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Abstract

We prove a new formula for the number of integral points on an elliptic curve over a function field without
assuming that the coefficient field is algebraically closed. This is an improvement on the standard results
of Hindry-Silverman.

2000Mathematics subject classificatioprimary 11G05; secondary 14H52.

1. Introduction

Serge Lang has conjectured that on a minimal Weierstrass equation of an elliptic curve
over a number field, the number of integral points should be bounded solely in terms
of the field and the rank of the group of rational points page 140]. Hindry and
Silverman B] proved an analogue of Lang’s conjecture for non-constant elliptic curves
over zero-characteristic one-dimensional function fields. Influenced by the original
work of Mason p], we use a formula on 2-divison points given by Tah &nd the
method of Evertsel] 2] to prove another analogue of Lang's conjecture for these
curves.

Let K be the field of rational functions on an algebraic curve of ganaser the
constant fieldk of characteristic 0. We do not assume thas algebraically closed.
Let My denote the set of all places Kf. For a finite subse® of My, denote byos
the ring of S-integers ofK. Consider a non-constant elliptic curizedefined by

(1) y'=x}+ Ax+B, A Bes
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The set ofS-integral points of this curve IE(0s) = {P € E(K) : x(P), y(P) € &5s}.
Let A = —(4A% + 27B?) be the discriminant of the equatiof) (@nd Z¢« be the
divisor of the minimal discriminant o /K. Then we have

2 (A) =T +12) p, v,

veMg

for some integerg,, wherep, > 0, if v ¢ S. Let«, B, y be the three roots of
x3 4+ Ax + B = 0 (in some extension field) and letbe the degrefK (a, 8, y) : K]
which is at most 6. Define

S={veM:v¢SuvA) >0, =0 and
S={veM¢:v¢Sp, >0

Denote bys, s;, S, the cardinality ofS, S; andS,. Denote the rank oE(K) byr. Let
hk (Zg/«k) be the height of7¢ « (see Sectior2.1). Put

144 ifhi (Ze/x) > 249 — 1);
| @r2(g—- 1) if he(Zex) < 249 — 1),
£ 7 )20 10p5+1150 4 1 if hi (Zejx) < 24(g — 1).

THEOREM. |E(03)| < ag - (bg)" + 810- 24 . 224ms+s),

Let us compare the above theorem with the result of Hindry and Silvern3gn ([
Let

c — 107t if hg (Zg/x) > 24(g — 1),
5T |10 if hy (Zej) < 24(g — 1).

THEOREM 1.1 ([3, Theorem 0.6]) Let K be a one-dimensional function field of
characteristicO and genugy, and letE/K be a non-constant elliptic curve given by
an S-minimal equatiorn(1). Then|E(0s)| < ag(Ce+/|9])".

First, we note that in our theorem, we do not need to restrict ourselves to the
cases wher& is S-minimal. Also, in [3], there is no explicit formula given for the
symbol|S|. Consider the elliptic curve defined oveK = Q(t) byY? = X3—p(t)X,
wherep(t) = t? + 2t' + 2, andl is a large integer. Its discriminantis = 4p(t)®.
Take S = {00, vy} @andR = (x,y) = (=1, t' — 1). ThenR is anS-integral point
of E. The Weil height ofy is |, but the size ofSis 2. If Proposition 8.2 inJ] is
to be true, thenS| should not be the cardinality & which is 2 here. Insteafd)
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should be R+ 1, which is the size of the places @f(t) sitting overS. But then
we see that there are countably infinitely many cases where our bound is better thar
Hindry-Silverman’s bound.

Here is the sketch of the proof. We first divide the setSafteger points into
two subsets, the first contains points with heights bounded above by a constant whict
depends ork, the second contains the remaining points. We bound the cardinality
of the first set by using the counting method fro8) yhich applies the result of
Mason p]. For the second set, we associate tdinteger point some unit equations
over certain field extension and use the machinery developed by Everf§e [

2. Heights and 2-division points

2.1. Heights Let us fix our convention on the heights on fields. We can con¥der
as a finite extension of a rational function fied¢t).

