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Abstract

In this paper, we give a generalization of Hardy’s theorems for the Dunkl transformFD onRd. More
precisely for alla > 0, b> 0 andp;q ∈ [1;+∞], we determine the measurable functionsf onRd such
thatea‖x‖2

f ∈ L p
k .R

d/ andeb‖y‖2
FD. f / ∈ Lq

k.R
d/, whereL p

k .R
d/ are the Lebesgue spaces associated

with the Dunkl transform.
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1. Introduction

A famous theorem of Hardy [8] asserts that a measurable functionf on R and its
Fourier transformf̂ cannot be both ‘very rapidly decreasing’. More precisely, if
| f .x/| ≤ Ce−ax2

and| f̂ .y/| ≤ Ce−by2
for some constantsC > 0, a > 0 andb > 0,

then f = 0 a.e. ifab> 1=4 and there exists nonzerof if ab ≤ 1=4. An L p version
of this result, obtained by Cowling and Price [2] states that forp;q ∈ [1;+∞], and
at least one of them is finite, if‖eax2

f ‖p < +∞ and‖eby2
f̂ ‖q < +∞ then f = 0

a.e. if ab ≥ 1=4. Generalizations of this result to the Heisenberg group and the
motion group have been proved in [6, 15]. In this paper we study an analogue of
the theorem of Cowling and Price for the Dunkl transformFD onRd. For a > 0,
b > 0 andp;q ∈ [1;+∞], we determine the measurable functionsf onRd such that
ea‖x‖2

f ∈ L p
k .R

d/ andeb‖y‖2
FD. f / ∈ Lq

k .R
d/, whereL p

k .R
d/ are the Lebesgue spaces

associated with the Dunkl transform. We note that our results, announced in [7], are
related to an analogue of the classical Heisenberg-Weyl uncertainty principle for the
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Dunkl transform due to R¨osler [14]. The Dunkl transform is associated to differential-
difference operators corresponding to a finite group of reflections of the Euclidean
spaceRd. They provide a useful tool in the study of special functions with root systems
[5, 9] and they play an important role in the algebraic description of exactly solvable
quantum many body systems of Calogero-Moser-Sutherland type (see [10, 11]).

The contents of the paper is as follows: In Section2 we recall some basic facts
from Dunkl’s theory, we describe Dunkl operators and we give the main results about
Dunkl transformFD which generalizes the classical Fourier transformF onRd.

We introduce, in the third section, the intertwining Dunkl operatorV defined by
Dunkl in [5] and studied by de Jeu, R¨osler and Trim`eche in [3, 13, 16]. We also
consider in this section the transposed operatort V of V . These operatorsV and t V
are respectively topological automorphisms ofE .Rd/ (the space ofC∞-functions on
R

d) andD.Rd/ (the subspace off ∈ E .Rd/ which are compactly supported) and
they transmute the Dunkl operators into the partial derivatives. We will give more
properties of the operatort V which plays an important role in the proofs of the main
results of the paper. In particular, in Theorem3.1we prove that it can be extended to
the Lebesgue spaceL1

k.R
d/ associated with Dunkl theory and satisfies the fundamental

relationFD =F ◦ t V.
In Section4 we give two lemmas from the complex variable theory which are anL p

version of the Phragm´en-Lindelöf theorem and will be used in the sequel. Section5
is devoted to theL p version of Hardy’s theorem for the Dunkl transformFD . The
proof of this result requires both tools introduced in sections two and three.

In the last section, an analogue of the classical Hardy’s theorem is obtained for the
Dunkl transform.

2. Dunkl transform

In this section, we recall some basic results from Dunkl’s theory which we will use
in the sequel.

2.1. Reflection groups and root systemsWe considerRd equipped with the usual
scalar product〈·; ·〉 and the Euclidian norm‖x‖ = √〈x; x〉.

