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Abstract

The two-sided ideals of group near-rings are characterized and studied. Various examples are presente
to illustrate the interplay between ideals in the base nearRiagd the corresponding group near-ring
R[G]. Some results concerning the Jacobson radicaR{Gf] are also discussed.
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1. Introduction

In [2] group near-rings have been defined in their most general form. Since then,
some work has been done on the ideal theory of group near-ringsl($#e put only
for certain special cases, such as for near-rings which are distributively generated
This paper is meant to be the first step towards laying the groundwork for the ideal
theory of general group near-rings. These ideals are characterized and some of thei
fundamental properties are revealed. Several results from matrix near-ring theory are
utilized in order to do so.

Throughout this papeR denotes a right near-ring with identity 1 aGddenotes a
(multiplicatively written) group with identitye and with|G| > 2. For general results
on near-rings, the reader is referred to a standard textbook suéh aRdcall that
for any (additively written) grougH, the set of all mappings : H — H under
the operations of pointwise addition and composition, forms a near-ring, denoted by
M (H). We need this in the following

DEFINITION 1.1 ([2]). Let R® denote the direct sum df5| copies of the group
(R, 4). The group near-ringconstructed fromR and G, denotedR[G], is the
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subnear-ring oM (R®) generated by the séir, g] € M(R®) : r € R, g € G}, where
[r,g] : R® — R®is defined by(r, g](u))(h) =ru(hg), forall x € R® andh € G.

It follows that in case of a finite grouf®, with |G| = n, the near-ringR[G] is
closely related to the x n matrix near-ring oveR. Hence we pertinently give the
following definition, due to Meldrum and van der Wat [

DEFINITION 1.2. Let R" denote the direct sum af copies of the grougR, +).
Then x n matrix near-ringover R, denotedM,,(R), is the subnear-ring oM (R")
generated by the s¢f; € M(R") : r € R, 1 <i,j < n}, wheref! : R" > R"is
defined byf; (o) = 4 (rm;(@)), foralle € R". Herey : R— R"andr; : R" — R
denote the-th and j-th co-ordinate injection and projection functions respectively.
For typographical reasons we also sometimes ritg j | for the matrix f; .

The interested reader should const|td, 5] for basic results on group near-rings
and [6, 7] for general results on matrix near-rings. Note that wiRelnappens to be a
ring, then bothR[G] andM,,(R) revert to the standard situation in ring theory.

Ouir first result relateR[G] and M, (R) in caseG is a finite group. As usualg,
denotes the symmetric group on the &et2, ... , n}.

THEOREM 1.3. If G is a finite group with G| = n, thenR[G] is a subnear-ring of
M,(R), sharing the same identity elemémte] = fl + f,+ .-+ f1.

PrOOF. The elements of botR[G] andM,(R) are mappings of the forflR” — R".
Hence it is sufficient to show that each mappindifG] is also inM,(R). In fact, it
is sufficient to show that each generdigig] of R[G] is ann x n matrix.

To this end, let[r,g] € R[G], whereG = {0;,0,,...,0,}. We can use the
elements of to index the co-ordinates of amye R", that is, the -th co-ordinate of
a is a(g) = m(«). Now consider an arbitrary = (sy,, Sg,.--- . S;,) € R, where
a(@)=5S,1=12...,n Then

[r7 g](sgl, SQZ’ AR sgn) = (rSglg, rngg, ey rSgng)
(rSq, 4> Sg, s - -+ +1Sg,,) fOrsomep e S

= (L eI+ 1r:2 01+ --- +1r;n, p(M])e.

