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Abstract

Many generalizations of continued fractions, where the reciprocal function has been replaced by a more
general function, have been studied, and it is often asked whether such generalized expansions can ha
nice properties. For instance, we might ask that algebraic numbers of a given degree have periodic
expansions, just as quadratic irrationals have periodic continued fractions; or we might ask that familiar
transcendental constants sucleas = have periodic or terminating expansions. In this paper, we show
that there exist such generalized continued function expansions with essentially any desired behaviour.

2000Mathematics subject classificatioprimary 11J70; secondary 40A15.

1. Introduction

The familiar continued fraction expansion of a real number has great importance in
its approximation by rational numbers, and the predictable behaviour of the continued
fractions of certain classes of real numbers has added benefits. For example, the fac
that the continued fraction expansion of a rational number terminates is essentially
a re-expression of the Euclidean algorithm; also, the periodicity of the continued
fractions for quadratic irrationals is crucial for calculating the fundamental units
of real quadratic fields. Already in 1848 Hermite, in correspondence with Jacobi,
asked about the existence of generalizations of continued fractions such that algebrai
numbers of given degree would have periodic expansions. Since that time, myriad
different generalizations have been studied (£&of an extensive list). Herein we
focus on thef -expansions introduced by Bissingéf,[which we define momentarily.

The purpose of this paper is to demonstrate that the fundticem be chosen so that the
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expansions of prescribed real numbers can have essentially any desired behaviour. Th
following results, listed in roughly increasing order of unlikeliness, are representative
of what we can prove.

THEOREM 1. For any two real numbers, y € (0, 1), there exists a functiofi such
that the f -expansion ok is the same as the usual continued fraction expansign of

THEOREM 2. There exists a functior such that thef -expansion of any rational
or quadratic irrational terminates.

THEOREM 3. There exists a functiof such that thef -expansion of a real number
x is periodic if and only ifx is a cubic irrational number.

THEOREMA4. There exists a functiof such that, simultaneously for every integer
d > 1, a real numberx is algebraic of degree if and only if the f -expansion ok
terminates with the integef + 1.

We remark that Voronts algorithm H] for calculating units in number fields of
degree higher than two is not directly relevant to TheoBsince we are interested
in generalizations that give well-defined expansions for every real number. We also
remark that in all four theorems, the cardinality of the set of functibreatisfying
the given property is that of the continuum, which is the cardinality of the set of
all continuous functions on the real numbers. Finally, we mention an even more
surprising generalization of Theorefnwhich we discuss in more detail later in the
paper: there exists a functioh such that thef -expansion of every algebraic real
numberx of degreel terminates with the integer+ 1, and thed + 1 integers directly
preceding this finatl + 1 encode the minimal polynomial at

Let us describe more precisely the class of expansions we shall consider. The
output of any such expansion will be a sequence in th&'set%; U %;, where

% ={lag &, &, ...]: eacha; € Z, a; > 1forall j > 1}
and
% ={laga,...,a,] :n >0, eacha; € Z,
aj>1foral 1<j<n, a,>2if n>1}.

We emphasize that the elements of these sets are formal sequences of integers, not re
numbers; the sets; and%; are the infinite and terminating sequences, respectively.
Let [x] and{x} = x — |x] denote the greatest integer function and fractional part,
respectively, ok. DefineZ to be the set of decreasing homeomorphisms ffbmo)

to (0, 1), that is, the set of all strictly decreasing continuous functibraefined on

(1, 00) satisfying lim_;+ f(x) = 1 and lim_ .., f(x) = 0. Throughout this paper,
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f will denote a function from the clas and¢ will denote the inverse of , so that
¢ is a decreasing homeomorphism fre@) 1) to (1, co).

We define thexpansion functiok; : R — % (sometimes called the representation
function by other authors) as follows. Givepe R, we sefag = [Xo]. If Xo is hotan
integer, we sex; = ¢ ({Xo}) anda; = [X1]. If X; is notan integer, we s&p = ¢ ({X;})
anda, = [X»], and so on. Then the value &7 (xp) Is [ag;a4,...,a,] € %; or
[ag;a1, &, ... ] € %, depending on whether one of tlx¢ is equal to an integer.
The prototypical example uses the reciprocal functiox) = 1/x, in which case
E, (Xo) is the usual continued fraction expansionxgf In general, we calE; (Xy)
the continued function expansiaf X,, or sometimes theontinuedf -expansiorfor
a specific functionf. In the terminology of 2], these aref -expansions of type A
(f-expansions of type B are formed from increasing functibremd generalize the
usual decimal expansions of real numbers).

