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Abstract

Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Lie
groups are obtained. It is a classical result that if¼ is a central, continuous measure on such a group,
then¼dimG is absolutely continuous. Our estimates on the size of characters allow us to prove that the
exponent, dimension ofG, can be replaced by approximately the rank ofG. Similar results were obtained
earlier for the classical, compact Lie groups.

2000Mathematics subject classification: primary 22E46; secondary 43A80, 43A65.
Keywords and phrases: compact, exceptional Lie group, characters, central measures.

1. Introduction

In 1972, Ragozin [7] proved the striking fact that ifG was any compact, connected,
simple Lie group and¼ was a central, continuous measure onG, then¼dimG ∈ L1.G/
(the product here being convolution). One consequence of this result is that it implies
that if g is not in the centre of the group, then Tr½.g/=deg½ → 0 as the degree of
the representation½ tends to infinity (see [10]). Ragozin’s result was first improved
by one of the authors in [2] where it was shown that ifg was not in the centre of the
group, then ∣∣∣∣Tr ½.g/

deg½

∣∣∣∣ ≤ c.g/.deg½/−2=.dimG−rankG/

and that ifk > dim G=2 and¼was any central, continuous measure, then¼k ∈ L1.G/.
In [3] sharp estimates on the rate of decay of Tr½.g/=deg½ were found for the

classical Lie groups. The precise rate depends on the Lie group type, but in each
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case the sharp exponent in the formula above is−O.1= rankG/. This result implies
that¼k ∈ L1.G/ for all central, continuous measures¼ providedk is approximately
rankG.

In this paper we obtain similar estimates for the exceptional Lie groups. To be
precise, we obtain the following result:

THEOREM 1.1. SupposeG is one of the five compact, exceptional Lie groupsG2,
F4, E6, E7 or E8. For everyg not in the centre ofG, there is a constantc.g/ such that∣∣∣∣Tr ½.g/

deg½

∣∣∣∣ ≤ c.g/ .deg½/−s

for all representations½, provided

s ≤


1=.n − 1/ if G = En; n = 6;7;8;

1=5 if G = F4;

2=5 if G = G2:

We have not been able determine if these estimates are sharp, however, we can use
them to improve upon Ragozin’s result.

COROLLARY 1.2. If ¼ is any central, continuous measure on one of the compact,
exceptional Lie groupsG, then¼n ∈ L1.G/ if G = En with n = 6;7;8, ¼6 ∈ L1.G/
if G = F4 and¼3 ∈ L1.G/ if G = G2.

To contrast this with Ragozin’s result we recall that the dimensions of the excep-
tional groups are:

Type G2 F4 E6 E7 E8

Dimension 14 52 78 133 248:

In Section2 of this paper we explain our notation. Section3 is devoted to proving
the theorem forE8. In Section4 we give the proofs for the groupsE6, E7, F4 andG2.
The corollary and applications are discussed in Section5.

2. Notation

Let G be a compact, connected, simple Lie group and letW be its Weyl group. The
positive roots associated with the base of simple roots1 will be denoted by8+, T
will denote the torus associated with8, the fundamental dominant weights relative to
1 will be denoted by½1; : : : ; ½n, and3+ will be the set of all dominant weights. The
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set3+ is in a 1-1 correspondence with the dual objectĜ; ¦½ ∈ Ĝ is indexed by its
highest weight½ ∈ 3+. The degree of¦½ will be denoted byd½. We set² = ∑n

j =1 ½ j .
According to the Weyl dimension formula [11] the degree of½ is given by

d½ =
∏
Þ∈8+

.² + ½; Þ/=.²; Þ/:(2.1)

For general facts about root systems we refer the reader to [4].
Giveng ∈ T we let8.g/ = {Þ ∈ 8 : Þ.g/ ∈ 2³Z} and let8+.g/ = 8.g/

⋂
8+.

It is easily seen that8.g/ is a subroot system of8 and that8+.g/ is a complete set
of positive roots of this subroot system. It is known that8.g/ = 8 if and only if g is
in the centre of the group ([1, page 189]).

