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Abstract

Many generalizations of continued fractions, where the reciprocal function has been replaced by a more
general function, have been studied, and it is often asked whether such generalized expansions can have
nice properties. For instance, we might ask that algebraic numbers of a given degree have periodic
expansions, just as quadratic irrationals have periodic continued fractions; or we might ask that familiar
transcendental constants such ase or ³ have periodic or terminating expansions. In this paper, we show
that there exist such generalized continued function expansions with essentially any desired behaviour.

2000Mathematics subject classification: primary 11J70; secondary 40A15.

1. Introduction

The familiar continued fraction expansion of a real number has great importance in
its approximation by rational numbers, and the predictable behaviour of the continued
fractions of certain classes of real numbers has added benefits. For example, the fact
that the continued fraction expansion of a rational number terminates is essentially
a re-expression of the Euclidean algorithm; also, the periodicity of the continued
fractions for quadratic irrationals is crucial for calculating the fundamental units
of real quadratic fields. Already in 1848 Hermite, in correspondence with Jacobi,
asked about the existence of generalizations of continued fractions such that algebraic
numbers of given degree would have periodic expansions. Since that time, myriad
different generalizations have been studied (see [2] for an extensive list). Herein we
focus on thef -expansions introduced by Bissinger [1], which we define momentarily.
The purpose of this paper is to demonstrate that the functionf can be chosen so that the
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expansions of prescribed real numbers can have essentially any desired behaviour. The
following results, listed in roughly increasing order of unlikeliness, are representative
of what we can prove.

THEOREM 1. For any two real numbersx; y ∈ .0;1/, there exists a functionf such
that the f -expansion ofx is the same as the usual continued fraction expansion ofy.

THEOREM 2. There exists a functionf such that thef -expansion of any rational
or quadratic irrational terminates.

THEOREM 3. There exists a functionf such that thef -expansion of a real number
x is periodic if and only ifx is a cubic irrational number.

THEOREM 4. There exists a functionf such that, simultaneously for every integer
d ≥ 1, a real numberx is algebraic of degreed if and only if the f -expansion ofx
terminates with the integerd + 1.

We remark that Vorono˘ı’s algorithm [4] for calculating units in number fields of
degree higher than two is not directly relevant to Theorem3, since we are interested
in generalizations that give well-defined expansions for every real number. We also
remark that in all four theorems, the cardinality of the set of functionsf satisfying
the given property is that of the continuum, which is the cardinality of the set of
all continuous functions on the real numbers. Finally, we mention an even more
surprising generalization of Theorem4, which we discuss in more detail later in the
paper: there exists a functionf such that thef -expansion of every algebraic real
numberx of degreed terminates with the integerd +1, and thed +1 integers directly
preceding this finald + 1 encode the minimal polynomial ofx.

Let us describe more precisely the class of expansions we shall consider. The
output of any such expansion will be a sequence in the setC = Ci ∪ Ct , where

Ci = {[a0; a1;a2; : : : ] : eachaj ∈ Z; aj ≥ 1 for all j ≥ 1}
and

Ct = {[a0; a1; : : : ;an] : n ≥ 0; eachaj ∈ Z;
aj ≥ 1 for all 1 ≤ j ≤ n; an ≥ 2 if n ≥ 1}:

We emphasize that the elements of these sets are formal sequences of integers, not real
numbers; the setsCi andCt are the infinite and terminating sequences, respectively.
Let bxc and{x} = x − bxc denote the greatest integer function and fractional part,
respectively, ofx. DefineF to be the set of decreasing homeomorphisms from.1;∞/

to .0;1/, that is, the set of all strictly decreasing continuous functionsf defined on
.1;∞/ satisfying limx→1+ f .x/ = 1 and limx→+∞ f .x/ = 0. Throughout this paper,
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f will denote a function from the classF and� will denote the inverse off , so that
� is a decreasing homeomorphism from.0;1/ to .1;∞/.

We define theexpansion functionE f : R → C (sometimes called the representation
function by other authors) as follows. Givenx0 ∈ R, we seta0 = bx0c. If x0 is not an
integer, we setx1 = �.{x0}/ anda1 = bx1c. If x1 is not an integer, we setx2 = �.{x1}/
and a2 = bx2c, and so on. Then the value ofE f .x0/ is [a0; a1; : : : ;an] ∈ Ct or
[a0; a1;a2; : : : ] ∈ Ci , depending on whether one of thexj is equal to an integer.
The prototypical example uses the reciprocal functionr .x/ = 1=x, in which case
Er .x0/ is the usual continued fraction expansion ofx0. In general, we callE f .x0/

thecontinued function expansionof x0, or sometimes thecontinuedf -expansionfor
a specific functionf . In the terminology of [2], these aref -expansions of type A
( f -expansions of type B are formed from increasing functionsf and generalize the
usual decimal expansions of real numbers).

