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Abstract

We prove a new formula for the number of integral points on an elliptic curve over a function field without
assuming that the coefficient field is algebraically closed. This is an improvement on the standard results
of Hindry-Silverman.
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1. Introduction

Serge Lang has conjectured that on a minimal Weierstrass equation of an elliptic curve
over a number field, the number of integral points should be bounded solely in terms
of the field and the rank of the group of rational points [4, page 140]. Hindry and
Silverman [3] proved an analogue of Lang’s conjecture for non-constant elliptic curves
over zero-characteristic one-dimensional function fields. Influenced by the original
work of Mason [5], we use a formula on 2-divison points given by Tan [7] and the
method of Evertse [1, 2] to prove another analogue of Lang’s conjecture for these
curves.

Let K be the field of rational functions on an algebraic curve of genusg over the
constant fieldk of characteristic 0. We do not assume thatk is algebraically closed.
Let MK denote the set of all places ofK . For a finite subsetS of MK , denote byOS

the ring ofS-integers ofK . Consider a non-constant elliptic curveE defined by

y2 = x3 + Ax + B; A; B ∈ OS:(1)
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The set ofS-integral points of this curve isE.OS/ = {P ∈ E.K / : x.P/; y.P/ ∈ OS}.
Let 1 = −.4A3 + 27B2/ be the discriminant of the equation (1) andDE=K be the
divisor of the minimal discriminant ofE=K . Then we have

.1/ = DE=K + 12
∑
v∈MK

²v · v;(2)

for some integers²v, where²v ≥ 0, if v 6∈ S. Let Þ; þ; 
 be the three roots of
x3 + Ax + B = 0 (in some extension field) and letm be the degree[K .Þ; þ; 
 / : K ]
which is at most 6. Define

S1 = {v ∈ MK : v =∈ S; v.1/ > 0; ²v = 0} and

S2 = {v ∈ MK : v =∈ S; ²v > 0}:

Denote bys; s1; s2 the cardinality ofS; S1 andS2. Denote the rank ofE.K / by r . Let
hK .DE=K / be the height ofDE=K (see Section2.1). Put

aE =
{

144 if hK .DE=K / ≥ 24.g − 1/;

.8³2.g − 1//2=3 if hK .DE=K / < 24.g − 1/;

bE =
{

20 · 105:75 + 1 if hK .DE=K / ≥ 24.g − 1/;

20 · 105:5+11:5g + 1 if hK .DE=K / < 24.g − 1/:

THEOREM. |E.OS/| ≤ aE · .bE/
r + 810· 24r · 224m.s+s2/.

Let us compare the above theorem with the result of Hindry and Silverman ([3]).
Let

cE =
{

107:1 if hK .DE=K / ≥ 24.g − 1/;

107+12g if hK .DE=K / < 24.g − 1/:

THEOREM 1.1 ([3, Theorem 0.6]).Let K be a one-dimensional function field of
characteristic0 and genusg, and letE=K be a non-constant elliptic curve given by
an S-minimal equation(1). Then|E.OS/| ≤ aE.cE

√|S|/r .
First, we note that in our theorem, we do not need to restrict ourselves to the

cases whereE is S-minimal. Also, in [3], there is no explicit formula given for the
symbol|S|. Consider the elliptic curveE defined overK = Q.t/byY2 = X3−p.t/X,
wherep.t/ = t2l + 2t l + 2, andl is a large integer. Its discriminant is1 = 4p.t/3.
Take S = {∞; vp.t/} and R = .x; y/ = .−1; t l − 1/. ThenR is anS-integral point
of E. The Weil height ofy is l , but the size ofS is 2. If Proposition 8.2 in [3] is
to be true, then|S| should not be the cardinality ofS which is 2 here. Instead|S|
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should be 2l + 1, which is the size of the places ofSQ.t/ sitting over S. But then
we see that there are countably infinitely many cases where our bound is better than
Hindry-Silverman’s bound.

Here is the sketch of the proof. We first divide the set ofS-integer points into
two subsets, the first contains points with heights bounded above by a constant which
depends onE, the second contains the remaining points. We bound the cardinality
of the first set by using the counting method from [3] which applies the result of
Mason [5]. For the second set, we associate to anS-integer point some unit equations
over certain field extension and use the machinery developed by Evertse [1, 2].

