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Abstract

In this paper we consider groups in which every subgroup has finite index in thenth term of its normal
closure series, for a fixed integern. We prove that such a group is the extension of a finite normal
subgroup by a nilpotent group, whose class is bounded in terms ofn only, provided it is either periodic
or torsion-free.

2000Mathematics subject classification: primary 20E15, 20F19.

A subgroupH of a groupG is said to bealmost subnormalif it has finite index in some
subnormal subgroup ofG. This occurs whenH has finite index in some termH G;n,
n ≥ 0, of its normal closure series inG; recall thatH G;0 = G andH G;n = H H G;n−1

.
A finite-by-nilpotent group has every subgroup almost subnormal, and for finitely

generated groups the converse holds (see [8, 6.3.3]). Note that, if a groupG has a
finite normal subgroupN such thatG=N is nilpotent of classn, then each subgroup
H of G has finite index inH G;n. For n = 1, the converse is settled by a well-known
theorem of Neumann [10]: a groupG, in which every subgroupH has finite index
in its normal closureH G, is finite-by-abelian. Later, Lennox [7] considered the case
in which n is larger than 1 and there is also a bound on the indices. He proved
that there exists a function¼ such that if|H G;n : H | ≤ c for every subgroupH of
a groupG, wheren andc are fixed integer, then the¼.n + c/-th term
¼.n+c/.G/
of the lower central series ofG is finite of order at mostc!. Recall that a theorem
by Roseblade states that a groupG in which H = H G;n for every subgroupH , is
nilpotent and
².n/+1.G/ = 1, for a well-defined function². Recently, Casolo and
Mainardis in [2, 3] gave a description of the structure of groups with all subgroups
almost subnormal, proving, in particular, that such groups are finite-by-soluble.
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In this paper we consider the classAn, n ≥ 1, of groupsG in which |H G;n : H | is
finite for every subgroupH of G, but no bound on the indices|H G;n : H | is assumed.
In particular, we give a generalization of Neumann’s theorem to periodicAn-groups:

THEOREM 1. There exists a functionŽ of n, such that ifG is a torsion group with
the property that|H G;n : H | < ∞ for every subgroupH of G, then
Ž.n/.G/ is finite.

We then consider torsion-free groups. By a result due to Casolo and Mainardis
[2], torsion-freeAn-groups have every subgroup subnormal and so they turn out to
be nilpotent, by a recent result by Smith [14] (see also Casolo [1]). Here, we give a
different proof of their nilpotency and, in particular, a bound on their nilpotency class,
thus generalizing Neumann’s theorem to torsion-freeAn-groups:

THEOREM 2. There exists a function� of n such that each torsion-free groupG in
which |H G;n : H | < ∞ for every subgroupH, is nilpotent of class at most�.n/.

This also gives a different proof of Roseblade’s theorem for torsion-free groups
with all subgroups subnormal of bounded defect.

Finally, we observe that Smith in [13] gives examples ofA2-groups which are not
finite-by-nilpotent. Thus, Theorem1 and Theorem2 are no longer true if we drop
the assumptions thatG is either periodic or torsion-free. Also, Casolo and Mainardis,
in [2], construct a non-hypercentralA2-group. On the other hand, in Proposition13
we shall prove that locally nilpotentAn-groups are hypercentral, partially answering
the question posed in[8, page 191]. Recall that Heineken-Mohamed groups [6] are
example of groups in which every subgroups is almost subnormal but they do not
belong to any of the classesAn.

1. A+
n -groups

In order to achieve our result on periodicAn-groups, we find it convenient to study
a larger class of groups. We denote byA+

n the class of all groupsG in which there
exists a finite subgroupF with the property that every subgroupH containingF has
finite index in thenth term H G;n of its normal closure series. By abuse of notation,
we shall denote the above by.G; F/ ∈ A+

n . Note thatAn ⊆ A+
n but An 6= A+

n .
Indeed, the group described in [4, Proposition 4] is a periodicA+

2 -group but it is not
finite-by-nilpotent, and so, by Theorem1, it does not belong toAn.

