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Abstract

Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Lie
groups are obtained. It is a classical result that is a central, continuous measure on such a group,
then.9MC is absolutely continuous. Our estimates on the size of characters allow us to prove that the
exponent, dimension @, can be replaced by approximately the ranksofSimilar results were obtained
earlier for the classical, compact Lie groups.
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1. Introduction

In 1972, RagozinT] proved the striking fact that i was any compact, connected,
simple Lie group ang was a central, continuous measure®thenudm¢ ¢ L1(G)

(the product here being convolution). One consequence of this result is that it implies
that if g is not in the centre of the group, thenilig)/ degh — 0 as the degree of

the representatioh tends to infinity (seel[0]). Ragozin’s result was first improved

by one of the authors ir2] where it was shown that iff was not in the centre of the
group, then

IT”»(Q) < c(g)(degn) 2/ @mG—anko)

degx

andthatifk > dim G/2 andu was any central, continuous measure, thee L(G).
In [3] sharp estimates on the rate acdahy of Tra(g)/ degr were found for the
classical Lie groups. The precise rate depends on the Lie group type, but in eact
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case the sharp exponent in the formula above @1/ rankG). This result implies
thatu* € LY(G) for all central, continuous measurgsprovidedk is approximately
rankG.

In this paper we obtain similar estimates for the exceptional Lie groups. To be
precise, we obtain the following result:

THEOREM1.1. Supposés is one of the five compact, exceptional Lie gro@s
F4, Es, E; Or Eg. For everyg not in the centre ofs, there is a constart(g) such that

Tra(g9)
degx

< c(g) (degr)~®

for all representations., provided

1/n-1) ifG=E, n=6,7,8;
s<411/5 if G = Fy;
2/5 if G =G,.

We have not been able determine if these estimates are sharp, however, we can uc
them to improve upon Ragozin’s result.

COROLLARY 1.2. If n is any central, continuous measure on one of the compact,
exceptional Lie group§, thenu" € LY(G) if G = E, withn =6, 7,8, u® € LY(G)
if G=F,andu® e LY(G) if G = G,.

To contrast this with Ragozin’s result we recall that the dimensions of the excep-
tional groups are:

Type G, F, Es E; Eg
Dimension 14 52 78 133 248

In Section2 of this paper we explain our notation. Secti®is devoted to proving
the theorem foEg. In Section4 we give the proofs for the grous;, E;, F, andG.,.
The corollary and applications are discussed in Seéion

2. Notation

Let G be a compact, connected, simple Lie group antMéde its Weyl group. The
positive roots associated with the base of simple raotsill be denoted byd*, T
will denote the torus associated with the fundamental dominant weights relative to
A will be denoted by, ..., A, andA™ will be the set of all dominant weights. The
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setA* is in a 1-1 correspondence with the dual obj€gts, € G is indexed by its
highest weight. € A*. The degree of, will be denoted byd,. We setp = ZTzlkj.
According to the Weyl dimension formuld ]] the degree of. is given by

(2.1) d=J]w+ra/0.0.

aedt

For general facts about root systems we refer the readér.to [

Giveng e T we let®(g) = {« € ® : «(g) € 2rZ} and letd*(g) = ®(g)( P*.
It is easily seen thab (g) is a subroot system @b and thatd(g) is a complete set
of positive roots of this subroot system. Itis known thgy) = @ if and only if g is
in the centre of the group] page 189]).

For g in the torus, the Weyl character formuld {]) states

ero 3 wdetwexpi(p+ i, w(g))
o @ — 1) |

This determines Tx on G as characters are class functions.

Wheng belongs to the centre of the group an application of Schur’s lemma shows
that| Tr (g)| = d,, hence the interest is in non-central elements. It was showj in [
how one can evaluate the Weyl character formula (by considering suitable directional
derivatives if®*(g) is not empty) to obtain

Tra(g) =

| TrA(Q)| |2 e detw [T, cprg (0 + A, wi@)) expi(p + 4, w(Q))|
= c(Q) .
d)» Has<1>+ (IO + 4, )

Consequently, if one can prove

(2.2)

(2.3) sup Mecorg 0+ 2 we)
. weW acd+ (/0 + )\-, a)lis

is bounded over all, then

TrA@I _ (@
d. - d

Thus in order to find pointwise bounds on the trace functions off the centge of
it is useful to understand the structures of the subroot systems properly contained in
® and how they are affected by the action of the Weyl group. This was the approach
(successfully) undertaken ig][for the classical groups.

