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Abstract

In this paper, we give a generalization of Hardy’s theorems for the Dunkl trans#@snon RY. More
precisely for alla > 0,b > 0 andp, q € [1, +oc], we determine the measurable functidnen R such
thate?I* f ¢ LP(RY) ande?YI® Zp(f) € LY(RY), whereLP(RY) are the Lebesgue spaces associated
with the Dunkl transform.
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1. Introduction

A famous theorem of Hardyg] asserts that a measurable functibron R and its
Fourier transformf cannot be both ‘very rapidly decreasing’. More precisely, if
|f(x)| < Ce @ and|f(y)| < Ce ™ for some constant§ > 0,a > 0 andb > 0,
thenf = 0 a.e. ifab > 1/4 and there exists nonzeffoif ab < 1/4. An LP version

of this result, obtained by Cowling and Pricg Etates that fop, q € [1, +o0], and

at least one of them is finite, |fe® ||, < +oo and|€” f||, < +oo thenf = 0

a.e. ifab > 1/4. Generalizations of this result to the Heisenberg group and the
motion group have been proved i, [L5]. In this paper we study an analogue of
the theorem of Cowling and Price for the Dunkl transfoffg on RY. Fora > 0,

b > 0andp, g € [1, +oc], we determine the measurable functidnen R¢ such that
eXI” f ¢ LP(RY) ande®VI".Zp () e LY (RY), whereLP(RY) are the Lebesgue spaces
associated with the Dunkl transform. We note that our results, announcéy ang
related to an analogue of the classical Heisenberg-Weyl uncertainty principle for the

(© 2004 Australian Mathematical Society 1446-8107$2.00+ 0.00

371


http://www.austms.org.au/Publ/JAustMS/V77P3/q116.html

372 Leonard Gallardo and Khalifa Triéche [2]

Dunkl transform due to BSler [L4]. The Dunkl transform is associated to differential-
difference operators corresponding to a finite group of reflections of the Euclidean
spaceR?. They provide a useful tool in the study of special functions with root systems
[5, 9] and they play an important role in the algebraic description of exactly solvable
guantum many body systems of Calogero-Moser-Sutherland typel(Geel]).

The contents of the paper is as follows: In Sectiowe recall some basic facts
from Dunkl’s theory, we describe Dunkl operators and we give the main results about
Dunkl transformZ;, which generalizes the classical Fourier transfofion RY,

We introduce, in the third section, the intertwining Dunkl operatodefined by
Dunkl in [5] and studied by de Jeu,dRler and Trineche in B, 13, 16]. We also
consider in this section the transposed operatoof V. These operatorg¢ and'V
are respectively topological automorphismssafR?) (the space o%>-functions on
RY) and Z(RY) (the subspace of e &(RY) which are compactly supported) and
they transmute the Dunkl operators into the partial derivatives. We will give more
properties of the operatdv which plays an important role in the proofs of the main
results of the paper. In particular, in Theor8rih we prove that it can be extended to
the Lebesgue spatg (R?) associated with Dunkl theory and satisfies the fundamental
relationZp = .Z o'V.

In Sectiond we give two lemmas from the complex variable theory which arefan
version of the Phragaeni-Lindebf theorem and will be used in the sequel. Section
is devoted to theLP version of Hardy's theorem for the Dunkl transfor#,. The
proof of this result requires both tools introduced in sections two and three.

In the last section, an analogue of the classical Hardy’'s theorem is obtained for the
Dunkl transform.

2. Dunkl transform

In this section, we recall some basic results from Dunkl’s theory which we will use
in the sequel.

2.1. Reflection groups and root systems We consideR® equipped with the usual
scalar product, -) and the Euclidian normix|| = 4/(X, X).
Fora e R9\{0}, let H, C RY be the hyperplane orthogonaldcand

0, (X) =X = 2(a, X)[lall P (x € RY,

the reflection with respect tbl,. A finite setR ¢ R9\{0} is called aroot systenif
RN Ra = {£«a} ando,R= Rforalla € R.

For a given root systerR, the reflections,, « € R, generate a finite grouy/ c
O(d), called theeflection groupassociated witR and for a giverg € R\ |,,.g Ha.
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we fix the positive subsysteR, = {« € R; («, 8) > 0}, then for eaclwr € R either
« or —a belong toR, .

A multiplicity functionis a functiork : R — C defined on the root systeRwhich
is invariant under the action of the reflection grotp

Theindexy of the root system is then defined py= }_, . k(«), and theweight
functionis theW-invariant and homogeneous (of degree function onR¢ given by:
(X) = [Ter, e, X)12.

Ford = 1 andW = Z,, the multiplicity functionk is a single parameter denoted
y > 0and for allx € R: o (X) = |X|%.

In the general case, we will need the Mehta-type constant

-1
(1) C = (/ e"‘zwk(x)dx> ,
Rd

which is known for all Coxeter group#/ (see B, 5, 9)).