2. Heights and 2-division points

2.1. Heights Let us fix our convention on the heights on fields. We can considerK
as a finite extension of a rational function fieldk.t/.

Let I be a maximal set of pairwise non-associate irreducible polynomials ink[t].
For ¾.t/ ∈ k.t/∗, write ¾.t/ = C

∏
�∈ I �

n�.¾/, whereC ∈ k∗ and only finitely many of
the integersn�.¾/ are non-zero. Putv�.¾/ = deg.�/n�.¾/. Define deg.v�/ = deg.�/.

If ¾ = ¾1=¾2, with ¾1; ¾2 ∈ k[t], put v∞.¾/ = deg.¾2/ − deg.¾1/. Also, define
deg.v∞/ = 1. Then we have the product formula

∑
v∈Mk.t/

v.¾/ = 0;

whereMk.t/ = {v∞} ∪ {v� : � ∈ I } is the set of valuations onk.t/.
Following Evertse [2, Section 1.3], we have onK a setMK of valuations which

are normalized with respect toMk.t/ and the product formula
∑

v∈MK
v.¾/, for every

¾ ∈ K ∗ also holds. Thus eachvaluationv ∈ MK is obtained from a rational irreducible
divisor, denoted as[v].

For anyv ∈ MK , there is an associatedv0 ∈ Mk.t/ and a positive integerev such that
v.¾/ = evv0.¾/, for every¾ ∈ k.t/∗. Let Kv, k.t/v0 be respectively the completions
of K andk.t/. Then the degree ofv is defined as follows

deg.v/ = [Kv : k.t/v0] deg.v0/:

The heighthK on K is defined byhK.¾/ = ∑
v∈MK

max{0;−v.¾/}, if ¾ ∈ K ∗ and
hK .0/ = 0.

For a divisorC = ∑
v∈MK

mv[v], puthK .C / = ∑
v∈MK

max{0;mv}deg.v/.

2.2. 2-division points In this section, we quote some results from [7]. All the
statements can be easily checked.
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Let P = .¾; �/ ∈ E.Os/, K1 = K .Þ; þ; 
 / andL = K1.
√
¾−Þ;√¾−þ;√¾−
 /.

Fix a choice of square roots, and let

� − Þ =
(√
¾ − Þ + √

¾ − þ
)(√

¾ − Þ + √
¾ − 


)
:

Then there exists− ∈ L such that the pointQ = .�; −/ in E.L/ satisfies 2Q = P.
Moreover, if D0 = .Þ;0/ ∈ E[2] andQ′ = .� ′; − ′/ = Q + D0 in E.L/, then

.� ′ − Þ/.� − Þ/ = .Þ − þ/.Þ − 
 /:(3)

From this, we see that ifT;T1;T2 are respectively valuations inML sitting over
respectively those inS; S1; S2, andT3 = T ∪ T1 ∪ T2, then� − Þ, � − þ, � − 
 are all
T3-units.

Note that if P′ is another point inE.K / such thatP − P′ ∈ 2E.K /, then from
the Kummer sequence, bothP andP′ determine the same class inH 1.K ; E[2]/ and,
in particular, they determine the same extensionL=K . Therefore, the extensionL=K
only depends on the image ofP in E.K /=2E.K /.

3. The units equation

3.1. The units equation For P = .¾; �/, there are four choices ofQ= .�; −/∈ E.L/
such that 2Q = P. For each suchQ, let

M = max

{
hL

(
� − Þ

Þ − þ

)
;hL

(
� − þ

þ − 


)
;hL

(
� − 



 − Þ

)}
:

An element¦ in {.� − Þ/=.Þ − þ/; .� − þ/=.þ − 
 /; .� − 
 /=.Þ − 
 /} is called
maximal if hL.¦ / = M .

Let us write any one of the following equations(
� − Þ

Þ − þ

)
−

(
� − þ

Þ − þ

)
+ 1 = 0;(Þ) (

� − þ

þ − 


)
−

(
� − 


þ − 


)
+ 1 = 0;(þ) (

� − 



 − Þ

)
−

(
� − Þ


 − Þ

)
+ 1 = 0(
 )

as

x0 + x1 + x2 = 0;(Ž)

whereŽ ∈ {Þ; þ; 
 }. Put x = .x0; x1; x2/ and say that.Q; x/ is associated withP
(through (Ž)). We callx maximal, if x0 is maximal. We define

hL.x/ =
∑
w∈ML

max{−w.x0/;−w.x1/;−w.x2/}:
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Then we havehL.x/ = hL.x0/.
LetC be a constant whose value will be determined latter. LetI be the set consisting

of those.P;Q; x/ such thatP ∈ E.OS/, .Q; x/ is associated withP, x is maximal,
andhL.x/ ≤ ChL.DE=K /.

