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Abstract

In this paper we show that if (X) € Z[X] is a nonzero polynomial, then(n)| f (n) holds only on a set
of n of asymptotic density zero, where for a positive integehe numbero (n) counts the number of
distinct prime factors of.
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1. Introduction

Let n be a positive integer and let(n), (n), t(n), ¢ (n) ando (n) be the classical
arithmetic functions of, that is,w(n), €(n), andz(n) count the number of distinct
prime divisors of, the total number of prime divisors nf and the number of divisors
of n, respectively, whilep (n) ando (n) are the Euler function of and the sum of
divisors function ofn, respectively. We also lef (X) € Z[X] to be any nonzero
polynomial with integer coefficients.

In [2], it was shown that the set of positive integarf®r whichw (n)|n is of density
zero, and it was asked whether the same is true for the set of intedersvhich
Q(n)|n. This question was answered in a greater generalitf]inlf this paper, we
investigate the density of the sets of positive integem which one of the given
‘small’ arithmetic function ofn divide eitherf (n), or the value off in some other
arithmetic function oh.

We have the following result.

THEOREM1.1. (1) The set of positive integers
(1.2) (n] f(nN) =0 (modw(n))}
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is of asymptotic density zero. The same is true for the sets obtained if one replaces
w(n) in (1.1 by either2(n) or z(n).
(2) The set of positive integers

(1.2) {n]| f(z(n)) =0 (Mmodw(n))}

is of asymptotic density zero. The same is true for the set obtained if one replaces
w(n) in (1.2) by Q(n).
(3) The set of positive integers

(1.3) (n|¢(n) =0 (Mmodw(n))}

is of asymptotic density one. The same is true for the other five sets obtained from
(1.3) by independently replacing(n) by o (n), andw(n) by either2 (n) or z(n).
(4) The set of positive integers

(1.4) {n] f(QM)) =0 (Mmodw(n))}

has an asymptotic density for every polynomii@X) € Z[X]. This density is zero
unlessf has nonnegative integer roots, in which case it is positive. Similarly, the set
obtained if one interchange@(n) by w(n) in (1.4) has an asymptotic density, which

is zero unlesd has integer roots which are either negative or zero, in which case it is
positive.

The densities of the sets appearing at part (4) of Thedtenare computable.
Namely, the density of the set.@) is

> d

k>0,kezZ
f(k)=0

whered, > 0 is the REnyi's constant (se€ell]) given by

. #Hl<n=<x|Q(M) —wh) =Kk}
d¢ ;= lim .

X—> 00 X

Similarly, the density of the set obtained if one interchari@és) by w(n) in (1.4) is

> di.

k<0,kezZ
f(k)=0
Theoreml.1gives information about the asymptotic densities of the sets of positive
integergn | f(¢(n)) =0 (modw(n))} and likewise whem (n) is replaced by either
Q(n) or r(n), orwheny (n) is replaced by (n). Indeed, from part (3) of Theorehl
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we get that the asymptotic density of such sets is zero urilé®s= 0, in which case

the asymptotic density is one. We point out that if one replaces the polyndrial

by thenth Fibonacci numbef, in (1.1), then the statement asserted at part (1) of
Theoreml.1still holds. This has been done ifj[and it is likely that a combination

of the arguments from the method of proof from there with our present arguments
and some results from/] can yield a similar result whelk, is replaced by any
nondegenerate linearly recurrent sequence of integers.

2. Preliminary results

In this section, we point out a ‘large’ set of integers which is suitable for our
purposes, and then in the next section we verify that every positive intéigem our
large set satisfies all the congruences or the incongruences asserted by the theorem

We denote b, C,, ... positive computable constants which are either absolute or
depend only on the polynomidl. For a positive integéet and positive real numbex,
we denote by logx the recursively defined function given by log:= maxlog x, 1}
andlog x := maxlog(log, , x), 1}, where log denotes the natural logarithm function.
Whenk = 1, we simply write log x as logx and we thus understand that it is always
> 1. We also use the Landau symb@lsando and the Vinogradov symbojs and«
with their usual meanings. We write(x) for the number of prime numbers < x.