In this paper, when we write simp[y; a;, @, - . . ] we mean the formal element of
€. If we want to refer to the real number whose usual continued fraction expansion
is [ag; &1, @, ... ], we use the notatiofay; a;, @, ... ],. In general, for any function
f € Z we define amvaluation functio’V; onC; recursively by settinyy; ([a,]) = ag
andVi([ag;a, ..., an]) = a + f(Vi([a;a, ..., an]). Thus

1) Vi([ag;aq, ....an]) =@+ f(a+ f(@a+---+ f(@a) ).

which is the continued -expansion of a certain real number. We extend the definition
of V; to as much of¢” as we can by defining

Vi(lagag, @, ...]) = nILngo Vi([ag;ay, ..., al)

when the limit exists. We shall often writey;a;,...,a,] as a shorthand for
Vi ([ag; &, . . ., @n]), thus generalizing the notatidey; a;, a,, . . . ], given above.

Note that{ag; a1, a,, . . . ], always exists and equals the unique real nunxbsuwch
that E, (X) = [ag; a1, @, ... ], that is, the expansion functiof, : R — % and the
evaluation functiorv, : ¥ — R are inverses of each other. For a general function
f € #, the definitions ofE; andV; do imply that the restriction o¥/; to %, and
the restriction ofE; to V¢ (%;) are inverses of each other; however, might not be
injective on all ofR, or V¢ might not be defined on all &', and so on.

If the function f € .# does have the property thBt andV; are inverses of each
other, we callf afaithful function. In other wordsf is faithful if and only if E;
is bijective and the limit definindag; a;, a,, ... ]; exists for every element af; and
always equals the unique real numbesuch thatE(x) = [ag;as, @, ...]. (The
list of properties in this last sentence is probably redundant for characterizing faithful
functions, though we shall not need a more streamlined criterion. Our definition of
faithfulis related to what other authors callalid representation.) In this terminology,
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Theoremsl—4 can be stated more precisely using the phrase ‘there exists a faithful
function f € .# such that the continuetl-expansiorE; of ... .

The idea of our method is to endd#v with a topology that is naturally related to
continued fraction expansions and then to treat the expansion and evaluation map
E; andV; as continuous functions betweRrand%’. We describe this topology and
begin to explore its consequences in SectiorWVith this foundation, we can make
substantial progress by composing these functions with carefully chosen continuous
functions fromR to itself. This technique, which leads to proofs of Theoreins
4, is expounded in Sectio. Finally, in Section4 we investigate the class of
continued function expansions given by power functidng) = x~¢, including
several numerical examples that partially motivated this paper.

At this point we should confess what the reader might already suspect, that the
functions giving the nice behaviours of Theoreinrd are infeasible for actual com-
putations. Indeed, the existence of such functions is essentially a consequence of th
existence of continuous functions on the inter¢@l1) with certain properties. We
have chosen the title of this paper, a subtle variation on the famous phrase ‘unrea-
sonable effectiveness’ pioneered by Wigng for this reason. Mirriam—Webster's
Collegiate Dictionary contrasts the two words by saying that ‘effective’in fact ‘stresses
the actual production of or the power to produce an effect’, while ‘effectual’ merely
‘suggests the accomplishment of a desired result especially as viewed after the fact’
We cannot think of a more apt description of these techniques.

2. Topological preliminaries

We recall that ifSis a set endowed with a total linear ordering, tiiéer topology
on S is defined by declaring the open sets to be arbitrary unions of open interals in
that is, of sets of the fornix, y) = {s € S: x < s < y}. If SandT are two ordered
sets, a functionf : S — T is order preservingf, wheneverx < y in S, we have
f(X) < f(y)inT. Itis easily checked that this implies<s y & f(X) <7 f(y),
and consequently any order-preserving function is automatically injective. We shall
need the following result as well:

LEMMA 5. Leth : S— T be a function between the two ordered spaSesd T .
If his order-preserving and surjective, théris a homeomorphism.