For Ž ∈ {Þ; þ; 
 }, let II Ž be the set consisting of those.P;Q; x/ such that
P ∈ E.OS/, .Q; x/ is associated withP through (Ž), x is maximal, andhL.x/ >
ChL.DE=K /.

Let Ĩ , ˜II Ž be the image ofI , II Ž under the projectionsI −→ E.O/, IIŽ → E.O/,
by .P;Q; x/ 7→ P.

3.2. Case I Suppose that.P;Q; x/ ∈ I andQ = .�; −/. Then

hL

(
− 4

1

)
≤ 2

(
hL

(
� − Þ

Þ − þ

)
+ hL

(
� − þ

þ − 


)
+ hL

(
� − 



 − Þ

))
≤ 6hL.x/:(4)

Let ĥK (respectively,ĥL) denote the canonical height ofE over K (respectively,
over L).

LEMMA 3.1. If P ∈ Ĩ , thenĥK .P/ ≤ .1=3/.1 + 6C/hK .DE=K /.

PROOF. Let .Q; x/ be associated withP. We have

ĥK.P/ = .1=[L : K ]/ĥL.P/; hK .DE=K / = .1=[L : K ]/hL.DE=K /

It suffices to showĥL.P/ ≤ .4=12/.1 + 6C/hL.DE=K /. This will follow from
hL.DE=L / ≤ hL.DE=K /, ĥL.P/ = 4ĥL.Q/, (4) and [3, Proposition 8.3] which says
thatĥL.Q/ ≤ .1=12/hL.−

4=1/+ 1=12hL.DE=L/.

LEMMA 3.2. Let Ĩ ′ be the set ofP ∈ E.K / such that

ĥK .P/ ≤ .1=3/.1 + 6C/hK .DE=K /:

ThenĨ ⊂ Ĩ ′ and E.K /tor ⊂ I ′. Moreover,

(1) | Ĩ ′| ≤ 144.4.1011:5.1 + 6C//1=2 + 1/r , if hK.DE=K / ≥ 24.g − 1/;
(2) | Ĩ ′| ≤ .8³2.g − 1//2=3.4.1011+23g.1+ 6C//1=2 + 1/r , if hK.DE=K / < 24.g − 1/.

PROOF. We follow the method used in the proof of [3, Theorem 8.1], where a
counting lemma from [6] is used. Thus we have

| Ĩ ′| ≤ |E.K /tor|
(
2
√

4.1 + 6C/hK .E/=¼+ 1
)r

;
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wherehK.E/ = .1=12/hK .DE=K /, and

¼ =
{

10−11:5hK.E/ if hK.E/ ≥ 2.g − 1/;

10−11−23ghK .E/ if hK.E/ < 2.g − 1/:

Also,

|E.K /tor| ≤
{

144 if hK .E/ ≥ 2.g − 1/;

.8³2.g − 1//2=3 if hK .E/ < 2.g − 1/:

3.3. Local calculations Let v ∈ S1 andKv be the completion ofK atv. Then (1)
is a local minimal Weierstrass equation ofE=Kv. Let Lw be the completion ofL atw
sitting overv. For P = .¾; �/ ∈ E.Kv/, Q = .�; −/ ∈ E.Lw/ such that 2Q = P, let

x0;Þ = .� − Þ/=.Þ − þ/; x1;Þ = −.� − þ/=.Þ − þ/; x2;Þ = 1;

x0;þ = .� − Þ/=.þ − 
 /; x1;þ = −.� − 
 /=.þ − 
 /; x2;þ = 1;(5)

x0;
 = .� − 
 /=.
 − Þ/; x1;
 = −.� − Þ/=.
 − Þ/; x2;
 = 1:

Suppose thatE=Kv has multiplicative reduction atv. Then exactly one element among
the set{Þ − þ; þ − 
; 
 − Þ} has positive valuation and the others are local units.
We assume thatv.þ − 
 / > 0 andv.Þ − þ/ = v.
 − Þ/ = 0. Let Q′ = .� ′; − ′/ =
Q + .Þ;0/. Then (3) implies thatw.� − Þ/ = w.� ′ − Þ/ = 0.