For g in the torus, the Weyl character formula ([11]) states

Tr ½.g/ = ei².g/
∑

w∈W detw expi .² + ½;w.g//∏
Þ∈8+.eiÞ.g/ − 1/

:

This determines Tr½ on G as characters are class functions.
Wheng belongs to the centre of the group an application of Schur’s lemma shows

that| Tr ½.g/| = d½, hence the interest is in non-central elements. It was shown in [2]
how one can evaluate the Weyl character formula (by considering suitable directional
derivatives if8+.g/ is not empty) to obtain

| Tr ½.g/|
d½

= c.g/

∣∣∑
w∈W detw

∏
Þ∈8+.g/.² + ½;w.Þ//expi .² + ½;w.g//

∣∣∏
Þ∈8+.² + ½; Þ/

:(2.2)

Consequently, if one can prove

sup
w∈W

∣∣∏
Þ∈8+.g/.² + ½;w.Þ//

∣∣∏
Þ∈8+.² + ½; Þ/1−s

(2.3)

is bounded over all½, then

| Tr ½.g/|
d½

≤ c.g/

ds
½

:

Thus in order to find pointwise bounds on the trace functions off the centre ofG
it is useful to understand the structures of the subroot systems properly contained in
8 and how they are affected by the action of the Weyl group. This was the approach
(successfully) undertaken in [3] for the classical groups.

In this paper we are interested in the exceptional Lie groupsG2, F4, E6, E7 and
E8. The root systems and bases we take follow the convention of Humphreys [5] and
are summarized below for the convenience of the reader. Note that in typeG2 we
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TABLE 1. The exceptional Lie groupsG2, F4, E6, E7 andE8.

Type Root system8 Base1

G2
±.ei − ej /;

±.2ei − ej − ek/ : i 6= j 6= k ∈ {1; 2; 3}
Þ1 = e1 − e2;

Þ2 = −2e1 + e2 + e3

F4
±ei ± ej ;±ei : 1 ≤ i 6= j ≤ 4
1
2.±e1 ± e2 ± e3 ± e4/

Þ1 = e2 − e3; Þ2 = e3 − e4;

Þ3 = e4;

Þ4 = 1
2.e1 − e2 − e3 − e4/

E8
±ei ± ej : 1 ≤ i < j ≤ 8;
1
2

∑8
k=1 ±ek : # minus signs even

Þ1 = 1
2.e1 − e2 − · · · − e7 + e8/;

Þ2 = e1 + e2;

Þi = ei −1 − ei −2 : 3 ≤ i ≤ 8

E7

±ei ± ej : 1 ≤ i < j ≤ 6;
±.e7 − e8/;

± 1
2.e7 − e8 +∑6

k=1 ±ek/ :
# minus signs in sum odd

Þi ; i = 1; : : : ; 7 from E8

E6

±ei ± ej : 1 ≤ i < j ≤ 5;
± 1

2.e8 − e7 − e6 +∑5
k=1 ±ek/ :

# minus signs in sum even
Þi ; i = 1; : : : ; 6 from E8

let e1;e2;e3 denote the standard basis vectors inR
3, in F4 we denote bye1, e2, e3, e4

the standard basis vectors inR4, and in typesE6, E7, E8, the vectorsei , i = 1; : : : ;8
denote the standard basis vectors inR

8 (see Table1).
It clearly suffices to analyze those subroot systems which are maximal in the sense

that there is no other proper subroot system containing that system. Thus it suffices
to show that∏

Þ∈8+′.² + ½; Þ/∏
Þ∈8+.² + ½; Þ/1−s

=
∏
Þ∈8+′

.² + ½; Þ/s
∏

Þ∈8+�8+′
.² + ½; Þ/s−1(2.4)

is uniformly bounded over½ for 8+′ any maximal positive subroot system. The
diagrams of these subroot systems are subdiagrams of the extended diagram of the
original root system. The extended diagrams can be found in the appendix. Note that
the additional vertex, labelled 0, is identified with the highest rootÞ0 which is equal to
e1+e2−2e3 in G2, e1+e2 in F4, e7+e8 in E8, e7−e8 in E7 and1

2
.
∑5

i =1 ei −e6−e7+e8/

in E6.

3. Proof of Theorem1.1for the group E8

The technique used in [3] to estimate the size of the characters of the classical
groups involved finding the positive roots associated with maximal subroot systems by
considering the Weyl conjugates of the (standard) bases corresponding to subdiagrams
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of the extended diagrams. This method does not appear to work well with these
exceptional groups because their Weyl groups are very cumbersome and so a different
approach seems needed.

We will begin withE8 as this is the most difficult case. The maximal proper subroot
systems are of typesA8, A1 × A7, A1 × A2 × A5, A4 × A4, D5 × A3, E6 × A2, D8 and
E7 × A1 with 36, 29, 19, 20, 26, 39, 56 and 64 positive roots, respectively.