In this paper, when we write simply[a0; a1;a2; : : : ] we mean the formal element of
C . If we want to refer to the real number whose usual continued fraction expansion
is [a0; a1;a2; : : : ], we use the notation[a0; a1;a2; : : : ]r . In general, for any function
f ∈F we define anevaluation functionVf onCt recursively by settingVf .[a0]/ = a0

andVf .[a0; a1; : : : ;an]/ = a0 + f .Vf .[a1; a2; : : : ;an]//. Thus

Vf .[a0; a1; : : : ;an]/ = a0 + f .a1 + f .a2 + · · · + f .an/ · · · //;(1)

which is the continuedf -expansion of a certain real number. We extend the definition
of Vf to as much ofC as we can by defining

Vf .[a0; a1;a2; : : : ]/ = lim
n→∞

Vf .[a0; a1; : : : ;an]/

when the limit exists. We shall often write[a0; a1; : : : ;an] f as a shorthand for
Vf .[a0; a1; : : : ;an]/, thus generalizing the notation[a0; a1;a2; : : : ]r given above.

Note that[a0; a1;a2; : : : ]r always exists and equals the unique real numberx such
that Er .x/ = [a0; a1;a2; : : : ], that is, the expansion functionEr : R → C and the
evaluation functionVr : C → R are inverses of each other. For a general function
f ∈ F , the definitions ofE f andVf do imply that the restriction ofVf to Ct and
the restriction ofE f to Vf .Ct / are inverses of each other; however,E f might not be
injective on all ofR, or Vf might not be defined on all ofC , and so on.

If the function f ∈ F does have the property thatE f andVf are inverses of each
other, we call f a faithful function. In other words,f is faithful if and only if E f

is bijective and the limit defining[a0; a1;a2; : : : ] f exists for every element ofCi and
always equals the unique real numberx such thatE f .x/ = [a0; a1;a2; : : : ]. (The
list of properties in this last sentence is probably redundant for characterizing faithful
functions, though we shall not need a more streamlined criterion. Our definition of
faithful is related to what other authors call avalid representation.) In this terminology,
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Theorems1–4 can be stated more precisely using the phrase ‘there exists a faithful
function f ∈ F such that the continuedf -expansionE f of : : : .’

The idea of our method is to endowC with a topology that is naturally related to
continued fraction expansions and then to treat the expansion and evaluation maps
E f andVf as continuous functions betweenR andC . We describe this topology and
begin to explore its consequences in Section2. With this foundation, we can make
substantial progress by composing these functions with carefully chosen continuous
functions fromR to itself. This technique, which leads to proofs of Theorems1–
4, is expounded in Section3. Finally, in Section4 we investigate the class of
continued function expansions given by power functionsf .x/ = x−Þ, including
several numerical examples that partially motivated this paper.

At this point we should confess what the reader might already suspect, that the
functions giving the nice behaviours of Theorems1–4 are infeasible for actual com-
putations. Indeed, the existence of such functions is essentially a consequence of the
existence of continuous functions on the interval.0;1/ with certain properties. We
have chosen the title of this paper, a subtle variation on the famous phrase ‘unrea-
sonable effectiveness’ pioneered by Wigner [5], for this reason. Mirriam–Webster’s
Collegiate Dictionary contrasts the two wordsby saying that ‘effective’ in fact ‘stresses
the actual production of or the power to produce an effect’, while ‘effectual’ merely
‘suggests the accomplishment of a desired result especially as viewed after the fact’.
We cannot think of a more apt description of these techniques.

2. Topological preliminaries

We recall that ifS is a set endowed with a total linear ordering, theorder topology
on S is defined by declaring the open sets to be arbitrary unions of open intervals inS,
that is, of sets of the form.x; y/ = {s ∈ S : x < s < y}. If S andT are two ordered
sets, a functionf : S → T is order preservingif, wheneverx < y in S, we have
f .x/ < f .y/ in T . It is easily checked that this impliesx <S y ⇔ f .x/ <T f .y/,
and consequently any order-preserving function is automatically injective. We shall
need the following result as well:

LEMMA 5. Let h : S → T be a function between the two ordered spacesS andT.
If h is order-preserving and surjective, thenh is a homeomorphism.

PROOF. Since any order-preserving function is injective,h is in fact a bijection, and
it is easily verified thath−1 is also order-preserving. Moreover, it is true that the image
underh of any open interval.x; y/ ⊂ S is exactly the open interval.h.x/;h.y// in T :
certainly the image is contained in this open interval by the order-preserving property
of h, while every point in.h.x/;h.y// must have a preimage inS by the surjectivity
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of h, and this preimage must be in.x; y/ again by order-preservation. This shows that
bothh andh−1 are continuous, and thereforeh is a homeomorphism.