Similarly, if Q′′ = .� ′′; − ′′/= Q+.þ;0/, then from.�−þ/.� ′′−þ/= .þ−Þ/.þ−
 /,
we getw.� − þ/ ≤ w.þ − 
 /. We also havew.� − 
 / ≤ w.þ − 
 /. Therefore,

w.x1;Þ / = max{w.x0;Þ/;w.x1;Þ /;w.x2;Þ /};
w.x2;þ / = max{w.x0;þ /;w.x1;þ /;w.x2;þ /};
w.x0;
 / = max{w.x0;
 /; w.x1;
 /; w.x2;
 /}:

We have proved the following lemma.

LEMMA 3.3. Suppose thatv ∈ S1 andw is a place ofL abovev. If E=Kv has
multiplicative reduction, then there existiÞ; i þ; i 
 ∈ {0;1;2}, which depend onE=K v

only such that for everyP ∈ E.Kv/, we have

w.xiÞ ;Þ/ = max{w.x0;Þ/;w.x1;Þ /;w.x2;Þ /};
w.xiþ ;þ/ = max{w.x0;þ /;w.x1;þ /;w.x2;þ /};
w.xi
 ;
 / = max{w.x0;
 /; w.x1;
 /; w.x2;
 /}:

For P̂ = .¾̂ ; �̂/ ∈ E.Kv/, Q̂ = .�̂ ; −̂ / ∈ E.Lw/ such that 2̂Q = P̂, define
x̂ j ;Þ; x̂ j ;þ; x̂ j ;
 , j = 0;1;2; as in (5). We denote byE0.Kv/ (respectively,E1.Kv// the
set of elements inE.Kv/ whose reduction atv are smooth (respectively, the identity).
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LEMMA 3.4. Supposev ∈ S1; E=Kv has additive reduction atv andw is a place
of L sitting overv. For P ∈ E.Kv/, Q ∈ E.Lw/ such that2Q = P, there exist
iÞ; i þ; i 
 ∈ {0;1;2}, which depends onE=K v and Q and such that ifP̂ ∈ E.Kv/,
Q̂ ∈ E.Lw/ with 2Q̂ = P̂ and Q̂ − Q ∈ E0.Kv/, then

w.x̂iÞ;Þ / = max{w.x̂0;Þ /;w.x̂1;Þ/;w.x̂2;Þ /};
w.x̂iþ;þ / = max{w.x̂0;þ /;w.x̂1;þ /;w.x̂2;þ /};
w.x̂i
;
 / = max{w.x̂0;
 /; w.x̂1;
 /; w.x̂2;
 /}:

PROOF. Put R = Q̂− Q = .�0; −0/. Leta be min{w.Þ−þ/;w.þ −
 /;w.
 −Þ/}.
Thena > 0. Let L ′

w′ be an extension ofLw such that

min{w′.Þ − þ/;w′.þ − 
 /;w′.
 − Þ/} = 2m

for some positive integerm. Then E=L ′
w′ has semi-stable reduction atw′. In fact,

if ³w′ is a prime element ofL ′
w′, then the substitution{

x̃ = ³−2m
w′ .x − Þ/;

ỹ = ³−3m
w′ y;

(6)

transforms (1) into

Ẽ : ỹ2 = .x̃ − Þ̃/.x̃ − þ̃/.x̃ − 
̃ /;(7)

whereÞ̃ = 0, þ̃ = ³−2m
w′ .þ − Þ/, 
̃ = ³−2m

w′ .
 − Þ/ are all local integers and at least
two elements in the set{Þ̃ − þ̃; þ̃ − 
̃ ; 
̃ − Þ̃} are local units. We assume that

w′.Þ̃ − þ̃/ = 0 = w′.Þ̃ − 
̃ /:(8)

