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Abstract

A Banach spaceX, | - ||) is said to be alual differentiationspace if every continuous neex function

defined on a non-empty openra@x subsef of X* that possesses weatontinuous subgradients at the
points of a residual subset éf is Frechet differentiable on a dense subsefofin this paper we show

that if we assume the continuum hypothesis then there exists a dual differentiation space that does no
admit an equivalent locally uniformly rotund norm.
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1. Introduction

Given a Banach spad«, || - ||) the Bishop-Phelpset (orBP-set for short) is the
set

{(x* e X* . |Ix*|| = x*(x) for somex € By},

whereBy denotes the closed unit ball X, || - ||). The Bishop-Phelps theorenm] [
says that thé&P-set is always dense K*. In this paper we are interested in the case
when theBP-set is residual (that is, contains a defesubset) inX*. Certainly, it is
known that if the dual norm is Echet differentiable on a dense subseXofthen the
BP-set is residual inK* (see the discussion il f]). However, the converse question
(that is, if theBP-set is residual inX* must the dual norm necessarily beeEnet
differentiable on a dense subsetf?) remains open. One approach to this problem
is to consider the following class of Banach spaces. A Banach spédg: |) is
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called adual differentiationspace (oDD-space for short) if every continuous convex
function defined on a non-empty open convex suldsef X* that possesses weiak
continuous subgradients at the points of a residual subgeisdfréchet differentiable
on a dense subset &. It follows then that in eDD-space if theBP-set is residual
in X* then the dual norm is Echet differentiable on a dense subseXof Hence one
way to solve our problem would be to show that every Banach spacBB-space.
Unfortunately, to date, we have been unable to achieve this.

In the study ofDD-spaces the authors introduced # & class of Banach spaces
defined in terms of the continuity properties of ‘quasi-continuous’ mappings. Let
f : T — X be a mapping acting from a topological spaicénto a Banach space
(X, - 1. Thenf is said to behyperplane minimaif for each open half spack
of X and open subséf of T with f(U) N H # ¢ there exists a non-empty open
subsetV of U such thatf (V) € H (see P] for the original definition). Using this
definition the authors inl[4, page 242] said that a Banach spéXe|| - ||) is ageneric
continuityspace (0GC-space for short) if every hyperplane minimal mapping acting
from a complete metric spadé into X is norm continuous at the points of a dense
subset ofM (see R, page 414] for the original definition in terms of minimal wéak
cuscos). It was shown ir2] Theorem 2.6] that ever@C-space is in fact ®D-space.
However, right from its inception, the study GIC-spaces has been closely linked to
the study of locally uniformly rotund renormings. (Recall that a ndrr| is said
to belocally uniformly rotundif lim ., [|X, — X|| = 0 whenevelx, x, € By for all
n e Nandlim_. [IX, + X|]| = 2.) In the paper§, Theorem 3.5] it was shown that
every Banach space that can be equivalently renormed to have every point of its unit
sphere a denting point of its closed unit ball i$5&-space while in the papeB|
Theorem 4.5] it was shown that every Banach space that can be equivalently renorme
to have every point of its unit sphere a quasi-denting point (originally caHdenting
point) of its closed unit ball is &C-space. In both cases it can be shown that the
spaces can be equivalently renormed to be locally uniformly rotund (s@eyjd [20]
respectively). Following on from this, the authors &) Theorem 1.13] showed that
every Banach space that can be equivalently renormed to be weakly locally uniformly
rotund is &5C-space. Nowadays such spaces are known to admit an equivalent locally
uniformly rotund norm L1]. However, the story does not end here. 112][it was
shown that every Banach space that can be equivalently renormed so that on the due
sphere the relative weak and weédkpologies agree is &C-space. Then in7] it
was shown that such spaces are sigma-fragmentable. Final},iimfas shown that
such spaces admit an equivalent locally uniformly rotund norm ($&eand [4]).
Motivated by these results the authorsid,[Question 1] asked ‘Can eve@C-space
be equivalently renormed to be locally uniformly rotund?’ Here we show that if we
assume the continuum hypothesis then the answer is ‘No’. Thus we sever the ties
between the study @ C-spaces and the study of locally uniformly rotund renormings.
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2. A GGC-space without a Kade'norm

Our counter-example is modelled on that of Namioka and Pglhich in turn,
is based upon the following theorem of Kunen (s&€ for a proof).