ForÞ ∈ Rd\{0}, let HÞ ⊂ R
d be the hyperplane orthogonal toÞ and

¦Þ.x/ = x − .2〈Þ; x〉‖Þ‖−2/Þ .x ∈ Rd/;

the reflection with respect toHÞ. A finite setR ⊂ R
d\{0} is called aroot systemif

R ∩RÞ = {±Þ} and¦ÞR = R for all Þ ∈ R.
For a given root systemR, the reflections¦Þ; Þ ∈ R, generate a finite groupW ⊂

O.d/, called thereflection groupassociated withR and for a givenþ ∈ Rd\⋃
Þ∈R HÞ ,
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we fix the positive subsystemR+ = {Þ ∈ R; 〈Þ; þ〉 > 0}, then for eachÞ ∈ R either
Þ or −Þ belong toR+.

A multiplicity functionis a functionk : R → C defined on the root systemR which
is invariant under the action of the reflection groupW.

The index of the root system is then defined by = ∑
Þ∈R+ k.Þ/, and theweight

functionis theW-invariant and homogeneous (of degree 2 ) function onRd given by:
!k.x/ =∏

Þ∈R+ |〈Þ; x〉|2k.Þ/.
For d = 1 andW = Z2, the multiplicity functionk is a single parameter denoted

 ≥ 0 and for allx ∈ R: !k.x/ = |x|2 .
In the general case, we will need the Mehta-type constant

ck =
(∫

Rd

e−‖x‖2

!k.x/dx

)−1

;(1)

which is known for all Coxeter groupsW (see [3, 5, 9]).

2.2. Dunkl operators and Dunkl kernel The Dunkl operatorsTj , j = 1; : : : ;d,
onRd, associated with the finite reflection groupW and multiplicity functionk, are
given for a functionf of classC 1 onRd by

Tj f .x/ = @

@xj
f .x/+

∑
Þ∈R+

k.Þ/Þ j
f .x/− f .¦Þ.x//

〈Þ; x〉 :(2)

In the casek = 0, theTj , j = 1; : : : ;d, reduce to the correspondingpartial derivatives.
In this paper we will assume throughout thatk ≥ 0.

For y ∈ Rd , the system{
Tj u.x/ = yj u.x/ j = 1; : : : ;d;

u.0/ = 1;

admits a unique analytic solution onRd, denoted byK .x; y/ and calledDunkl kernel.
This kernel admits a unique holomorphic extension toC

d × C
d (see [5]).

For example ifd = 1 andW = Z2, the Dunkl operator and Dunkl kernel (see [5])
are given by

T1 f .x/ = d f

dx
.x/+ 

f .x/− f .−x/

x
;(3)

and forz; t ∈ C,

K .z; t/ = j−1=2.i zt/+ z

2 + 1
j+1=2.i zt/;(4)

where fors ≥ −1=2, js is the normalized Bessel function defined by

js.u/ = 2s0.s + 1/u−s Js.u/
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with Js the Bessel function of the first kind and indexs.
The Dunkl kernel possesses the following properties [3, 13]:

(i) For z; t ∈ C
d, we haveK .z; t/ = K .t; z/; K .z;0/ = 1 and K .½z; t/ =

K .z; ½t/ for all ½ ∈ C.
(ii) For all ¹ ∈ Nd, x ∈ Rd andz ∈ Cd we have

|D¹
z K .x; z/| ≤ ‖x‖|¹| exp.‖x‖‖ Rez‖/;(5)

with D¹
z = @ |¹|=.@z¹1

1 · · · @z¹d
d / and|¹| = ¹1 +· · · + ¹d. In particular, for allx; y ∈ Rd,

we have|K .−i x; y/| ≤ 1.
(iii) The function K .x; z/ admits for allx ∈ Rd andz ∈ Cd the following Laplace

type integral representation

K .x; z/ =
∫
Rd

e〈y;z〉 d¼x.y/;(6)

where¼x is a probability measure onRd with support in the closed ballB.0; ‖x‖/ of
center 0 and radius‖x‖ (see [13]).