For a positive integem, we useP (n) and p(n) to denote the largest prime factorrof
and the smallest prime factor of respectively.

We set§(x) := logs x, and we use the notatiors, ¢, andr to denote prime
numbers. For a positive integeywe writew; (n) andws(n) for the number of distinct
prime factors ofh which are congruent to 1 and 3 modulo 4, respectively. Thus, we
always haveo (n) = w;(n) + ws(n) + ¢, wheres = 0 or 1 according to whetheris
odd or even.

We begin with the following claim.

LEMMA 2.1. Let X be a large positive real number and |ét(x) be the set of
all positive integers in the range/x < n < x and which satisfy the following
conditions

(1) maxw(n) —log, x|, [€2(n) — log, x|} < §(x) log

(2) min{wi(n), ws(n)} > log,(x)/4.
(3) Write

(2.1) n=[] p*.

p*Pin

1/2
5 X.

Then,max,n{a,} < log, x anda, = 1 whenp > log; X.
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Then the seA(x) contains all positive integens < x except foro(x) of them.

ReEMARK. Note thatifn € A(x) then, by condition (3) of Lemm2.1, we have that
the inequality

(2.2) QM) —wh) = 2:(ap —1) < w(log,x)(log, x — 1) < logs x < logg X

ap>1
holds for large values of.

PROOF OFLEMMA 2.1 It is obvious that there arg,/Xx| = o(x) numbersn < x
which are not in the rangg’x < n < x.
(1) Since both estimates

(2.3) Z (w(n) — log, x)? = O(xlog, X)
1<n<x

and

(2.4) Z (2(n) — log, x)?> = O(xlog, X)

1<n<x

hold (see 14), it follows that there are at mo$d(x/8%(x)) = 0o(x) positive integers
n < x which fail to satisfy the inequality asserted at part (1) of the lemma.
(2) LetE be any set of prime numbers and for 0 write

(2.5) E0) =Y 2.

bk
For any positive integem, write w(E, n) for the number of primes dividing which
belong toE, and let 0< @ < 1 be any fixed positive real number. Then, a result of
Norton (see9, 10]), says that ifE(x) > 0, then the number of positive integers x
such thatw(E, n) — E(X)| > «E(X) is at mosiC (x)x/E(x)"?, whereC(«) is some
computable number depending erandE. TakeE = E; :={p| p=i (mod 4}
withi = 1 or 3, takex := 1/3, and assume that > 5. ThenE;(x) # 0 and the
estimate

(2.6) Ei (x) = Z 1 Iogsz +0()

p=i (mod 4

holds for bothi = 1 and 3. And so, if we assume that< X fails condition (2) of
the lemma for somé = 1 or 3, thenw;(n) < log,(x)/4 holds for sucm, and with
estimate 2.6) we conclude thab; (n) < 2E(x)/3 holds for suc < x and for large
values ofx. Thus, the inequalityw (E;, n) — E(x)| > E(x)/3 holds for such, and
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by the above result fronB[ 10], we know that the number of such positive integers
n<xis
X

X
CEcm € log;'* x

= 0(X).

(3) Suppose first that there exists a prime numper log, x such thatp?|n. The
totality of suchn < x is at most

X X
X o( k) oo
polog, x P 09g; X 1095 X

Assume now thad, > log, x holds for somep. Since we may assume that< log, X,
it follows that the number of such positive integers: x is at most

X X (log, X x log- X
Z oox < ;Iog?z ) < i g)z o = o(x),
2<p<log, x p ( 096 )
where we puC; := log 2. O

LEMMA 2.2. Let X be a large positive real number and Iét(x) be the subset
appearing in Lemm&.1 Let B(x) be the subset af € A(x) with the following

property.
Write

o) = w(Mw,(n), where wym =[] o>

g™in
g<log; x logs x

Then,w,(n) > logs* x is squarefree, coprime to, and hasp(w.(n)) < 2 logy’*x.