In this paper we are interested in the exceptional Lie grdbpsF,, Es, E; and
Es. The root systems and bases we take follow the convention of Humpliieysd
are summarized below for the convenience of the reader. Note that ilGypes
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TABLE 1. The exceptional Lie groug3,, Fs4, Eg, E7 andEs.

Type Root systemd BaseA
G, | @ —e). o ar=e -6,
+(2e —e—a):i #]#Ke(l, 23} | =21t +63
01 =€ — €3, 00 =63 — €4,

te te,+e:1<i#j<4

F4 1 a3:e4a
s(Tert e ezt ey a4:%(el—e2—e3—e4)
£ | TaEel<i<j<8 ar =31 — &= —&+6),
8 1 8 . H H a22e1+623
H _, e : # minus signs even .
2 Lt F& 9 w=e.1-6,:3<i<8
te e :1<i<j<B8,
E, | T& %) @i,i=1, ..., 7fromEg

tler—es+ Yot
# minus signs in sum odd
te e :1<i<j<5
= :t%(Eg—e7—es+Zi:):l:|:Q()I aj,i =1,...,6fromEg
# minus signs in sum even

let e, e,, &; denote the standard basis vector®i in F, we denote b, e,, ;, &,
the standard basis vectorsit, and in typestg, E;, Eg, the vectorsg,i =1,...,8
denote the standard basis vector®&i(see Tablel).

It clearly suffices to analyze those subroot systems which are maximal in the sense
that there is no other proper subroot system containing that system. Thus it suffices
to show that

Has¢+/(p + )"9 O()

24
( ) Ha§¢+ (,0 + }\., O()lfs

=[le+rw® J] +ro?

acdt’ aedt\ ot

is uniformly bounded ovei for ®* any maximal positive subroot system. The
diagrams of these subroot systems are subdiagrams of the extended diagram of th
original root system. The extended diagrams can be found in the appendix. Note tha
the additional vertex, labelled 0, is identified with the highest agothich is equal to
e1+€,—26;in Gy, €,+6,in Fy, €+65in Eg, &, —e3in E;andi (37, 6 —es—e,+6y)

in Eg.

3. Proof of Theorem1.1for the group Eg

The technique used i8] to estimate the size of the characters of the classical
groups involved finding the positive roots associated with maximal subroot systems by
considering the Weyl conjugates of the (standard) bases corresponding to subdiagram
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of the extended diagrams. This method does not appear to work well with these
exceptional groups because their Weyl groups are very cumbersome and so a differer
approach seems needed.

We will begin with Eg as this is the most difficult case. The maximal proper subroot
systems are of typesg, Ay x A7, Ap X Ay x As, Ay x A4, Ds x Az, Eg x Ay, Dgand
E; x A; with 36, 29, 19, 20, 26, 39, 56 and 64 positive roots, respectively.

Our approach will be to consider the set of rogtsuch that(x;, 8) # 0 for the
fundamental dominant weights, i = 1, ..., 8, and to show that a suitable selection
of these do not belong to any maximal positive subroot system It is useful to
express the fundamental dominant weights terms of the standard basis vecters
of R8:

A = 26, Ay =63+ €+ 6+ €+ e + 56,
)L2=_98+}27:e, As = €4+ €5+ € + €7 + 46,
20T 2L ko= 65+ €+ & + 365
7 1 (7 A7 = € + €7+ 263,
m=set+= (D e-ea|.  —e+e
837 9o 2<i—2 ) s =€ 1+ 6

Any representation can be written aiig:l m; A; for non-negative integensy; we
will assumem, = max m;.