Also, we denote byU+
n the class of all groupsG in which there exists a finite

subgroupF such that every subgroup ofG containingF is subnormal of defect at
most n in G. Clearly, U+

n ⊆ A+
n , but U+

n 6= A+
n , since Smith’s groups [13] are

locally nilpotent A2-groups which are not finite-by-nilpotent while, forU+
n -groups,

the following holds:
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THEOREM 3 (Detomi [4]). There exists a functionþ.n/ of n, such that ifG belongs
to U+

n and it is either a locally nilpotent group or a torsion group with³.G/ finite,
then
þ.n/.G/ is finite. In particular, ifG is locally nilpotent, thenG is nilpotent and
its nilpotency class is bounded by a function depending onn and|F |.

Here³.G/ denotes the set of primes dividing the orders of the elements ofG.
The following are two known result which we include without proofs. IfN is a

subgroup (normal subgroup) with finite index inG, then we writeN ≤ f G (NE f G).

LEMMA 4. Let G be a countable residually finite group and letH be a finite
subgroup ofG. ThenH = ⋂

NE f G H N.

LEMMA 5. Let G be a group and letF be a finitely generated subgroup of a
subgroupH of G. If [G;n V] ≤ V for every finitely generated subgroupV of H such
that F ≤ V, then[G;n H ] ≤ H.

We establish an elementary property of periodicA+
n -groups:

LEMMA 6. A periodicA+
n -group is locally finite and finite-by-soluble.

PROOF. Let .G; F/ ∈ A+
n . Then F ≤ f F G;n gives thatF G;n is finite and that

every sectionF G;i =F G;i +1 belongs toAn. Since, by the already mentioned result by
Casolo-Mainardis, everyAn-group is finite-by-soluble, the groupG has a finite series
in which each factor is finite or soluble.

Let X be a finitely generated subgroup ofG. ClearlyX has a finite series with finite
or soluble factors. Hence, since a finitely generated torsion soluble group is finite and
a subgroup with finite index in a finitely generated group is finitely generated, each
factor in this series ofX is finite, and soX is finite. This proves thatG is locally
nilpotent.

Now, sinceG has a finite series with finite or soluble factors, to prove thatG is
finite-by-soluble, it is sufficient to show that soluble-by-finite periodicA+

n -groups are
finite-by-soluble.

Let .G; F/ ∈ A+
n be a torsion group and letA be a soluble normal subgroup with

finite index inG. We can assume thatAEG, sinceAG has finite index inG. Let− be
a left transversal toA in G and setH = 〈−; F〉. As H has finite index inK = H G;n, K
is finitely generated and hence finite, by the local finiteness ofG. Note thatG = AK .

We proceed by induction on the defectd of subnormality ofK in G. If K is normal
in G, thenG=K ∼= A=A ∩ K is soluble, and we are done. Ifd > 1, then, asK has
defect of subnormality bounded byd−1 in K G, we can apply the induction hypothesis
to K G, obtaining that some term of the derived series ofK G is finite (and normal inG).
Therefore, asG=K G ∼= A=A∩ K G is soluble, we get thatG is finite-by-soluble, which
is the desired conclusion.
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With the same argument as in [4, Lemma 9], it is easy to see that:

LEMMA 7. Let G ∈ A+
n be a locally finite group. If there exists a subgroupA with

finite index inG such that
m+1.A/ is finite, then
nm+1.G/ is finite.

Roughly speaking, the next proposition says that periodicA+
n -groups are near to

beingU+
n -groups.

PROPOSITION8. Let G be a countable residually finite torsion group and letG ∈
A+

n . Then there exists a subgroupA with finite index inG such thatA ∈ U+
n .