We can endowC with thealternating lexicographic order topology, or the alt-lex
topology for short, which is the order topology defined by the following total ordering
of C :

[a0; a1;a2; : : : ] < [b0; b1;b2; : : : ]
⇐⇒ .a0 < b0/ or .a0 = b0 and a1 > b1/

or .a0 = b0 and a1 = b1 and a2 < b2/

or .a0 = b0 and a1 = b1 and a2 = b2 and a3 > b3/ or : : : :

Terminating elements[a0; a1; : : : ;an] ∈ Ct are treated as[a0; a1; : : : ;an;+∞] when
applying this definition. It is easy to see that for anyf ∈ F , the evaluation map
E f is semi-order-preserving, that is,x ≤ y in R implies thatE f .x/ ≤ E f .y/ in C .
In particular, if f is a faithful function, then the functionE f is bijective and hence
strictly order preserving. We conclude from Lemma5 that the evaluation functionE f

of any faithful f ∈ F is a homeomorphism fromR toC .

LEMMA 6. A subsetB of C is dense if and only if, for every elementx =
[a0; a1; : : : ;an] of Ct , there exists an elementb = [b0; b1;b2; : : : ] of B such that
b0 = a0, b1 = a1, : : : , bn = an.

PROOF. The key observation is that the set of elementsx = [x0; x1; x2; : : : ] of
C such thatx0 = a0; x1 = a1; : : : ; xn = an is one of the half-open intervals([a0; a1; : : : ;an + 1]; [a0; a1; : : : ;an]

]
or

[[a0; a1; : : : ;an]; [a0; a1; : : : ;an + 1]), de-
pending on whethern is odd or even. Every half-open interval of this form obviously
contains an open interval, which proves the ‘only if’ part of the lemma; conversely,
every open interval.c;d/ in C contains a half-open interval of this form (letn − 1 be
the first index at which the elementsc andd differ), which proves the ‘if’ part of the
lemma.

PROPOSITION7. Let A and B be two countable dense subsets of.0;1/. Then there
exists an increasing homeomorphismg : .0;1/ → .0;1/ such thatg.A/ = B.

PROOF. Note that any dense subset of.0;1/ must in fact be infinite. Fix any well-
orderings ofA andB (that is, arrange the elements ofA andB into infinite sequences);
we emphasize that this well-ordering is not related to the orderings ofA and B as
subsets of.0;1/. We recursively construct a sequence of order-preserving bijections
gj : Aj → Bj , whereAj and Bj are subsets ofA and B, respectively, as follows.
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Choose any elementsa1 ∈ A andb1 ∈ B, and defineA1 = {a1}, B1 = {b1}, and
g1.a1/ = b1.

If n ≥ 2 is even, we extendAn−1, Bn−1, andgn−1 as follows. Choose the first (in
the fixed well-ordering) elementb ∈ B \ Bn−1. If b is smaller than every element of
Bn−1, choosea ∈ A \ An−1 that is smaller than every element ofAn−1. If b is larger
than every element ofBn−1, choosea ∈ A \ An−1 that is larger than every element of
An−1. If neither of these cases holds, then there are unique elementsc;d of the finite
setBn−1 such thatc < b < d and.c;d/ ∩ Bn−1 = ∅; choosea ∈ A \ An−1 such that
g−1

n−1.c/ < a < g−1
n−1.d/. (All of these choices are possible sinceA is dense in.0;1/.)

After making this choice, we setAn = An−1 ∪{a} andBn = Bn−1 ∪{b}, and we define
gn : An → Bn by gn.a/ = b andgn.x/ = gn−1.x/ if x ∈ An−1.

Similarly, if n ≥ 3 is odd, we extendAn−1, Bn−1, andgn−1 as follows. Choose the
first (in the fixed well-ordering) elementa ∈ A \ An−1. If a is smaller than every
element ofAn−1, chooseb ∈ B \ Bn−1 that is smaller than every element ofBn−1. If
a is larger than every element ofAn−1, chooseb ∈ B \ Bn−1 that is larger than every
element ofBn−1. If neither of these cases holds, then there are unique elementsc;d
of the finite setAn−1 such thatc< a < d and.c;d/∩ An−1 = ∅; chooseb ∈ B \ Bn−1

such thatgn−1.c/ < b < gn−1.d/. (All of these choices are possible sinceB is dense
in .0;1/.) After making this choice, we setAn = An−1 ∪ {a} and Bn = Bn−1 ∪ {b},
and we definegn : An → Bn by gn.a/ = b andgn.x/ = gn−1.x/ if x ∈ An−1.