Let | be a maximal set of pairwise non-associate irreducible polynomiddg jn
For&(t) € k(t)*, write&(t) = C ]_[nEI n™®, whereC € k* and only finitely many of
the integers, (£) are non-zero. Put, (&) = degn)n, (). Define degv,) = degn).

If & = &/&, with &, & € K[t], putv,.(§) = degé,) — degé;). Also, define
deqv,,) = 1. Then we have the product formula

Y v =0

ve My

whereMy, = {v} U {v, : n € 1} is the set of valuations ok(t).

Following Evertse 2, Section 1.3], we have o a setMy of valuations which
are normalized with respect td,, and the product formuld_ _,, v(§), for every
& € K*also holds. Thus eachvaluatiore M is obtained from a rational irreducible
divisor, denoted ap].

For anyv € M, there is an associategl € M, and a positive integes, such that
v(§) = ep(§), for everyg € k(t)*. LetK,, k(t),, be respectively the completions
of K andk(t). Then the degree af is defined as follows

degv) = [Kv : k(t)vo] degUO)‘
The heighthy on K is defined byhg (§) = >

For adivisorg' = ) _, m,[v], puthc (%) =}, max0, m,} degv).

max0, —v(&)}, if £ € K*and

veMk

2.2. 2-division points In this section, we quote some results frow. [ All the
statements can be easily checked.
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LetP=(§,7n) € E(0y), Ki=K(e, B, y) andL = Ki(V§ —a, VE—B, VE—V).
Fix a choice of square roots, and let

t—a=(VE—atVE—F)(VE—a+tvE—y).

Then there exists € L such that the poinQ = (¢, ) in E(L) satisfies ) = P.
Moreover, if Dy = («, 0) € E[2] andQ’ = (¢/, t/) = Q + Dy in E(L), then

3) G =) —a)=(a—B)la—y).

From this, we see that if, T;, T, are respectively valuations il sitting over
respectively those i§, S;, S,, andT; = TUT, U T,, then; —«,¢ — B,¢ — y areall
Ts-units.

Note that if P" is another point inE(K) such thatP — P’ € 2E(K), then from
the Kummer sequence, bokthand P’ determine the same classkh'(K, E[2]) and,
in particular, they determine the same extengigi. Therefore, the extensidn/K
only depends on the image Bfin E(K)/2E(K).

3. The units equation

3.1. The units equation For P = (¢, ), there are four choices@ = (¢, 1) e E(L)
such that = P. For each sucl®, let

M=max{hL(g_O(),hL(ﬂ),hL(z_y)}.
oa—p B—v y —«a
An elemento in {(& —a)/(@ — B), & — B)/(B—¥), & —y)/(a —y)}is called

maximal ifh_ (o) = M.
Let us write any one of the following equations

(o) (i:;)—(i:ﬁ>+1=o,

" (=) (=) 2=
" (=0)- (=) veeo
as

Q) Xo + X1+ Xp = 0,

wheres§ € {a, B, y}. Putx = (Xg, X1, X2) and say thatQ, x) is associated withP
(through 6)). We callx maximal, if X, is maximal. We define

heX) = ) max—w(x), —w(x), —w(X)}.

weMp
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Then we havéda (X) = h (Xp).

LetC be a constantwhose value will be determined latter.| et the set consisting
of those(P, Q, x) such thatP € E(&5), (Q, X) is associated withP, x is maximal,
andhy (x) < Chy(Zgx).

For 6§ € {a,B,y}, let ll; be the set consisting of thosd®, Q, x) such that
P € E(0s), (Q,X) is associated withP through §), x is maximal, anch_ (x) >
ChL(@E/K).

Let I, ll; be the image of, Il; under the projections — E(0), ll; — E(©),
by (P, Q, x) — P.

3.2. Case | Suppose thatP, Q,x) € | andQ = (¢, ). Then

0 0 ()=o) () o (22)) s

Let h (respectivelyf, ) denote the canonical height & over K (respectively,
overlL).