Let SC &* be the set of elemengsfor which (A;, B) #0foralli =1,...,8. It
consists of 44 elements:

S= +e:1<j<6e+ - + +26::|:
- 68 ] —J— 168 e712 e8 e7 Q(

k=1

where the root%(eg + e+ Zﬁzl +e,) have an even number of minus signs. Sgt
be the set of positive root for which (1g, 8) # 0 and letS, be the set of positive
roots for which(x;, 8) # O foralli = 1,...,7. Notice thatS; containsS as well as
the elements

1 6 _
{§<ea+e7—;a>,e7ie i =l,...,6},

and hence has cardinality at least 57. TheSe&bntainsSand the elements
1 5
Z — + ,
5 (ea & +e+ ; e)

where there are either one or three minus signs in the sum and therefore has at least &
elements. If®* is any of the maximal positive subroot systems other tBgror
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E,; x Ay, then the cardinality ob* is at most 39 and hence there must be at least 18
positive roots ing\ ®*,i =0, 8.

The sets; and S, have the feature that there is a constant 0 such that if either
k =8andB € §, ork # 8andB € S, then(p + 1, B) > cm,. Hence, forang < 1,

[[ e+rert=s J] +r.pt <0m>™).

acdH\ o+ BeS\ O+

As (p + A, a) < O(my) for any positive rootr, we obtain the estimate

[Te+ra® ] o+ra <0 M=),

acd aedt\ ot

and this is bounded provided< 1/4.

The two remaining types of proper subroot systeysandE-; x A;, seemto be too
large to obtain good bounds by such elementary methods. Instead, we will analyze the
size of(®T\ ®*") N Smore carefully, taking into account the possible inner products
which can arise between elementsof

Consider the elements &

1 6
Xi =5<es+e7—e—ej+ > ez>

(=10, ]
and

1 6
Vi =E<eg+e7+a +e— Y. ek)

C=1.04,]

forl <i < j <6. PutS = S\ {v}, wherev = & + ;. Notice thatx; + vy;; = v
and(v, o) = 1foralla € S. As inner products of roots are integral valued, the only
possible inner products of roots iy can be 041, +2, with the latter occuring only

if the two roots coincide or are negatives of one another. It follows from these remarks
that for alle € SN\ {x;j, y;; }, either(x;;, «) = 0 and(y;j, «) = 1, or (x;,«) = 1L and
(yij, «) = 0. Also, note(x;j, y;;) = —1.

We will be able to exploit this property by making use of the observation that
two subroot systems of the same type have the same set of inner products, and th
set of inner products of their positive roots can differ only by sign. Thus in making
arguments which depend only on inner products up to sign (as we will do for the
remaining two cases) we need only consider how the elementsastiaular subroot
system of the required type can ‘play the role’ of the elementS.ofTherefore we
may as well assume the subroot system of tijgevas formed by removing; and
so has positive roots £ : 1 < j < i < 8}, and that the subroot system of type
E; x A; was formed by removings and so its positive roots a®s + e; and the
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standard set of positive roots f&r as described in Section 2. We will |éf denote
these particular positive subroot systems.

Our goal is to find an upper bound for the number of elements pivhich can
play the role of elements i8. SinceS consists of the 15 pains;, y;; and 13 other
elements, ifd{ contains more than 28 elements®there must be a pair, g € ®{
taking the role of a paix;;, y;;. This means thatw, 8) = +1 and any other element,

T € ®f, playing the role of an element & must have the property that inner product
of one of« or 8 with t is zero and the other is modulus one. By counting the number
of T € ®§ which has this property we will obtain an upper bound on the size of
oiNS.

The following lemma will make it easy to count the number of sauch

LEMMA 3.1. Supposer # +8 and («, B) # 0. The number of such that either
(o, 7) = £1and(B, t) = 0 or vice versa, is independent of the choicerpB.