Similarly, if one writes

Qn) := Wi(n)Wr(n), where W;i(n) := l_[ ré,
reriQ(n
r<log; x logs x

thenW,(n) > logy® x is squarefree, coprime 10, and hasp(W(n)) < 2 logy” .

Then the seB(x) contains all positive integens < x except foro(x) of them.

PrOOF OFLEMMA 2.2 We shall deal only with the statement concerning the func-
tion w(n) because the statement ab&uin) can be dealt with in an entirely similar
way.

Assume than e A(x) but thatw,(n) < logy*x. Thenw(n) = wy(N)w,(n),
wherew,(n) < log, x + 8(x) logy*x < 2log, x, andP(w;(n)) < log, x logs x. We
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estimate the number of values, (n) can take. Suppose thgt> z > 0 and put
U(y,z) ;== #{n <y | P(n) < z}. We shall show that iz := 2logylog, y, then
U(y, z) = y°D. To see this, we put

Iogy z Iogy
log(1+ —— —Io
Igz g( +Iogy>+logz g( z )

and then, by 13 Theorem 2 on page 359], we know that the estimate

1 1
2.7) logy(y,2) =Z <1+ O <1+ jogz Iogz(2y)>>

holds uniformly iny > z > 0. Itis clear that the factor that multiplies appearing
on the right-hand side o2(7) is O(1), and with our choice foz we have

z logy _logylogsy

LKL
logz  logz log, y

And thus, we have
I I
¥(y,2) = expO(2) = exp(o (w» =y,
log, y
Settingy := 2log, X, and noting that logx log; X < 2logylog, y = z, we get

(2.8) ¥ (210g, X, log; x logs X) = (2log, x)°® = (log, x)°®.

In particular, the inequality

(2.9) ¥ (2log, x, log; x logs x) < logy** x

holds for large values o. Inequality .9) tells us thatw;(n) can take no more
than log/**x values. Thus, the total number of values@fn) = w;(N)wy(n)
which are smaller than 2lgg and for whichw,(n) < logy* x holds is at most
(log, x)V3+1/12 — Jog>**x. However, from B, page 303], we know that if is any
fixed positive integer, then the number of positive integeks x havingw(n) = j is

X
log"?x

(2.10)

Since ourj can take only lo§™ x values, we conclude that the number of positive
integersn < x for whichw,(n) < log® x is
IogS/lz

Iog  logs/*x

<

= 0(X),
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which takes care of the first condition from the lemma.

We next show that,(n) is squarefree for almost all < x. Assume thah € A(X)
but w,(n) is not squarefree. Notice tha(w,(n)) > log, xlogs x. Pick a prime
numberp > log, X logs X and assume thgt := w(n) is a number which is divisible
by p?. Sincew(n) < 2log, x, it follows thatp < C,logy/* x, whereC, := /2. But
j is also a number in the interval

1/2

(2.11) = (log, x — 8(x) logy/* x, log, x 4 8(x) logs'* x)

whose length is &x) logy* x, and so the number of such numbérshich can be
multiples of p? is

28(x) logy/* x
p2
For every one of these numbgrghe number of positive integems< x withw (n) = |

is, by (2.10, <« x/logy’* x. Thus, for a fixed prime numbay, the number of positive
integersn € A(x) and for whichp?|w(n) is

(2.12) +1

X8(X) X
< —p2 +— 5 Iogl/z
Summing up the above inequalities over all the prime numigis the range
log;xlogsx < p < C,logy”x, we get that the totality of the positive integers
n € A(x) and for whichw,(n) is not squarefree is

1 x7(C,log¥?x
Z — 4 (C;log, )'

(2.13) & X8(X) o
p>logs x logs x p2 |09
Since
1 1
(2.14) 1_o ( ) |
P>'0§095X P log, x log, X logs x
and