Denote the transformation ofR (respectively,Q, D0 := .Þ;0/, D1 := .þ;0/,
D2 := .
;0/, Q′ := Q + D0, Q′′ := Q + D1, Q′′′ := Q + D2) under (6) by
R̃ = .�̃0; −̃0/ (respectively,Q̃ = .�̃ ; −̃ /, D̃0 = .Þ̃;0/, D̃1 = .þ̃;0/, D̃2 = .
̃ ;0/,
Q̃′ = .�̃ ′; −̃ ′/ = Q̃ + D̃0, Q̃′′ = .�̃ ′′; −̃ ′′/ = Q̃ + D̃1, Q̃′′′ = . ˜� ′′′; ˜− ′′′/ = Q̃ + D̃2).
We introduce similar notations for̂Q. BecauseR ∈ E0.Kv/, we haveR̃ ∈ Ẽ1.L ′

w/.
Since ˜̂Q′ = Q̃ + D̃0 + R̃ = Q̃′ + R̃, the reductions atw′ of ˜̂Q′ andQ̃′ are the same.
In particular, the reduction of̃̂Q′ is the identity if and only if that ofQ̃′ is identity.
Consequently, we have thatw′. ˜̂x′

0;Þ/ < 0 if and only ifw′.x̃′
0;Þ/ < 0. From (3) and (8),

we have thatw′. ˜̂x0;Þ/ > 0 if and only ifw′.x̃0;Þ/ > 0.
Note that forj = 0;1;2, andŽ = Þ; þ; 
 , we havex̃ j ;Ž = xj ;Ž, and ˜̂x j ;Ž = x̂ j ;Ž.
If Ẽ=L ′

w′ has good reduction atw′, thenw′.þ−
 / = 0 and so as before we see that
w′.xj ;Ž/ > 0 is equivalent tow′.x̂ j ;Ž/ > 0, for j = 0;1;2 andŽ = Þ; þ; 
 . We then
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chooseiÞ; i þ; i 
 in the following way. If for aŽ ∈ {Þ; þ; 
 }, we havew.xj ;Ž/ > 0 for
some j , then we choosei Ž = j . Otherwise, we choosei Ž = 2. This proves the lemma
for the potentially good reduction case.

It remains to prove the case whereẼ=L ′
w′ has multiplicative reduction. By (8), we

must havew′.þ̃ − 
̃ / > 0. From ˜̂Q = Q̃ + R̃ we have ˜̂Q =∈ Ẽ0.L ′
w′/ if and only if

Q̃ =∈ Ẽ0.L ′
w′/. Consequently, we havew′. ˜̂� − þ̃/ > 0 if and only ifw′.�̃ − þ̃/ > 0.

From (8), we see thatw′. ˜̂x1;Þ/ > 0 if and only ifw′.x̃1;Þ/ > 0.
Also, the reductions atw′ of ˜̂Q′′ and Q̃′′ are the same, and this leads to the

equivalence betweenw′. ˜̂� ′′ − þ̃/ < 0 andw′.�̃ ′′ − þ̃/ < 0. From.�̃ − þ̃/.�̃ ′′ − þ̃/ =
.þ̃ − Þ̃/.þ̃ − 
̃ / it follows thatw′.x̃0;þ/ > 0 if and only ifw′. ˜̂x0;þ/ > 0.

We can use methods similar to the above to show thatw′.x̂ j ;Ž/ > 0 if and only if
w′.xj ;Ž/ > 0 for Ž ∈ {Þ; þ; 
 }, j ∈ {0;1;2}. We then let

i Ž =
{

j if w′.xj ;Ž/ > 0;

2 if w′.x0;Ž/ = w′.x1;Ž/ ≤ 0:

3.4. Case II For x = .x0; x1; x2/ ∈ P2.L/;w ∈ ML , put

mw.x/ = min{w.x0/;w.x1/;w.x2/} − max{w.x0/;w.x1/;w.x2/}:

LEMMA 3.5. If Ž ∈ {Þ;þ; 
 }; P ∈ ˜II Ž, and.Q; x/ is associated toP, then

∑
w∈T1

mw.x/ ≥ −.1=2/hL.DE=K /:

PROOF. Without loss of generality, we may assume that

Ž = Þ; x =
(
� − Þ

Þ − þ
;− � − þ

Þ − þ
;1

)
:

Let Q′ = .� ′; − ′/ = Q + D0 as before. Then (3) implies that

−w.Þ − þ/ ≤ w..� − Þ/=.Þ − þ// ≤ w.Þ − 
 /:

Similarly, we have

−w.Þ − þ/ ≤ w..� − þ/=.Þ − þ// ≤ w.þ − 
 /:

