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Abstract

In this paper we continue to modify and expand a technique due to Enflo for producing nontrivial hyper-
invariant subspaces for quasinilpotent operators, and thereby obtain such subspaces for some addition.
quasinilpotent operators on Hilbert space. We also obtain a structure theorem for a certain class of
operators.
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1. Introduction

Let 57 be a separable, infinite dimensional, complex Hilbert space, and denote by
£ (s¢) the algebra of all bounded linear operators.#fi In [1], Per Enflo intro-
duced a new technique involving some ‘extremal vectors’ for producing hyperinvari-
ant subspaces for certain quasinilpotent operata (). This technique was then
modified and expanded by the present authorg]ing produce better hyperinvariant
subspaces for some dtidnal quasinilpotent operators. This paper is a sequetjto [

in which we continue to explore the limits of Enflo’s technique for producing hy-
perinvariant subspaces. 4] [we recovered, via this new technique, the theorem of
Lomonosov f] that if Q is quasinilpotent inZ’(2#°) and the commutant

QY ={Ce2(#):CQ=0QC}

of Q has the ‘Pearcy-Salinas property’ (s€dnd [7] for example), therQ has a
nontrivial hyperinvariant subspace. Herein we explore further the basic construction
from [1]. This allows us to obtain the existence of hyperinvariant subspaces for
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some more quasinilpotent operators, and to discuss certain structural properties o
guasinilpotent operators.

2. The basic lemmas

For the reader’s convenience, we state the basic lemmas #hnwhich are
themselves only minor variations of the corresponding lemmad irFpr proofs the
reader may consult eithet]or [4]. As usualN will denote the set of positive integers
andKK the ideal of compact operators i (7).

LEMMA 2.1. Suppose thall and v are nonzero vectors i# such that for every
w € 7, Reu, w) < 0implies thatRe(v, w) > 0. Then there exists a negative
numbery, such thaty = y,u.

LEMMA 2.2. SUpposel € .Z(37), X, is a nonzero vector in the closure of the
range of T, ande satisfiedd < ¢ < ||[Xo||. Then there exists a unique nonzero vector
Yo = Yo(Xo, ¢) inthe setly : [Ty — Xo|| < ¢} satisfying

@) lyoll = inf{jly]l : ITy— Xoll < €}, and this vector, also satisfies
(0) Ty —Xoll =e.

LEMMA 2.3. SUPpPOSET, Xq, Yo and e are as in Lemm&.2. Then there exists a
negative numbey, such thatT*(T yp — Xo) = %oYo-

LEMMA 2.4. SupposeTl € Z(27) is quasinilpotent with dense rangg, is a
nonzero vector iZ’, ande satisfied < ¢ < || xg||. Foreach € N, lety, = y,(Xo, €)
be the uniqugnonzerd vector in the sefy : |T"y — x| < &} satisfying(via
Lemma2.2)

@) llynll = inf{jlyll : IT"Y — Xoll <&}, and
() T Yy — Xoll = &.
Then there exists a subsequefige}i.n Of the sequencly, }nen Satisfying

1) im 1Yo, 1/11Ynesall = O.

3. Some results

In this section we use the basic lemmas of Secfiom produce some new results
about quasinilpotent operators. The first might be called the basic construction that
our modified version of Enflo’s technique produces, and was unknown to us at the
time [4] was written.
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THEOREM 3.1. We suppose the following

(A) Qs an arbitrary quasinilpotent operator it¥’ (.7#) with dense range
(B) Cis an arbitrary nonzero contraction i’ (¢);
(C) xois an arbitrary vector in7# such thatC x, # 0;
(D) e satisfied < & < [[Cxll (= [IXl);
(E) {¥n}nen is the sequence of vectors.i# associated withQ, Xo, ande provided
by Lemm&.4, and
(F) {YnJken is @ subsequence of the sequefg satisfying(1) and (without loss
of generality by virtue of Lemm2.4 (b)) also has the property that the sequences
{Q™Yn Jken @nd {z := Q™ y,, .1}ken are weakly convergent to vectogs and z,
respectively.
Then,
(|l — Xoll < &, which implies thaty # 0 # Cg by virtue of (B) and (D),

() 0 < ||Z0— Xoll < &, which implies thakg # z, # 0and thatQ*(z, — xg) # 0,
and

D) MY Q™™ *(Z — X) I < (1Y I/ Y41 lD (€2 4 £l1%oll),
which implies, in particular, vigl) that

2 lim {1y, | Q™) (z — Xo) | = 0.

ProOF. We know from Lemma2.4 (b') that |Q"Y, — Xll = &, n € N, and
since closed balls i# are weakly closed, (l) is established as well as the fact that
Izo — %ol < €, which shows thag, # 0. We next show that, — X, # 0, which will
also show thaf*(zy — Xo) # 0 (sinceQ has dense range). By the definition of the
sequencey, Jken @and Lemma2.3, we know that there exists a sequefG8yc.n Of
negative numbers such that

(3 Q™™ (Z — Xo) = NeYnr1, K eN.
Therefore,
4) e =| an+lYnk+1 — Xoll?