Whend = 1 andW = Z2, for all x ∈ R\{0} andz ∈ C the representation (6) is of
the form (see [4])

K .x; z/ = 0. + 1=2/√
³0. /

|x|−2

∫ |x|

−|x|
.|x| − y/−1.|x| + y/eyz dy:

2.3. Dunkl transform We denote by

− D.Rd/ the space ofC∞-functions onRd with compact support.
− S .Rd/ the space ofC∞-functions onRd which are rapidly decreasingtogether

with their derivatives.
− L p

k .R
d/, p ∈ [1;+∞], the space of measurable functionsf onRd such that

‖ f ‖k;p =
(∫

Rd

| f .x/|p!k.x/dx

)1=p

< +∞; if 1 ≤ p < +∞;

‖ f ‖k;∞ = ess sup
x∈Rd

| f .x/| < +∞:

The Dunkl transform of a functionf ∈ D.Rd/ is given by

∀ y ∈ Rd;FD. f /.y/ =
∫
Rd

f .x/K .x;−iy/!k.x/dx:(7)

This transform has the following properties [3, 5]:

(i) For f ∈ L1
k.R

d/, we have‖FD. f /‖k;∞ ≤ ‖ f ‖k;1.
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(ii) The transformFD is a topological isomorphism fromS .Rd/ onto itself. The
inverse transform is given by

∀ x ∈ Rd;F−1
D .h/.x/ = c2

k

22+d

∫
Rd

h.y/K .x; iy/!k.y/dy:(8)

(iii) Let f be in L1
k.R

d/ such that the functionFD. f / belongs toL1
k.R

d/. Then
we have the following inversion formula for the Dunkl transform

f .x/ = c2
k

22+d

∫
Rd

FD. f /.y/K .x; iy/!k.y/dy; a.e.(9)

3. The Dunkl dual intertwining operator

In this section we consider the Dunkl intertwining operatorV and its dualt V and we
give their properties. Next we study the extension of the operatort V to the functions
of L1

k.R
d/.

Let C.Rd/ be the space of continuous functions onRd. TheDunkl intertwining
operatorV is the operator fromC.Rd/ into itself given by

V. f /.x/ =
∫
Rd

f .y/d¼x.y/; x ∈ Rd;(10)

where¼x is the measure given by the relation (6). In particular, we have

.∀ x ∈ Rd; ∀ z ∈ Cd/ K .x; z/ = V.e〈·;z〉/.x/:(11)

The operatort V defined onD.Rd/ by the relation∫
Rd

t V. f /.y/g.y/dy =
∫
Rd

V.g/.x/ f .x/!k.x/dx;(12)

where f ∈ D.Rd/ andg ∈ C.Rd/ is called theDunkl dual intertwining operator(see
[16]). This operator has the following integral representation

t V. f /.y/ =
∫
Rd

f .x/d¹y.x/ . f ∈ D.Rd/;(13)

where for ally ∈ Rd; ¹y is a positive measure onRd whose support is contained in the
set{x ∈ R

d; ‖x‖ ≥ ‖y‖}. Moreover,t V is a topological isomorphism fromD.Rd/

(respectivelyS .Rd/) onto itself satisfying the transmutation relations

.∀ f ∈ D.Rd/;∀ y ∈ Rd/ t V.Tj f /.y/ = @

@yj

t V. f /.y/; j = 1; : : : ;d;
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and the following property (see [16])

FD. f / = F ◦ t V. f /; ∀ f ∈ S .Rd/;(14)

whereF is the classical Fourier transform onRd given by

F .g/.¾/ =
∫
Rd

g.x/e−i 〈x;¾〉 dx; ∀ g ∈ S .Rd/:(15)

EXAMPLE 1. If d = 1 andW = Z2, the operatorsV andt V are given forg ∈ C.R/
and f ∈ D.R/ by (see [4, 16])

V.g/.x/ = 0. + 1=2/√
³0. /

|x|−2

∫ |x|

−|x|
.|x| − y/−1.|x| + y/g.y/dy; ∀ x ∈ R\{0};

and
t V. f /.y/ = 0. + 1=2/√

³0. /

∫
|x|≥|y|

.|x| − y/−1.|x| + y/ f .x/dx; ∀ y ∈ R:

In the following result we extend the operatort V to the functions inL1
k.R

d/.