LEMMA 3.1. If P e I, thenﬁK(P) < (1/3)(1 4 6C)hg (Ze k).
PrROOF. Let (Q, x) be associated witP. We have
hk(P) = (1/IL : KDAL(P),  hw(Ze) = (1/IL : KDh(Ze )
It suffices to showh (P) < (4/12)(1 + 6C)h.(Zg/). This will follow from
hL(@AE/L) S hL(@E/K)I hL(P) = 4h|_(Q), (4) and I_B, PI’OpOSItIOﬂ 83] Wh'Ch SayS
LEMMA 3.2. LetI” be the set oP € E(K) such that

hk (P) < (1/3)(1 + 6C)hx (Zg ).

Thenl c I” and E(K)yr C I’. Moreover,

(1) |1"] < 1444(10"5(1 + 6C)Y2 + 1), if hy (Zex) > 24(g — 1);
(2) [I"] < (8r2(g — 1))¥(4(10"29(1+ 6C))Y2 + 1), if hi (Zejx) < 24(g — D).

ProOOF. We follow the method used in the proof 08,[Theorem 8.1], where a
counting lemma from€] is used. Thus we have

7 < B0l (2/40+ 6C)Nc (E) /1 + 1)r ,
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WherehK(E) == (l/lZ)hK(@E/K), al’ld

_ |10 (B) if hq(E) > 2(g - 1),
m= {wﬂzth(E) if he(E) <2(g—1).

Also,
144 if he(E) > 2(g—1),

[E(K)orl = ,
(87%(g —1)%° if he(E) <2(g-1). O

3.3. Local calculations Letv € S andK, be the completion oK atv. Then ()
is a local minimal Weierstrass equation®fK,. Let L, be the completion of atw
sitting overv. ForP = (¢, 7n) € E(K,), Q = (¢, 1) € E(L,) suchthat® = P, let

Xou =& —a)/(@=p), Xia=—C—=B)/(@—=p), %=1
(5) Xop =G —a)/(B—y), Xp=—C—=V)/B-v) Xp=1

Xo, = =9y —a), X, == —-a)/(y —a), X, =1
Suppose thdE /K, has multiplicative reduction at Then exactly one elementamong
the setfa — B, B8 — y, y — a} has positive valuation and the others are local units.
We assume that(8 — y) > O andv(a — B) = v(y —a) =0. LetQ = (', 7)) =
Q + («, 0). Then @) implies thatw(¢ — o) = w(¢’ —a) = 0.

Similarly, if Q" =(¢”, t") = Q+ (B, 0), then from(t —B)(¢"—B) = (B—a)(B—),
we getw(¢ — B) < w(B — y). We also havev (¢ — y) < w(B — y). Therefore,

W(X1e) = Maxw(Xoq), WXee), W(X2a)},
WXz p) = Max{w(Xo ), w(Xyp), wXzp)},
w(XOy) = max{w(XO,y)9 w(Xl,y)9 w(XZ,y)}‘

We have proved the following lemma.

LEMMA 3.3. Suppose that € S and w is a place ofL abovev. If E/K, has
multiplicative reduction, then there exist iz, i, € {0, 1, 2}, which depend o /K,
only such that for ever? € E(K,), we have

WX, o) = Max{w(Xoa), WX1a), WXz},
w(Xi, ) = Maxw(Xop), w(Xyp), w(Xz )},
w(Xiy,y) = max{w(XO,y)9 w(Xl,y)9 w(XZ,y)}‘
For P = (¢,7) € E(K,), Q = (£,%) € E(L,) such that & = P, define

Xj o X5, Xj,, ] = 0,1, 2 asin ). We denote byEy(K,) (respectivelyE;(K,)) the
set of elements i (K,) whose reduction at are smooth (respectively, the identity).
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LEMMA 3.4. Suppose € S, E/K, has additive reduction at and w is a place
of L sitting overv. For P € E(K,), Q € E(L,) such that2Q = P, there exist
i, ig i, € {0,1, 2}, which depends ofE/K, and Q and such that if° € E(K,),
Qe E(L,) with20 = PandQ — Q € Ey(K,), then

w(X,,) = max{w(Xoq), w(Xye), wXae)},
w()A(i,;ﬁ) = max{w(Xos), w(Xyp), WX p)},
w(X, ) =maxw Xy, ), wXy,), w(Xa,)}.