PROOF. Assume that the lemma is false and letG be a counterexample. Proceeding
recursively we construct

(a) a descending chain{Ki | i ∈ N} of subgroups with finite index inG,
(b) an ascending chain{Fi | i ∈ N} of finitely generated subgroups of

⋂∞
i =0 Ki , and

(c) a sequence of elements{xi ∈ [Ki −1;n Fi ]\Ki | 1 ≤ i ∈ N}.
Set K0 = G and let F0 be a finite subgroup ofG such that|H G;n : H | < ∞

wheneverF0 ≤ H ≤ G.
Suppose we have already definedFi , Ki , and xi ∈ [Ki −1;n Fi ]\Ki . As Fi is a

finitely generated subgroup ofKi ≤ f G, and asG is a counterexample, there exists
a subgroupFi ≤ H ≤ Ki which is not subnormal of defect less or equal ton
in Ki , that is, [Ki ;n H ] � H . So, by Lemma5, there exists a finitely generated
subgroupFi +1 of H with Fi ≤ Fi +1 and[Ki ;n Fi +1] � Fi +1. Let us fix an element
xi +1 ∈ [Ki ;n Fi +1]\Fi +1. Since, by Lemma6, G is locally finite, we can apply
Lemma4 to the finitely generated, hence finite subgroupFi +1, and so we get that
xi +1 =∈ Fi +1N for a suitable subgroupN E f Ki . Then we setKi +1 = Fi +1N, so that
Fi +1 ≤ Ki +1 ≤ f G and xi +1 ∈ [Ki ;n Fi +1]\Ki +1. Note thatKi +1 contains all the
subgroupsF0; : : : ; Fi +1.

Now we consider the subgroupsK = ⋂
i ∈N Ki and H = 〈Fi | i ∈ N〉. Since

H ≥ F0, by assumption we have thatH has finite index inH G;n. So, the chain
{H G;n ∩ Ki }i ∈N, stretching fromH G;n to H , is finite and there exists an integeri
such thatH G;n ∩ Ki = H G;n ∩ K j for every j ≥ i . But, since[G;n H ] ≤ H G;n and
Fi +1 ≤ H ∩ Ki , we get that

xi +1 ∈ [Ki ;n Fi +1] ≤ [Ki ;n H ∩ Ki ] ≤ [G;n H ] ∩ Ki

≤ H G;n ∩ Ki = H G;n ∩ Ki +1;

that isxi +1 ∈ Ki +1, in contradiction to our construction.

THEOREM 9. There exists a functionŽ.n/ of n, such that ifG is a periodic A+
n -

group and if eitherG is locally nilpotent or³.G/ is finite, then
Ž.n/.G/ is finite. In
particular, if G is locally nilpotent thenG is nilpotent.
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PROOF. SetŽ.1/ = 2 and define recursivelyŽ.n/ = 2n.þ.n/−1/+2Ž.n − 1/+ 1,
whereþ is the function defined in Theorem3.

Assume first thatG is countable. We shall proceed by induction onn. Let F
be a finite subgroup ofG such that every subgroupH containingF has finite index
in H G;n.

If n = 1 then|F G : F | < ∞ and FG is finite. SinceG=FG ∈ A1, the quotient
G′ F G=F G is finite by Neumann’s theorem. HenceG′ = 
2.G/ is finite.

Let now n > 1 and letX be a finitely generated subgroup ofG with X ≥ F .
BecauseG is locally finite, X is finite. Observe that, for every subgroupH of XG

containingX, we haveH G = XG and so|H XG;n−1 : H | < ∞. Thus XG belongs
to A+

n−1 and by the inductive hypothesis we get that
Ž.n−1/.XG/ is finite. Now, by a
theorem of Hall it follows that�2Ž.n−1/−2.XG/ has finite index inXG. Thus, the index
of CG.XG=�2Ž.n−1/−2.XG// in G is finite and, denoting byR = ⋂

NE f G N the finite
residual ofG, we obtain that[R; XG] ≤ �2Ž.n−1/−2.XG/. In particular,

[R;2Ž.n−1/ XG] ≤ [
R; XG;2Ž.n−1/−2 XG

] = 1:

Therefore, if we takes = 2Ž.n − 1/ elements inG, sayx1; : : : ; xs, and we consider
the finitely generated subgroupX = 〈x1; : : : ; xs; F〉, then we get[R; x1; : : : ; xs] ≤
[R;s XG] = 1, which impliesR ≤ �s.G/.