PrROOF. Since any order-preserving function is injectikigs in fact a bijection, and
it is easily verified thah ! is also order-preserving. Moreover, it is true that the image
underh of any open intervalx, y) C Sis exactly the open intervgh(x), h(y)) in T:
certainly the image is contained in this open interval by the order-preserving property
of h, while every point in(h(x), h(y)) must have a preimage by the surjectivity
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of h, and this preimage must be(r, y) again by order-preservation. This shows that
bothh andh~! are continuous, and therefdnés a homeomorphism. O

We can endovis” with the alternating lexicographic order topologyr the alt-lex
topology for short, which is the order topology defined by the following total ordering
of ¢

[ag; &y, @, ... ] < [bo; by, by, ... ]
< (@ < bp) or (a="hy anda; > by)
or (ag="hy anda; =b; and a, < by)
or (@="hy anda; =b;, anda; =b, andaz > bs) or ....

Terminating elementgg; a4, ..., a,] € %; are treated afg; &y, . . . , a,, +oo] when
applying this definition. It is easy to see that for ahye .#, the evaluation map
E; is semi-order-preserving, that is,< y in R implies thatE; (x) < E;(y) in %.
In particular, if f is a faithful function, then the functiok; is bijective and hence
strictly order preserving. We conclude from LemBiat the evaluation functioB
of any faithful f € .Z is a homeomorphism fro to %'

LEMMA 6. A subsetB of % is dense if and only if, for every elemexnt =
[ag; &y, ..., a,] of %;, there exists an elemebt= [by; by, by, ...] of B such that
b0=a01bl=al1"' rbn=an-

PrOOF. The key observation is that the set of elemexts= [Xo; X1, Xo, ... ] Of
C such thatxg = a, X1 = &,...,X, = @&, is one of the half-open intervals
([ag; @y, ... &) + 11, [ag;@u, ..., &l] or [[ao;ay, ..., ], [@0; &4, ... 8 + 1), de-
pending on whether is odd or even. Every half-open interval of this form obviously
contains an open interval, which proves the ‘only if’ part of the lemma; conversely,
every open interva(c, d) in C contains a half-open interval of this form (let- 1 be
the first index at which the elemerdsandd differ), which proves the ‘if’ part of the
lemma. O

PrROPOSITION?. Let A and B be two countable dense subsets®fl). Then there
exists an increasing homeomorphigm (0, 1) — (0, 1) such thatg(A) = B.

PrOOF. Note that any dense subset(6f 1) must in fact be infinite. Fix any well-
orderings ofA andB (thatis, arrange the elementsAfndB into infinite sequences);
we emphasize that this well-ordering is not related to the orderings afid B as
subsets of0, 1). We recursively construct a sequence of order-preserving bijections
g; : A — Bj, whereA,; and B; are subsets oA and B, respectively, as follows.
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Choose any elements € A andb;, € B, and defineA, = {a;}, B, = {b,}, and
Gi(ay) = by.

If n > 2 is even, we extend\,_;, B,_1, andg,_; as follows. Choose the first (in
the fixed well-ordering) elemefite B \ B, ;. If bis smaller than every element of
B._1, choosea € A\ A,_; that is smaller than every element&f_;. If b is larger
than every element d8,_;, choosea € A\ A,_; thatis larger than every element of
A._:1. If neither of these cases holds, then there are unique elemehts the finite
setB,_; such that < b < d and(c,d) N B,_; = ¥; choosea € A\ A,_; such that
9,4 (c) < a < g% (d). (All of these choices are possible sindds dense in0, 1).)
After making this choice, we s&, = A,_;U{a} andB, = B,_; U{b}, and we define
O : Ay — By by ga(@) =bandg,(x) = g,1(X) if x € Ay