It is easy to verify inductively that eachgn is a bijection fromAn to Bn that is
order-preserving with respect to the usual order on.0;1/, and thatgn|Am

= gm for
all positive integersm < n. Furthermore, the use of the well-orderings ofA and B
during the construction forces

⋃
n≥1 An = A and

⋃
n≥1 Bn = B. Therefore, there is

a unique functiong∞ : A → B (namely the union of all the functionsgn) such that
g∞|An

= gn for all n ≥ 1, and in factg∞ is an order-preserving bijection fromA to B.
Finally, defineg : .0;1/ → .0;1/ by g.x/ = sup{g∞.a/ : a ∈ A; a < x} for

x ∈ .0;1/. Note that for anyx ∈ .0;1/, there exista1;a2 ∈ A such thata1 < x < a2

(by the density ofA), whence the set{g∞.a/ : a ∈ A; a < x} is bounded above by
g∞.a1/ < 1 and containsg∞.a2/ > 0 by the order-preservation ofg∞; thereforeg.x/
is a well-defined real number in.0;1/. Also, g is order preserving: ifc;d ∈ .0;1/
with c< d, then there existsa1;a2 ∈ A with c< a1 < a2 < d, whence

g.c/ = sup{g∞.a/ : a ∈ A; a < c} ≤ g∞.a1/

< g∞.a2/ ≤ sup{g∞.a/ : a ∈ A; a < d} = g.d/:

Moreover,g is surjective: giveny ∈ .0;1/, definex = sup{g−1
∞ .b/ : b ∈ B; b < y}.

Becauseg∞ is an order-preserving bijection fromA to B andB is dense neary, it is
easy to check thatg.x/ = y. Thereforeg is an order-preservingsurjection from.0;1/
to .0;1/, hence a homeomorphism by Lemma5.
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A straightforward extension of this construction yields the following:

PROPOSITION8. Let A1; A2; : : : be a collection(finite or countably infinite) of
pairwise disjoint countable dense subsets of.0;1/, and similarly forB1; B2; : : : . Then
there exists an increasing homeomorphismg : .0;1/ → .0;1/ such thatg.A1/ = B1,
g.A2/ = B2, and so on.

3. Proofs of the theorems

We call a functionh : R → R a chorus-linefunction if h maps the set.0;1/ into
itself andh.x/ = bxc + h.{x}/ for all real numbersx. This definition implies that
bh.x/c = bxc and {h.x/} = h.{x}/ for all x. Let G denote the set of increasing
homeomorphismsg : .0;1/ → .0;1/. To anyg ∈ G we may associate a function
ḡ : R → R, called thechorus-line extensionof g, defined by

ḡ.x/ =
{

x; if x is an integer;

bxc + g.{x}/; if x is not an integer:

It is easy to see that̄g is an increasing homeomorphism fromR to itself and that both
ḡ and ḡ−1 = g−1 are chorus-line functions. For anyg ∈ G , we define fg to be the
restriction of the functiong−1◦r ◦ḡ to the domain.1;∞/, so thatfg.x/ = g−1.1=ḡ.x//
for x > 1. It is again easy to see thatfg ∈ F with inverse�g = ḡ−1 ◦ r ◦ g.

PROPOSITION9. Let g ∈ G. Then fg is a faithful function satisfying

ḡ.[a0; a1;a2; : : : ] fg
/ = [a0; a1;a2; : : : ]r

for every[a0; a1;a2; : : : ] ∈ C . In other words, the continuedf -expansion of every
real numberx is identical to the usual continued fraction expansion ofḡ.x/.

PROOF. Let x ∈ R, and let Er .ḡ.x// = [a0; a1;a2; : : : ]; we want to show as
a first step thatE fg

.x/ = [a0; a1;a2; : : : ] as well. For eachn ≥ 0, defineyn =
[an; an+1;an+2; : : : ]r andxn = ḡ−1.yn/, so thaty0 = ḡ.x/ andx0 = x. Notice that

bxnc = bḡ−1.yn/c = bync = an(2)

for all n ≥ 0, where we have used the fact thatḡ−1 is a chorus-line function. Similarly,

�g.{xn}/ = ḡ−1 ◦ r ◦ g.{ḡ−1.yn/}/(3)

= ḡ−1 ◦ r ◦ g.ḡ−1.{yn}//
= ḡ−1 ◦ r .{yn}/ = ḡ−1.yn+1/ = xn+1:
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Now, simply considering the definition of the evaluation functionE fg
.x0/ in light of

equations (2) and (3) reveals thatE fg
.x/ = E fg

.x0/ = [a0; a1;a2; : : : ] as desired.
This shows thatE fg

= Er ◦ ḡ; in particular,E fg
is the composition of two homeo-

morphisms and is therefore itself a homeomorphism, withE−1
fg

= ḡ−1 ◦ E−1
r . To show

that fg is faithful, it only remains to show thatVfg
is well-defined on all ofC and in-

verts the functionE fg
. As above, letx ∈ R andE fg

.x/ = Er .ḡ.x// = [a0; a1;a2; : : : ];
we want to show thatVfg

.[a0; a1;a2; : : : ]/ = limn→∞ Vfg
.[a0; a1; : : : ;an]/ exists and

equalsx. Now Vfg
does invertE fg

onCt , so

Vfg
.[a0; a1; : : : ;an]/ = E−1

fg
.[a0; a1; : : : ;an]/

= ḡ−1 ◦ E−1
r .[a0; a1; : : : ;an]/

= ḡ−1 ◦ Vr .[a0; a1; : : : ;an]/ = ḡ−1.[a0; a1; : : : ;an]r /:

However, we know that limn→∞[a0; a1; : : : ;an]r = [a0; a1;a2; : : : ]r by the conver-
gence of usual continued fractions. Therefore, by the continuity ofḡ−1, we have

Vfg
.[a0; a1;a2; : : : ]/ = lim

n→∞
ḡ−1.[a0; a1; : : : ;an]r /

= ḡ−1.[a0; a1;a2; : : : ]r / = ḡ−1.ḡ.x// = x

as desired.

Together, Propositions7–9 imply each of Theorems1–4. For example, given
x; y ∈ .0;1/, let g ∈ G be chosen so thatg.x/ = y. Then Proposition9 tells us
that fg is a faithful function inF and thatE fg

.x/ = Er .y/, which is precisely the
statement of Theorem1. In fact,g can be chosen to be piecewise linear, in which case
fg is given piecewise by M¨obius transformations.ax + b/=.cx + d/.

For any positive integerd, let Q.d/ denote the set of numbers in.0;1/ that are
algebraic overQ of degree exactlyd, so thatQ.1/ = Q ∩ .0;1/ for instance. Each
Q.d/ is a countable dense subset of.0;1/. Therefore, Proposition7 tells us that there
exists a functiong ∈ G such thatg.Q.3// = Q.2/. We then know from Proposition9
that the correspondingfg has the property that the continuedfg-expansion of any
number inQ.3/ is the same as the usual continued fraction expansion of a number in
Q.2/, and vice versa. Since the usual continued fraction expansion of a real number
is periodic if and only if the number is a quadratic irrational, thisfg gives a faithful
function such that the continuedfg-expansion of a real numberx is periodic if and
only if x is a cubic irrational number, establishing Theorem3.

A similar approachestablishes Theorem2. In fact, the singular Minkowski function
?.x/ (see [3]) is an increasing homeomorphism of.0;1/ that was constructed to have
the property that ?.Q.1/ ∪ Q.2// = Q.1/. Thereforef? ∈ F is a faithful function
such that the continuedf?-expansion of any rational or quadratic irrational number
terminates.
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As for Theorem4, we partitionCt into infinitely many setsCt .1/;Ct .2/; : : : , where
we define

Ct .d/ = {[0;a1; : : : ;an] : n ≥ 1; each aj ∈ Z;
aj ≥ 1 for all 1 ≤ j < n; an = d + 1}:

EachCt.d/ is dense inC by Lemma6. Therefore, if we defineQ.1;d/ = Vr .Ct .d//,
thenQ.1;1/;Q.1;2/; : : : is a partition ofQ ∩ .0;1/ into countably many countably
infinite subsets, each dense in.0;1/. Applying Proposition8, we can find a function
g ∈ G such thatg.Q.d// = Q.1;d/ for every positive integerd. Then, by Proposi-
tion 9, the set of real numbers in.0;1/ whose continuedfg-expansion terminates in
the integerd + 1 is preciselyQ.d/.

We briefly discuss the extension of Theorem4 mentioned in the introduction. We
generalize the notation of the previous paragraph by definingCt .n1;n2; : : : ;nk/ to
be the set of terminating expansions inC that begin with a zero and end with thek
integersn1; : : : ;nk, andwe setQ.1;n1; : : : ;nk/ = Vr .Ct .n1;n2; : : : ;nk//. We choose
a function that encodes every integer, positive or negative, as a positive integer; one
such function is

�.k/ =
{

2|k| + 1; if k ≤ 0;

2k; if k > 0;

which is a bijection fromZ to Z+ whose inverse isŽ.k/ = .−1/kbk=2c. Using a
modification of Proposition8, we can find a functiong ∈ G such that, for each
algebraic numberx ∈ .0;1/, if the minimal polynomial ofx is cdtd +cd−1td−1 +· · · +
c1t+c0, theng.x/ ∈ Ct .�.c0/; �.c1/; : : : ; �.cd−1/; �.cd/;d+1/. (Many transcendental
numbers would also be mapped into these subsets ofCt by g.) The corresponding
faithful function fg ∈ F would then have the property that the continuedfg-expansion
of x would terminate in the sequence�.c0/; �.c1/; : : : ; �.cd−1/; �.cd/;d + 1, thus
encoding the minimal polynomial ofx. If we had an oracle that could compute
this function fg quickly, we could test whether any real numbery was algebraic by
computing its continuedfg-expansion; if it terminated, say as[0;a1; : : : ;an], theny
would be either transcendental or else a root of the polynomial