Now, asG=R ∈ A+
n is a countable residually finite torsion group, by Proposition8

it follows that there exists a subgroupA with finite index inG, such thatA=R ∈ U+
n .

Also, A=R satisfies the assumptions of Theorem3 and so
þ.n/.A=R/ is finite. By
Lemma7 it follows that 
n.þ.n/−1/+1.G=R/ is finite and then Hall’s theorem gives
that �2n.þ.n/−1/.G=R/ has finite index inG=R. Therefore, asR ≤ �s.G/, clearly
�2n.þ.n/−1/+s.G/ has finite index inG and, by a theorem of Baer (see [12, 14.5.1]), we
conclude that
2n.þ.n/−1/+s+1.G/ is finite. This proves that
Ž.n/.G/ is finite, for every
countable groupG satisfying the assumption of the theorem.

For the general case, we assume, contrary to our claim, that there exists a groupG,
satisfying the assumption of the theorem, such that
Ž.n/.G/ is not finite.

Let T be a countable and not finite subset of
Ž.n/.G/. Then we can find a countable
set of commutatorsxi = [y1;i ; : : : ; yŽ.n/;i ], i ∈ N, yj ;i ∈ G, such thatT ≤ 〈xi | i ∈ N〉.
Let Y = 〈F; yj ;i | j = 1; : : : ; Ž.n/; i ∈ N〉. As Y is a countableA+

n -group, by
the first part of the proof,
Ž.n/.Y/ is finite. ThusT ⊆ 
Ž.n/.Y/ is finite, against our
assumption.

Finally, if G is locally nilpotent, since every finite normal subgroup is contained
in some term of the upper central series (by a theorem of Mal’cev and McLain [12,
12.1.6]), it follows thatG is nilpotent, and the proof is complete.

As a consequence, we get the announced result on periodicAn-groups:

PROOF OFTHEOREM 1. Let G be a periodicAn-group. By a result of Casolo and
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Mainardis [3], there exists a finite normal subgroupN of G such thatG=N has every
subgroup subnormal. In particular,G=N is locally nilpotent. Now Theorem9 gives
that
Ž.n/.G=N/ is finite and, asN is finite, the result follows.

2. Torsion-free An-groups

First we observe some basic properties of isolators in locally nilpotent groups.
Recall that theisolator of a subgroupH in a groupG is defined to be the setIG.H / =
{x ∈ G | xn ∈ H for some 1≤ n ∈ N}. If G is a locally nilpotent group thenIG.H /
is a subgroup ofG and ifG is also torsion-free then
n.IG.H // ≤ IG.
n.H // (see, for
example, [5, 9]).

LEMMA 10. Let G be a locally nilpotent group and letH ≤ G. Then

(1) if IG.H / is finitely generated, then|IG.H / : H | < ∞;
(2) if G is torsion-free andH is cyclic, thenIG.H / is locally cyclic.

PROOF. (1) As K = IG.H / is a finitely generated nilpotent group,H is subnormal
in K , say H = H K;n for an integern, and every sectionH K;i =H K;i +1 is finitely
generated and nilpotent, fori = 1; : : : ;n − 1. Furthermore, by definition ofIG.H /,
eachH K;i =H K;i +1 is periodic and hence finite. Thus,H has finite index inK .

(2) Let K be a finitely generated subgroup ofIG.H /. As H is cyclic, we can
assume thatH ≤ K . SinceK is torsion-free and nilpotent, it has a central series with
infinite cyclic factors (see [12, 5.2.20]). So, ifK is not cyclic, there is a cyclic normal
subgroupN of K with infinite index in K . Now, since, by (1),H has finite index
in K , thenH ∩ N 6= 1. Therefore, asH is cyclic, |K=N| ≤ |N H=N| = |H=H ∩ N|
is finite, a contradiction.

We state now a consequence of a well-known argument by Robinson (see [12,
5.2.5]). Recall that the Hirsch length of a polycyclic groupG is the number of infinite
factors in a series ofG with cyclic factors.