Similarly, if n > 3 is odd, we extend\,_;, B,_;, andg,_; as follows. Choose the
first (in the fixed well-ordering) elememat € A\ A,_;. If ais smaller than every
element ofA,_;, chooséb € B\ B,_; that is smaller than every elementBf_,. If
a is larger than every element é{,_,, chooseb € B\ B,_; that is larger than every
element ofB,_;. If neither of these cases holds, then there are unique elemenhts
of the finite setA,,_; such that < a < d and(c, d) N A,_; = @; chooseb € B\ B,_;
such thag,_1(c) < b < g._1(d). (All of these choices are possible sinBdas dense
in (0,1).) After making this choice, we s&, = A,_; U {a} andB, = B,_, U {b},
and we defing, : A, — B, by g,(a) = bandg,(X) = g._1(X) if x € A,_1.

It is easy to verify inductively that eaad, is a bijection fromA, to B, that is
order-preserving with respect to the usual order@ri), and thatg,|s, = 9n for
all positive integersn < n. Furthermore, the use of the well-orderings/dand B
during the construction forcdg,., A, = A andlJ,., B, = B. Therefore, there is
a unique functiorg,, : A — B (hamely the union of all the functiorg) such that
O-la, = @y foralln > 1, and in fac,, is an order-preserving bijection frodto B.

Finally, defineg : (0,1) — (0,1) by g(X) = sugg..(@) : a € A, a < x} for
X € (0, 1). Note that for anyk € (0, 1), there exist,, a, € Asuchthat; < x < a,
(by the density ofA), whence the s€g..(a) : a € A, a < x} is bounded above by
O-(a1) < 1 and containg.. (&) > 0 by the order-preservation gf,; thereforeg(x)
is a well-defined real number 0, 1). Also, g is order preserving: i€, d € (0, 1)
with ¢ < d, then there exista;, a, € Awithc < a; < a, < d, whence

g(c) =supgw(a) :ae A, a<c} <0g.(@)
< Oo(@) < supg.(@) :ae A, a<d} =g(d).

Moreover,g is surjective: givery € (0, 1), definex = suplg_*(b) : b€ B, b < y}.
Becausa,, is an order-preserving bijection fromto B andB is dense neay, it is
easy to check thaj(x) = y. Thereforeg is an order-preserving surjection frai® 1)
to (0, 1), hence a homeomorphism by Lemima O
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A straightforward extension of this construction yields the following:

PROPOSITIONS. Let A, A,, ... be a collection(finite or countably infinitg of
pairwise disjoint countable dense subsetéoll), and similarly forBy, B,, .... Then
there exists an increasing homeomorphgm(0, 1) — (0, 1) such thatg(A;) = By,
g(Ay) = B,, and so on.

3. Proofs of the theorems

We call a functiorh : R — R achorus-linefunction if h maps the set0, 1) into
itself andh(x) = [x] 4+ h({x}) for all real numberx. This definition implies that
Llh(x)] = [x] and{h(X)} = h({x}) for all x. Let%¥ denote the set of increasing
homeomorphismg : (0,1) — (0,1). To anyg € ¥ we may associate a function
0: R — R, called thechorus-line extensioaf g, defined by

§(x) = X, if xis aninteger;
90 = IX] + g({x}), if xis notan integer

It is easy to see thatis an increasing homeomorphism fr@rto itself and that both
g andg-! = g~ are chorus-line functions. For amye ¥, we definef, to be the
restriction of the functiog—*or 0§ to the domain(1, co), so thatfy(x) = g~(1/§(x))
for x > 1. Itis again easy to see thé} € .Z with inversegy = g or og.

PrRoOPOSITIONS. Letg € G. Thenfy is a faithful function satisfying

g([ao; a4, &, - .- It,) = [A0; @1, @2, .- . It

for every[ag; a1, &y, ...] € 4. In other words, the continuedl-expansion of every
real numberx is identical to the usual continued fraction expansiogof).