Note thato depends o only. It follows that(r, gl = > ,[r;i, p(i)] € My(R). O

2. Basic results on the ideal theory oR[G]

An important question now arises: Given an idéabf R, how do we relate a
corresponding ideal ilR[G]? This problem has been studied for matrix near-rings,
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and satisfactory results have been obtained (3g4,[7, 8, 11]). Keeping in mind
that whenR is a ring (with identity), the complete set of (two-sided) ideald/RI R)
can be obtained by considerimg, (A) for idealsA of R, the natural approach was to
define ideals

At = |d(flal rae A)MH(R)
and
A= (A": Rn)Mn(R) ={UeM,(R):UR" C A"}

in M,(R), for an idealA of R. We use the notation {X) to denote the ideal oR
generated by the subs¥tC R. Also note that, sincé? = 73 f3 f}, our definition of
A" agrees with the definitioA* = Id(f?:a e A, 1 <i, ] < n)y,r givenin [L1].

It is easily checked thaAt € A*. WhenR s a ring, At = A* = M,(A), butin
the general near-ring situation, it can happen #atc A*, where ‘C’ means ‘proper
inclusion’. Moreover, it turned out that, in certain cases, ideals strictly enveloped
betweenA* and A* for someA, and not equal t@&* or B* for any idealB of R, exist.
These ideals were terméatermediate and it was shown inJ] that any ideal of a
matrix near-ring must be of the for@*™ or A* if it is not intermediate.

Following the same strategy for group near-rings leads to similar results, but we do
(rather unexpectedly) also get something new. Sélbe an ideal oR, and define

TA=Id([a,e]:ae ARrg
and
*A= (A®: R®pgg = {U € R[G] : U(R®) C A°®}.
Note that we use left superscripts to distinguish between the group near-ring and the

matrix near-ring situation. The following result relates all these ideals in Gaise
finite.

THEOREM2.1. Let G be a finite group witiG| = n. For any ideal A of R, we
have the following inclusions, denoted by arrows
RIG] —— My(R)

I I

A — A

I I

A —— AT

ProOOF. The factthateacla, €], a € A, belongstd Aandeachf, a € A, belongs
to A* forces™ A € *Aand AT € A*. The other inclusions follow from Theorein3
and its proof. O
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It is also natural to ask how to construct an ideal in the base neafRiingm a
given ideald of M, (R) or R[G]. In the matrix near-ring case, the construction is as
follows: For an ideald of M,(R), define

./4* = {7T1UL1(1) U e ./4}
Note that this definition is equivalent to the definition
A, ={xeR:xelm(r;U), forsomeU € A,1<j <n}

givenin[6]: if « = (a1, @z, ... ,a,) € R, andUa = 8 = (B4, B, ... , B,) for some
U € A, thenr;(Ua) = B; = 711[1‘111-U(f1"11 + f27 + -+ fi)]u(D). Itis clear that
fRUCTSE 4+ 7 +--- + fi]) € A, sinceA is a two-sided ideal.

To make a similar construction in the group near-ring case, we need the analogous
in R® of the element;(1) in R". This is given bye € R®, wheres(e) = 1 and
e(g) = 0if g # e. For the remainder of this paperwill always denote this particular
element ofR®. Now let.4 be an ideal oR[G]. Then

LA={Ueg)(e) :U e A).

It follows that both.A, and,.A are ideals ofR (see B, Proposition 4.6] andZ|
Lemma 4.8]). The following theorem summarizes the basic relationships amongst all
these ideals.

THEOREM2.2. (a) Let Abe an ideal ofR and letA be an ideal ofM,(R). Then
(AN, =A=(A), and (A)" S Ac (A"
(b) Let A be anideal ofR and let.A be an ideal ofR[G]. Then
LA =A=,(A and AC*(A).

(c) The mapsA+— AT, Ar—> A*, A tAand A+ *A (for A anideal ofR) are
injective. The mapst — A, (for A an ideal ofM,(R)) and A — ,.A (for A an
ideal of R[G]) are surjective.

PrROOF. (a) See, for example/].
(b) Letae A Then[a,e] € TA, sothata = ([a, ele)(e) € .(FA). Ifae  (TA),
thena = (Ue)(e) for someU € tA C *A, which shows that € A. Hence,
A = ,.(tA). The same procedure is followed to show that ,(* A).