LEMMA 11. Let H be a nilpotent group of classc. If H=H ′ can be generated byr
elements, then the Hirsch lengthh of H is bounded by a functiong.c; r / of c andr .

The alreadymentioned theorem of Mal’cevand McLain [12, 12.1.6] states that each
principal factor of a locally nilpotent group is central. The following consequence is
well known, but we include the easy proof for the convenience of the reader:

LEMMA 12. Let G be a locally nilpotent group and letN be a finitely generated
normal subgroup ofG. Then there exists an integern such thatN ≤ �n.G/. Moreover,
if N is torsion-free with Hirsch lengthh, thenN ≤ �h.G/.
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PROOF. The theorem of Mal’cev and McLain implies that ifN is finite then it
is contained in�m.G/ for an integerm bounded by the composition length ofN.
Also, whenN is torsion-free with Hirsch lengthh, we get thatN=N p is finite and
so N=N p ≤ �h.G=N p/ for every primep; therefore[N;h G] ≤ ⋂

p N p = 1 by a
residual property of torsion-free finitely generated nilpotent groups (see for example
[11, page 170]). Since the torsion subgroup of a finitely generated normal subgroup
of G is finite, the lemma follows.

PROPOSITION13. Let G be a locally nilpotentAn-group. ThenG is hypercentral.

PROOF. By an already cited result of Casolo and Mainardis,An-groups are finite-by-
soluble and soG is soluble. It is sufficient to prove thatG has a non trivial centre. We
proceed by induction on the derived length ofG. Let Abe the centre ofG′; by inductive
assumption,A 6= 1. Let H be a finitely generated subgroup ofG. As |H G;n : H |
is finite, H G;n is finitely generated and so nilpotent; in particular,[A;n H ] is finitely
generated. SinceA = �.G′/, [A;n H ]g = [A;n H g] ≤ [A;n H [H; 〈g〉]] = [A;n H ] for
g ∈ G, and so[A;n H ] is normal inG. Thus Proposition12gives that[A;n H ] ≤ �k.G/
for somek ≥ 1. So, if [A;n H ] 6= 1, then�.G/ 6= 1. Otherwise,[A;n H ] = 1 for
any finitely generated subgroup ofG; thus A ≤ �n.G/ and we again conclude that
�.G/ 6= 1.

A groupG is saidn-Engelif [x;n y] = 1 for all x; y ∈ G. We recall that a torsion-
free solublen-Engel groupG with positive derived lengthd is nilpotent of class at
mostnd−1 (see [11, 7.36]).

Our interest on Engel groups is motivated by the following fact:

LEMMA 14. A torsion-freeAn-group is.n + 1/-Engel.

PROOF. Let G be a torsion-freeAn-group and let 16= x ∈ G. By the definition
of the classAn, 〈x〉 has finite index in〈x〉G;n, so that〈x〉G;n is a finitely generated
subgroup ofIG.〈x〉/. By the already mentioned result in [2], every subgroup ofG
is subnormal, so thatG is locally nilpotent. Thus, by Lemma10, 〈x〉G;n is cyclic,
so that〈x〉 char〈x〉G;n, and hence〈x〉 is subnormal of defect at mostn in G, that is
[G;n x] ≤ 〈x〉. Therefore,[G;n+1 x] = [G;n x; x] = 1, as claimed.

Now we are in a position to prove the announced result on torsion-free An-groups.

PROOF OFTHEOREM 2. Let G ∈ An be a torsion-free group. As already noted, by
a result in [2], G is locally nilpotent.

Note that, if there exists a function�.n/ such that
�.n/+1.H / = 1, for every finitely
generated subgroupH of G, then
�.n/+1.G/ = 1. Hence, without loss of generality,



172 Eloisa Detomi [8]

we can assume thatG is a finitely generated group. In particular, we get thatG is
nilpotent and every subgroup ofG is finitely generated.

Proceeding by induction onn, we prove that there exists a function�.n/ such that
every torsion-free finitely generatedAn-group has nilpotency class at most�.n/.

If n = 1, then Neumann’s theorem gives thatG′ is finite. Hence, sinceG is
torsion-free,G is abelian, and so we can set�.1/ = 1.