7(C, logy? x) ( 1 )
T =0 ,
log, log; x

it follows that 2.13 is bounded above by

X8(X)
log; x log, xlogs x ~ log, x

= 0(X).
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We now show thah andw,(n) are coprime for almost ali < x. Letn € A(x) and
let p be a prime number dividing bothandw,(n). We now have logx logs x < p <
2log, x. Fix such a primep. By condition (3) from Lemma.1, we know thatp | n,
thereforen = pmandw(m) = w(n) — 1. Fix alsoj such thatw(n) = pj. Then
m < x/pandw(m) = pj — 1is fixed. The number of such numbenss, by 2.9,

< X ! < X
Plogy*(x/p)  plog”?x’

where the last inequality above follows from the fact that the inequalities:
2log, x < x¥2 hold for largex. Moreover, sincepj is a number in the interval
# shown at 2.11), it follows thatj can take at most

25(x) logy/® x

p

values. Thus, the number of numbers A(x) for which p| gcdn, w,(n)) with a
fixed value ofp is

+1

X8(X) X
>t
p plog
Summing up the above inequalities over all the possible valugs ffollows that
the number of positive integerse A(x) for which w,(n) andn are not coprime is

172 "
b X

1 X 1
(2.15) XX Y S > =
p>log; x logs x p2 |ogl/2X p<2log, x p
Since
1
(2.16) Y. =<log,x,
p<2log, x
we get, with .14 and @.16), that .19 is bounded above by
X8 (X x log, x
(X) 19;1 — 0(x).
log; xlog, xlogs X~ logs/? x

Finally, we show that for almost afi < x we havep(w.(n)) < 2log/*x. Assume
that this is not so for some € A(x). In this case, since(n) < 2log, X, it follows
thatw,(n) is a prime numbep > 2logy/*x, andw(n) = pj, wherej < logy* x has
P(j) < log; xlogs x. We now fix the numbej and notice that sincgj belongs to

the interval# shown at 2.11), thenp must be a prime number in the interval

1/2

log,x  28(x)log;”*x log, x N 25(x) Iogé/zx)

’

2.17 S =
(247 J (J j j j
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Let; (x) be the number of prime numbers in the intervglshown at .17). Then,
for j fixed, the number of values @¥(n) = pj is at mostr;(x), and for each one
of these values, by2(10), the number of positive integers< x with w(n) = pj is

« x/logy*x. So, the number of positive integats< x for whichw(n) = pj with

j fixed andp prime is< x7;(x)/logy” x, and so the totality of the positive integers
n e A(x) for which p(wz(n)) > 2log/? x is

(2.18) <<% Yoo m.

I X
09, j<logy? x

P(J)<|093 xlogs x

Let us now notice that the intervad; is an interval of length &x) log;’*x/j, and,
by a result of Montgomery (se@&,[page 34]), any interval of length can contain
no more than ¢/logy prime numbers. Thus, sindéx) > 1 andj < logy*x =

0(3(x) logy’* x), we get the inequality

8(x) logy* x
j log(25(x) log;'* x/})

12

5(x) log,

(2.19) T(X) <

, if j < logy*x;
<< J I(I)g3l/2
M, if logy*x <j < logy?x.

In particular, £.18 can be bounded from above by

< X8(X) Z 1 X8(X)

(2.20) =+ ———v(log;*x, log, x logs X).
I logy* x

P(j)<logd x

Clearly, v (logy/*x, logs xlogs X) < ¥(2log, x, log; xlogsx) = (log,x)°? (see
(2.9), therefore

X8(X)

gt 106" X, 10, X109 = X5

(2.21) (log, x) ¥4+

= 0(X).

Finally, note that

5 iy

P(j)<logdx p<logd x

1
= exp(O(l) + Z —) = exp(logs x + O(1)) < log, X,

p<logi x
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therefore

X8 (X) 1 x§(x)log,x
oy L T < et = oo

(2.22) 1 o0, x

P(j)<logd x

and now 2.21) and .22 imply that the right-hand side o2(20) is o(x).