THEOREM 3.1. Let .¹y/y∈Rd , be the family of measures defined in formula(13) and
let f ∈ L1

k.R
d/. Then for almost ally (with respect to Lebesgue measure onRd), f

is ¹y-integrable, the function

y → ¹y. f / =
∫
Rd

f .x/d¹y.x/;

which will also be denoted byt V. f / is defined almost everywhere onRd and is
Lebesgue integrable. Moreover for all bounded continuous functionsg on Rd, we
have the formula∫

Rd

t V. f /.y/g.y/dy =
∫
Rd

f .x/V .g/.x/!k.x/dx:(16)

PROOF. We will divide the proof in five steps.
(i) Let us show that the family of measures.¹y/y∈Rd is vaguely continuous. More

precisely, we will show that for allf ∈ Cc.R
d/ (the space off ∈ C.Rd/ with compact

support), the function

y → t V. f /.y/ =
∫
Rd

f .x/d¹y.x/ = ¹y. f /;

belongs toCc.R
d/.

Let f ∈ Cc.R
d/ and.pn/n>0 an approximate identity belonging toD.Rd/. There is

a closed ballB.0; r / of Rd of center 0 and radiusr big enough such that it contains all
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the supports of the functionsf andpn ∗ f , n > 0 (where∗ is the classical convolution
onRd) and a non negative function' ∈ D.Rd/ such that'.x/ ≥ 1 for all x ∈ B.0; r /.
For all y ∈ Rd, we then have

|t V. f /.y/− t V.pn ∗ f /.y/| ≤
∫

B.0;r /

| f .x/− pn ∗ f .x/| d¹y.x/

≤ ‖ f − pn ∗ f ‖∞‖t V.'/‖∞;

where‖ · ‖∞ denotes the sup norm, and this implies immediately thatt V.pn ∗ f /
converges uniformly tot V. f /. This shows thatt V. f / is continuous but it is also
clearly compactly supported. Thust V. f / ∈ Cc.R

d/:

(ii) Let g ≥ 0 be a continuous and bounded function onRd. Let us show that the
family of measures.¹y/y∈Rd is g.y/dy integrable (for the definition see [1, page 17]).
Let .pn/n>0 be the approximate identity used in (i). For allf ∈ Cc.R

d/, by formula
(12), we have∫

Rd

¹y.pn ∗ f /g.y/dy =
∫
Rd

.pn ∗ f /.x/V .g/.x/!k.x/dx:

But the functionspn ∗ f , n > 0, have their supports in a fixed closed ballB.0; r / and
as in step (i), there is a fixed nonnegative' ∈ D.Rd/ such that for alln > 0 we have
|pn ∗ f | ≤ ' and|t V.pn ∗ f /| ≤ t V.'/ onRd. Then lettingn → +∞ and using the
dominated convergence theorem we obtain immediately∫

Rd

¹y. f /g.y/dy =
∫
Rd

f .x/V.g/.x/!k.x/dx:(17)

(iii) We considerg ≥ 0 a continuous and bounded function onRd. If f is an
integrable function onRd with respect to the measureV.g/.x/!k.x/dx, the points (i),
(ii) and Bourbaki’s integration of measures theorem [1, page 17] shows that the
function y → ¹y. f / exists for almost ally ∈ Rd with respect to the measureg.y/dy,
is integrable with respect to this measure and the relation (17) remains valid for this
function f .

