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Abstract

A Banach space.X; ‖ · ‖/ is said to be adual differentiationspace if every continuous convexfunction
defined on a non-empty open convex subsetA of X∗ that possesses weak∗ continuous subgradients at the
points of a residual subset ofA is Fŕechet differentiable on a dense subset ofA. In this paper we show
that if we assume the continuum hypothesis then there exists a dual differentiation space that does not
admit an equivalent locally uniformly rotund norm.
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1. Introduction

Given a Banach space.X; ‖ · ‖/ theBishop-Phelpsset (orBP-set for short) is the
set

{x∗ ∈ X∗ : ‖x∗‖ = x∗.x/ for somex ∈ BX};
whereBX denotes the closed unit ball in.X; ‖ · ‖/. The Bishop-Phelps theorem, [1]
says that theBP-set is always dense inX∗. In this paper we are interested in the case
when theBP-set is residual (that is, contains a denseGŽ subset) inX∗. Certainly, it is
known that if the dual norm is Fr´echet differentiable on a dense subset ofX∗ then the
BP-set is residual inX∗ (see the discussion in [13]). However, the converse question
(that is, if theBP-set is residual inX∗ must the dual norm necessarily be Fr´echet
differentiable on a dense subset ofX∗?) remains open. One approach to this problem
is to consider the following class of Banach spaces. A Banach space.X; ‖ · ‖/ is
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called adual differentiationspace (orDD-space for short) if every continuous convex
function defined on a non-empty open convex subsetA of X∗ that possesses weak∗

continuous subgradients at the points of a residual subset ofA is Fréchet differentiable
on a dense subset ofA. It follows then that in aDD-space if theBP-set is residual
in X∗ then the dual norm is Fr´echet differentiable on a dense subset ofX∗. Hence one
way to solve our problem would be to show that every Banach space is aDD-space.
Unfortunately, to date, we have been unable to achieve this.

In the study ofDD-spaces the authors introduced in [2] a class of Banach spaces
defined in terms of the continuity properties of ‘quasi-continuous’ mappings. Let
f : T → X be a mapping acting from a topological spaceT into a Banach space
.X; ‖ · ‖/. Then f is said to behyperplane minimalif for each open half spaceH
of X and open subsetU of T with f .U / ∩ H 6= ∅ there exists a non-empty open
subsetV of U such thatf .V / ⊆ H (see [2] for the original definition). Using this
definition the authors in [14, page 242] said that a Banach space.X; ‖ · ‖/ is ageneric
continuityspace (orGC-space for short) if every hyperplane minimal mapping acting
from a complete metric spaceM into X is norm continuous at the points of a dense
subset ofM (see [2, page 414] for the original definition in terms of minimal weak∗

cuscos). It was shown in [2, Theorem 2.6] that everyGC-space is in fact aDD-space.
However, right from its inception, the study ofGC-spaces has been closely linked to
the study of locally uniformly rotund renormings. (Recall that a norm‖ · ‖ is said
to belocally uniformly rotundif lim n→∞ ‖xn − x‖ = 0 wheneverx; xn ∈ BX for all
n ∈ N and limn→∞ ‖xn + x‖ = 2.) In the paper [6, Theorem 3.5] it was shown that
every Banach space that can be equivalently renormed to have every point of its unit
sphere a denting point of its closed unit ball is aGC-space while in the paper [3,
Theorem 4.5] it was shown that every Banach space that can be equivalently renormed
to have every point of its unit sphere a quasi-denting point (originally calledÞ-denting
point) of its closed unit ball is aGC-space. In both cases it can be shown that the
spaces can be equivalently renormed to be locally uniformly rotund (see, [19] and [20]
respectively). Following on from this, the authors in [2, Theorem 1.13] showed that
every Banach space that can be equivalently renormed to be weakly locally uniformly
rotund is aGC-space. Nowadays such spaces are known to admit an equivalent locally
uniformly rotund norm [11]. However, the story does not end here. In [12] it was
shown that every Banach space that can be equivalently renormed so that on the dual
sphere the relative weak and weak∗ topologies agree is aGC-space. Then in [7] it
was shown that such spaces are sigma-fragmentable. Finally, in [4] it was shown that
such spaces admit an equivalent locally uniformly rotund norm (see [18] and [4]).
Motivated by these results the authors in [14, Question 1] asked ‘Can everyGC-space
be equivalently renormed to be locally uniformly rotund?’ Here we show that if we
assume the continuum hypothesis then the answer is ‘No’. Thus we sever the ties
between the study ofGC-spaces and the study of locally uniformly rotund renormings.
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2. A GC-space without a Kadeč norm