2.2. Dunkl operators and Dunkl kernel  The Dunkl operators;, j = 1,...,d,
on RY, associated with the finite reflection growp and multiplicity functionk, are
given for a functionf of class%* onR? by

3 f(x) = flou(X)
) T f(0 = i f(x) +%2R: k(a)a; Y :
Inthe cas& = 0, theT;, j = 1,..., d, reduce to the corresponding partial derivatives.

In this paper we will assume throughout that O.
Fory e RY, the system

Tux) =yjux) j=1,...,d;
u() = 1,

admits a unique analytic solution &¥, denoted by (x, y) and calledDunkl kernel
This kernel admits a unique holomorphic extensiofitox C¢ (see p)).

For example ifd = 1 andW = Z,, the Dunkl operator and Dunkl kernel (s€g)[
are given by

_df f(x) — f(—=x)
(3 T f(x) = &(X) +vy " ,
and forz,t € C,
. . V4 . .
4) K(z, 1) = J,-12(128) + mlwl/z(lz'[),

where fors > —1/2, js is the normalized Bessel function defined by

js(u) = 2T (s + Hu~>JIs(u)
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with J; the Bessel function of the first kind and index

The Dunkl kernel possesses the following properti 4 §]:

(i) Forzt e CY we haveK(z,t) = K(t,2); K(z,0) = 1 andK(Az t) =
K(z, At) forall x € C.

(i) Forallv e N%, x € RYandz € C? we have

5) ID;K(x, 2)| < [Ix]|" exp([I x|l Rez]),

with DY = 3""1/(3z*--- 9zy) and|v| = vy + - - - +vq. In particular, for alik, y € RY,
we haveg K (—ix, y)| < 1.

(i) The functionK (x, z) admits for allx € RY andz € C the following Laplace
type integral representation

®) K (x,2) = / &7 du (y),
Rd

wherep, is a probability measure oR? with support in the closed baB(0, || x||) of
center 0 and radiugx|| (see [L3)).

Whend = 1 andW = Z,, for all x € R\{0} andz € C the representatiord) is of
the form (see4])

Py +1/2 o (™ yz
iy M K=y yre dy.

2.3. Dunkl transform  We denote by

—  2(RY) the space o%™>-functions onR? with compact support.
— Z(RY) the space at>-functions orR® which are rapidly decreasing together
with their derivatives.
LY (RY), p e [1, +o0], the space of measurable functiohen RY such that

KX,z =

1/p
Ifllp = (/ If(X)Ipwk(X)dX> < +oo, if 1<p<+oo,
Rd

| fllkoo = €SSSUPT (X)| < Fo00.

xeRd

The Dunkl transform of a functior € Z(R?) is given by

@ Vye RS Zo(f)(y) = / FOOK (X, —iy)ax(x) dx.
Rd

This transform has the following propertie3; p:
(i) For f e Li(RY), we have|.Zp(fllke = Il fllka.



[5] An LP version of Hardy’s theorem 375

(i) The transformZ;, is a topological isomorphism fror&’ (R?) onto itself. The
inverse transform is given by

(8) VxeRY Z5Hh)(X) =

c? ,
v /R K, iy)ax(y) dy.

(i) Let f beinLk(RY) such that the functior?, () belongs toL}(R%). Then
we have the following inversion formula for the Dunkl transform

Ce
- 22y+d

(9) f(x)

/ Zo(HWK X iy dy,  ae.
Rd

3. The Dunkl dual intertwining operator

Inthis section we consider the Dunkl intertwining operafand its dualV and we
give their properties. Next we study the extension of the opelstto the functions
of LL(RY).

Let C(RY) be the space of continuous functions Rh The Dunkl intertwining
operatorV is the operator fronC (RY) into itself given by

(10) V0 = [ Fedmm. xe®,
Rd
wherepu, is the measure given by the relatids).(In particular, we have
(11) (VxeRY, Vze ) K(x 2 =V(E"?)().
The operatotV defined onz(RY) by the relation
(12) [ vehmamdy = [ V@0t oamoodx
Rd Rd

wheref € Z(R%) andg € C(RY) is called theDunkl dual intertwining operato(see
[16]). This operator has the following integral representation

(13) Vi = [ 100dn00 (f e 7@,
Rd
where for ally € RY, v, is a positive measure dkf' whose support is contained in the

set{x € RY, |x|| > |lyl}. Moreover,!V is a topological isomorphism frorér(R%)
(respectively¥ (R%)) onto itself satisfying the transmutation relations

V f e Z®), ¥y e RY V(T F)(y) = aiy‘V(fw), j=1...d

J
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and the following property (seé f])
(14) Fo(f)y=ZFZ o'V (f), Ve FRY,

where.Z is the classical Fourier transform &¥ given by
(15) F(9)(&) =/ ge'*9dx, Vvge S (RY.
Rd

ExampLE 1. If d = 1 andW = Z,, the operator¥ and'V are given forg € C(R)
andf € Z(R) by (see {, 16])

Iy +1/2) .