Finally, the statement abof(n) follows in an entirely similar way due to the fact
that a similar upper bound a2.( 1) holds for the number of numbens< x having a
fixed value of2 (n). O

3. The proof of Theorem1.1

PrOOF. We letx be a large positive real number and we shall assumathaB(x),
whereB(x) is the set described in Lemm2a2. Part (1) of the theorem is the toughest
cookie in the jar and so we shall prove it last.

(2) Letn € B(x), and writen as in @.1). Thent := t(n) = 2°™~¥m, where
k:=#{pln|a, > 1} andm := ]_[apﬂ(ap + 1). Condition 3 of Lemm&.1 insures
thatk < r(log, X) < log, X, and that the inequality

m < exp(rr (log, x) log(log, x + 1)) < exp(2log, X) = logi x

holds wherx is large. In particular, there are a numbefog, x log; x < logg x such
pairs(k, m), and they all havé®>(m) < log, x + 1. Let p be a prime number in the
interval # := (log, x log; x, 2 logy/* x). By Lemma2.2, we know thatv(n) has such
a prime factor for allh € B(x). Assume now thanh is a number inB(x) such that
plw(n), writew(n) := pj, and assume further thassatisfies congruencé.@). With
the fixed value ofp, the congruencé (r) = 0 (mod p) putst into at mostd residue
classes modul@, whered := deq f). Leta be one of these residue classes. Since
T = 2°M~¥m = 2/=*m (mod p), we get that 2*m = o« (mod p). Note that both 2
andm are invertible modul. Putt(p) for the multiplicative order of 2 modulg.
For fixed values ofr, k, m, the congruence!2m = o (mod p) putsj into a fixed
congruence class modutgp). In particular, withp fixed, the numbet(n) = pj
belongs to at most log; x congruence classes modybd(p). Since this number is
also in the interval? shown in @.11), we get that the number of values that can
assume for a fixed value qf is

(8(x) logy/* x

_8(x)log;* x logs X

+ 1) logs X = + logs X.

pt(p) pt(p)

For everyone of these values pfj, by inequality €.10), there are« x/ Iog;/zx

numbers numbens for whichw(n) = pj. Thus, for fixedp, the number of numbers
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n € B(x) satisfying congruencé.(2) and for whichp|w(n) is
x8(x)logsx ~ xlogs X
pt(p) logy*x

Summing up the above inequalities over all the prirpés the interval #, and using
the obvious fact that(p) > log p, we get that the number of numberse B(x)
satisfying congruencel.(?) is

1 +xI095x
plogp  log;” x

7 (2logy? ).

(3.2) < X8(x) logg x Z

p>log; x

Since the estimat®_,_, 1/(plog p) <« 1/logy holds for ally > 1, we get thatg.1)
is bounded from above by

x8(x)logs x  xlogs x
log, X log; x

= 0(X).

The same argument applies whem) is replaced by2 (n).
(3) In[6, Lemma 2], itis shown that there exists an absolute con§tastich that if
x is large and if we sej(x) := C;log, X/ log, X, then bothp (n) ando (n) are divisible
by the least common multiple of all the prime powg@fs< g(x) for all n < x with
o(x) exceptions (in§, Lemma 2] this is only shown for the functigrbut the argument
fromthere can be adaptedin a straightforward way to yield the corresponding result for
the functiono). Let M (x) denote the least common multiple of all the prime powers
up tog(x). To get statement (3) of Theorelr for w(n) and2 (n), we show that both
w(n) and$2(n) divide M (x). To see this, assume thgtt | w(n). If p < log, xlogs X,
then, by Lemma2.2, we havep® < w;(n) = w(n)/wy(n) < logy®>x = o(g(x)).
Assume now thap? || w,(n). In this case, by Lemma.2, we have that = 1. If
w,(n) is not prime, then there exists another prime nuntp@recessarily larger than
log, x logs X) such thatpg|w,(n). Thus,p < wy(n)/q < log, x/(log; X logs X) =
0(g(x)). Finally, if w,(n) is prime, thenw,(n) = p(w,(n)) < 2logy*x = o(g(x)).
And thus, we have shown thatn) dividesM (x), and therefore bott (n) ando (n),
and a similar argument applies@(n).