Our counter-example is modelled on that of Namioka and Pol [15] which in turn,
is based upon the following theorem of Kunen (see [16] for a proof).

THEOREM 2.1. Assume the continuum hypothesis and letX be a subset of[0;1].
Then there exists a locally compact, locally countable topology− on X, stronger than
the Euclidean topology, such that, ifK is the one-point compactification of.X; − /,
then the function spaceC.K / is hereditarily Lindel̈of in the weak topology.

It is shown in [15, Corollary 3.3] that ifX is uncountable then the Banach space
.C.K /; ‖ ·‖∞/ is not¦ -fragmentable (see, [5] for the definition of¦ -fragmentability).
In particular, this means thatC.K / does not admit a Kadeˇc norm that is equivalent
to the supremum norm onC.K /, [5]. (Recall that a norm‖ · ‖ is said to be aKaděc
norm if on the unit sphere the relative norm topology coincides with the relative weak
topology.) What we shall show is that ifX does not contain any uncountable compact
subsets (with respect to the Euclidean topology) thenC.K / is aGC-space. Hence,
if X is an uncountable subset of[0;1] that does not contain any uncountable compact
subsets (for example, ifX is a Bernstein set, [17, page 23]) thenC.K / is aGC-space
without an equivalent locally uniformly rotund norm. But before we can accomplish
this we will need a few more definitions and a few more lemmas. Let8 : T → 2X be
a set-valued mapping acting between topological spacesT andX. We shall say that
8 is upper semicontinuous(lower semicontinuous) at a pointt0 ∈ T if for each open
subsetW of X with 8.t0/ ⊆ W (8.t0/ ∩ W 6= ∅) there exists a neighbourhoodU
of t0 such that8.t/ ⊆ W (8.t/ ∩ W 6= ∅) for all t ∈ U . Similarly, we shall say
that8 is quasi upper semicontinuous(quasi lower semicontinuous) at a pointt0 ∈ T
if for each open neighbourhoodU of t0 and open subsetW of X with 8.t0/ ⊆ W
(8.t0/ ∩ W 6= ∅) there exists a non-empty open subsetV of U such that8.t/ ⊆ W
(8.t/ ∩ W 6= ∅) for all t ∈ V . If 8 is both upper and lower semicontinuous at a point
t0 ∈ T then we simply say that8 is continuous att0.

LEMMA 2.2 ([15, Lemma 6.1]).If A is an uncountable family of distinct compact
open subsets of a Hausdorff topological space then

⋃
A is also uncountable.

This lemma may be used to establish the following fact concerning continuous
set-valued mappings.

LEMMA 2.3. Suppose that−1 and−2 are Hausdorff topologies on a setX such that
every−1-compact subset ofX is at most countable. If8 : M → 2X is a set-valued
mapping acting from a complete metric space.M; ²/ into −1-compact subsets ofX
such that: (i) 8 is −1-continuous and(ii) for eachm ∈ M, 8.m/ is −2-compact and
−2-open then8 is constant on some non-empty open subset ofM.
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PROOF. In order to obtain a contradiction let us assume that8 is not constant on
any non-empty open subset ofM . Let D be the set of all finite sequences of 0’s and
1’s. We shall inductively (on the length|d| of d ∈ D) define a family{Vd : d ∈ D} of
non-empty open subsets ofM such that

(i) ²-diam.Vd/ < 1=2|d|;
(ii) ∅ = Vd0 ∩ Vd1 ⊆ Vd0 ∪ Vd1 ⊆ Vd for eachd ∈ D;

(iii) 8.v/ 6= 8.v′/ wheneverv ∈ Vd0 andv′ ∈ Vd1.