If max{w..� − Þ/=.Þ − þ//;w..� − þ/=.Þ − þ//;0} > 0, then

min{w..� − Þ/=.Þ − þ//;w..� − þ/=.Þ − þ//;0} = 0

andmw.x/ ≥ −.1=2/w.1E=K / .
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If max{w..� − Þ/=.Þ − þ//;w..� − þ/=.Þ − þ//;0} = 0, then

min{w .� − þ=Þ − þ/ ;w .� − þ=Þ − þ/ ;0} ≤ 0

andmw.x/ ≥ −.1=2/w.1E=K /. Therefore,∑
w∈T1

mw.x/ ≥
∑
w∈T1

−.1=2/w.1E=K / ≥ −.1=2/hL.DE=K /.

LEMMA 3.6. If Ž ∈ {Þ; þ; 
 }, .P;Q; x/ ∈ II Ž, then∑
w∈T∪T2

mw.x/ < −3.1 − .1=6C//hL.x/:(9)

PROOF. Recall thatT3 = T ∪ T1 ∪ T2. Following the proof of [2, Lemma 2] and
using the product formula we have∑

w∈T3

mw.x/

=
∑
w∈T3

..w.x0/ +w.x1/+w.x2// − 3 max{−w.x0/;−w.x1/;−w.x2/}/

=
∑
w∈ML

..w.x0/ +w.x1/+w.x2// − 3 max{−w.x0/;−w.x1/;−w.x2/}/

= −3hL.x/:

By Lemma3.5, we have∑
w∈T∪T2

mw.x/− .1=2/hL.DE=K / ≤
∑

w∈T∪T2

mw.x/+
∑
w∈T1

mw.x/ = −3hL.x/;

and therefore,∑
w∈T∪T2

mw.x/ < −.3hL.x/− .1=2C/hL.x// = −3.1 − .1=6C//hL.x/.

The extensionL=K depends only on the class ofP in E.K /=2E.K /. For each
classSP0 in E.K /=2E.K / and forŽ ∈ {Þ; þ; 
 }, denote byII Ž;SP0

the set of.P;Q; x/
in II Ž such thatSP = SP0; and by ˜II Ž;SP0

its image inE.Os/. EveryP in ˜II Ž;SP0
determines

the same field extensionL=K .
The following lemma is the additive form of [2, Lemma 1].

LEMMA 3.7. Let B be a real number with0 < B < 1, let Y be an index set of
cardinality q ≥ 1 and putR.B/ = .1 − B/−1BB=.B−1/. Then there exists a setW of
cardinality at mostmax.1; .2B/−1/R.B/q−1, consisting of tuples.00

j / j ∈Y with00
j ≥ 0,
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j ∈ Y and
∑

j ∈Y 0
0
j = B with the following property: for every set of realFj , j ∈ Y,

and real3 with Fj ≤ 0;∀ j ∈ Y and
∑

j ∈Y Fj ≤ 3 there exists a tuple.0 j / j ∈Y ∈ W
such thatFj ≤ 00

j3, for all j ∈ Y.

For a real number 0< B < 1, write B1 = B.1 − .1=6C//.

LEMMA 3.8. Let B be a real number satisfying1=2 ≤ B < 1. For each SP0 ∈
E.K /=2E.K /, there exists a setWSP0

of cardinality at most3t+t2 R.B/t+t2−1, consisting
of tuples.i .w/w∈T∪T2; .0w/w∈T∪T2/ with i .w/ ∈ {0;1;2}, 0w ≥ 0 for all w ∈ T ∪ T2

and
∑

w∈T∪T2
0w = B1 such that : for everyŽ ∈ {Þ; þ; 
 }; .P;Q; x/ ∈ II Ž;SP0

, there is
a tuple.i .w/w∈T∪T2; .0w/w∈T∪T2/ in WSP0

such that

−w.xi .w//− max{−w.x0/;−w.x1/;−w.x2/} ≤ 30whL.x/ for w ∈ T ∪ T2:(10)

PROOF. We apply Lemma3.7. Take3 = −3.1 − .1=6C//hL.x/. Let T ∪ T2 be
the index set, setq = |T ∪ T2|. For eachw ∈ T ∪ T2, takeFw = mw.x/ and denote
0w = 00

w.1− .1=6C//. Then apply the inequality (9). For each.x/, choosei .w/ such
that−w.xi .w// = min{−w.x0/;−w.x1/;−w.x2/}. In general, for eachw ∈ T ∪ T2,
there are three choices fori .w/.