Let nown > 1 and letH be a subgroup ofG. SetH G;i = Hi for everyi , so that,
by the definition of the classAn, we have

H ≤ f Hn E Hn−1E · · · E H2E H1E G:

Note that, for every subgroupK such thatH ≤ K ≤ H1, we getK G = H G = H1

and K ≤ f K K G;n−1. HenceH1=H2 ∈ An−1. With the same argument it is easy to
see that the factorHi=Hi +1, for i = 1; : : : ;n − 1, belongs toAn−i . By the induction
hypothesis, the factorHi=I Hi

.Hi +1/, being a finitely generated torsion-freeAn−i-group,
has nilpotency class at most�.n − i /; hence,


�.n−i /+1.Hi / ≤ IHi
.Hi +1/ ≤ IG.Hi +1/:

Thus,


�.n−i /+1.IG.Hi // ≤ IG.
�.n−i /+1.Hi // ≤ IG.IG.Hi +1// = IG.Hi +1/;

for everyi , so that


�.n−1/+1.IG.H1// ≤ IG.H2/;


�.n−2/+1

(

�.n−1/+1.IG.H1//

) ≤ 
�.n−2/+1.IG.H2// ≤ IG.H3/;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


�.1/+1

(

�.2/+1

(· · · (
�.n−1/+1.IG.H1//
) · · · )) ≤ 
�.1/+1.IG.Hn−1//

≤ IG.Hn/ = IG.H /;

where the last equality is due to the fact thatH ≤ f Hn ≤ IG.H /.
In particular, fork = k.n/ = ∑n−1

i =1.�.i / + 1/, the kth term H .k/
1 of the derived

series ofH1 is a subgroup ofIG.H /, so thatIG.H
.k/
1 / ≤ IG.H /. Now, by Lemma14,

H1=IG.H
.k/
1 / is a soluble torsion-free.n + 1/-Engel group and soH1=IG.H

.k/
1 / is

nilpotent of class at most.n + 1/k−1. Thus, forc = c.n/ = .n + 1/k−1 + 1, we
get that
c.H1/ ≤ IG.H

.k/
1 / ≤ IG.H /. This proves that
c.H G/ ≤ IG.H /, for every

subgroupH of G.
Now take c elements ofG, say x1; : : : ; xc, and consider the subgroupH =

〈x1; : : : ; xc〉. Clearly we can writeH1 = H G as a product of thec normal sub-
groups〈xi 〉G. Since
c.〈xi 〉G/ ≤ IG.〈xi 〉/ and, by Lemma10, IG.〈xi 〉/ is a cyclic
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group, then[
c.〈xi 〉G/; xi ] = 1. Moreover[
c.〈xi 〉G/; xg
i ] = 1 for everyg ∈ G.

Thus
c.〈xi 〉G/ ≤ �.〈xi 〉G/ and〈xi 〉G has nilpotency class at mostc. ThereforeH1 is
generated byc normal nilpotent subgroups of class at mostc, and by Fitting’s theorem
it follows that H1 is nilpotent with class cl.H1/ ≤ c2.

Now, since H is a c-generated torsion-free nilpotent group of class cl.H / ≤
cl.H1/ ≤ c2, Lemma11 implies that the Hirsch lengthh.H / of H is bounded by

g1 = g.c2; c/ = cc2+1 − 1

c − 1
:

Also, by Lemma10, |IG.H / : H | < ∞, so thath.IG.H // = h.H / ≤ g1.
Therefore,
c.H1/ is a finitely generated normal subgroup ofG with Hirsch length

h.
c.H1// ≤ h.IG.H // ≤ g1 and so, by Proposition12, 
c.H1/ ≤ �g1.G/. In
particular,[x1; : : : ; xc; y1; : : : ; yg1] = 1 for everyy1; : : : ; yg1 in G, so that


c+g1.G/ = 1:

Finally, sincec = c.n/ andg1 = g1.n/ dependonly onn, the result follows on defining
�.n/ = c + g1 − 1.
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