Our approach will be to consider the set of rootsþ such that.½i ; þ/ 6= 0 for the
fundamental dominant weights½i , i = 1; : : : ;8, and to show that a suitable selection
of these do not belong to any maximal positive subroot system8+′. It is useful to
express the fundamental dominant weights½i in terms of the standard basis vectorsei

of R8:

½1 = 2e8;

½2 = 5

2
e8 + 1

2

7∑
i =1

ei ;

½3 = 7

2
e8 + 1

2

(
7∑

i =2

ei − e1

)
;

½4 = e3 + e4 + e5 + e6 + e7 + 5e8;

½5 = e4 + e5 + e6 + e7 + 4e8;

½6 = e5 + e6 + e7 + 3e8;

½7 = e6 + e7 + 2e8;

½8 = e7 + e8:

Any representation½ can be written as
∑8

i =1 mi½i for non-negative integersmi ; we
will assumemk = maxi mi .

Let S ⊆ 8+ be the set of elementsþ for which .½i ; þ/ 6= 0 for all i = 1; : : : ;8. It
consists of 44 elements:

S =
{

e8 ± ej : 1 ≤ j ≤ 6;e8 + e7;
1

2

(
e8 + e7 +

6∑
k=1

±ek

)}

where the roots1
2
.e8 + e7 +∑6

k=1 ±ek/ have an even number of minus signs. LetS8

be the set of positive rootsþ for which .½8; þ/ 6= 0 and letS0 be the set of positive
roots for which.½i ; þ/ 6= 0 for all i = 1; : : : ;7. Notice thatS8 containsS as well as
the elements {

1

2

(
e8 + e7 −

6∑
i =1

ei

)
;e7 ± ei : i = 1; : : : ;6

}
;

and hence has cardinality at least 57. The setS0 containsSand the elements

1

2

(
e8 − e7 + e6 +

5∑
i =1

±ei

)
;

where there are either one or three minus signs in the sum and therefore has at least 59
elements. If8+′ is any of the maximal positive subroot systems other thanD8 or
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E7 × A1, then the cardinality of8+′ is at most 39 and hence there must be at least 18
positive roots inSi�8

+′, i = 0;8.
The setsS8 andS0 have the feature that there is a constantc > 0 such that if either

k = 8 andþ ∈ S8, ork 6= 8 andþ ∈ S0, then.²+½; þ/ ≥ cmk. Hence, for anys< 1,∏
Þ∈8+�8+′

.² + ½; Þ/s−1 ≤
∏

þ∈Si�8+′
.² + ½; þ/s−1 ≤ O.m18.s−1/

k /:

As .² + ½; Þ/ ≤ O.mk/ for any positive rootÞ, we obtain the estimate∏
Þ∈8+′

.² + ½; Þ/s
∏

Þ∈8+�8+′
.² + ½; Þ/s−1 ≤ O

(
m39s+18.s−1/

k

)
;

and this is bounded provideds ≤ 1=4.
The two remaining types of proper subroot systems,D8 andE7× A1, seem to be too

large to obtain good bounds by such elementary methods. Instead, we will analyze the
size of.8+�8+′/∩ Smore carefully, taking into account the possible inner products
which can arise between elements ofS.

Consider the elements ofS,

xi j = 1

2

(
e8 + e7 − ei − ej +

6∑
`=1; 6̀=i; j

è

)
and

yi j = 1

2

(
e8 + e7 + ei + ej −

6∑
`=1; 6̀=i; j

è

)

for 1 ≤ i < j ≤ 6. PutS′ ≡ S�{v}, wherev = e8 + e7. Notice thatxi j + yi j = v

and.v; Þ/ = 1 for all Þ ∈ S′. As inner products of roots are integral valued, the only
possible inner products of roots inE8 can be 0;±1;±2, with the latter occuring only
if the two roots coincide or are negatives of one another. It follows from these remarks
that for allÞ ∈ S′�{xi j ; yi j }, either.xi j ; Þ/ = 0 and.yi j ; Þ/ = 1, or .xi j ; Þ/ = 1 and
.yi j ; Þ/ = 0. Also, note.xi j ; yi j / = −1.