PROOF. PUtR = Q — Q = (&, 1o). Letabe minw(a — ), w(B —y), w(y —a)}.
Thena > 0. LetL/, be an extension df , such that

minfw’(a — B), w'(B — y), w'(y —a)} =2m

for some positive integem. ThenE/L’, has semi-stable reduction at. In fact,
if 7, is a prime element of’ ,, then the substitution

w'?

—2m

X = X — ),
(6) 7 73m
y = w/ y’
transforms {) into
@) E:y?=X-a)&-p&E—-7p),
whered = 0,8 =7,""(B — ), 7 = *Zm(y — «) are all local integers and at least
two elements in the s¢& — 8, B — 7, 7 — &} are local units. We assume that
(8) w'@—p)=0=w'@-yp).

Denote the transformation dR (respectively,Q, Dy := («,0), D; := (8,0),
= (7,0, Q := Q+ Do, Q" := Q+ Dy, Q" := Q + D) under 6) by

R = (Zo, 7o) (respectlverQ (5 7), Dy = (Ot 0), D; = (ﬂ 0), D, = (7,0),
Q=@¢.7=Q+Dy, Q =("7)=Q+Dy, Q" = ¢".7") = Q+ D).
We introduce similar notations fc(@ BecauseR e EO(K ), we haveR e El(L/ ).
SinceQ = Q+ Dy + R = Q + R, the reductions at’ of Q andQ’ are the same.
In particular, the reduction o@ is the identity if and only if that ofY’ is identity.
Consequently, we have that(xo(x) < Oifand only ifw'(X;,,) < 0. From @) and @),
we have that’ (an) > Oifand only ifw'(Xo,) > O.

Note that forj = 0, 1,2, ands = a, 8, y, we haveX; ; = X; 5, andX; ; = X ;.

If E/L’, has good reduction at', thenw’'(8 — y) = 0 and so as before we see that
w'(X;5) > 0 is equivalent tav'(X; ;) > 0, forj = 0,1,2 and$ = «, B, y. We then
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choosd,, ig, i, in the following way. If for as € {«, B, y}, we havew(x; s) > 0O for
somej, then we choosg = j. Otherwise, we choosg = 2. This proves the lemma
for the potentially good reduction case.

It remains to prove the case th£¢ L/, has muItlpllcatlve reduction. Bygj, we
must havew'(8 — 7) > 0. FromQ = Q + R we haveQ ¢ EO(L/ ,) if and only if
Q¢ EO(L;)) Consequently, we hawe'(Z — B) > 0if and only if w' (¢ — B) > O.
From @), we see that' (X1,,) > 0 if and only if w'(%,,) > O.

Also, the reductions atv’ of Q" and Q" are the same, and this leads to the
equivalence between' (" — f) < 0 andw'(Z” — B) < 0. From( — )" — B) =
(B —a)(B — 7) it follows thatw' (%) > 0 if and only ifw'(Xo ) > O.

We can use methods similar to the above to showhigat; ) > 0 if and only if
w'(X;5) > 0ford € {a, B, v}, ] €{0, 1, 2}. We then let

)i i w(Xs) > 0;
"2 i w () = w/(xes) <O. 0
3.4. Case Il Forx = (Xo, X1, X2) € P2(L), w € M, put

m,, (X) = minfw(Xo), w(X1), w(X2)} — Maxw(Xo), w(X1), w(Xz)}.

LEMMA 3.5.1f 8 € {a. B, v}, P € Il5, and(Q, x) is associated td, then

> om0 = —(1/2h (Ze ).

weTy

PrOOF. Without loss of generality, we may assume that

5=a, x=<§_%—€_ﬂi>
- a—p a-—p

LetQ = (¢, ') = Q + Dy as before. Ther3) implies that

—w(a =) =w(@ —a)/(a = p)) <wla—y).