Base Step.Let V∅ be a non-empty open subset ofM with ²-diam.V∅/ < 1=20, where∅
denotes the empty sequence of length 0.

Assuming that we have already defined the non-empty open setsVd satisfying the
properties (i), (ii) and (iii) for alld ∈ D with |d| ≤ n, we proceed to the next step.

Inductive Step.Fix d ∈ D of lengthn. Then there are two pointsv0 andv1 in Vd

and some pointx ∈ X such thatx ∈ 8.v0/\8.v1/. Since.X; −1/ is Hausdorff and
8.v1/ is −1-compact there exist disjoint−1-open setsU0 andU1 such thatx ∈ U0 and
8.v1/ ⊆ U1. From the−1-continuity of8 we can choose open neighbourhoodsVdi

of vi (i = 1;2) such that (i) and (ii) are satisfied and8.v/ ∩ U0 6= ∅ for all v ∈ Vd0

and8.Vd1/ ⊆ U1. In particular,8.v/ 6= 8.v′/ wheneverv ∈ Vd0 andv′ ∈ Vd1 and
so property (iii) is also satisfied. This completes the induction.

For eachn ∈ N, let

Kn :=
⋃{

Vd : d ∈ D and |d| = n
}

and let K := ⋂{Kn : n ∈ N}. Then K is an uncountable compact subset ofM .
Moreover,8.k/ 6= 8.k′/ wheneverk andk′ are distinct elements ofK . Therefore,
A := {8.k/ : k ∈ K } is an uncountable family of−2-compact−2-open subsets
and so by Lemma2.2, 8.K / = ⋃

A must be uncountable. On the other hand,
since8 is −1-upper semicontinuous and has−1-compact images,8.K / is −1-compact;
which contradicts the hypothesis thatX does not contain any uncountable−1-compact
subsets. Hence8 must be constant on some non-empty open subset ofM .

Our main result also relies upon the following version of Fort’s theorem pioneered
by Matejdes, [10].

LEMMA 2.4. Let8 : T → 2M be a quasi lower semicontinuous set-valued mapping
acting from a Baire spaceT into compact subsets of a metric spaceM. Then there
exists a residual subsetR of T such that8 is continuous at each point ofR.

PROOF. Let D := {t ∈ T : 8.t/ 6= ∅}. Since8 is quasi lower semicontinuous,
D ⊆ int.D/. Let B := int.D/. Then by [8, Corollary 2.9] there exists a residual
subsetR′ of B such that8|B is continuous at each point ofR′. Let R := R′ ∪ .T\D/.
ThenR is residual inT and8 is continuous at each point ofR.



[5] A dual differentiation space 361

LEMMA 2.5 ([14, Theorem 1.1]).Let8 : T → X be a hyperplane minimal map-
ping acting from a topological spaceT into a Banach space.X; ‖ · ‖/. Then for each
subsetD of T, 8.int D/ ⊆ co{8.D/}. In particular, ‖ · ‖-diam[8.int D/] ≤ ‖ · ‖-
diam[8.D/].

THEOREM 2.6. Assume the continuum hypothesis. Then there exists a scattered
compact setK such that.C.K /; ‖ · ‖∞/ is a GC-space but.C.K /;weak/ is not¦ -
fragmentable. In particular,C.K / does not admit a Kadeč norm equivalent to the
supremum norm.