(iv) In the particular case whereg ≡ 1 onRd, the point (iii) shows that iff ∈
L1

k.R
d/, the functiony → ¹y. f / = t V. f /.y/ exists almost everywhere, is Lebesgue

integrable onRd and we have∫
Rd

t V. f /.y/dy =
∫
Rd

f .x/!k.x/dx:(18)

(v) We deduce easily from the points (iii) and (iv) that for allf ∈ L1
k.R

d/ and
all boundedg ∈ C.Rd/ formula (16) is true, which completes the proof of the
theorem.
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COROLLARY 3.2. For all f ∈ L1
k.R

d/, we have:

FD. f /.y/ = F ◦ t V. f /.y/; y ∈ Rd:(19)

PROOF. We obtain the result by applying (16) to the functiong.x/ = e−i 〈x;y〉 and
using the relation (11).

4. An L p version of the Phragmén-Lindelöf theorems

The proofs of some theorems in this paper depend on the two complex-variable
lemmas which will be presented in the following section.

LEMMA 4.1. Let h be an entire function onCd such that

∀ z ∈ Cd; |h.z/| ≤ C
d∏

j =1

ea.Rezj /
2

; and ∀ x ∈ Rd; |h.x/| ≤ C;(20)

for somea > 0 andC > 0. Thenh is constant onCd.

PROOF. We fix x2; : : : ; xd ∈ R. The entire functionz1 → h.z1; x2; : : : ; xd/ is
O.ea.Rez1/

2
/ in the quadrant1 = {z1 = x1 + iy1; x1 ≥ 0; y1 ≥ 0} and is bounded

on the sides of1, then by a slight modification of the method used in [2, page 445]
it is bounded on1. Applying the same method to the functionsh.−z1; x2; : : : ; xd/,
h̄.z̄1; x2; : : : ; xd/ andh̄.−z̄1; x2; : : : ; xd/ we deduce thath.z1; x2; : : : ; xd/ is bounded
onC, therefore by the Liouville theorem we have

h.z1; x2; : : : ; xd/ = h.0; x2; : : : ; xd/; ∀ z1 ∈ C:

Now by analytic extension we deduce that

h.z1; z2; : : : ; zd/ = h.0; z2; : : : ; zd/; ∀ z1; : : : ; zd ∈ C;

and by induction,h is a constant function.

LEMMA 4.2. Let p ∈ [1;+∞[ andh an entire function onCd. We suppose

(i) there existsj ∈ {1; : : : ;d} such that

|h.z/| ≤ M.z1; : : : ; zj −1; zj +1; : : : ; zd/e
a.Rezj /

2

; ∀ z ∈ Cd;(21)

for somea > 0 and M a positive function onCd.
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(ii)

‖h|Rd‖k;p < +∞;(22)

Thenh ≡ 0.

PROOF. From (22) the Fubini’s theorem yields that there is a setE ⊂ R
d−1, with

Ec of Lebesgue measure zero such that for all.x1; : : : ; xj −1; xj +1; : : : ; xd/ ∈ E we
have∫

R

|h.x1; : : : ; xj −1; x; x j +1; : : : ; xd/|p!k.x1; : : : ; xj −1; x; x j +1; : : : ; xd/dx < +∞:

Let us write forx ∈ R,

h.x/ = h.x1; : : : ; xj −1; x; x j +1; : : : ; xd/ and

!̃k.x/ = !k.x1; : : : ; xj −1; x; x j +1; : : : ; xd/:

Clearly !̃k.x/ is of the form!̃k.x/ = ∏
Þ∈R+ |aÞ + Þ j x|2k.Þ/, whereaÞ = ∏

i 6= j Þi xi

and there are three cases

(i) !̃k.x/ is identically zero onR. This case occurs if and only ifaÞ = 0 andÞ j = 0
for someÞ ∈ R+ and can be disregarded because points.x1; : : : ; xj −1; xj +1; : : : ; xd/

such thataÞ = 0 for someÞ ∈ R+ are in a set of Lebesgue measure zero inR
d−1 and

then they can be supposed to belong toEc.
(ii) !̃k.x/ is a constant if for allÞ ∈ R+, Þ j = 0.