PROOF. Sincea # +8 and(«, ) # 0, one ofae + 8 = y € @' (the choice of:
depends on the sign a@f, 8)). Similar arguments to those used above show that a
positive rootr has the property that eithéx, t) = +1 and(8, ) = 0 or vice versa
if and only if (y, ) = +1 andt # «, 8. Thus the number of having the required
property is equal to

DOl =1l = o)l =Bl =D .0l -4

+ +
Tedg Tedg

If o', B’is any other such pair witlh+8' = y’, then, of course, the numberoguch
that either(w, ") = +1 and(«, 8) = 0 or vice versa is equal @1@3 (¥, ©)| — 4.
As the roots are all the same length, the Weyl group is transitiv@arthus

Yo=Y 1.0l

Ted] Ted]
and therefore the number of suclis constant over all these pairs. O

So it suffices to consider one choice of pair. Hor it is convenient to choose
a=3(e—e—&a+>, . &) andf =3(e—e+e—>, &) Then
y =a+p =e—e. Itiseasytocheckthaty,e £e) =0ifl < j <i <86,
(y,y) = 2 and(y, t) = 1 for the remaining 32 elements in the positive root system
of E;. Hence the number of suahis 30, showing that there are at most 32 elements
of S among the positive roots @& (these 30 and the paif, 8). As the positive root
of A, is orthogonal to every element & it cannot belong td, and therefore there
can be at most 33 of the positive rootskh x A; contained inS.
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For Dg chooser =€, — &, 8 =6 —e;andy = e, — e;. Then(y,7) = £1if
andonlyift =e; +ej, j #1,3,0re; 65, | # 1,3 (wherein either case we mean
the positive root) or = y. Consequentlyy " _,. [(y, )| —4 = 22. Thusif there is
a pair playing the role of;;, y;;, then there can be at most 24 element®jnn S and
otherwise there can be at most 28 elements.

In all cases, it follows that there must be at least 11 elemersof in the positive
subroot system, thus we can conclude that

[Teo+ra [] @+iw <0 (mee?),

acdt aedt\ ot

This is bounded is < 1/7, completing the proof of the theorem for tygg.

4. The other exceptional groups

4.1. Proof of Theoreml.1for Es For Eg andE; we have not been able to find a
suitable pattern in the inner product table which we could exploit. Instead, we will use
the fact the definition o> (g) ensures that any integral linear combination of roots of
®(g), whichis also aroot, mustbelongdgg). In particular, this implies thatif the set

of roots generated by some subset (underintegral linear combinations) is larger than the
given proper subroot systed(g), then the set itself cannot be completely contained

in ®(g). By applying this argument to the subs&s= {8 € ®* : (4, 8) # 0},

wherea;, i = 1,..., 6 denote the fundamental dominant weights we will again be
able to argue that a suitable number of element§ aire not in®*(g) and thus
bound @.4).

We recall that the fundamental dominant weights can be expressed in terms of the
g; as follows:

2
)»1=§(98—e7—ee), Ag=6— €6 — €+ 6+ 6+ 6,
)L_l( )+125: )»—2( )+ €+
2—298 € — 6 > €, 5—398 € — 6 4 T €5,

i=1
ho =2 ) 1e+1i Ao = =( )+
3—698 € —6 56 Zi:ZG, 6—398 € —6) + 6.

Put also

S={ped :(,B)#£0forl<i <6}

1 : o
— {E<eg—e7—e6+e5+2:|:a) :Oor2m|nu55|gnsmsu}‘v.

i=1
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The setsS can be described as follows:
Sl\S={% (s-e—e+e-3'e),
: (63 —e—@—6e+Y ., :I:q) : 1 or 3 minus signk;
Sz\S={ +€:1<j<icx<h

N I=

€ — € — €& — 65+Zk1:|:a<):lminussigr};
S\S=[e+e, a—e:2<j<i<52<k<5;

Tes—e—es+es— Z.la)

NI=

(eg—ey—ee—e5+2ﬁ:2:|:a<—el) : 2 minus signs
%(es—&—ee—emLZﬁ:l:I:a(): lminussigr};

s\S=lete:j=12i=345e+e ste ete,

N I=

—s+e-Yle).d(a-Yeta-a-e)

NI

(
(s-Ylie+ete+e),
%(68—2?:53 +e+Y0, :I:q) : 1 or 3 minus signF;
&,\S:{a te:j=123i=45e+e,
Le—e-a+a-Yla).
%(63—2?:5& +e+ Y, :I:q) : 1 or 3 minus sign};
S\S={i&-eg-ea+tes—a-—a-—e—e)ete:1<i<4}.

