

C7x

2h.x/
+ C7 = o.x/;

which completes the proof of our theorem.

We point out that whenf .n/ := n, the problem of estimating the number of positive
integersn < x for which−.n/|n was treated by Spiro in [12].
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