Ž.an−1/t
an−1 + Ž.an−2/t

an−2 + · · · + Ž.an−.an−1//t + Ž.an−an
/:

Of course, this is only a fantasy, as the functionfg is hopelessly infeasible for exact
computation. Other types of encoding functions are possible, of course; for example,
one can encode every finite sequence of integers as a single positive integer via some
Gödel-type code.

Proposition9 shows us how we can contruct a faithful function inF from any
function inG . The following result demonstrates that the opposite is also true:
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PROPOSITION10. Let f ∈ F be a faithful function. Defineg to be the restriction
of the functionVr ◦ E f to .0;1/. Theng ∈ G and fg = f .

PROOF. SinceE f : .0;1/ → C andVr : C → .0;1/ are both order preserving, we
see from Lemma5 thatg is indeed a homeomorphism from.0;1/ to itself, and hence
g ∈ G . Notice thatVr ◦ E f has the property thatVr ◦ E f .x/ = bxc + Vr ◦ E f .{x}/;
thereforeVr ◦ E f is its own chorus-line extension and soḡ = Vr ◦ E f . If we write
E f .x/ = [a0; a1;a2; : : : ], then ḡ.x/ = Vr .[a0; a1;a2; : : : ]/ = [a0; a1;a2; : : : ]r and
thereforer ◦ ḡ.x/ = [0;a0;a1;a2; : : : ]r . Finally, note that.Vr ◦ E f /

−1 = E−1
f ◦V−1

r =
Vf ◦ Er , and so

g−1 ◦ r ◦ ḡ.x/ = Vf ◦ Er .[0;a0;a1;a2; : : : ]r / = [0;a0;a1;a2; : : : ] f

= 0 + f .[a0; a1;a2; : : : ] f / = f .x/

as desired.

We say that two functionsf; f ′ ∈ F are chorus-line conjugateif there exists
an increasing continuous chorus-line functionh such thatf equals the restriction of
h−1 ◦ f ′ ◦ h to the domain.1;∞/. It is easy to check that chorus-line conjugacy is
an equivalence relation onF . The next theorem shows that the equivalence class
containing the reciprocal functionr is precisely the class of faithful functions.

THEOREM 11. Let f ∈ F . The following are equivalent:

(i) f is faithful;
(ii) f is chorus-line conjugate tor ;

(iii) f = fg for someg ∈ G .

In particular, there is a one-to-one correspondence between functionsg ∈ G and
faithful functionsf ∈ F .

PROOF. It is easy to see that any increasing continuous chorus-line function is
equal toḡ for someg ∈ G . Thus f andr are chorus-line conjugate if and only if
f = ḡ−1 ◦ r ◦ ḡ = fg for someg ∈ G , which shows the equivalence of statements
(ii) and (iii). Proposition9 shows that statement (iii) implies statement (i), while
Proposition10 shows that statement (i) implies statement (iii). Therefore the three
statements are indeed equivalent.

The assertion that there is a one-to-one correspondence between functionsg ∈ G
and faithful functionsf ∈ F requires some justification, as it is not immediately
clear that different functionsg; g′ ∈ G give rise to distinct fg and fg′. Suppose
that g 6= g′, and choose anx ∈ .0;1/ such thatg.x/ 6= g′.x/. By Proposition9,
we haveE fg

.x/ = Er .g.x// 6= Er .g′.x// = E fg′ .x/. Since the continuedf - and
f ′-expansions ofx differ, we must havefg 6= fg′.
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At the end of the last proof, we used the fact that two faithful functions whose
corresponding expansion functions are different must be distinct. In fact, the converse
is also true:

PROPOSITION12. Suppose thatf1; f2 ∈ F are faithful functions with the property
that E f1 = E f2. Then f1 = f2.

PROOF. Given x ∈ .1;∞/, we want to prove thatf1.x/ = f2.x/. Write E f1.x/ =
[a0; a1;a2; : : : ] = E f2.x/. Note that the continuedf1-expansion off1.x/ = 0+ f1.x/
is [0;a0;a1;a2; : : : ], so thatE f1. f1.x// = [0;a0;a1;a2; : : : ]. Similarly, E f2. f2.x// =
[0;a0;a1;a2; : : : ]. But thenE f1. f2.x// = [0;a0;a1;a2; : : : ] sinceE f1 = E f2. There-
fore E f1. f1.x// = E f1. f2.x//, and since f1 is faithful, E f1 is injective and thus
f1.x/ = f2.x/.