So|S|=7,|S| =16,|S| =21,|S| = 25,|S =29,|S| = 25 and S| = 16.

The proper subroot systems iy are of typesAs x A; with 16 positive roots,
A, x A, x A, with 9 positive roots ands with 20 positive roots.

If » =) mA; has largest coefficiemt, andk = 3, 4, 5, we can use the se& in
the same manner as the ed&Sycases to obtain the inequality

l_[(p_’_)\"a)s l_[ (p_’_)\"a)lfsscm((20+5)s 5
acdt’ aedtN\ ot
This is bounded fos < 1/5.

This leaves three casds= 1, 2, 6, which will be settled by the generating subsets
argument briefly outlined above. We will show that in these cases, as well, at least
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five elements o are not in the proper subroot systdni(g), so that the calculation
above can still be invoked to shaws 1/5 is sufficient.

Roots of the formg + e; we will call standard and the others, peculiar. Observe
that any set generated by the standard r¢@ist-e; : j € |} (or{e, —¢e; : j € 1})
for somei, ¢ |, together with a single ro®, — e; (respectivelyg, + e;) for some
j €1, willcontain{g £ e :i,j € | U{io}}. We will refer to this set as a standard
D,, withn = |I| 4+ 1, on the letterd U {iy} (or, simply, a standar®, if it is on the
letters{1, 2, ..., n}). For example, by considering differences of elementS ohe
can readily see that the set generated®lmpntains a standarid,.

Our strategy will be to show that any subset3f consisting of all but four of its
elements, will generate a standddel. We can assum@*(g) also contains at least 3
elements ofS (for otherwise we are done), none of which are in the stanBgrd his
forces®*(g) to have at least 23 elements which is impossible as the largest proper
positive subroot system d#g has only 20 elements.

We consider eacB; separately.

S : If all the peculiar elements o belong to®*(g) (we will say we remove
no peculiar elements), then all &and at least one element of the foen+ ¢,

i =1,...,4, must belong tab*(g). This set generates a stand&@¢which, as we
remarked above, is not possible.

If we remove no standard elements, then we can generate a stdbglagdthe
roots{es +¢ :i =1,...,4}.

Otherwise we remove 1, 2 or 3 peculiar roots. Then we keep eithey #lle or
all es — g for i belonging to a three element subseof {1, ..., 4}, and a rooks — ¢
(respectivelyes + ) forone index € |’. These generate a stand&glon the letters
I”U {5}. If k is the missing index we can find two peculiar elements from among the
remainder which differ at this index, and using these we can generate a stéhdard

S : If we remove at most one peculiar root we keep either alBafr all of the
elements}(e; — e, — & — &5 + S +e) with one negative sign in the sum. As
well, we keep at least oreg + €; for i, j € {1, ..., 4}. By taking differences of these
elements we can generate a standayd As we keep peculiar roots with bothes, a
standardDs can be obtained.

Otherwise, at most two standard roots are removed. Then there must be four root:
of the forme + e;, j # i, for some fixed and at least one other root of the form
e + &, j,k # i. Buttheng — g is in the generated set and consequently the set
generates a standaii.

S : If at most one peculiar root with aes term is removed, then we are left with
either all of the peculiar roots(e; — &; — & — €5+ Y_,_, £&) with one minus sign
in the sum and one with three minus signs, or vice versa. These roots generate :
standardD,. Since there is also a peculiar root kept with-e; term, we generate a
standardDs.
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If at most one peculiar root with &es term is removed we are left with (at least)
oneofi(eg— &, —es+e— Y, 8) ori(es—e,—es+Y ., &). Thisroot, together
with those remaining its and a peculiar root with a-es term, generate a standdbd.
Finally, if we remove two peculiar roots withHees and two with—es, then from the
remaining elements with-aes term we can take either 3 elements with one minus sign
in the sum, along with one other element which is negative in the position k 4
which none of the first 3 are negative in, or 3 elements with three minus signs in the
sum, along with one other element which is positive in the position which none of the
first 3 are positive in. These 4 elements generate a stafiaadd since there is also
a peculiar root with a+e5 term, again we produce a standdbel