PrOOF. Let x € R, and letE, (§(x)) = [ap; a1, @, ...]; we want to show as
a first step thatE (x) = [ap; a1, a,,...] as well. For eacm > 0, definey, =
[@n; Ant1s Ansos - - - Iy @andx, = §1(Y,), so thaty, = §(x) andx, = X. Notice that

(2) o] = L3 ()] = Lynl =&y
foralln > 0, where we have used the factt@at is a chorus-line function. Similarly,
) ¢o({Xa}) =g o1 0 g({g (V)]

=gt orog@ (v
= gil or ({ynh) = Qil(ynﬂ) = Xnt1-
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Now, simply considering the definition of the evaluation functi®p(xo) in light of
equationsZ) and @) reveals thaE; (X) = E; (Xo) = [ag; a1, &,, ... ] as desired.

This shows thaE;, = E; o §; in particular,E¢, is the composition of two homeo-
morphisms and is therefore itself a homeomorphism, &ith = "o E;*. To show
that f, is faithful, it only remains to show that;, is well-defined on all ofs” and in-
verts the functiorE . Asabove, lek € RandEy (x) = E (§(X)) = [ap; a1, @, ... ],
we want to show thaV; ([a; a1, @, ... ]) = lim,_ Vi ([ag; &, ..., a,]) exists and
equalsx. Now Vi, does inverte, on%;, so

Vfg([am a,...,a)) = E;gl([ao, ai, ..., an))
=0 o E Yaga, ..., a)
=g "o Vi(lag @, ..., a]) = § (a5 @, ..., alr).

However, we know that lim., .. [ag; @1, ..., &), = [a0; a1, &, ... ] by the conver-
gence of usual continued fractions. Therefore, by the continuify bfwe have

Vi, (18081, . ... 1) = lim §~*([&;ay. ... . nlr)
=§ ([a0;an. @, ... 1) = §H(G(X) =X
as desired. O

Together, Propositiong—9 imply each of Theorem&—4. For example, given
X,y € (0,1), let g € 4 be chosen so thaj(x) = y. Then Propositior® tells us
that f, is a faithful function in.# and thatE (x) = E(y), which is precisely the
statement of Theoreth In fact,g can be chosen to be piecewise linear, in which case
fy is given piecewise by Mbius transformation&@x + b)/(cx + d).

For any positive integed, let Q(d) denote the set of numbers (0, 1) that are
algebraic overQ of degree exactlyl, so thatQ(1) = Q N (0, 1) for instance. Each
Q(d) is a countable dense subset0f1). Therefore, Propositionitells us that there
exists a functiog € ¢ such thag(Q(3)) = Q(2). We then know from Propositich
that the correspondingy has the property that the continudg-expansion of any
number inQ(3) is the same as the usual continued fraction expansion of a number in
Q(2), and vice versa. Since the usual continued fraction expansion of a real number
is periodic if and only if the number is a quadratic irrational, thisgives a faithful
function such that the continueid-expansion of a real numberis periodic if and
only if x is a cubic irrational number, establishing Theor&m

A similar approach establishes Theor2nin fact, the singular Minkowski function
?2(x) (see B]) is an increasing homeomorphism@ 1) that was constructed to have
the property that (1) U Q(2)) = Q(1). Thereforef, € .Z is a faithful function
such that the continued,-expansion of any rational or quadratic irrational number
terminates.
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As for Theorem, we partition@; into infinitely many set&; (1), %;(2), ..., where
we define

¢(d) ={[0;a,...,a] : n>1, eacha; € Z,
aj>1foral 1<j<n, a,=d+1}.

Each%;(d) is dense ir¢" by Lemma6. Therefore, if we defin€(1, d) = V, (%;(d)),
thenQ(1, 1), Q(L, 2), ... is a partition ofQ N (0, 1) into countably many countably
infinite subsets, each dense(® 1). Applying Propositior8, we can find a function
g € ¢4 such thag(Q(d)) = Q(1, d) for every positive integed. Then, by Proposi-
tion 9, the set of real numbers i, 1) whose continuedy-expansion terminates in
the integed + 1 is preciselyQ(d).