4. Continued power function expansions

Let us consider a particular one-parameter family of functions fromF , namely the
power functionsfÞ.x/ = x−Þ for Þ > 0, so thatf1 = r . A continuedfÞ-expansion of
a real number is thus an expression of the form

a0 +
(

a1 +
(

a2 + (
a3 + .a4 + · · · /−Þ)−Þ)−Þ)−Þ

:

At a problem session of the West Coast Number Theory Conference in 1999, Kevin
O’Bryant considered the caseÞ = 1=2, which he called the continued root expansion
of a real numberx. For instance, some rational numbers such as

2

3
= 0 + 1√

2 + (
1=

√
16

) = [0; 2;16] f1=2

and 27=47 = [0; 3;1098;2892;410;256] f1=2 have terminating continued root expan-
sions. On the other hand, O’Bryant remarked that

E f1=2.3=4/ = [0; 1;1;2;8;5;1;3;3;14;321;2;300;1;13;2;6;1;1;2; : : : ]
does not seem to terminate; but we do not know how to prove this. At the same
problem session, Bart Goddard noted several other examples; for instance,E f5

(
5

√
7
) =

[1; 1;1;1; : : : ], and the continuedf3=2-expansion of3
√

3 = 1:44224957 looks at first
to be periodic of period four. However,

E f3=2

(
3

√
3
)

= [1; 1;1;2;1;1;1;2;1;1;1;2;1;1;1;

3;1;1;1;1;3;1;2;1;1;7;23;1; : : : ]
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does not seem to be periodic, while

x = Vf3=2.[1; 1;1;2;1;1;1;2;1;1;1;2; : : : ]/ = 1:44225029

is the nearby number that satisfies the equation

x = 1 +
(

1 +
(
1+ (

2 + x−3=2
)−3=2

)−3=2
)−3=2

:

In fact, writingw, z, andy as the three quantities in parentheses on the right-hand side
of this equation (starting from the innermost parentheses), we see that this numberx
is thex-coordinate of one solution to the system of equations

y3.x − 1/2 = 1; z3.y − 1/2 = 1; w3.z − 1/2 = 1; x3.w − 2/2 = 1:

Using elimination theory and a computational algebra package, we can show that this
numberx is algebraic of degree 93; more precisely, it is the fourth of seven real roots
of the irreducible polynomial

−2401+ 12348x − 22442x2 + 275800x3 − 1337555x4 + 2423872x5

− 15418480x6 + 70540444x7 − 127417629x8 + 557491285x9

− 2405709582x10 + 4329064154x11 − 14625356403x12 + 59525595995x13

− 106704972668x14 + 296336967716x15 − 1137325584809x16

+ 2031978559593x17 − 4823156208926x18 + 17439240838410x19

− 31080157671439x20 + 64755935263191x21 − 220128009411364x22

+ 391629168869836x23 − 730457802870121x24 + 2326819690217101x25

− 4133151272936538x26 + 7008134858873413x27 − 20830642337065947x28

+ 36915446021983793x29 − 57610938763130172x30

+ 159042225095378801x31 − 280663409776128761x32

+ 407135007678293093x33 − 1039187243118822998x34

+ 1820679151953897429x35 − 2473096725871085456x36

+ 5813652442623811749x37 − 10072679129493093706x38

+ 12871647850762706121x39 − 27781471420314300292x40

+ 47381905470113399929x41 − 57050802593263213282x42

+ 112791554026161912586x43 − 188441383925133877380x44

+ 213305384930045048629x45 − 385514084983483335018x46

+ 627994700913994360904x47 − 663244567700776798728x48

+ 1093132419527821059119x49 − 1729925336326989733586x50
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+ 1677221045253645425438x51 − 2509661817013886167565x52

+ 3855357757564686581031x53 − 3317198776437539175677x54

+ 4459703033666698711524x55 − 6699690356527027205257x56

+ 4712835619541841129045x57 − 5515895022295988234329x58

+ 8418986026761406210570x59 − 3557493739786303419709x60

+ 2967144052401077482669x61 − 6097230519934320899607x62

− 2428850299115623275704x63 + 4729361127147513235131x64

− 963376378662124156885x65 + 11586996393861391188069x66

− 14002890770158170207742x67 + 7817852618475056747791x68

− 16575420482318059675255x69 + 16734537138028434957244x70

− 7089221324585019485886x71 + 10933203152887989317941x72

− 8907308593248131984589x73 − 1468466124295786901110x74

+ 1320989510532080943648x75 − 2515839920964633664993x76

+ 8733255119045045834197x77 − 8648102018082906320368x78

+ 7228474474951901475700x79 − 7991643882573751006683x80

+ 6679169691105510026567x81 − 4448501164546530714930x82

+ 3131234600047636654702x83 − 1971348622249197779737x84

+ 953049356660824435629x85 − 363152194705059550764x86

+ 72557323790158601616x87 + 29118868029709313904x88

− 24792096645669431805x89 + 4762766285696524504x90

+ 768224935099977754x91 − 343187952655081548x92

+ 28598996054590129x93:

ContinuedfÞ expansions exhibit several interesting phenomena which merit further
study. For example, let us consider whether the limit defining[1; 1;1;1; : : : ] fÞ con-
verges. Computationally, we find that there is a threshhold numberÞ0 = 4:1410415: : :
with the property that[1; 1;1;1; : : : ] fÞ converges for all 0< Þ < Þ0 (which we refer
to as ‘smallÞ’) but diverges for allÞ > Þ0 (‘largeÞ’). In fact,Þ0 is the unique positive
solution of the equationyy = .y − 1/y+1.

The behaviour ofE fÞ asÞ passes throughÞ0 experiences a classic bifurcation.
For all positiveÞ, the function.x − 1/−1=Þ has a unique fixed point between 1
and 2; however, this fixed point is repelling for smallÞ but attracting for largeÞ.
Therefore only a single real number has[1; 1;1;1; : : : ] as its continuedfÞ-expansion
for smallÞ, andVfÞ [1; 1;1;1; : : : ] converges back to this real number. In contrast,
there is a whole interval of real numbers having[1; 1;1;1; : : : ] as their continued
fÞ-expansions for largeÞ. For example, whenÞ = 5, all real numbers in the
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interval.1:06377;1:73411/ have[1; 1;1;1; : : : ] as their continuedf5-expansion. In
particular, since5

√
7 = 1:47577, the exampleE f5

(
5

√
7
) = [1; 1;1;1; : : : ] mentioned

above is less significant than it seems.
Indeed, for largeÞ the function..x − 1/−Þ − 1/−Þ has three fixed points in the

interval .1;2/, the central one being unstable and the outer two being stable. The
evaluationsVfÞ [1; 1;1; : : : ;1] oscillate back and forth betweenever-decreasingneigh-
borhoods of the two stable fixed points as the number of ones increases, and hence
VfÞ [1; 1;1;1; : : : ] does not converge for largeÞ. The two outer fixed points approach
1 from above and 2 from below, respectively, asÞ tends to infinity. We can con-
clude, for instance, that for every real numberx ∈ .1;2/, there exists anÞ.x/ such
that, wheneverÞ > Þ.x/, we haveEfÞ .x/ = [1; 1;1;1; : : : ]. For example, we have
E fÞ

(
5
√

7
) = [1; 1;1;1; : : : ] for all Þ > 4:26159.

The above discussion implies in particular thatfÞ is not faithful for largeÞ. On the
other hand, it can be shown that no analogous bifurcation occurs for[n; n;n;n; : : : ]
whenn ≥ 2 (the key equality now becomesny+1yy = .y−1/y+1 which has no positive
solution). Computational evidence suggests that periodic sequences of longer period
never undergo bifurcations either. We are thus led to conjecture thatfÞ is faithful
for all 0 < Þ < Þ0. (Kakeya’s theorem (see [2, Section 8.3]) is only relevant when
Þ < 1.) In particular, this conjecture would imply by Theorem11 that the power
functionx−Þ is chorus-line-conjugate to the reciprocal function on.1;∞/ for Þ < Þ0

but not forÞ > Þ0, a curious state of affairs.
We can also use these functions to show that the analogue of Proposition12 for

non-faithful functions does not hold. Indeed, iff ∈ F is any function agreeing with
f5 outside the interval.1:06377;1:73411/, then it is easy to see thatE f = E f5.

We mention one last phenomenon, where we fix a real numberx and consider
the function fromR to C that mapsÞ to E fÞ .x/. Counterintuitively, this function
is not an order-preserving function ofÞ. For example, whenx = 1=2, the function
Þ 7→ E fÞ .1=2/ is increasing forÞ < 2:24228 but decreasing thereafter (stabilizing
eventually at[1; 1;1;1; : : : ], as we have already seen).

Acknowledgements

The author acknowledges the support of the Natural Sciences and Engineering
Research Council and of the Department of Mathematics of the University of British
Columbia, and thanks Bart Goddard for the interesting questions.

References

[1] B. H. Bissinger, ‘A generalization of continued fractions’,Bull. Amer. Math. Soc.50(1944),868–876.



[15] The unreasonable effectualness of continued function expansions 319

[2] F. Schweiger,Ergodic theory of fibred systems and metric number theory(The Clarendon Press
Oxford University Press, New York, 1995).

[3] P. Viader, J. Paradı́s and L. Bibiloni, ‘A new light on Minkowski’s ?.x/ function’,J. Number Theory
73 (1998), 212–227.
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