= (Yner1, (Q™™)* (2 — X0)) — (X0, Zc — Xo)
= Ml Ynerall® — (X0, Z — Xo0), ke N.

Thus
(5) Nl Yaeall? = €% + (Xo, 2 — Xo)
and

(6) (Xo, Zc — Xo) < —€%, ke N.
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Taking the weak limit in §) ask — oo, we get(Xo, Zy — Xo) < —&2, S0Z, — Xo # 0,
which establishes (ll). Furthermore, fro) @nd ) we see that

(7) Yo a Q™ ™M * (Z — X) || = il Il Ynerall®
= |e® + (Xo, Zc — X0)|
<&’ +ellXll, keN,

which, together with trivial arithmetic, establishes (lI1). O
REMARK 3.2. With the notation as in Theorefl, note that the quantity

1Y Q™ (Z — Xo) I

in (2) is exactly the trace-noritj ||;) of the rank-one operatg, ® (Q™)*(z — Xo),
which, of course, belongs to the trace cl&g$77). Since%,(5¢)* = £ (7), any
rank-one operatan ® v may be regarded as the weak*-continuous linear functional
on Z(2¢) defined byu®v)(T) = (Tu,v), T € £ (5#), and the norm of this linear
functionalis|lu®v|l; = |lu|l - lv||. Thisis, of course, the basic idea behind the theory
of dual algebras (see for examplg)[ and together with4) gives immediately the
following.

CoROLLARY 3.3. With the notation as in TheorerB.1, let {A m}kmen and
{Bcmlkmen be any bounded doubly indexed sequences of operators #qmt”).
Then

(®) M (Q™ Acm¥n, Q" (% — X0)) =0, meN,
and
(©) i ((Q /I Q™) BemQ™ Yn,. Q& — X)) =0, me N,

To establish immediately the utility of this corollary, we deduce quickly a modest
improvement, due to Pearcy-Shield, [of the famous result of Lomonoso]|

COROLLARY 3.4. Suppose tha® # 0is a quasinilpotent operator i (5#) and
there exists a bounded sequeridgX , of nonzero operators i’ (2#’) such thatJ,
is compact and either

(@ 7h1Q=QJ,neNor

(b) Q% 1=XQneN

(which is obviously the case if there is a nonzero compact operatd@®jf). ThenQ
has a nontrivial hyperinvariant subspace.
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ProOOF. Without loss of generality we may suppose tigais a quasiaffinity and
that eachJ,_;, n € N, is a contraction. Moreover, as is well known, to show that
Q has a nontrivial hyperinvariant subspace, it suffices to show@iadoes, so in
case (b) holds we take adjoints and obtain instead that (a) holds. Apply Cordltary
(see, for exampled)) with C := J, to obtain the sequencés}, {v,. }, and{z} with
the properties set forth there. L8te an arbitrary nonzero contraction{i®}’, and
defineA , = SJ,, k. m € N. Then, after defining

B = 1Y Q™ H*(z — Xo) I, S = Q"Vn,.
th=Q"(Z —%), keN, and ty=Q"(z— %) #0,

we obtain from 8) that

[(S IS, t)] = [(SIQ™Yn,, t)| = [(ST* I, Y T
= [(ShYn (Q™) )] < B, keN.

Since||S 3s« — S Il — O (this uses the compactnessgf, and{t }x.n CONverges
weakly toty # 0, we obtain(S 3, to) = 0. SinceJysy # 0 from above, ands is
an arbitrary nonzero contraction {®}, this shows that{Q}' J,S)~ is a nontrivial
hyperinvariant subspace Q. O

Along similar lines we obtain the following improvement (in the quasinilpotent
case) of Lomonosov's theorer][about operators whose commutant has the ‘Pearcy-
Salinas property’.

COROLLARY 3.5. Suppose tha® # 0is a quasinilpotent operator i (5#) and
there exist bounded sequendds}men, {Lmtmen, @and{K}hen in £ (%) such that
{Ki} C K ILy — Kpll = 0, Q"J = L, Q" for all m,n € N, and{L,,} converges
in the weak operator topology to an operat& # 0. Then Q has a nontrivial
hyperinvariant subspace.