Furthermore, it follows fromZ, Theorem 4.9] thatl € *(,.A).
(c) These properties follow in a straightforward manner from (a), (fh)Pfoposi-
tion 1.46] and , Theorems 4.4-4.5]. O
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Unexpectedly (because of the corresponding resultin (a)), the inclugign < A
is in general not valid for group near-rings; not even for a commutative group ring, as
the next example shows.

ExamvPLE 2.3. Let R be a commutative ring and I& be an Abelian group which
contains an elemerg of order 2. Consider the elemeldt = [1, €] + [1, g] of the
commutative group ringR[G], and letA = Id(U)g;. Then

Ue)(e) = (([1. el + [1,gDe)(e) = e(e) +(9) = 1.

So 1€ A, forcing..A = R. But then™(..A) = R[G].

We now show thatd is a proper ideal ofR[G], from which the desired result
*(.A) ¢ A follows. Consider € R®, wherez(e) = 1;¢(g) = —1 andz(h) =0
if he G\ {eg}. ThenU¢)(h) = ¢(h) +¢(hg) = 0 for all h € G. Hence
U e Anngg(¢) from which it follows that4 < Anngg(¢). But since there are
elements inR[G] which do not annihilate (such as the identityl, €]), our result
follows.

3. Intermediate ideals

As in the case of matrix near-rings, the concept of an intermediate ideal also makes
sense for group near-rings. As mentioned before, there is, in general, a gap betwee
*Aand* A for an idealA of R. One way to measure the ‘size’ of this gap is to count
the number of ideals which occur in this gap.

DEFINITION 3.1. An ideal A of R[G] such that" A c A C * A for some idealA of
R, is called arintermediate ideabf R[G]. (Recall that &’ denotes proper inclusion.)

Our first task is to show that these ideals do indeed exist.

ExamMPLE 3.2. Consider the zero-symmetric near-rifigf x] of polynomials over
the integers with zero constant term. Addition is the usual addition of polynomials
and multiplication is defined to be composition of polynomials.-x 7, n > 4, and
defineR to be the subnear-ring @,[x] of all polynomials of which the coefficients
of x2,x3,... ,x*1are equal to 0, that is,

R = {ayX 4 anX?" + apn 1 X 4 - +axk k> 2n,
aeZ i=12n2n+1, ... kL
Also, if mR (for a positive integem) denotes the set of all polynomials R, the

coefficients of which are divisible by, then one easily checks thatRis an ideal
of R.
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Let G = {e, g}. (We could use any finite group here, but the notation becomes
more complicated and unnecessarily obscures the clarity of the arguments.) By
Theoreml.3 R[G] is a subnear-ring oM,(R). Furthermore, by Theorer1, if A
is any ideal ofR, then™ A C A*. This implies that we can use the results ftp
prove the following.

RESULT 3.2.1. For anyU € R[G] and for any(p, q) € R we have thaU (p, q) =
(¢1(p, q), 22(p, 9)), where the; denote polynomials in two variables over the integers.
Moreover, in bothz,(p, @) and&(p, q), the coefficients ofpg®™ are divisible
by (%), k=0,1,...,2n.

ResuLT 3.2.2. Let A = mRfor some positive integem and letU € *A. Then,
for any (p, q) € R?> we have that (p, q) = (¢1(p, ), &2(p, q)), where the;; denote
polynomials in two variables over the integers. Moreover, in bytp, q) and
£2(p, 0), the coefficients op g~ are divisible bym(¥'), k = 0,1, ... , 2n.

Now letm = 2" and consider the ide#l = mR We show that A C *A and that
there exists a chain of — 2 idealsA4;,i =1, 2,...,n— 2, such that

FTACA CAC--Cc A, CA
Consider the elemen®,;, W, ¢ R[G] where
Wy =[x el(Ix, el +[x, g, W, = [x"", el(l—x, & + [X, g).
DefineW = Wy, — W,. ThenW({p, q) = (¢(p, q), £(p, q)) where

on-2

20N o1 g g
z(p,q)—ZiZ;(zi_l)p q*
for all (p, q) € R2.