We will be able to exploit this property by making use of the observation that
two subroot systems of the same type have the same set of inner products, and the
set of inner products of their positive roots can differ only by sign. Thus in making
arguments which depend only on inner products up to sign (as we will do for the
remaining two cases) we need only consider how the elements of aparticular subroot
system of the required type can ‘play the role’ of the elements ofS′. Therefore we
may as well assume the subroot system of typeD8 was formed by removingÞ1 and
so has positive roots{ei ± ej : 1 ≤ j < i ≤ 8}, and that the subroot system of type
E7 × A1 was formed by removingÞ8 and so its positive roots aree7 + e8 and the
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standard set of positive roots forE7 as described in Section 2. We will let8+
0 denote

these particular positive subroot systems.
Our goal is to find an upper bound for the number of elements of8+

0 which can
play the role of elements inS′. SinceS′ consists of the 15 pairsxi j ; yi j and 13 other
elements, if8+

0 contains more than 28 elements ofS′ there must be a pairÞ; þ ∈ 8+
0

taking the role of a pairxi j ; yi j . This means that.Þ; þ/ = ±1 and any other element,
− ∈ 8+

0 , playing the role of an element ofS′ must have the property that inner product
of one ofÞ or þ with − is zero and the other is modulus one. By counting the number
of − ∈ 8+

0 which has this property we will obtain an upper bound on the size of
8+

0 ∩ S′.
The following lemma will make it easy to count the number of such− .

LEMMA 3.1. SupposeÞ 6= ±þ and .Þ; þ/ 6= 0. The number of− such that either
.Þ; −/ = ±1 and.þ; −/ = 0 or vice versa, is independent of the choice ofÞ; þ.

PROOF. SinceÞ 6= ±þ and.Þ; þ/ 6= 0, one ofÞ ± þ = 
 ∈ 8′ (the choice of±
depends on the sign of.Þ; þ/). Similar arguments to those used above show that a
positive root− has the property that either.Þ; −/ = ±1 and.þ; −/ = 0 or vice versa
if and only if .
; −/ = ±1 and− 6= Þ; þ. Thus the number of− having the required
property is equal to∑

−∈8+
0

|.
; −/| − |.
; 
 /| − |.
; Þ/| − |.
; þ/| =
∑
−∈8+

0

|.
; −/| − 4:

If Þ′; þ ′ is any other such pair withÞ′±þ ′ = 
 ′, then, of course, the number of− such
that either.Þ; − ′/ = ±1 and.Þ; þ ′/ = 0 or vice versa is equal to

∑
−∈8+

0
|.
 ′; − /| − 4.

As the roots are all the same length, the Weyl group is transitive on8+
0 , thus∑

−∈8+
0

|.
; −/| =
∑
−∈8+

0

|.
 ′; − /|;

and therefore the number of such− is constant over all these pairs.

So it suffices to consider one choice of pair. ForE7 it is convenient to choose
Þ = 1

2

(
e8 − e7 − ei + ∑6

`=1; 6̀=i è
)

andþ = 1
2

(
e8 − e7 + ei − ∑6

`=1; 6̀=i è
)
. Then


 = Þ + þ = e8 − e7. It is easy to check that.
;ei ± ej / = 0 if 1 ≤ j < i ≤ 6,
.
; 
 / = 2 and.
; −/ = 1 for the remaining 32 elements in the positive root system
of E7. Hence the number of such− is 30, showing that there are at most 32 elements
of S′ among the positive roots ofE7 (these 30 and the pairÞ; þ). As the positive root
of A1 is orthogonal to every element ofE7 it cannot belong toS, and therefore there
can be at most 33 of the positive roots inE7 × A1 contained inS.
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For D8 chooseÞ = e1 − e2, þ = e2 − e3 and
 = e1 − e3. Then.
; −/ = ±1 if
and only if− = e1 ± ej , j 6= 1;3, orej ± e3, j 6= 1;3 (where in either case we mean
the positive root) or− = 
 . Consequently,

∑
−∈8+′ |.
; −/| − 4 = 22. Thus if there is

a pair playing the role ofxi j ; yi j , then there can be at most 24 elements in8+
0 ∩ S′ and

otherwise there can be at most 28 elements.
In all cases, it follows that there must be at least 11 elements ofSnot in the positive

subroot system, thus we can conclude that∏
Þ∈8+′

.² + ½; Þ/s
∏

Þ∈8+�8+′
.² + ½; Þ/s−1 ≤ O

(
m64s+11.s−1/

k

)
:

This is bounded ifs ≤ 1=7, completing the proof of the theorem for typeE8.