To see that (n) divides bothy (n) ando (n), write

= [[@+D= ] o=
pPin g |lz(n)

We first assume thaj is an odd prime divisor ot (n). Then, by condition (3) of
Lemma?2.1,

q® } [] @+,

p<log; x
periin
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anda, < log, x, therefore we deduce that

log(q%) < Z log(a, + 1) <« m(log, x) log(log,; x + 1) < log, X < logg x
P

holds for largex, and sog® < exp(logs Xx) = logs X = 0(g(x)). Henceg“ divides
M(x). Assume now thayy = 2 and for everyp|n write d, for the exponent at
which 2 dividesa, + 1. Then,c, = }_,,d, and, by condition (3) of Lemma.1,
we haved, = 1 wheneverp > log,x andd, < C4log(log; x + 1) < log, x with
C4 := 1/log 2, whenevep < log, x. Thus, with conditions (1) and (3) of Lemrall,
the inequality

B2 cGzom+ Y d

p<log; x
periin

< log, x + 8(x) logy* x + m(log, ) log, x < log, x + 25(x) logy'* x
holds for large values of. However, the power at which 2 which divideésn) is, by
Lemmaz2.1, at least

(3.3) o) +wy(n) —1> —8(x)logy*x — 1,

5log, x
4

and it is clear that the right-hand side 8tJ) is larger than the right-hand side &.9)
for largex. Thus, 22|¢ (n). To see the statement for, notice that by Lemma.1, we
have that the power at which 2 dividesn) is at least

5log, x
4

(3.4) w(n) +ws(n) —1— 27(log, x) > 1 —8(x) logy® x — log, X,

and it is clear that the right-hand side Gf4) is also larger than the right-hand side of
(3.2) for largex. This shows that2 divideso (n) as well. We point out that the fact
that the set shown af. (3) with ¢ (n) replaced by (n) andw(n) replaced byt (n) is
of asymptotic density zero has also been proved]in [

(4) Write A(n) := Q(n) — w(n). If n satisfies congruenc#.d), thenf(A(n)) =0
(mod w(n)). By the remark following Lemma&.1, we know thatA(n) < logg X,
therefore| f (A(n))| « Iogg X, where we use agaith for the degree of the polyno-
mial f. However, by condition (1) of Lemma. 1, we know thatw(n) > log, X, and
therefore| f (A(n))| < w(n) holds whem € B(x) andx is large. Thus, except for
a set of asymptotic density zero of positive integershe congruencel(4) forces
f(A(n)) = 0. SinceA(n) is a nonnegative integer, this will happen onlyfifhas
nonnegative integer rooks andA (n) = k for suchn and withk one of these nonneg-
ative integer roots. Conversely, ifhas nonnegative integer rodtsthen any number
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n with A(n) = k will satisfy congruencel(4). The corresponding statement about
f (w(n)) being a multiple of2 (n) can be dealt with in a similar way.

(1) Letw,be asquarefree number belonging to the intet#al= (logy* x, 2 log, x)
having p(w,) > log; x logs X, and assume that satisfies congruencé.(l) and that
w,(N) = w,. By Lemma2.2, we know that ifn € B(x), thenn has such a factor
w, Which is moreover coprime to. Sincew, is squarefree and its smallest prime
factor is large, it follows that for large the congruencéd (n) = 0 (mod w,) implies
that we may replacd by the product of all its primitive nonassociated factors in
Z[X], that is, we may assume th&{X) is primitive and squarefree as an element
of Z[X]. Write againd for the degree off. The congruencd (n) = 0 (mod wy)
putsn into at mostd®®2 congruence classes modulg. Leta (mod w,) be such a
congruence class. Then= « + w,m holds with some nonnegative integar and
since by Lemma&.2we know thatw, andn are coprime, it follows that andw, and
coprime. We also write(n) = w,j. Fixing j anda, we conclude thah < x is in
the arithmetic progressialm (mod w,), and has a fixed value @f(n) = w,j. Itis
known that for every fixed positive integerthe number of positive integers < x
with n =« (mod w,) havingw(n) =1 is