By using Results3.2.1and 3.2.2 the remainder of the proof follows exactly the
same lines as the proof o8,[Proposition 3.2], except that we do not have 0 in the
second co-ordinates of the elementsR3f that is, we have her& (p, g), Z(p, q))
rather than& (p, q), 0), but this has no effect on what we want to show.

At this point one could raise the question: Although an intermediate idd@s
the property that A ¢ A C *A for some idealA of R, isn't it possible thaid = *B
or A = *B for some other ideaB of R? As in the case of matrix near-rings, the
answer is no:

THEOREM 3.3. If A is an intermediate ideal dR[G], then there is a unique ideal
A of Rsuch that"A c A c *A. Moreover,A is not equal to" B or *B for any ideal
B of R.
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PrOOF. By using Theoren?.2 (b) together with the methods used i [Lem-
mas 2.2-2.3], the results follow. O

For a given intermediate ideal of M,,(R), it is known thatA, is the unique ideal
A of R such thatA™ ¢ A c A* (see B, Corollary 2.5]). Itis, however, still an
open question whether is always the unique ideal & enveloping the intermediate
ideal A of R[G].

4. Exceptional ideals

Itwas showninB, Lemma 2.3] thatany ideal &f,(R) thatis notintermediate, must
be of the formA* or A* for some idealA of R. This gives a complete characterization
of the two-sided ideals dfl,(R).
Surprisingly, the situation is somewhat different for group near-rings. There are,
in general, ideals oR[G] that are not intermediate, but also not of the forfor of
the form* A, for any idealA of R.

DEFINITION 4.1. An ideal A of R[G] that is not intermediate and also not of the
form* Aor of the form* A, for any idealA of R, is called arexceptionaideal of R[G].

Lets continue to study Exampke3.

ExAmMPLE 4.2. In Example2.3 it was found that"(,.A) Z A for the idealA =
Anng(¢). We proceed to show that is an exceptional ideal dR[G]. Suppose
that.4 C *Afor some idealA of R. Then, sinc&([1, e] +[1, g])¢)(e) = 1, it follows
that 1€ A, implying thatA = R. This, in turn, implies that A = *A = R[G]. For
reference,

1) AC*A implies "A=*A= R[G].

Now suppose thatl is intermediate. ThehA C A C *AforanidealA of R. By (1),
+A = *A, acontradiction.

Suppose thatl = * A for some idealA of R. Then, by () and Theoren2.2 (b),
A =*A = R[G], a contradiction, becaus#is proper.

Finally, suppose thatt = *A for an idealA of R. Again, by (), it follows that
A =*A = R[G], a contradiction.

It is interesting to note that an exceptional ideal could be found in every group
near-ring.

THEOREM4.3. The augmentation ideal of R[G] is always exceptional.
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PrROOF. Itwasshown in®, Theorem4.13] thah = Id([1, g]—[1,€]: g € G)Rg;-
Foranyg # e,[1,g] —[1, €] € A, so that(([1, g] — [1, e])e)(e) = —1 € A, forcing
.A = R. Itfollowsthatif A C *AforanidealAof R, thent A = *A = R[G], because
if A C *A, then, A C ,(*A) = A, according to Theorer.2 (b). Furthermore,
becauseR[G]/A = R, by [2, Corollary 4.12], andR is assumed to be a non-
trivial near-ring,A is a proper ideal oR[G]. Now follow the same method as in
Exampled.2 O

5. Modules overR[G] and the Jacobson radicals

In this last section we would like to present some results regarding thedicals
of R[G] which means that we need to study some module theory Ri@i. Since
similar results have been obtained with respect to matrix near-rings, we certainly want
to utilize these, henceforth we only focus on the case wieiefinite. In particular,
weletG={g.=¢€,0,,...,0n}

In what follows, the terminology ‘ideal’,R-subgroup’, ‘simple’ and R-simple’,
has the same meaning as B Pefinitions 1.27 (b), 1.21 (b) and 1.36]. Also note
that, because of the way in whidR[G] (respectivelyM, (R)) is defined,R" can be
viewed in a natural way as a (Ief[G]-module (respectively,(R)-module). This
brings us to

THEOREMS5.1. If L is an ideal of the modulgR, that is, L is a left ideal of the
near-ring R, thenL" is an ideal of the modulgg; R".