Similarly, we have

—w(e = p) =w(G = p)/(@—p) =w(B —y).
If max{w (¢ —a)/(a = ), w((¢ — B)/(a — £)),0} > 0, then
minfw((¢ — a)/(a = ), w((¢ — /(@ — p)),0t =0

andm,,(x) > —(1/2w(Agk) -
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If max{w((¢ —a)/(¢ — B), w((¢ — B)/(@ — p)),0} =0, then
minfw (; — B/a—B), w (& —B/a—p),0 <0
andm,,(X) > —(1/2)w(Ag/k ). Therefore,

Dm0 = Y —(1/2w(Agx) = —(1/2)h (Ze ). m

weTy weTy

LEMMA 3.6. If § € {a, B, v}, (P, Q, X) € ll;, then

©) > m,(x) < —3(1— (1/6C)h (x).

weTUT,

ProOOF. Recall thatT; = T U T; U T,. Following the proof of , Lemma 2] and
using the product formula we have

> m,

weTy

= Z (wXo) + w(X1) + w(Xx)) —3Max—w (%), —w(X1), —w(X)})

weTs

= Z (w(Xo) + w(X1) + w(Xx)) —3Max—w(X), —w(X1), —w(X)})

weMp

= —3h.(X).
By Lemma3.5, we have

> M - /M (Zep) < D0 M0+ Y m,(x) = =3 (),

weTUT, weTUT, weTy
and therefore,

Z m, (X) < —(3Bh.(X) — (1/2C)h. (X)) = —3(1 — (1/6C))h.(X). O
weTUT,

The extensiorL /K depends only on the class &f in E(K)/2E(K). For each
classP, in E(K)/2E(K) and fors € {a, B, y}, denote byl 5 5, the set of(P, Q, X)
in 11, such thatP = Py; and byll, 5, its image iNE (). EveryP in Il 5, determines
the same field extensidn/K.

The following lemma is the additive form o2[Lemma 1].

LEMMA 3.7. Let B be a real number witlD < B < 1, letY be an index set of
cardinalityg > 1 and putR(B) = (1 — B)"1B®®-1. Then there exists a s&{ of
cardinality at mostnax(1, (2B)~*)R(B)?*, consisting of tuple€?);cy with '? > 0,
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jeYand}_, ') = B with the following propertyfor every set of reaF;, j € Y,
and realA with F; < 0,Vj e Yand)_,_, F; < A there exists a tuplél’;);cy € W
such thatF; < T9A, forall j € Y.

jeYy
For areal number & B < 1, write B, = B(1 — (1/6C)).

LEMMA 3.8. Let B be a real number satisfyingj/2 < B < 1. For eachP, ¢
E(K)/2E(K), there exists a sal/, of cardinality at mosB'+*?R(B)'*>-1, consisting
of tuples(i (W) wetut,s (Tw)wetur,) Withi(w) € {0,1,2}, T, > Oforall w e TUT,
and)_, rur, ['w = By such that : for every € {«, 8, v}, (P, Q. x) € ll, 5, there is
atuple (i (w)yetut,s (Fw)wetut,) IN Wg, such that

(10) —w(Xjw) — Max{—w(Xy), —w(Xy), —w(Xx)} < 3r,h (x) for weTUT,.

PrOOF. We apply LemméB.7. TakeA = —3(1 — (1/6C))h_(x). Let T U T, be
the index set, sef = |T U T,|. For eachw € T U T,, takeF, = m,,(x) and denote
I, =I'%1-(1/6C)). Then apply the inequalityf. For eachx), choose (w) such
that —w (X ), = MiN{—w(X), —w(X1), —w(X2)}. In general, for eachy € T U Ty,
there are three choices fiamw). O

InLemma3.8 fora(P, Q, x) € ll; 5, we can actually extend the tugl€w),,cu,,
(Fw)wETUTz) tO atuple(i (w)weTy (Fw)weTg) by takingv forw S Tl1 rw = 0 andi (w) to
be thei; described in Lemma.3and LemméaB.4. Then we have

(11)  —ww) — Max—w(X), —wx), —wXx)} < =3I,h (X), w € Ts.
Note that forw € T, the choice of,, may depend 0P, Q, X).

DerFINITION 3.1. For fixed § € {a, B,y}, Py € E(K), two triples (P, Q, X),
(P, Q,x") in ll;5 are equivalent if there is aR e 12E(K) such thatQ' =
Q + R. They are strictly equivalent if they are equivalent and there is a tuple
(i (W)petur,, (Fy)uwetut,) IN Wa, such that bottx andx’ satisfy (L0).