4. The other exceptional groups

4.1. Proof of Theorem1.1 for E6 For E6 andE7 we have not been able to find a
suitable pattern in the inner product table which we could exploit. Instead, we will use
the fact the definition of8.g/ ensures that any integral linear combination of roots of
8.g/, which is also a root, must belong to8.g/. In particular, this implies that if the set
of roots generated by some subset (under integral linear combinations) is larger than the
given proper subroot system8.g/, then the set itself cannot be completely contained
in 8.g/. By applying this argument to the subsetsSi = {þ ∈ 8+ : .½i ; þ/ 6= 0},
where½i , i = 1; : : : ;6 denote the fundamental dominant weights we will again be
able to argue that a suitable number of elements ofSi are not in8+.g/ and thus
bound (2.4).

We recall that the fundamental dominant weights can be expressed in terms of the
ej as follows:

½1 = 2

3
.e8 − e7 − e6/; ½4 = e8 − e7 − e6 + e3 + e4 + e5;

½2 = 1

2
.e8 − e7 − e6/+ 1

2

5∑
i =1

ei ; ½5 = 2

3
.e8 − e7 − e6/+ e4 + e5;

½3 = 5

6
.e8 − e7 − e6/− 1

2
e1 + 1

2

5∑
i =2

ei ; ½6 = 1

3
.e8 − e7 − e6/+ e5:

Put also

S= {
þ ∈ 8+ : .½i ; þ/ 6= 0 for 1 ≤ i ≤ 6

}
=
{

1

2

(
e8 − e7 − e6 + e5 +

4∑
i =1

±ei

)
: 0 or 2 minus signs in sum

}
:
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The setsSi can be described as follows:

S1�S=
{

1
2

(
e8 − e7 − e6 + e5 −∑4

i =1 ei

)
;

1
2

(
e8 − e7 − e6 − e5 +∑4

k=1 ±ek

)
: 1 or 3 minus signs

}
;

S2�S=
{

ei + ej : 1 ≤ j < i ≤ 5;

1
2

(
e8 − e7 − e6 − e5 +∑4

k=1 ±ek

)
: 1 minus sign

}
;

S3�S=
{

ei + ej ; ek − e1 : 2 ≤ j < i ≤ 5; 2 ≤ k ≤ 5;

1
2

(
e8 − e7 − e6 + e5 −∑4

i =1 ei

)
;

1
2

(
e8 − e7 − e6 − e5 +∑4

k=2 ±ek − e1

)
: 2 minus signs;

1
2

(
e8 − e7 − e6 − e5 +∑4

k=1 ±ek

)
: 1 minus sign

}
;

S4�S=
{

ei ± ej : j = 1;2; i = 3;4;5; e5 + e4; e5 + e3; e4 + e3;

1
2

(
e8 − e7 − e6 + e5 −∑4

i =1 ei

)
; 1

2

(
e8 −∑7

i =4 ei + e3 − e2 − e1

)
;

1
2

(
e8 −∑7

i =4 ei + e3 + e2 + e1

)
;

1
2

(
e8 −∑7

i =5 ei + e4 +∑3
k=1 ±ek

)
: 1 or 3 minus signs

}
;

S5�S=
{

ei ± ej : j = 1;2;3; i = 4;5; e5 + e4;

1
2

(
e8 − e7 − e6 + e5 −∑4

i =1 ei

)
;

1
2

(
e8 −∑7

i =5 ei + e4 +∑3
k=1 ±ek

)
: 1 or 3 minus signs

}
;

S6�S= {
1
2.e8 − e7 − e6 + e5 − e4 − e3 − e2 − e1/;e5 ± ei : 1 ≤ i ≤ 4

}
:

So |S| = 7, |S1| = 16, |S2| = 21, |S3| = 25, |S4| = 29, |S5| = 25 and|S6| = 16.
The proper subroot systems inE6 are of typesA5 × A1 with 16 positive roots,

A2 × A2 × A2 with 9 positive roots andD5 with 20 positive roots.
If ½ = ∑

mi½i has largest coefficientmk andk = 3;4;5, we can use the setsSk in
the same manner as the easyE8 cases to obtain the inequality∏

Þ∈8+′
.² + ½; Þ/s

∏
Þ∈8+�8+′

.² + ½; Þ/1−s ≤ cm.20+5/s−5
k :

This is bounded fors ≤ 1=5.
This leaves three cases,k = 1;2;6, which will be settled by the generating subsets

argument briefly outlined above. We will show that in these cases, as well, at least
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five elements ofSk are not in the proper subroot system8+.g/, so that the calculation
above can still be invoked to shows ≤ 1=5 is sufficient.