ProOF. We know thatL" is an ideal ofy, r R", by [6, Proposition 4.1]. But
sinceR[G] is a subnear-ring o, (R) by Theoreni.3 the result follows. O

The next step is to show how an arbitrary module olRecan be extended to a
module overR[G]. Since we are only interested in type 0 and type 2 modules, we will
assume that all modules are monogenic, that iB,iff anR-module then there exists
y € I" such thatRy = I". This implies that we can view" as anR[G]-module, as
follows: LetU € R[G] and{y1, y», ..., ¥n) € ['". Thenthere are, r,,... ,r, € R
suchthat;y =y,i =1,2,...,n. Define

U <yl’ Y2y .ot Vn) = (U (rl’ M, ..., rn))V,

where(s;, S, ..., )Y = (1Y, Sy, ..., Sy) forevery(s;, s, ... ,s) € R

Note that this is exactly the way in whid' has been defined as 8 (R)-module
(see [L(). SinceR[G] is a subnear-ring o, (R), this definition makes sense, and
ric) " is well-defined.
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THEOREM5.2. If T is a monogenicR-module, then™ is a monogenicR[G]-
module.

PrROOF. SupposeRy = T for somey € I'. As before, we can index the co-
ordinates of amx € I'" with the elements o6, that is,x(g;) = 7; (@). Consider the
elementy € I'", wheren(g,) = y andn(g;) = 0 for j # 1. We show thayp is a
generator fol™" over R[G].

Letl<i <nandletr; € R. Then

ry ifh=g?,
i, G h) = .
(Irs. g ®) {O otherwise.
But then([rh gl] + [r27 gZ] +---+ [rn’ gn])”) = <rly7 ray,..., rn)’)- By Varying eaCh
r; over the elements dR, we see thaR[G]n =T". O

If Aisanideal ofthe monogenic modu€, we can easily generalize Theorém
by showing thatA" is an ideal ofggI'". Also, by Theorenb.2, sincel'/A is a
monogenicR-module (via the natural action(y + A) = ry + A), we have that
(T'/A)" is amonogenidr[G]-module. MoreoverI'/A)" =g I'"/A", afactwhich
can be proved in a way similar to the proof @f Proposition 1.29], where the same
result was proved for matrix near-rings.

The following result is needed in the example that follows:

THEOREM5.3. Let R be zero-symmetric and lgl" be a monogenic module where
Il = 2. If G = {e, g}, then the diagonal of'?, dI'?) = {(y,y) : y € T}, is a
non-trivial, proper ideal of the modulgg,I"?.

PrROOF. Since|I'?| = 4 and|d(I'?)| = 2, the diagonal is clearly non-trivial and
proper. Itis also trivially closed under addition. We use induction on the complexity
of U € R[G] (see the discussion following Theorem 2.4 2) [to prove that

) Uy, ») + (@ B)) —Ula, B) € d(I'?),

for all (y, y) € d(I'?), («, B) € '’ andU e R[G]. Note that ifRy’ = I', then each
of @ andg in (2) vary over the se{o0, y'}.

LetU € R[G] have complexity 1, thatis) = [r, eJorU = [r, g] for somer € R.
Lets sayU = [r, €] (the cas&J = [r, g] being treated similarly). Then

[r.el({y,y) + (o, B) —[r.el(a, B) = (r (y + @) —=ra,r(y +p) —r1p)
= (ry,ry) € d(r?.