(iii) !̃k.x/ vanishes only on a finite number of points, precisely forx = −aÞ=Þ j ,
Þ ∈ R+ andÞ j 6= 0. In this case the set{!̃k ≤ 1} = {x ∈ R; !̃k.x/ ≤ 1} is compact.
Now we have∫

R

|h.x/|p dx =
∫

{!̃k≤1}
|h.x/|p dx +

∫
{!̃k>1}

|h.x/|p dx

≤
∫

{!̃k≤1}
|h.x/|p dx +

∫
{!̃k>1}

|h.x/|p!̃k.x/dx < +∞:

Indeed, the first integral in the right hand side of the above inequality is finite because
x → |h.x/|p is continuous on the compact set{!̃k ≤ 1} and the second integral is also
finite by the initial hypothesis. Therefore we have proved that∫

R

|h.x1; : : : ; xj −1; x; x j +1; : : : ; xd/|p dx < +∞;

for almost all.x1; : : : ; xj −1; xj +1; : : : ; xd/ ∈ R
d−1. Clearly in case (ii) this is also

true.
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Now using (21) and applying the same method as in [2] to the function

zj → h.x1; : : : ; xj −1; zj ; xj +1; : : : ; xd/

we see that it is zero onC for almost all.x1; : : : ; xj −1; xj +1; : : : ; xd/ ∈ R
d−1. The

continuity ofh and analytic extension imply thath is zero onCd.

5. An L p version of Hardy’s theorem

THEOREM 5.1. Let f be a measurable function onRd such that

‖ea‖x‖2

f ‖k;p < +∞ and ‖eb‖y‖2

FD. f /‖k;q < +∞;(23)

for some constantsa > 0, b > 0, 1 ≤ p;q ≤ +∞ and at least one ofp and q is
finite. Then

− if ab ≥ 1=4, we havef = 0 almost everywhere.
− if ab< 1=4, for all Ž ∈ ]a;1=4b[ ,

the functions of the formf .x/ = P.x/e−Ž‖x‖2
, whereP is an arbitrary polynomial on

R
d, satisfy(23).

To prove this result we need the following three lemmas.

LEMMA 5.2. Leta > 0. For all y ∈ Rd, we have

t V.e−a‖x‖2

/.y/ = Ce−a‖y‖2

;(24)

whereC = 22+dad=2c−1
k ³

−d=2 with ck the constant given by(1).

PROOF. As the functionx → e−a‖x‖2
belongs toS .Rd/, the relation (14) shows

that t V.e−a‖x‖2
/.y/ =F−1 oFD.e−a‖x‖2

/.y/.
But from [12, page 535], we have

FD.e
−a‖x‖2

/.¾/ = a− ³−d=2c−1
k e−‖¾‖2=4a;(25)

and we obtain the result of the lemma by applying the classical inverse Fourier
transform to relation (25).

LEMMA 5.3. Let p ∈ [1;+∞] and f a measurable function onRd such that∥∥ea‖x‖2
f
∥∥

k;p
< +∞, for somea > 0. Then:

∥∥ea‖x‖2t V. f /
∥∥

p
< +∞; where‖ · ‖p is

the norm of the usual Lebesgue spaceL p.Rd/.
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PROOF. From the hypothesis it follows thatf ∈ L1
k.R

d/. Then by Theorem3.1,
the functiont V. f / is defined almost everywhere onRd. Now we consider two cases.

(i) If p ∈ [1;+∞[ , we have

∥∥ea‖x‖2t V. f /
∥∥p

p
≤
∫
Rd

eap‖x‖2

(∫
Rd

ea‖y‖2| f .y/|e−a‖y‖2

d¹x.y/

)p

dx:

Applying Hölder’s inequality in the middle integral we obtain

∥∥ea‖x‖2t V. f /
∥∥p

p
≤
∫
Rd

eap‖x‖2

(∫
Rd

eap‖y‖2| f .y/|p d¹x.y/

)
×
(∫

Rd

e−ap′‖y‖2

d¹x.y/

)p=p′

dx;

wherep′ is the conjugate exponent ofp. By Lemma5.2we deduce that the right hand
side of the precedent inequality is equal to.C.p′/d=2/p=p′ ∫