Roots of the formei ± ej we will call standard and the others, peculiar. Observe
that any set generated by the standard roots{ei0 + ej : j ∈ I } (or {ei0 − ej : j ∈ I })
for somei0 =∈ I , together with a single rootei0 − ej (respectively,ei0 + ej ) for some
j ∈ I , will contain {ei ± ej : i; j ∈ I ∪ {i 0}}. We will refer to this set as a standard
Dn, with n = |I | + 1, on the lettersI ∪ {i0} (or, simply, a standardDn if it is on the
letters{1;2; : : : ;n}). For example, by considering differences of elements ofS one
can readily see that the set generated byS contains a standardD4.

Our strategy will be to show that any subset ofSk, consisting of all but four of its
elements, will generate a standardD5. We can assume8+.g/ also contains at least 3
elements ofS(for otherwise we are done), none of which are in the standardD5. This
forces8+.g/ to have at least 23 elements which is impossible as the largest proper
positive subroot system ofE6 has only 20 elements.

We consider eachSk separately.
S6 : If all the peculiar elements ofS6 belong to8+.g/ (we will say we remove

no peculiar elements), then all ofS and at least one element of the forme5 ± ei ,
i = 1; : : : ;4, must belong to8+.g/. This set generates a standardD5 which, as we
remarked above, is not possible.

If we remove no standard elements, then we can generate a standardD5 by the
roots{e5 ± ei : i = 1; : : : ;4}.

Otherwise we remove 1, 2 or 3 peculiar roots. Then we keep either alle5 + ei or
all e5 − ei for i belonging to a three element subsetI ′ of {1; : : : ;4}, and a roote5 − ei

(respectively,e5+ei ) for one indexi ∈ I ′. These generate a standardD4 on the letters
I ′ ∪ {5}. If k is the missing index we can find two peculiar elements from among the
remainder which differ at this index, and using these we can generate a standardD5.

S2 : If we remove at most one peculiar root we keep either all ofS or all of the
elements1

2

(
e8 − e7 − e6 − e5 + ∑4

k=1 ±ek

)
with one negative sign in the sum. As

well, we keep at least oneei + ej for i; j ∈ {1; : : : ;4}. By taking differences of these
elements we can generate a standardD4. As we keep peculiar roots with both±e5, a
standardD5 can be obtained.

Otherwise, at most two standard roots are removed. Then there must be four roots
of the formei + ej , j 6= i , for some fixedi and at least one other root of the form
ej + ek, j; k 6= i . But thenei − ek is in the generated set and consequently the set
generates a standardD5.

S1 : If at most one peculiar root with a−e5 term is removed, then we are left with
either all of the peculiar roots1

2

(
e8 − e7 − e6 − e5 +∑4

k=1 ±ek

)
with one minus sign

in the sum and one with three minus signs, or vice versa. These roots generate a
standardD4. Since there is also a peculiar root kept with a+e5 term, we generate a
standardD5.
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If at most one peculiar root with a+e5 term is removed we are left with (at least)
one of1

2
.e8 −e7 −e6 +e5 −∑4

k=1 ek/ or 1
2

(
e8 −e7−e6 +∑5

k=1 ek

)
. This root, together

with those remaining inSand a peculiar root with a−e5 term, generate a standardD5.
Finally, if we remove two peculiar roots with a+e5 and two with−e5, then from the

remaining elements with a−e5 term we can take either 3 elements with one minus sign
in the sum, along with one other element which is negative in the position 1≤ i ≤ 4
which none of the first 3 are negative in, or 3 elements with three minus signs in the
sum, along with one other element which is positive in the position which none of the
first 3 are positive in. These 4 elements generate a standardD4 and since there is also
a peculiar root with a+e5 term, again we produce a standardD5.

4.2. Proof of Theorem1.1for E7 A similar argument can be used forE7. A simple
calculation shows that the fundamental dominant weights are given by

½1 = e8 − e7;

½2 = e8 − e7 + 1

2

6∑
i =1

ei ;

½3 = 3

2
.e8 − e7/ − 1

2
e1 + 1

2

6∑
i =2

ei ;

½4 = 2e8 − 2e7 + e3 + e4 + e5 + e6;

½5 = 3

2
.e8 − e7/+ e4 + e5 + e6;

½6 = e8 − e7 + e5 + e6;

½7 = 1

2
.e8 − e7/+ e6:

Let

S = {
þ ∈ 8+ : .½i ; þ/ 6= 0 for 1 ≤ i ≤ 7

}
=
{

e8 − e7;
1

2

(
e8 − e7 + e6 +

5∑
i =1

±ei

)
: 1 or 3 minus signs in sum

}
and letSi = {þ ∈ 8+ : .½i ; þ/ 6= 0}. For example,

S1�S =
{

1

2

(
e8 − e7 + e6 −

5∑
i =1

ei

)
;