PrOOF. We may suppose, without loss of generality, tlais a quasiaffinity and
that the sequencédd,}, {K.}, and{L,,} are all contractions. We apply Theoreni
and Corollary3.3(especially 8)) to Q with C := R to obtain the sequencés}, {t},
and{B«} defined in Corollary3.4. Let now S be an arbitrary nonzero contraction in
{Q}. We will show that(SRs, t;) = 0, and therefore thaf Q} Rg) ™~ is the desired
nontrivial hyperinvariant subspace f@. (Note thatRg andt, (= w-limt,) are
nonzero by Theorer.1) We define the doubly indexed sequeriég ,} of (8) of
Corollary3.3by Axm = Sy, k, m € N, and thus obtain

(10) [(SLnS, t)] = [(Q™S Yo, )| < Bx, k.meN.
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Letn > 0be given and note that (sinflé,,} tends toR in the weak operator topology)
it suffices to findM,, € N such that

ChooseM; € N such that fok > Mg, B« < n/2, and choos#/, € N such that

L , m>M,.
2| S|l (SUR lIsclltll)

Then, via (L0) and (L2), we have, fom > M, andk > Mg,

(12) [Lm — Knll <

(13) [(SKnSc: 1| = [(SLnsc, t)l + [(S(Km — Lm)Sc, L)l < 1.

Fix an arbitrary integem, > M, and note that sincgs} tends weakly t® andS Ky,
is compact,

(14) IILn ”SKmoSk - SKmoSO” =0.
From (13), (14), and the fact thaft,} tends weakly td,, we obtain
| (S KingSo, )| = M [(SKaneS, Gl < 1, Mo = M,

which establishesl(l) and completes the proof. O

The following lemma is elementary and needs no proof.
LEMMA 3.6. Supposé p,}> ; is a sequence of positive numbers such that
lim(py)Y" = 0.
n

Then there exists a subsequefipg }3°, of { p,} such thatim(pn, .1/ pn,) = O.

The next result is a structure theorem for quasinilpotent operators, and has some
interesting consequences. Its discovery was motivated by the desire t8)usfe (
Corollary 3.3to good advantage. Our first proof of it used Coroll&g, and only
later did we find the elementary proof below.

THEOREM 3.7. Suppos&) is a nonnilpotent quasinilpotent operator i (7#) and
there exists some bounded sequeig, .y in £ (%) such that either the sequence
{(Q"/11Q™H X, } or the sequencEX,,Q"/|| Q"||} converges in the weak operator topol-
ogy to a nonzero operatdR. ThenQ is not a quasiaffinity and thus has a nontrivial
hyperinvariant subspace.
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PrOOF. We suppose that the sequer¢®" /|| Q") X, } converges tR # 0 in the
weak operator topology and show th@R = 0. The other assertion is proved by
taking adjoints. Consider the sequer&+*/| Q") X,, which obviously converges
to QR in the weak operator topology. By Lemn3a6 there exists a subsequence
{Q™}, of {Q"} such that the sequen¢eQ™ ||/ Q™||} converges to zero. Thus,

(15)  (Q"T/1Q™I X = UQ™I/IQ™IN(Q™ /I1Q™ N Xs,, k€N,

and since the first term in the product on the right sideld) (ends to zero and the
second term is bounded, we get frofrb(that QR = 0, as desired. O

This yields immediately the following results.

COROLLARY 3.8. Suppose thafQ is a nonnilpotent quasinilpotent operator in
£ (s¢) and there exists a subspac# # (0) such that the sequence of restric-
tions {[Q"(Q*)"/IQ"1?]]..} (mapping.# into 3#°) converges in the weak operator
topology to a nonzero operator. Théhhas a nontrivial hyperinvariant subspace.

PrROOF. LetE be the projection it (5#) whose range is#Z. The hypothesesyield
immediately that the sequeng@" /|| Q") ((Q*)"/IQ" N E} converges (weakly) to a
nonzero operator, and the result follows from Theofeih O

COROLLARY 3.9. Suppose thaQ is a nonnilpotent quasinilpotent operator in
£ () such that the sequen¢®"(Q*)"/||Q"||?} of positive operators has a com-
mon eigenvectog, with correspondingnonnegativg eigenvaluega,} (< 1) such
thatlim, A, exists and is nonzero. Thé&) has a nontrivial hyperinvariant subspace.

4. Some problems

We close this note with what seem to be some interesting problems about quasinilpo:
tent operators and their invariant subspaces.

(1) Generalize CorollanB.9 by showing that ifQ is a quasinilpotent operator
in £ (s¢) such that the operators in the sequefi@d(Q*)"},.n have a common
eigenvector, the has a nontrivial hyperinvariant subspace.

(2) Show that ifQ is a quasinilpotent operator i’ (»#) such that the sequence
{Q"(Q")"}en consists of mutually commuting operators, th@nhas a nontrivial
hyperinvariant subspace.

(3) Itis known that ifQ is an arbitrary quasinilpotent operator#i(>#), then there
exist compact operatots; and K, and quasiaffinities andY in £ (5#) such that
QX = XK;andY Q = K,Y [3]. (ltis also known that not every quasinilpotent
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operator inZ () is quasisimilar to a compact operat8}.) Use these facts together
with Corollary3.3to show that every quasinilpotent operatafti.7#’) has a nontrivial
hyperinvariant subspace.
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