X

3.5 -
(3 < $wa) logix

and that estimate3(5) above is uniform in our rande< 2log, x andw, < 2log, X.
Indeed, this can be obtained from the main resultlif] fogether with inequality
(2.10. Now w(n) = w,]j is a number in the interva¥ shown at 2.11), and so the
number of number$ whenw; is fixed is
1/2
- 25(x) logy “ x

w2

+ 1

Summing up the above inequalities over all the allowable valugs afe conclude
that if w, anda are fixed, then the number of such numbers B(x) which are
congruent tax modulows, is

X8(X) X
wrp (W) P (w,) IOg;/2 X

Summing up the above inequalities over all the possible values efe conclude
that the number of numbers € B(x) satisfying congruencel(l) and for which
wo(N) = ws is fixed is
X8 (x)d xde s

wap(wz)  P(wy) logy? x

(3.6)
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Finally, summing up inequalitie$(6) over all the allowable values af,, we get that
the number of numbers € B(x) satisfying congruencé (1) is

dw(wz) X
(3.7) < X8(x) Y e >

e w29 (wz) log; " x =, ¢ (wy)

dw(wz)

Notice that thatd®®? = (2°®2)C < (t(w,))%s, with Cs := logd/log 2. Since for
everye > 0 the inequalityr (t) < t* holds for all positive integers > t,, it follows
that if we sets := (6Cs)~?, then the inequalitg®™> < w2/® holds for allw, € ¢
and for sufficiently large values of. Since we also know that(m) > m/log, m
holds for all positive integers, it follows that the inequalityp (w,) > wy'® holds
for all w, € ¥ and whenx is sufficiently large. Thus, ik is large the expression
appearing at3.7) can be bounded above by

1 X 1
X0 ) e+ 2

woeX 09, wze%f Wy

2log, x ds X 2log, x ds

X8(X — —

< )/ Sy e |Og;/2X\/I;g;/3x s?/3
- u — o(x)
log7°x  logy®x '

The same argument applies whem) is replaced by2 (n).

Finally, to see the statement with(n) replaced byr(n) in (1.1), write h(x) :=
L(log, x)/2d] and letn € B(x) be a number satisfying congruendelj with ¢ (n)
instead ofw (n). By condition (3) of Lemma.1, if we set agairt, to be the exponent
at which 2 divides (n), we have that the inequality

log, x

(3.8) ¢ > w(n) — n(log, x) > log, x — 8(x) logy/*x — log, x >

holds for largex. We write K for the number of irreducible factors df, and we
write fi, ..., fx for these irreducible factors. The congruerfda@) = 0 (mod 22)
together with the lower bound(8) on c,, imply that there exists = 1, ..., K such

that f;(n) = 0 (mod 2®) holds. Since all thef;’s are irreducible, with fixed the
above congruence putsinto at mosiCg arithmetic progressions of ratid®, where

one can choosEg to be an upper bound for the absolute values of all the discriminants
of the polynomialsf; fori = 1, ..., K. Thus, ifn € B(x) satisfies {.1) with w(n)
replaced byt (n), thenn is in at mostC, := K Cg arithmetic progressions of ratid®.

Each one of these arithmetic progressions will contain at most

X

2h(x) +1
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positive integers < X, thus the total number of numbens e B(x) satisfying
f(n) = 0 (mod z(n)) is at most

C,x
2h(x)

+ C7; = 0o(x),

which completes the proof of our theorem. O

We point out that wherfi (n) := n, the problem of estimating the number of positive
integersn < x for which z(n)|n was treated by Spiro inLp].
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