1

2

(
e8 − e7 − e6 +

5∑
k=1

±ek

)
: even # minus signs in sum

}
;

S7�S =
{

1

2

(
e8 − e7 + e6 −

5∑
k=1

ek

)
;e6 ± ei : 1 ≤ i ≤ 5

}
:

One can verify that|S| = 16, |S1| = 33, |S2| = 42, |S3| = 47, |S4| = 53,
|S5| = 54, |S6| = 42 and|S7| = 27. The proper subroot systems inE7 are of types
A7, A3 × A3 × A1, A5 × A2, A1 × D6 andE6 with 28, 13, 18, 31 and 36 positive roots
respectively.
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If ½ = ∑
mi½i has largest coefficientmk andk = 3;4 or 5 we can useSk and the

cardinality argument as in the easyE8 cases to establish that∏
Þ∈8+′

.² + ½; Þ/s
∏

Þ∈8+�8+′
.² + ½; Þ/1−s ≤ cm.36+11/s−11

k :

This is bounded ifs ≤ 1=5.
For the remaining cases,k = 1;2;6;7, we can show that there must be at least 8

elements ofSk not in the subroot system8+.g/ by using the same basic reasoning as
in E6. This will proves ≤ 1=7 suffices for all cases.

We proceed by contradiction and so assume that at least 9 elements ofSwill belong
to 8+.g/. If we can prove there is a standardD6 in 8+.g/, then as none of these
belong toS this will imply 8+.g/ contains at least 39 elements and gives the required
contradiction.

Any set containing all but three of the elements ofS will generate a standardD5.
Together with any peculiar element with a−e6 term, or an element of the forme6 ±ei ,
(at least one of which we can find among the elements inSk ∩8+.g/), a standardD6

is produced. Consequently, at least four elements ofSmust not belong to8+.g/.
A similar argument shows that at least four elements fromS1�S must not belong

to the positive subroot system, thus at least eight elements ofS1 are not in8+.g/.
For S7 we note that any set of all but three elements of{e6 ± ei : i ∈ {1; : : : ;5}}

will contain a subset of the forme6 + e′
i , wheree′

i = ±ei andi runs over four values
out of {1;2;3;4;5}, as well as an elemente6 − e′

j for one choice ofj chosen from the
values ofi . These five elements generateD5 on the letter 6 and the four letters taken
on by the indexi . By choosing two peculiar elements fromS7 ∩ 8+.g/ which differ
at the missing index we generate a standardD6. This proves 8 elements fromS7 are
not contained in the subroot system.

For the casesS2 andS6 a simple cardinality argument shows at least 6 elements are
not in the subroot system, but similar reasoning to that above will yield the desired
improvement.

4.3. Proof of Theorem1.1for F4 The same technique can be used forF4, as well.
Recall that the fundamental dominant weights are½1 = e1 + e2, ½2 = 2e1 + e2 + e3,
½3 = .3e1 + e2 + e3 + e4/=2 and½4 = e1. As usual let

S = {þ ∈ 8+ : .½i ; þ/ 6= 0 for 1 ≤ i ≤ 4} and Si = {þ ∈ 8+ : .½i ; þ/ 6= 0}:

Their cardinalities are|S| = 10, |S1| = 15, |S2| = 20, |S3| = 20 and|S4| = 15.
The maximal proper subroot systems inF4 are of typesA1 ×C3, A2 × A2, A3 × A1

and B4 with 10, 6, 7 and 16 positive roots respectively. If the setSi corresponding
to the½i with the largest coefficient contains at least four elements that are not in the
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subroot system8+.g/, then∏
Þ∈8+′

.² + ½; Þ/s
∏

Þ∈8+�8+′
.² + ½; Þ/s−1 ≤ cm.16+4/s−4

k ;

and this is bounded ifs ≤ 1=5. This is clearly the case if the subroot systems are type
A1 × C3, A2 × A2 or A3 × A1 (in these casess ≤ 1=3 will actually suffice) or if the
system is typeB4 andmk is the maximal coefficient of½ with k = 2;3.

One can check that any set consisting of all but three of the elements ofSk will
generate a standardD4. As these 12 roots are of length

√
2, as are the 4 (additional)

peculiar roots contained inS, andB4 has only 12 roots of length
√

2, this showsSk

must contain at least four elements which are not inB4.