Rd
t V..ea‖y‖2| f |/p/.x/dx,

whereC is the constant in formula (24). Using the relation (18), we have∥∥ea‖x‖2t V. f /
∥∥

p
≤ (

C.p′/d=2
)1=p′∥∥ea‖y‖2

f
∥∥

k;p
< +∞:

(ii) If p = +∞, we have

|t V. f /.x/| ≤
∫
Rd

ea‖y‖2| f .y/|e−a‖y‖2

d¹x.y/;≤
∥∥ea‖y‖2

f
∥∥

k;∞
t V
(
e−a‖y‖2)

.x/;

and from Lemma5.2, we obtainea‖x‖2|t V. f /.x/| ≤ C
∥∥ea‖y‖2

f
∥∥

k;∞ < +∞, whereC
is the constant of (24). This completes the proof.

LEMMA 5.4. Let p ∈ [1;+∞] and f a measurable function onRd such that∥∥ea‖x‖2
f
∥∥

k;p
< +∞ for somea > 0. Then the function defined onCd by

FD. f /.z/ =
∫
Rd

f .x/K .x;−i z/!k.x/dx;(26)

is well defined and entire onCd. Moreover there exists a positive constantC such that
for all ¾; � ∈ Rd, we have

|FD. f /.¾ + i �/| ≤ Ce‖�‖2=4a:(27)

PROOF. The first assertion follows from the hypothesis on the functionf and
Hölder’s inequality using (5) and the derivation theorem under the integral sign. We
will now prove (27).
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As the functionf ∈ L1
k.R

d/, we deduce from (19) that for all¾; � ∈ Rd, we have

FD. f /.¾ + i �/ =
∫
Rd

t V. f /.x/e−i 〈x;¾+i �〉dx:

Thus

|F D. f /.¾ + i �/| ≤ e‖�‖2=4a

∫
Rd

ea‖x‖2∣∣t V. f /.x/
∣∣e−a‖x‖2+〈x;�〉−.‖�‖2=4a/ dx;

≤ e‖�‖2=4a

∫
Rd

ea‖x‖2∣∣t V. f /.x/
∣∣e−a‖x−.�=2a/‖2

dx;

and using H¨older’s inequality and Lemma5.3, we obtain

|FD. f /.¾ + i �/| ≤ e‖�‖2=4a
∥∥ea‖x‖2t V. f /

∥∥
p

(∫
Rd

e−ap′‖x−.�=2a/‖2

dx

)1=p′

;

wherep′ is the conjugate exponent ofp. Then (27) clearly follows.

PROOF OFTHEOREM 5.1. We will divide the proof in several steps.
Step 1.ab> 1=4.
Consider the functionh defined onCd by

h.z/ =
(

d∏
j =1

ez2
j =4a

)
FD. f /.z/:(28)

This function is entire onCd and using (27) we obtain

|h.¾ + i �/| ≤ Ce‖¾‖2=4a;(29)

for all ¾ ∈ Rd and� ∈ Rd. In the following we consider two cases.
(i) If q < +∞, we have

‖h|Rd‖q
k;q =

∫
Rd

∣∣e‖y‖2=4a
FD. f /.y/

∣∣q!k.y/dy;

=
∫
Rd

∣∣eb‖y‖2

FD. f /.y/
∣∣qeq..1=4a/−b/‖y‖2

!k.y/dy:

Using the fact thatab> 1=4 and the hypothesis (23), we obtain

‖h|Rd‖k;q ≤ ‖eb‖y‖2

FD. f /‖k;q < +∞:(30)

From relations (29) and (30), it follows from Lemma4.2thath.z/ = 0 for all z ∈ Cd.
ThusFD. f /.y/ = 0 for all y ∈ R

d. The injectivity ofFD then implies the result of
the theorem in this case.
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(ii) Assumeq = +∞. As ab> 1=4, then from (23) we obtain