Now consider any) € R[G] with complexity greater than 1, and assume the result to
be true for all elements dR[G] which have complexity smaller than thatldf Then
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eitherU =V + W orU = VW, where the complexity of botkl andW are smaller
than that olU. On the one hand,

Uy, y) + (e B) —Ula, B)
=V +W){y,7) + (o, 8) — (V + W)(a, B)
=V{y,y) +{ B) — Vi, B) + W({y, y) + (@, B) — W(a, B)
e d(I'?) +d(I'*) = d(I?),
and on the other hand,

Uy, v) + (e B) — U, B)
= (VW){y, y) + (@, B)) — (VW)(a, B)
=V [W({y,y) + {a B) — W(a, B) + W(a, B)] — V(W(a, B))
= V((8,8) + W(a, B)) — V(W(a, B)) for some(s, §) e d(I'?)
e d(T?),

and the proof is complete. O

COROLLARY 5.4. With the same assumptions as in TheofeBwe have that both
the R[G]-modulesd(I"?) andI"?/d(I"?) are of type2, hence also of type.

ProoE Both these modules have order 2 and are non-trivial. O

COROLLARY 5.5. If gI" is simple(R-simplg, thengg,I'" is not necessarily simple
(R[G]-simplg.

There exists a very natural relationship between fheadicals of R and the
corresponding matrix near-ringl,(R), namely7,(M,(R)) € 7,(R)*, v € {0, 2}
[7, Theorem 2.34]. When = 2, we even have/,(M,(R)) = J>(R)*, which is, of
course, a very useful tool.

The key result which enables us to prove these relationships, is the fagitlimt
simple (R-simple) if and only ify, & I'" is simple M,(R)-simple) [LO, Corollary 3.8].
We have just seen in Corollagy5 that this flow of simplicity does not necessarily
occur betweerR-modules andr[G]-modules. The consequences of this are reflected
in the following example, where we construct a finite, Abelian, zero-symmetric near-
ring R such that (fon € {0, 2}) both 7, (R[G]) £ *J,(R) and*J,(R) Z J,(R[G]),
where|G| = 2. It turns out, though, that7,(R) c J,(R[G]) for this example. Itis
still an open question whether7,(R) € 7,(R[G]) holds in general.

ExamvPLE 5.6. Consider the (additive) groups

M=Zz@22, NZM@Zz, HIN@ZZ
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Let M;, 1 <i < 3, be the two-element subgroupsMfand letN;, 1 < j < 4, be
the two-element subgroups bF which are not contained iM. Also, letm; € M;,
1<i <3, andn; € Nj, 1 < j <4, denote the non-zero elements in these groups.
Finally, lethy, h,, ... , hg denote the elements ¢f \ N. Define the near-rin@R as
follows:

R={feMy(H): f(M)S M, 1<i=<3 f(NH)CSNj,1<j<4

h,h" € H andh — h" € M implies f (h) — f(h") € M;

h,h" € H andh — h" € N implies f (h) — f(h") € N},
whereMy(H) is the subnear-ring d¥1 (H) containing the zero-preserving mappings.
It turns out thatR is a zero-symmetric, Abelian near-ring with identity aRds finite
with |R| = 2%. We also note that ead¥l; (1 <i < 3), eachN; (1 < j < 4), as well
as the grougd /N can be viewed as aR-module because of the way thRthas been
defined. We study the group near-riR§G] whereG is the grouple, g}.

First, define the following ideals GfR:

K={feR: f(h)eM,1<i<8;0otherwisg
L={feR:f(h)eN, 1<i<8;0otherwisé¢

Our first observation is that
(3) jo(R) =j2(R) =AnnRN ﬂAnnR(H/N) = L

This follows from the fact that alM;’s, all N;’s, as well asH /N, areR-modules of
type 0, since they are all of order 2 and non-trivial (hence also of type 2), the fact that

3 4
Anng N = |:ﬂAnnR Mi} N |:ﬂAnnR Nj] ,
j=1

i=1

and also from the fact thdt is nilpotent (seeq, Theorem 5.37 (d)]). From now on,
we simply write. 7 (R) for 75(R) = J7»(R).