4.2. Proof of Theoreml.1for E; A similar argument can be used fir. A simple
calculation shows that the fundamental dominant weights are given by

A =65— €y, Ay =263 — 26+ €+ €+ 6 + €,
M:es_eﬁ%ie, A5=g(ea—e7)+e4+e5+ee,
= . Ao =63 — € +6&+6s,
A3=g(ea—e7)—%el+%;e, A7=%(eg—e7)+e6.
Let
S={Bed":(n,B)#0forl<i <7}

1 > . o
={es—e7,5<eg—e7+e6+2:|:e): 1or3m|nu53|gnsmsu}w

i=1
and let§ = {8 € ®* : (&, B) # 0}. For example,

1 5
Sl\S={§<ea—e7+ee—Ze),

i=1

k=1

1 > . o
> <es — € — 6+ Z :I:q) : even # minus signs in SU]TI

1 > .
S;\S={5<es—e7+ee—ZeK),eeie (1< 55}.
k=1
One can verify thatS| = 16, |S,| = 33, |S| = 42, |S| = 47, |Sy] = 53,
|S| = 54, |S| = 42 and|S;| = 27. The proper subroot systemsHn are of types
A7, Az x Az x Aq, As x Ay, A; x Dg andEg with 28, 13, 18, 31 and 36 positive roots
respectively.
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If A =) mA; has largest coefficiemt, andk = 3, 4 or 5 we can us& and the
cardinality argument as in the eaBy cases to establish that

[To+rw ] o+r e =<com®H

acdt’ acdt\ o+’

This is bounded i < 1/5.

For the remaining casek,= 1, 2, 6, 7, we can show that there must be at least 8
elements of5; not in the subroot syster*(g) by using the same basic reasoning as
in Ee. This will proves < 1/7 suffices for all cases.

We proceed by contradiction and so assume that at least 9 elem&walldielong
to ®*(g). If we can prove there is a standallg in ®*(g), then as none of these
belong toSthis will imply ®*(g) contains at least 39 elements and gives the required
contradiction.

Any set containing all but three of the elementsSafvill generate a standarDs.
Together with any peculiar element with-g& term, or an element of the foreg +- ¢,

(at least one of which we can find among the elemen in ®*(g)), a standards
is produced. Consequently, at least four elemen@rmfist not belong ta*(g).

A similar argument shows that at least four elements f&m S must not belong
to the positive subroot system, thus at least eight elemerg&sarte not in®*(g).

For S; we note that any set of all but three element$esf+e :i € {1,...,5}}
will contain a subset of the form; + €, wheree = +e andi runs over four values
outof{1, 2, 3, 4,5}, as well as an elemesg — €] for one choice off chosen from the
values ofi. These five elements generde on the letter 6 and the four letters taken
on by the index. By choosing two peculiar elements frdgan ®*(g) which differ
at the missing index we generate a standagd This proves 8 elements fro® are
not contained in the subroot system.

For the case$, andS a simple cardinality argument shows at least 6 elements are
not in the subroot system, but similar reasoning to that above will yield the desired
improvement.

4.3. Proof of Theoreml.1for F, The same technique can be usedfgras well.
Recall that the fundamental dominant weightsiare= e; + &, A, = 2e, + €, + €3,
Az = (3e; + & + €3+ €)/2 andrs = €. As usual let

S={ed":(n,B)#0forl<i<4} and S={8ecd:(A,B) #0.

Their cardinalities ar€S| = 10,|S,| = 15,|S| = 20,|S;| = 20 and| S| = 15.
The maximal proper subroot systemdHpare of typesA; x Csz, A, x Ay, Az x Ay
and B, with 10, 6, 7 and 16 positive roots respectively. If the Setorresponding
to thex; with the largest coefficient contains at least four elements that are not in the
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subroot systend*(g), then
1_[ (p+ 1, ) l_[ (p+ A, 0)¥t < cmrs

acdt’ acdt\ o+

and this is bounded 8 < 1/5. This is clearly the case if the subroot systems are type
A; x C3, Ay x Ay or Az x Aq (in these cases < 1/3 will actually suffice) or if the
system is typeB, andm is the maximal coefficient of with k = 2, 3.