PROOF. Let X be any uncountable subset of[0;1] that does not contain any un-
countable compact subsets (for example,X is a Bernstein subset of[0;1]) and letK be
the one-point compactification, withx∞ the point at infinity, of the space.X; − / with
Kunen’s topology as described in Theorem2.1. By [15, Corollary 3.3],.C.K /;weak/
is not ¦ -fragmentable by the norm. In particular, this means thatC.K / does not
have a Kadeˇc norm equivalent to the supremum norm. So it remains to show that
.C.K /; ‖ · ‖∞/ is a GC-space. In fact because of the 3-space property given in
[14, Theorem 3.7] it is sufficient to show that.C0.K /; ‖ · ‖∞/ is aGC-space, where
C0.K / := { f ∈ C.K / : f .x∞/ = 0}, that is, the functions that vanish at infinity.
To this end, letf : M → C0.K / be a hyperplane minimal mapping acting from a
complete metric space.M;d/ into C0.K /. For each" > 0, consider the open set

O" :=
⋃ {open setsU : ‖ · ‖∞ -diam[ f .U /] ≤ "} :

We claim that for each" > 0, O" is dense inM . We begin the justification of
this by considering a non-empty open subsetW of M (with the aim of showing that
O" ∩ W 6= ∅). By [14, Theorem 2.9] we may assume thatf .M/ ⊆ BC0.K /, the closed
unit ball in C0.K /. LetF be the countable collection of all finite setsF of rational
numbers in.−1;1/ such that the distance of each point in[−1;1] to F is less than
"=2. For eachF ∈ F andn ∈ N, let

An.F/ := {t ∈ W : dist. f .t/.K /; F/ > 1=n}:

Then the countable family{An.F/ : F ∈ F andn ∈ N} coversW. Since for each
t ∈ M , f .t/.K / is a scattered compact subset ofR and hence countable. Therefore
there must be someF ∈ F with f .t/.K / ∩ F = ∅. It follows then thatt ∈ An.F/
for somen ∈ N. Now, sinceW is a Baire space there is someF ∈ F andn ∈ N such
that An.F/ is second category inW. Let F := {q1;q2; : : : ;qm} where,

−1 =: q0 < q1 < q2 < · · · qm < qm+1 := 1
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and letF∗ := F ∪{q0;qm+1}. Then, by possibly makingn larger, we may assume that

0 < 1=n < 1=2 min{|q′ − q′′| : q′;q′′ ∈ F∗ andq′ 6= q′′}:
Let i0 be the integer in{2; : : : ;m} such that 0∈ .qi0−1;qi0/. For eachi with i0 ≤ i ≤ m,
defineNi : int[An.F/] → 2K , Ni : int[An.F/] → 2K andÑi : int[An.F/] → 2K by

Ni .t/ := {k ∈ K : f .t/.k/ > qi + 1=n}; Ni .t/ := Ni .t/
−
;

and

Ñi .t/ := {k ∈ K : f .t/.k/ > qi − 1=n}:
For eachi with 1 ≤ i < i 0, defineNi : int[An.F/] → 2K , Ni : int[An.F/] → 2K and
Ñi : int[An.F/] → 2K by

Ni .t/ := {k ∈ K : f .t/.k/ < qi − 1=n}; Ni .t/ := Ni .t/
−
;