An easy application of Corollary.4 and by arguments similar to the above leads
usto

Jo(RIG]) = T2(RIG])
3 3
= [ﬂ AnnR[Gmd((Mi)Z))} n [ﬂ AnnR[G]<MF/d(MF>)}

i=1 i=1

4 4
N [ﬂ AnnR[G](d((Nj)z))j| N [ﬂ AnnR[e](Nf/d((Nf))}

j=1 j=1

N Anngg; (d((H/N)?)) N Anngg (H/N)?/d((H/N)?)),
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which, from now on, will simply be denoted hy (R[G]).

Next, observe that, since7 (R))> = 0 (by (3)), we have that*7(R))> = 0
in R[G]. This follows from [L, Lemma 3.1] and the fact that7(R) < *7(R)
(Theoren2.1). Consequentlyt 7 (R) € J(R[G]).

We now show that there are also elements of nilpotency degree/ 3 R{G]),
implying that

(4) *T(R) C J(RIG]).
To this end, consider the ideal
./4 - AnnR[G] K2 N AnnR[G](LZ/KZ) N AnI’IR[G](RZ/LZ).

Since.A® = 0, we have thatt € 7(R[G]).
Also consider the elemenés b, ¢, d € R, defined as follows:

a(hj)) =n;, 1 <i < 8; 0otherwise
b(h)) =n,, 1<i <8; 0otherwise
c(mg) = mg; 0 otherwise

d(n;) =n;, 1< j < 4; 0 otherwise

wheren; = (0,1,1,0),n, = (1,0, 1,0) andm; = (1, 1, 0, 0).

Direct computation shows that = [a, €] + [b, gl +[c, e]([d, e] +[d, g]) € RG]
is an element of4, hence an element ¢f (R[G]). Itis, however, not an element of
+J(R), becausd&/? # 0. (Note thatv?(1, 0) = (c(da+ db), c(da+ db)) # (0, 0),
sincec(da+ db)(h,) # 0.) So @) is proved.

Our next task is to show that

®) J(RIG) £ T (R).

ConsiderU = [1,€e] + [1,g]. SinceR (henceR[G]) has characteristic 2, the
diagonal of any (Abelian)R[G]-moduleI'? is mapped to 0, and all other (non-
diagonal) elements are mapped into the diagaddi(, y,) = (y1 + v2, y1 + 12)). It
follows thatU e 7 (R[G]). But sinceU (1,0) = (1, 1) ¢ (J(R))?, it is immediate
thatU ¢ *7 (R), thus £) follows.

We finally show that there are elements #(R) which are not in7 (R[G]). One
such element i8V = [s, €]([t, €] + [t, g]), where

s(mgz) = mg; 0 otherwise
t(m) =m;, i =1,2; 0otherwise
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To see this, leKq be theR-subgroup oK generated b, k, € K, where

ki(hy) = m¢; 0 otherwise
ko(hy) = m,; O otherwise

In other wordsKy, = {f € R: f(h;) € M; 0 otherwisé.

It is easy to see that the ideal generated by any non-zero element 8 &le
moduleK, is all of KZ, which means that the module is simple. Itis also monogenic
with generatokk,, k,), hence a type 0 module. But this implies that

(6) J(RIG]) € Anngg; K§~

We find thatW (r,r’y = (s(tr + tr’), s(tr + tr’)) for any(r,r’) € R Furthermore,
direct computation shows thattr + tr’)(N) = 0 ands(tr +tr’)(H) € N, and it
follows thatW € * 7 (R), by (3).

However,W (k;, ko) = (s(tk; + tky), s(tk; + tky)) where

S(tky + tko) (hy) = s(t(my) + t(My)) = s(my + my) = s(mg) = mg # 0.

ConsequenthyWV ¢ Anng K&, and, by 6), *7 (R) Z 7 (R[G]) is proved.
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