One can check that any set consisting of all but three of the elemei8svuil
generate a standaf@l,. As these 12 roots are of lengtf2, as are the 4 (additional)
peculiar roots contained i, and B, has only 12 roots of lengtk/'2, this showsS,
must contain at least four elements which are ndjn

ReEMARK. We note thatthisisthe bestresultthat can be obtained using this technique
as the standard roots &f all belong to a standar, and there are only four peculiar
roots inS,.

4.4. Proof of Theoreml.1for G, The arguments foG, are very simple. We note
thati, = es— e andi, = 26; — e, — &, thus if § = {8 € &+ : (A, B) # 0},
i =1,2,then|S| =S| =5.

The maximal subroot systems @, have either 2 or 3 positive roots. By simply
counting leftover terms in the s&tcorresponding to thi with the largest coefficient
we obtain the desired result.

RemMARK. In [3] the optimal rate of dcay of the characters was determined for the
classical Lie groups. One step in establishing this was to prove that

detw sign( l_[ (p + X, w(a))) expi(p + A, w(Q))
aed*(9)
was constant over alb € W, for an appropriatgy € G and suitable number of
representations. We have not been able to determine if this is true with the exceptional
groups.

5. Smoothness of convolution powers of central measures

A measureu on G is calledcentralif © commutes with all other measures @Gn
under the action of convolution. Central measures are characterized by the fact tha
their Fourier transforms are scalar multiples of identity matrices:

Trx
() =aly wherea, = / r(
¢ O

du



246 Kathryn E. Hare and Karen Yeats [14]

We will simply write iz(1) in place ofa,.
The orbital measureyy, supported on the conjugacy cl&seg) containingg € G,
is defined by

/fdug=/ ftgtHdmg(t) for f e C(G).
G G

Orbital measures are examples of singular, central measures and are continuous if an
only if g does not belong to the centre®f Moreover, they have the property that

Tra(g9)
d,

Ig(A) =

In [7] Ragozin proved that if. was any central, continuous measure, théfi® ¢
LY(G). By appealing to the sharper estimates of this paper on the raeeaf/af the
characters we can improve this result.

PROPOSITIONS.1. Supposés is one of the compact, exceptional Lie groups agd
is a central, continuous orbital measure. Th@glbelongs toL2(G) if k > ky, where

n if GistypekE,;
ko= 16 if GistypeF,;
3 if GistypeG,.

PrOOF. From the Peter-Weyl theorem it is known tm%t e L?if

Do Tl [f =

2eG 1eG

2k

Tra(g9)
d

It was shown in §, Corollary 9] that) ", s d; < co whent < —rankG/|®*|. The
proposition follows by combining these facts with the estimates on the ratecafyd
of the characters given in the theorem. O

COROLLARY 5.2. Supposeus, .. ., ux are central continuous measures on one of
the compact, exceptional Lie grou@sandk > ky. Thenuy * - - - * uy € LY(G).

PrOOF. The proof is essentially the same as [2, Theorem 11], but uses the stronger
results obtained in the proposition above. O

Note that the corollary stated in the introduction is a special case.
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2
EsO—O—i—O—O—O—O—O
2
EvO—O—O—i—O—O—O

Ee
F.. O—0O0—C=0—70

G. O=<=0—70
FIGURE 1. Extended Dynkin diagrams

REMARK. Ragozin observed that'é is singular to Haar measure da for all
k < dimG/dimC(g). As dimC(g) = 2(|®"| — |®*(g)]) (see p]) the corollary
above can be seen to be sharp®r. This observation also implies that exponent 3
is necessary foEg, E; andEg, and exponent 4 is required f&.

REMARK. A measureu is calledLP-improvingif there is somep < 2 such that
wx* LP C L2 A question of currentinterest is to understand which singular measures
on compact groups areP-improving. For example, surface measures on analytic
manifolds which generat& were shown to bé P-improving in [8] and in [9] the
optimal choice ofp was found for orbital measures, with ®*(g) empty. Sufficient
conditions on the size gb which are valid for all continuous, orbital measures were
found for the classical Lie groups i][ Similar arguments based on our theorem can
be used to obtain results for the exceptional Lie groups.
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