THEOREM 2.1. Assume the continuum hypothesis andXdbe a subset of0, 1].
Then there exists a locally compact, locally countable topotogg X, stronger than
the Euclidean topology, such that,Kf is the one-point compactification 6K, 1),
then the function spad@(K) is hereditarily Lindedf in the weak topology.

It is shown in [L5, Corollary 3.3] that ifX is uncountable then the Banach space
(C(K), I ll) is noto -fragmentable (see5] for the definition ofo -fragmentabity).
In particular, this means th&(K) does not admit a Kaderiorm that is equivalent
to the supremum norm o@(K), [5]. (Recall that a normi - || is said to be &adet
norm if on the unit sphere the relative norm topology coincides with the relative weak
topology.) What we shall show is thatf does not contain any uncountable compact
subsets (with respect to the Euclidean topology) t8€K) is aGC-space. Hence,
if X is an uncountable subset[d, 1] that does not contain any uncountable compact
subsets (for example, K is a Bernstein setl[7, page 23]) theiC (K) is aGC-space
without an equivalent locally uniformly rotund norm. But before we can accomplish
this we will need a few more definitions and a few more lemmasdLeT — 2% be
a set-valued mapping acting between topological sp@icasd X. We shall say that
® is upper semicontinuou$ower semicontinuoysat a pointt, € T if for each open
subsetW of X with ®(t;) € W (®(t)) N W # @) there exists a neighbourhodd
of t; such thatd(t) € W (®(t) N W # @) for allt € U. Similarly, we shall say
that® is quasi upper semicontinuogguasi lower semicontinuojat a pointty € T
if for each open neighbourhodd of t, and open subsat/ of X with ®(t;) € W
(D (ty) N'W £ §) there exists a non-empty open subgetf U such thatd(t) € W
(@) NW £ @) forallt € V. If @ is both upper and lower semicontinuous at a point
to € T then we simply say thab is continuous at,.

LEMMA 2.2 ([15, Lemma 6.1]).If &/ is an uncountable family of distinct compact
open subsets of a Hausdorff topological space thew/ is also uncountable.

This lemma may be used to establish the following fact concerning continuous
set-valued mappings.

LEMMA 2.3. Suppose that; and t, are Hausdorff topologies on a s¥tsuch that
everyt;-compact subset of is at most countable. b : M — 2% is a set-valued
mapping acting from a complete metric spadé, p) into 7;-compact subsets of
such that (i) @ is t;-continuous andii) for eachm € M, ®(m) is ,.-compact and
7,-0pen thend is constant on some non-empty open subsit of
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PrROOF. In order to obtain a contradiction let us assume thas not constant on
any non-empty open subset bf. Let D be the set of all finite sequences of 0’s and
1's. We shall inductively (on the lengtd| of d € D) define a family{V; : d € D} of
non-empty open subsets BFf such that

(i) p-diam(Vy) < 1/29;

(i) ¥ = Vg N Vg € VgoU Vg C V, foreachd e D;

(i) ®(v) # ©(v') whenevew € Vg andv’ € Vy;.
Base StepLetV, be a non-empty open subsetdfwith p-diam(V;,) < 1/2°, where
denotes the empty sequence of length 0.

Assuming that we have already defined the non-empty operVsasstisfying the

properties (i), (i) and (iii) for alld € D with |d| < n, we proceed to the next step.

Inductive Step.Fix d € D of lengthn. Then there are two pointg andv; in Vq

and some poink € X such thatx € ®(vp)\®(vy). Since(X, 1;) is Hausdorff and
®(vy) is ry-compact there exist disjoint-open set&), andU, such thaix € Uy and
®(v;) € U;. From ther;-continuity of @ we can choose open neighbourhoais
of v; (i = 1, 2) such that (i) and (ii) are satisfied addv) N Uy # @ for all v € Vo

and®(Vy;) C Uy, In particular,® (v) # ®©(v') whenevew € Vg andv’ € Vg, and
so property (iii) is also satisfied. This completes the induction.