If w e T;,w|v and E/K, is of additive reduction, then BXK) c Ey(K,).
Therefore, by Lemm&.3 and Lemma3.4, if (P, Q, x) and(P’, Q', x") are strictly
equivalent they both satisfyL {), for the same extended tuplgw),ct,, (Fy)wet,)-

This proves the following lemma.

LEMMA 3.9. Let B be a real number satisfying/2 < B < 1. For eachs ¢
{a, B, v}, Py € E(K)/2E(K), and each equivalent clags in Il, 5, there exists a
setWj, of cardinality at mos8' "2 R(B)'*>-t, consisting of tupleé (w),c1,, (Tw)weT,)
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withi(w) € {0,1,2},T,, > Oforall w € T, andzwET3 I', = B; such that for every
(P, Q, X) € O, there exists a tuplé (w),ct,, (I'y)wet,) IN We such that

(12)  —ww) — Max—w(Xy), —w(Xy), —w(Xx)} < 3r,h (x) for w e Ts.
LEMMA 3.10. For § € {a, B, ¥}, we havdll;| < 1080(24)" 8* 8%,

ProOF. According to R, Theorem 3, if B; = 0.846 then associated to a tuple in
W, (11) has at most 10 solutions. We take= 4. ThenB = 0.846-24/23 < 0.883.
andR(B) < 64/3.

Therefore, each strictly equivalent classligs, contains at most 10 elements.
By Lemma3.8, there are at mostl2)'+2 3+2R(B)!*%2~1 strictly equivalent classes
in 15 5. We have 8%(64/3)'*=1 = (3/64) 8*+?2. Sincell, is decomposed into a
disjoint union of at most'2? subsets of the fornii; 5, there are at most 1R 4 x
24 x 24 x 3/64 x 82+ elements irl ;. O

Letm = |K(a, B, ) : kK|. Thent < 4msandt, < 4ms.
LEMMA 3.11. |E(Fs) \ I'| < 810- 24 . 224mst%),

ProOOF. If P € E(&;)\ |, then four choices of signs give at least four elements in
ll, UllgUIl,. ThereforeE(F;) \ I has cardinality not greater thafl,| + Ng] +
[, D/4. O

Using the above and Lemn&2, we prove the following:

THEOREM 3.12. We have
(1) |E(0s)| < 1442010+ 1)" + 810- 24 - 224+ if hy (Zg k) < 24(g — 1);
(2) |E(0s)| < (872(g—1))%3(20-10P>T1139 1 1) 481024 - 224+ if hy (P <
24(g — 1).

Acknowledgement

W.-C. Chi was supported in part by the National Science Council of Taiwan,
NSC91-2115-M-003-006. K.-S. Tan was supported in part by the National Science
Council of Taiwan, NSC90-2115-M-002-014.

References

[1] J.-H. Evertse, ‘On equations i&units and the Thue-Mahler equatiomvent. Math.75 (1984),
561-584.



208 W.-C. Chi, K. F. Lai and K.-S. Tan [12]

[2] ——, ‘On equations in twd-units over function fields of characteristic &¢ta Arith.47 (1986),
233-253.

[3] M. Hindry and J. H. Silverman, ‘The canonical height and integral points on elliptic cutvegnt.
Math.93(1988), 419-450.

[4] S.Lang,Elliptic curves: Diophantine analysiSpringer, Berlin, 1978).

[5] R.C. MasonDiophantine equations over function fieJd®ndon Math. Soc. Lecture Note Ser. 96
(Cambridge University Press, Cambridge, 1984).

[6] J. H. Silverman, ‘A quantitative version of Siegel's theoreth’Reine Angew. Matl878 (1987),
60-100.

[7] K.-S. Tan, ‘A 2-division formula for elliptic curves’, preprint, (National Taiwan University, Taipei,
2002).

Department of Mathematics School of Mathematics and Statistics
National Taiwan Normal University University of Sydney
Taipei NSW 2006
Taiwan Australia
e-mail: wchi@math.ntnu.edu.tw e-mail: kflai@math.usyd.edu.au

Department of Mathematics
National Taiwan University
Taipei

Taiwan

e-mail: tan@math.ntu.edu.tw


mailto:wchi@math.ntnu.edu.tw
mailto:kflai@math.usyd.edu.au
mailto:tan@math.ntu.edu.tw