In Lemma3.8, for a.P;Q; x/ ∈ II Ž;SP0
, we can actually extend the tuple.i .w/w∈T∪T2;

.0w/w∈T∪T2/ to a tuple.i .w/w∈T3; .0w/w∈T3/ by taking, forw ∈ T1, 0w = 0 andi .w/ to
be thei Ž described in Lemma3.3and Lemma3.4. Then we have

−w.xi .w//− max{−w.x0/;−w.x1/;−w.x2/} ≤ −30whL.x/;w ∈ T3:(11)

Note that forw ∈ T1, the choice ofiw may depend on.P;Q; x/.

DEFINITION 3.1. For fixed Ž ∈ {Þ; þ; 
 }, P0 ∈ E.K /, two triples .P;Q; x/,
.P′;Q′; x′/ in II Ž;SP0

are equivalent if there is anR ∈ 12E.K / such thatQ′ =
Q + R. They are strictly equivalent if they are equivalent and there is a tuple
.i .w/w∈T∪T2; .0w/w∈T∪T2/ in WSP0

such that bothx andx′ satisfy (10).

If w ∈ T1;w|v and E=Kv is of additive reduction, then 12E.K / ⊂ E0.Kv/.
Therefore, by Lemma3.3 and Lemma3.4, if .P;Q; x/ and.P′;Q′; x′/ are strictly
equivalent they both satisfy (11), for the same extended tuple.i .w/w∈T3; .0w/w∈T3/.

This proves the following lemma.

LEMMA 3.9. Let B be a real number satisfying1=2 ≤ B < 1. For eachŽ ∈
{Þ; þ; 
 }, SP0 ∈ E.K /=2E.K /, and each equivalent class2 in II Ž;SP0

, there exists a
setW2 of cardinality at most3t+t2 R.B/t+t2−1, consisting of tuples.i .w/w∈T3; .0w/w∈T3/
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with i .w/ ∈ {0;1;2}, 0w ≥ 0 for all w ∈ T3 and
∑

w∈T3
0w = B1 such that for every

.P;Q; x/ ∈ 2, there exists a tuple.i .w/w∈T3; .0w/w∈T3/ in W2 such that

−w.xi .w//− max{−w.x0/;−w.x1/;−w.x2/} ≤ 30whL.x/ for w ∈ T3:(12)

LEMMA 3.10. For Ž ∈ {Þ; þ; 
 }, we have|II Ž| ≤ 1080.24/r 82t 82t2.

PROOF. According to [2, Theorem 2′], if B1 = 0:846 then associated to a tuple in
W2, (11) has at most 10 solutions. We takeC = 4. ThenB = 0:846· 24=23 ≤ 0:883.
andR.B/ ≤ 64=3.

Therefore, each strictly equivalent class inII Ž;SP0
contains at most 10 elements.

By Lemma3.8, there are at most.12/r +2 3t+t2 R.B/t+t2−1 strictly equivalent classes
in II Ž;SP0

. We have 3t+t2.64=3/t+t2−1 = .3=64/82t+2t2. SinceII Ž is decomposed into a
disjoint union of at most 2r +2 subsets of the formII Ž;SP0

, there are at most 10× 4 ×
24r × 242 × 3=64× 82t+2t2 elements inII Ž.

Let m = |K .Þ; þ; 
 / : k|. Thent ≤ 4msandt2 ≤ 4ms2.

LEMMA 3.11. |E.Os/ \ Ĩ | ≤ 810· 24r · 224m.s+s2/.

PROOF. If P ∈ E.Os/ \ I , then four choices of signs give at least four elements in
II Þ ∪ IIþ ∪ II 
 . Therefore,E.Os/ \ Ĩ has cardinality not greater than.|IIÞ| + |IIþ | +
|II
 |/=4.

Using the above and Lemma3.2, we prove the following:

THEOREM 3.12. We have

(1) |E.Os/| ≤ 144.20· 105:75 + 1/r + 810· 24r · 224m.s+s2/ if hK.DE=K / ≤ 24.g − 1/;
(2) |E.Os/| ≤ .8³2.g−1//2=3.20·105:5+11:5g+1/r +810·24r ·224m.s+s2/, if hK .DE=K <

24.g − 1/.
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