We briefly discuss the extension of Theorémmentioned in the introduction. We
generalize the notation of the previous paragraph by defi#éijrg,, n,, ..., ny) to
be the set of terminating expansions#hthat begin with a zero and end with tke
integersn,, ..., N, andweseQ(l, ny, ..., nY) = V. (% (ny, Ny, ..., NY)). Wechoose
a function that encodes every integer, positive or negative, as a positive integer; one
such function is

2kj+1, if k=<0;
k) =
1) {Zk, it k>0,

which is a bijection fromZ to Z+ whose inverse is(k) = (—1)¥|k/2]. Using a
modification of Propositior8, we can find a functiorg € ¢ such that, for each
algebraic numbex < (0, 1), if the minimal polynomial ok is cgt® +cy_,t4 14 .- 4+
cit+¢o, theng(x) € 6 (n(cy), n(cy), ..., n(Cy—1), n(cq), d+21). (Many transcendental
numbers would also be mapped into these subset bl g.) The corresponding
faithful function f4 € .# would then have the property that the contindg@xpansion
of x would terminate in the sequenggcy), n(cy), ..., n(Cq_1), n(cy), d + 1, thus
encoding the minimal polynomial af. If we had an oracle that could compute
this function f, quickly, we could test whether any real numlyewas algebraic by
computing its continuedy-expansion; if it terminated, say #;a,, ..., a,], theny
would be either transcendental or else a root of the polynomial

BBt 4 8@ ™ 24 -+ 8@ (a1t + 3(Bga)-

Of course, this is only a fantasy, as the functigns hopelessly infeasible for exact
computation. Other types of encoding functions are possible, of course; for example,
one can encode every finite sequence of integers as a single positive integer via som
Gddel-type code.

Proposition9 shows us how we can contruct a faithful function.#h from any
function in%. The following result demonstrates that the opposite is also true:
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PrROPOSITION1O. Let f € .Z be a faithful function. Defing to be the restriction
of the functionV; o E¢ to (0, 1). Theng € ¢ and fy = f.

PrOOF. SinceE; : (0,1) — % andV, : 4 — (0, 1) are both order preserving, we
see from Lemm& thatg is indeed a homeomorphism frof, 1) to itself, and hence
g € 4. Notice thatV, o E; has the property that, o E;(X) = |x] + V, o Ef({X});
thereforeV, o E; is its own chorus-line extension and §o= V, o E¢. If we write
Ei(X) = [ag,aq, @y, ... ], theng(x) = V,([ag;a, @, ...]) = [ag; a1, &, ... ], and
therefore o §(x) = [0;a9, &, &, ... ],. Finally, note thatV, o E¢)* = E{*oV,* =
V; o E;, and so

g ltorog(x) =V;oE/(0;a, a,a,...1,) =[0;a, &, a, ...
=0+ f([agag, a,...11) = f(X)

as desired. O

We say that two functiond, f’ € .#Z arechorus-line conjugatef there exists
an increasing continuous chorus-line functlosuch thatf equals the restriction of
h=1o f’ o h to the domain(l, oo). It is easy to check that chorus-line conjugacy is
an equivalence relation off. The next theorem shows that the equivalence class
containing the reciprocal functianis precisely the class of faithful functions.

THEOREM11. Let f € .Z. The following are equivalent
(i) f isfaithful;
(ii) f is chorus-line conjugate to;
(i) f = f,forsomeg € ¥.
In particular, there is a one-to-one correspondence between funcoas¥ and
faithful functionsf € Z.

PROOF. It is easy to see that any increasing continuous chorus-line function is
equal tog for someg € 4. Thus f andr are chorus-line conjugate if and only if
f=0g'orog= fyfor someg € ¢, which shows the equivalence of statements
(ii) and (iii). Proposition9 shows that statement (iii) implies statement (i), while
Proposition10 shows that statement (i) implies statement (iii). Therefore the three
statements are indeed equivalent.

The assertion that there is a one-to-one correspondence between fugcticfis
and faithful functionsf € .Z requires some justification, as it is not immediately
clear that different functiong, 9" € ¢ give rise to distinctfy and fy. Suppose
thatg # ¢, and choose ar € (0, 1) such thatg(x) # g'(x). By Proposition9,
we haveEq (x) = E (9(X)) # E(g'(x)) = E, (x). Since the continued - and
f’-expansions ok differ, we must havefy # f. O
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At the end of the last proof, we used the fact that two faithful functions whose
corresponding expansion functions are different must be distinct. In fact, the converse
is also true:

PrOPOSITION12. Suppose thaf,, f, € .Z are faithful functions with the property
that Ef1 = Efz. Thenfl = fz.