and

Ñi .t/ := {k ∈ K : f .t/.k/ < qi + 1=n}:
Now sincef is hyperplane minimal, both mappingsNi andÑi , (with i ∈ {1;2; : : : ;m})
are quasi lower semicontinuous on int[An.F/] with respect to the discrete topology
on K . Therefore, for eachi ∈ {1;2; : : : ;m} the mappingt 7→ Ni .t/ has compact
(possibly empty) images and is quasi lower semicontinuous with respect to both the
− -topology and the Euclidean topology onK . Hence by Lemma2.4, there exists
a denseGŽ subsetG of int[An.F/] on which eachNi , (with i ∈ {1;2; : : : ;m}) is
continuous with respect to the Euclidean topology onK . We now show that ift ∈ G
then for eachi ∈ {1;2; : : : ;m}, Ni .t/ = Ñi .t/. So considert ∈ G andi ∈ {i0; : : : ;m}
(the case 1≤ i < i0 is similar) and suppose, in order to obtain a contradiction, that
there is somek ∈ Ñi .t/\Ni .t/. SinceNi is upper semi continuous with respect to the
Euclidean topology att ∈ G there exists an open neighbourhoodU of t in int[An.F/]
such thatk 6∈ Ni .U /. On the other hand, the mapping̃Ni is quasi lower semicontinu-
ous with respect to the discrete topology onK and so there is a non-empty open subset
V of U such thatk ∈ Ñi .t ′/ for all t ′ ∈ V . In particular, this would mean that for each
t ′ ∈ V , f .t ′/.k/ ∈ .qi − 1=n;qi + 1=n] and so dist. f .t ′/.K /; F/ ≤ 1=n. But this is
impossible since for eacht ′ ∈ V ∩ An.F/ 6= ∅, dist. f .t ′/.K /; F/ > 1=n. Hence it
must be the case thatNi .t/ = Ñi .t/. Next we successively apply Lemma2.3(with −1

equal to the Euclidean topology and−2 equal to− ) to the mappingst 7→ Ni .t/ defined
on G—which is completely metrizable—to obtain a decreasing sequence

Um ⊆ Um−1 ⊆ · · · U2 ⊆ U1 ⊆ W

of non-empty open subsets of int[An.F/] such that eachNi is constant onUi ∩ G.
Let U := Um then eachNi = Ñi is constant onU ∩ G. For each 0≤ i ≤ m, let
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Ji : U ∩ G → 2K be defined byJi .t/ := {k ∈ K : f .t/.k/ ∈ [qi ;qi +1]}. It is easy to
verify that eachJi (0 ≤ i ≤ m) is constant onU ∩ G and that for eacht ∈ U ∩ G,
{Ji .t/ : 0 ≤ i ≤ m} is a partition ofK . Indeed, for eacht ∈ U ∩ G if

(i) i = 0 thenJi .t/ = Ñi +1.t/;
(ii) 0 < i < i0 − 1 thenJi .t/ = Ñi +1.t/\Ñi .t/;

(iii) i = m thenJi .t/ = Ñi .t/;
(iv) i0 ≤ i < m thenJi .t/ = Ñi .t/\Ñi +1.t/;
(v) i = i 0 − 1 thenJi .t/ = K \⋃{Ji .t/ : 0 ≤ i ≤ m and i 6= .i0 − 1/}.

Therefore, ift; t ′ ∈ U ∩ G andk ∈ K then| f .t ′/.k/ − f .t/.k/| < |qj +1 − qj | < ",
where j is the unique element in{0;1; : : : ;m} such thatk ∈ Jj .t/ andk ∈ Jj .t ′/.
Thus,‖ · ‖∞-diam[ f .U ∩ G/] ≤ " and so by Lemma2.5, ‖ · ‖∞-diam[ f .U /] ≤ ".
Hence∅ 6= U ⊆ O" ∩ W; which shows thatO" is dense inM . Thereforef is norm
continuous at each point of

⋂{O1=n : n ∈ N}.

REMARK. The previous theorem raises two natural questions: (i) Is every weakly
Lindelöf Banach space a generic continuity space? (ii) Is there an example (in ZFC) of
a weakly Lindelöf Banach space that does not admit an equivalent locally uniformly
rotund norm?

We end this paper by reiterating the main problem in the area. Namely, is it true
that if the Bishop-Phelps set of a Banach space.X; ‖ · ‖/ is residual inX∗ then the
dual norm is Fr´echet differentiable on a dense subset ofX∗?

One impediment to finding a counter-example to this question is that, in general, it
is difficult to identify those linear functions in the dual of a Banach space that attain
their norm. There are a few exceptions to this, for example, ifX is reflexive or of the
form C.T/, for some infinite compactT , with the supremum norm. However, in the
latter case the Bishop-Phelps set is known to be always of the first Baire category in
C.T/∗, [9].
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