For eacn € N, let

Kn:=U{Vd:deD and |d| = n}

and letK := N{K, : n € N}. ThenK is an uncountable compact subset\éf
Moreover,® (k) # ® (k') whenevek andk’ are distinct elements df. Therefore,
& = {®(K) : k € K} is an uncountable family of,-compactr,-open subsets
and so by Lemm&.2, ®(K) = |J« must be uncountable. On the other hand,
since® is t;-upper semicontinuous and hgscompact imagesp (K) is t;-compact;
which contradicts the hypothesis thatdoes not contain any uncountablecompact
subsets. Henc® must be constant on some non-empty open subdet. of O

Our main result also relies upon the following version of Fort's theorem pioneered
by Matejdes, 10].

LEMMA 2.4, Let® : T — 2M be a quasi lower semicontinuous set-valued mapping
acting from a Baire spac@& into compact subsets of a metric spade Then there
exists a residual subs& of T such thatd is continuous at each point .

PROOF. Let D :={t € T : ®(t) # ¥#}. Sinced is quasi lower semicontinuous,
D C int(D). LetB := int(D). Then by B, Corollary 2.9] there exists a residual
subsetR’ of B such thatb|g is continuous at each point &. LetR := R'U(T\D).
ThenRis residual inT and® is continuous at each point &. O
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LEMMA 2.5 ([14, Theorem 1.1])Let® : T — X be a hyperplane minimal map-
ping acting from a topological spack into a Banach spacéX, || - ||). Then for each
subsetD of T, ®(int D) € co{®(D)}. In particular, || - |-diam{®(intD)] < | - |-
diam{®(D)].

THEOREM 2.6. Assume the continuum hypothesis. Then there exists a scattered
compact seK such that(C(K), || - [l«) is a GC-space butC(K), weak is noto-
fragmentable. In particularC(K) does not admit a Kadenorm equivalent to the
supremum norm.

PrOOF. Let X be any uncountable subset [@ 1] that does not contain any un-
countable compact subsets (for examplés a Bernstein subset (@, 1]) and letK be
the one-point compactification, with, the point at infinity, of the spadgeX, ) with
Kunen’'s topology as described in Theor&rh. By [15, Corollary 3.3],(C(K), weak
is not o-fragmentable by the norm. In particular, this means &) does not
have a Kadehorm equivalent to the supremum norm. So it remains to show that
(C(K), || - ll) is @a GC-space. In fact because of the 3-space property given in
[14, Theorem 3.7] it is sufficient to show théE,(K), || - |«) is aGC-space, where
Co(K) := {f € C(K) : f(X,) = 0}, that is, the functions that vanish at infinity.
To this end, letf : M — Cy(K) be a hyperplane minimal mapping acting from a
complete metric spad@M, d) into Cy(K). For eacte > 0, consider the open set

O, :=|_J{opensetd : | - || -diam f (U)] <&} .

We claim that for eacls > 0, O, is dense inM. We begin the justification of
this by considering a non-empty open subgebf M (with the aim of showing that
O. NW # ). By [14, Theorem 2.9] we may assume tHfatM) < Bg,«), the closed
unit ball in Cy(K). Let.# be the countable collection of all finite sdfsof rational

numbers in(—1, 1) such that the distance of each pointial, 1] to F is less than
¢/2. For eactF € .Z andn € N, let

AL(F) := {t e W: dist(f (t)(K), F) > 1/n}.

Then the countable familyA,(F) : F € .# andn € N} coversW. Since for each

t € M, f(t)(K) is a scattered compact subsetfénd hence countable. Therefore
there must be somg ¢ .Z with f(t)(K) N F = @. It follows then that € A,(F)
for somen € N. Now, sinceW is a Baire space there is sorfRec .# andn € N such
that A,(F) is second category W. Let F := {¢i, 0o, ..., Om} Where,

—1=0o<p<P< - On<On1:=1
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and letF* := F U{qg, gm+1}. Then, by possibly making larger, we may assume that
0<1l/n<1/2minflg’—q"|:q’,q" € F*andq’ # q"}.

Letio be the integerif2, ..., m} suchthat 0= (q;,_1, G,)- Eoreacﬁl withipg <i <m,
defineN; : intfA,(F)] — 25, N, : int[A,(F)] — 2X andN, : int[A,(F)] — 2X by

Nit) :=(ke K: f()Kk >q+1/n}, N :=N@®,
and
Nit) :={keK:ft)k >q—1/n}.