REMARK. We note that this is the best result that can be obtained using this technique
as the standard roots ofS1 all belong to a standardB4 and there are only four peculiar
roots inS1.

4.4. Proof of Theorem1.1for G2 The arguments forG2 are very simple. We note
that ½1 = e3 − e2 and½2 = 2e3 − e1 − e2, thus if Si = {þ ∈ 8+ : .½i ; þ/ 6= 0},
i = 1;2, then|S1| = |S2| = 5.

The maximal subroot systems inG2 have either 2 or 3 positive roots. By simply
counting leftover terms in the setSi corresponding to the½i with the largest coefficient
we obtain the desired result.

REMARK. In [3] the optimal rate of decay of the characters was determined for the
classical Lie groups. One step in establishing this was to prove that

detw sign

( ∏
Þ∈8+.g/

.² + ½;w.Þ//

)
expi .² + ½;w.g//

was constant over allw ∈ W, for an appropriateg ∈ G and suitable number of
representations½. We have not been able to determine if this is true with the exceptional
groups.

5. Smoothness of convolution powers of central measures

A measure¼ on G is calledcentral if ¼ commutes with all other measures onG
under the action of convolution. Central measures are characterized by the fact that
their Fourier transforms are scalar multiples of identity matrices:

¼̂.½/ = a½ Id½ where a½ =
∫

G

Tr ½.x/

d½
d¼:
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We will simply write ¼̂.½/ in place ofa½.
The orbital measure,¼g, supported on the conjugacy classC.g/ containingg ∈ G,

is defined by ∫
G

f d¼g =
∫

G

f .tgt−1/dmG.t/ for f ∈ C.G/:

Orbital measures are examples of singular, central measures and are continuous if and
only if g does not belong to the centre ofG. Moreover, they have the property that

¼̂g.½/ = Tr ½.g/

d½
:

In [7] Ragozin proved that if¼ was any central, continuous measure, then¼dimG ∈
L1.G/. By appealing to the sharper estimates of this paper on the rate of decay of the
characters we can improve this result.

PROPOSITION5.1. SupposeG is one of the compact, exceptional Lie groups and¼g

is a central, continuous orbital measure. Then¼k
g belongs toL2.G/ if k ≥ k0, where

k0 =


n if G is typeEn;

6 if G is typeF4;

3 if G is typeG2:

PROOF. From the Peter-Weyl theorem it is known that¼k
g ∈ L2 if

∑
½∈Ĝ

d½
∣∣¼̂g.½/

∣∣2k
Tr
∣∣Id½

∣∣2 =
∑
½∈Ĝ

d2
½

∣∣∣∣Tr ½.g/

d½

∣∣∣∣2k

< ∞:

It was shown in [2, Corollary 9] that
∑

½∈Ĝ dt
½ < ∞ whent < − rankG=|8+|. The

proposition follows by combining these facts with the estimates on the rate of decay
of the characters given in the theorem.

COROLLARY 5.2. Suppose¼1; : : : ; ¼k are central continuous measures on one of
the compact, exceptional Lie groupsG andk ≥ k0. Then¼1 ∗ · · · ∗ ¼k ∈ L1.G/.

PROOF. The proof is essentially the same as [2, Theorem 11], but uses the stronger
results obtained in the proposition above.

Note that the corollary stated in the introduction is a special case.
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E8

1 3 4 5 6 7 8 0

2

E7

0 1 3 4 5 6 7

2

E6

1 3 4 5 6

2

0

F4

0 1 2 3 4

G2

1 2 0

FIGURE 1. Extended Dynkin diagrams

REMARK. Ragozin observed that¼k
g is singular to Haar measure onG for all

k < dim G=dim C.g/. As dimC.g/ = 2.|8+| − |8+.g/|/ (see [6]) the corollary
above can be seen to be sharp forG2. This observation also implies that exponent 3
is necessary forE6; E7 andE8, and exponent 4 is required forF4.

REMARK. A measure¼ is calledL p-improving if there is somep < 2 such that
¼ ∗ L p ⊆ L2. A question of current interest is to understand which singular measures
on compact groups areL p-improving. For example, surface measures on analytic
manifolds which generateG were shown to beL p-improving in [8] and in [9] the
optimal choice ofp was found for orbital measures¼g with 8+.g/ empty. Sufficient
conditions on the size ofp which are valid for all continuous, orbital measures were
found for the classical Lie groups in [3]. Similar arguments based on our theorem can
be used to obtain results for the exceptional Lie groups.
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