PROOF. Givenx € (1, oo), we want to prove thaf;(x) = f,(x). Write E¢,(X) =
[a0; a1, @, ... ] = E,(X). Note that the continueéi-expansion off;(x) = 0+ f1(X)
iS[0; a9, &1, &, ... ], sothatEs (f1(X)) = [0;&, &1, &, ... ]. Similarly, E,(f2(X)) =
[0;a9, &1, @y, ... ]. ButthenEy, (fo(x)) = [0;a9, &1, @, ... ] sinceEy, = Ey,. There-
fore Ef,(fi(X)) = E, (f2(X)), and sincef, is faithful, E;, is injective and thus
f1(x) = f2(x). O

4. Continued power function expansions

Let us consider a particular one-parameter family of functions ff&pmamely the
power functionsf,(x) = x @ fora > 0, so thatf; = r. A continuedf,-expansion of
a real number is thus an expression of the form

Q + (al + (az + (@ + @+ )a)a)a>a

At a problem session of the West Coast Number Theory Conference in 1999, Kevin
O’Bryant considered the case= 1/2, which he called the continued root expansion
of a real numbek. For instance, some rational numbers such as

2 1
- :0+— = [0;2’ l6]f1/2

3 2+ (1/V16)

and 2747 = [0; 3, 1098 2892 410, 256} ;,, have terminating continued root expan-
sions. On the other hand, O’Bryant remarked that

E«.3/4=1[0;1,128513,3,14,321,2,300 1,13 2,6,1,1,2,...]

does not seem to terminate; but we do not know how to prove this. At the same
problem session, Bart Goddard noted several other examples; for inﬁg(eié?) =
[1;1,1,1,...], and the continued;,-expansion of/3 = 1.44224957 looks at first
to be periodic of period four. However,

£, (V3)=11511211121112111

3,1,11,1,31,21,1,7,231,...]
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does not seem to be periodic, while
X=V,([1;1,1,2,1,1,1,2,1,1,1,2,...]) = 144225029

is the nearby number that satisfies the equation

3/2

x=1+ (1 + (1+ 2+ x3/2)3/2)3/2>

In fact, writingw, z, andy as the three quantities in parentheses on the right-hand side
of this equation (starting from the innermost parentheses), we see that this number
is thex-coordinate of one solution to the system of equations

Vix—-12=1 Z(y-1D*=1 w)z-1*=1 xw-2°% =1

Using elimination theory and a computational algebra package, we can show that this
numberx is algebraic of degree 93; more precisely, it is the fourth of seven real roots
of the irreducible polynomial

—2401+ 12348& — 2244X? + 2758003 — 133755%* + 242387X°
— 1541848Q° + 70540444" — 127417629° + 55749128%°
— 2405709588 + 4329064154 — 146253564082 + 5952559599%"°
— 106704972668 + 296336967716"° — 1137325584800'°
+ 2031978559598 — 4823156208926'¢ + 17439240838410°
— 3108015767143¢° + 64755935263194* — 2201280094113642
+ 391629168869836° — 73045780287012¢* + 232681969021710F°
— 4133151272936538° + 70081348588734%3" — 20830642337065947°
+ 369154460219837%3° — 5761093876313017%°
+ 1590422250953788a1" — 28066340977612876&1°
+ 407135007678293093° — 1039187243118822998"
+ 182067915195389742% — 247309672587108545&
+ 581365244262381174% — 1007267912949309378%
+ 1287164785076270612%° — 27781471420314300292
+ 47381905470113399924 — 5705080259326321328%
+ 112791554026161912585 — 18844138392513387738ff
+ 213305384930045048628 — 38551408498348333504 ¢
+ 62799470091399436098% — 663244567700776798728
+ 109313241952782105914% — 1729925336326989733586
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+ 1677221045253645425488 — 250966181701388616756%
+ 385535775756468658108T — 33171987764375391756X7
+ 445970303366669871152% — 6699690356527027205267F
+ 4712835619541841129048 — 551589502229598823432%
+ 8418986026761406210570 — 355749373978630341970F
+ 2967144052401077482669 — 6097230519934320899607
— 242885029911562327570% + 472936112714751323518%
— 96337637866212415688% + 11586996393861391188069
— 14002890770158170207 42 + 781785261847505674779°F
— 16575420482318059675268 + 16734537138028434957244
— 7089221324585019485886 + 109332031528879893179%4%
— 8907308593248131984588 — 1468466124295786901141
+ 1320989510532080943648 — 2515839920964633664998
+ 8733255119045045834197 — 8648102018082906320368
+ 7228474474951901475700 — 799164388257375100668%
+ 667916969110551002656% — 4448501164546530714988
+ 313123460004763665470% — 197134862224919777978%
+ 95304935666082443568% — 36315219470505955078%