For eachi with 1 <i < i, defineN; : int[A,(F)] — 2K, N, @ int[A,(F)] — 2¢ and
N; :int[A,(F)] — 2K by

Nit) :=(ke K: f()k) <q—1/n}, N :=N@®,
and
Ni(t) :={keK: ft)k) <q +1/n}.

Now sincef is hyperplane minimal, both mappinglsandﬁi, (withi € {1,2,...,m})

are quasi lower semicontinuous on[it(F)] with respect to the discrete topology
on K. Therefore, for each € {1, 2, ..., m} the mapping — N;(t) has compact
(possibly empty) images and is quasi lower semicontinuous with respect to both the
t-topology and the Euclidean topology ¢t Hence by Lemma&.4, there exists

a denseG; subsetG of int[A,(F)] on which each\, (withi € {1,2,...,m}) is
continuous with respect to the Euclidean topologykonWe now show that if € G

then foreach e {1,2, ..., m}, N;(t) = Ni(t). So consider € G andi € {i, ..., m}
(thecase =i <iois S|m|Iar) and suppose, in order to obtain a contradiction, that
there is somé € N; (t)\N; (t). SinceN; is upper semi continuous with respect to the
Euclidean topology dt e G there exists an open neighbourhddaf t in int[ A, (F)]
such thak ¢ N;(U). On the other hand, the mappih is quasi lower semicontinu-
ous with respectto the discrete topologykrand so there is a non-empty open subset
V of U suchthak € Ni(t") forallt’ € V. In particular, this would mean that for each
teV, ft)K € (g —1/n,q + 1/n] and so distf (t')(K), F) < 1/n. But this is
impossible since for eadh e V N A (F) # @, dist(f (t')(K), F) > 1/n. Hence it
must be the case thBE (t) = N;(t). Next we successively apply Lemra (with
equal to the Euclidean topology angdequal tor) to the mappings — N;(t) defined

on G—which is completely metrizable—to obtain a decreasing sequence

Umgum—lg"'uzgulgw

of non-empty open subsets of[m‘n(F)] such that eacIN; is constant orJ, N G.
LetU := U,, then eachN, = N is constant ol N G. For each O< i < m, let
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J :U NG — 2X be defined by (t) := (k € K : f(t)(k) € [¢, gi,1]}. Itis easyto
verify that eachJ; (0 < i < m) is constant ot N G and that for each € U N G,
{J (@) :0<i < m}isapartition ofK. Indeed, foreache U NG if

(i) i =0thenJ ) = N.H(t)
(i) 0<i<ip— 1thenJ t) = N|+1(t)\N t);
(i) i =mthenJ () = N ;.
(iv) ip<i<mthenJ(t) = N (t)\NlH(t)
(V) i =ig—1thend(t) = K\U{J@®):0<i <m andi # (ip — 1)}.

Therefore, ift,t' € U N G andk € K then|f (") (k) — f(t)(K)| < g1 — ;| < &,
wherej is the unique element if0, 1, ..., m} such thak € J;(t) andk € J;(t").
Thus, || - ||-diam f (U N G)] < ¢ and so by Lemma&.5, || - ||-diam f (U)] < e.
Henced = U € O, N W; which shows thaD, is dense inM. Thereforef is norm
continuous at each point ¢f{O;,, : n € N}. O

REMARK. The previous theorem raises two natural questions: (i) Is every weakly
Lindel6f Banach space a generic continuity space? (i) Is there an example (in ZFC) of
a weakly Lindebf Banach space that does not admit an equivalent locally uniformly
rotund norm?

We end this paper by reiterating the main problem in the area. Namely, is it true
that if the Bishop-Phelps set of a Banach spéXe|| - ||) is residual inX* then the
dual norm is Fechet differentiable on a dense subseXo?

One impediment to finding a counter-example to this question is that, in general, it
is difficult to identify those linear functions in the dual of a Banach space that attain
their norm. There are a few exceptions to this, for exampl¥,ig reflexive or of the
form C(T), for some infinite compack, with the supremum norm. However, in the
latter case the Bishop-Phelps set is known to be always of the first Baire category in
CM*, [91.
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