‖h|Rd‖k;∞ ≤ ‖eb‖y‖2

FD. f /‖k;∞ < +∞:(31)

From (29), (31) and Lemma4.1, it follows that there exists a positive constantC such
that for all y ∈ Rd;h.y/ = C. On the other hand, from (28) we have

FD. f /.y/ = Ce−‖y‖2=4a; ∀ y ∈ Rd:(32)

But the assumption onFD. f / is expressed as

|FD. f /.y/| ≤ Me−b‖y‖2

a.e.;(33)

for some constantM > 0. The continuity ofFD. f / onRd shows that inequality (33)
holds everywhere. Then we must haveCe.b−.1=4a//‖y‖2 ≤ M everywhere by (32)
and (33). This is impossible sinceab > 1=4, unlessC = 0. ThusFD. f /.y/ = 0
everywhere and thenf = 0 a.e. onRd.

Step 2.ab = 1=4.
(i) If 1 ≤ p ≤ +∞ and 1≤ q < +∞, with the same proof as for the point (i) of

the first step, we obtainf = 0 a.e. onRd.
(ii) If 1 ≤ p < +∞ andq = +∞, we deduce from Lemma5.3, Corollary3.2and

(23) that the functiont V. f / satisfies∥∥ea‖x‖2t V. f /
∥∥

p
< +∞ and

∥∥eb‖y‖2

F .t V. f //
∥∥

∞ < +∞:

Then using [6, page 66], we see thatt V. f /.x/ = 0 a.e. onRd. ThusFD. f /.y/ = 0
for all y ∈ Rd, which implies thatf = 0 a.e. and the proof is complete.

Step 3.ab< 1=4.
Let P be the algebra of polynomial functions onRd. By considering the gen-

eralized Hermite polynomials onRd studied by R¨osler in [12] we deduce that the
Dunkl transform of a functionf .x/ = P.x/e−Ž‖x‖2

, whereP ∈ P , is of the form
FD. f /.y/ = Q.y/e−‖y‖2=4Ž for someQ ∈ P . These functions clearly satisfy the
conditions (23). The proof of Theorem5.1 is complete.

6. An analogue of Hardy’s theorem

In this section we determine the functionsf satisfying (23) in the special case
p = q = +∞. The result we obtain, is an analogue for the Dunkl transform of the
classical Hardy’s theorem.
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THEOREM 6.1. Let f be a measurable function onRd such that

| f .x/| ≤ Me−a‖x‖2

and |FD. f /.y/| ≤ Me−b‖y‖2

;(34)

almost everywhere forx; y ∈ R
d and for some constantsa > 0, b > 0 and M > 0.

Then

(i) If ab> 1=4, we havef = 0 a.e.
(ii) If ab = 1=4, the function f is of the form f .x/ = C0e−a‖x‖2

, for some real
constantC0.

(iii) If ab< 1=4, there are infinitely many nonzero functionsf satisfying(34).

PROOF. (i) If ab> 1=4, the point (ii) of the first step of the proof of Theorem5.1
gives also the result.

(ii) From (34), Lemma5.2and Corollary3.2, the functiont V. f / satisfies

|t V. f /.x/| ≤ C Me−a‖x‖2

and |F .t V. f //.y/| ≤ Me−a‖y‖2

;

for almost allx; y ∈ R
d, whereC is the constant in formula (24). Using Hardy’s

theorem for the classical Fourier transform (see [15, page 137]) we obtain:t V. f /.x/ =
C1e−a‖x‖2

; whereC1 is a real constant. We deduce from (19) that there existsC2 ∈ R
such that:FD. f /.y/ = C2e−‖y‖2=4a. Thus by using (25) we have f .x/ = C0e−a‖x‖2

,
with C0 a real constant and the result of point (ii) is proved.

(iii) If ab< 1=4, the functions defined in the third step of the proof of Theorem5.1
clearly satisfy also the conditions (34). This completes the proof of Theorem6.1.
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