+ 725573237901586016%% + 2911886802970931390%

— 2479209664566943180% + 476276628569652450°

+ 76822493509997775%4" — 343187952655081548&’

+ 28598996054590128°,

Continuedf, expansions exhibit severalinteresting phenomena which merit further
study. For example, let us consider whether the limit defining, 1, 1, ... ]¢, con-
verges. Computationally, we find that there is a threshhold nuayzer. 1410415 ..
with the property thafl;1, 1, 1, ... ]¢, converges for all O< o < oy (Which we refer
to as ‘smalk’) but diverges for allr > oy (‘largeca’). In fact, « is the unique positive
solution of the equatiog? = (y — 1)¥**.

The behaviour ofE;, asa passes through, experiences a classic bifurcation.
For all positivea, the function(x — 1)~Y* has a unique fixed point between 1
and 2; however, this fixed point is repelling for smallbut attracting for largex.
Therefore only a single real number Hasl, 1, 1, ... ] as its continued,-expansion
for smalle, andVy,[1;1, 1, 1,...] converges back to this real number. In contrast,
there is a whole interval of real numbers haviigl, 1, 1,...] as their continued
f,-expansions for largee. For example, wherx = 5, all real numbers in the
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interval (1.06377 1.73411 have[l;1, 1,1, ...] as their continueds-expansion. In
particular, sincey/7 = 1.47577, the exampl&,(v/7) = [1;1, 1, 1, ...] mentioned
above is less significant than it seems.

Indeed, for largex the function((x — 1)~* — 1)~ has three fixed points in the
interval (1, 2), the central one being unstable and the outer two being stable. The
evaluationd/s,[1; 1, 1, ..., 1] oscillate back and forth between ever-decreasing neigh-
borhoods of the two stable fixed points as the number of ones increases, and henc
V¢ [1;1,1,1,...]does not converge for large The two outer fixed points approach
1 from above and 2 from below, respectively,@asends to infinity. We can con-
clude, for instance, that for every real numhee (1, 2), there exists aw(x) such
that, whenevew > «(x), we haveE; (x) = [1;1,1,1,...]. For example, we have
E,(v7) =11;1,11,...]foralla > 4.26159.

The above discussion implies in particular thiats not faithful for largex. Onthe
other hand, it can be shown that no analogous bifurcation occufs;forn, n, ...]
whenn > 2 (the key equality now becoma¥™yY = (y—1)¥** which has no positive
solution). Computational evidence suggests that periodic sequences of longer perio
never undergo bifurcations either. We are thus led to conjecturefthist faithful
forall 0 < o < ap. (Kakeya's theorem (se@,[Section 8.3]) is only relevant when
a < 1)) In particular, this conjecture would imply by Theorédr that the power
functionx~* is chorus-line-conjugate to the reciprocal function(byoo) for o < aq
but not foree > «p, a curious state of affairs.

We can also use these functions to show that the analogue of Propdsition
non-faithful functions does not hold. Indeed fife F is any function agreeing with
fs outside the intervall.06377 1.7341)), then it is easy to see th&t; = Ey,.

We mention one last phenomenon, where we fix a real numbard consider
the function fromR to ¢ that mapsx to Ey, (x). Counterintuitively, this function
is not an order-preserving function ef For example, wher = 1/2, the function
a +— E¢ (1/2) is increasing forx < 2.24228 but decreasing thereafter (stabilizing
eventually af1;1,1,1,...], as we have already seen).
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