_ 2 . -1
V(@) = /AT [x| = 7‘X|(|X| Y IXI+ ) a(y)dy, ¥V x e R\{0},
and
t Ty +1/2) -l
V(f)(y) = /AT ‘XE';IXI Y IXI+y) fx)dx, VyeR.

In the following result we extend the operatbdf to the functions il (R?).

THEOREM 3.1. Let (vy),cre, be the family of measures defined in form{il8) and
let f € LL(RY). Then for almost ally (with respect to Lebesgue measureRf), f
is vy-integrable, the function

y - vy<f>=/ £ ) dy (%),
Rd

which will also be denoted by (f) is defined almost everywhere @&f and is
Lebesgue integrable. Moreover for all bounded continuous functipos R¢, we
have the formula

(16) / V() (y)g(y) dy = / F OV (@) (X)ax () dx.
Rd Rd

ProOOF. We will divide the proof in five steps.

(i) Let us show that the family of measur@g),.z« iS vaguely continuous. More
precisely, we will show that for alf € C.(R?) (the space of € C(RY) with compact
support), the function

y— 'V(f)(y = / f ) dvy (X) = vy (f),
R
belongs taC.(RY).

Let f € C.(RY) and(p,)n-0 an approximate identity belonging fo(R%). There is
aclosed balB(0, r) of RY of center 0 and radiusbig enough such that it contains all
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the supports of the functionsandp, * f,n > 0 (wherex is the classical convolution
onRY) and a non negative functigne 2 (R%) such thatp(x) > 1forallx € B(O,r).
For ally € RY, we then have

V() ="V (P x DY) S/ OO0 = pnx FOO1dvy(X)

B(O,r)

< =P Fllall' V@) oo,

where| - ||, denotes the sup norm, and this implies immediately thdp, = f)
converges uniformly téV (f). This shows thatV(f) is continuous but it is also
clearly compactly supported. Thid(f) e C.(RY).

(i) Let g > 0 be a continuous and bounded functionRsh Let us show that the
family of measuresv,),gs is g(y) dy integrable (for the definition seé,[page 17]).
Let (pn)n-o be the approximate identity used in (i). For dlle C.(RY), by formula
(12), we have

/ vy(pn*f)g(y)dy=/ (pn * DOV (@) (X (X) dX.
Rd Rd

But the functiongp, * f, n > 0, have their supports in a fixed closed (D, r) and
as in step (i), there is a fixed nonnegatjves D(RY) such that for alh > 0 we have
[pn* Tl <@ and|'V(p, * f)] <'V(p) onRY. Then lettingn — +oo and using the
dominated convergence theorem we obtain immediately

(17) / b, (g dy = / F OOV (@) 00 () dIx.
R Rd

(iii) We considerg > 0 a continuous and bounded function &f. If f is an
integrable function oR? with respect to the measuv& g) (X)wy (X)d X, the points (i),
(i) and Bourbaki's integration of measures theorelm ppage 17] shows that the
functiony — v, (f) exists for almost aly € R? with respect to the measuggy)dy,
is integrable with respect to this measure and the relafi@hrémains valid for this
function f.

(iv) In the particular case wherg = 1 on RY, the point (iii) shows that iff
Li(RY), the functiony — vy(f) ="'V (f)(y) exists almost everywhere, is Lebesgue
integrable orR? and we have

(18) [ vihmdy= [ foeodx
Rd Rd
(v) We deduce easily from the points (iii) and (iv) that for dlle L}(R?) and

all boundedg € C(RY) formula (16) is true, which completes the proof of the
theorem. ]
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COROLLARY 3.2. Forall f € LL(RY), we have
(19) Fo(F)(y) = Zo'V(f)(y), yeR’

PROOF. We obtain the result by applying.§) to the functiong(x) = e'*¥ and
using the relationi1). O

4. An LP version of the Phragnmén-Lindelodf theorems

The proofs of some theorems in this paper depend on the two complex-variable
lemmas which will be presented in the following section.

LEMMA 4.1. Leth be an entire function oft® such that

d
(20) VzeC|h@|<C[[e®”, and VxeR? |hx) <C,
=1

for somea > 0 andC > 0. Thenh is constant or¢.

PrROOFR. We fix X5, ..., Xy € R. The entire functiorz; — h(z, Xo, ..., Xq) iS
O(e?Rew)’) in the quadranh = {zy = x; +iy1;% > 0,y; > 0} and is bounded

on the sides ofA, then by a slight modification of the method usedangage 445]
it is bounded omA. Applying the same method to the functidnG-z,, x,, ..., Xq),
h(Z, Xo, ..., Xq) andh(—2;, X,, . .., Xq) we deduce that(z, X,, . .., Xq) is bounded
on C, therefore by the Liouville theorem we have

h(zi, Xo, ..., Xg) = (0, Xo, ..., Xg), VZzeC
Now by analytic extension we deduce that
h(z,z,...,29) =h0,2,...,29), VYz,...,29€C,
and by inductionh is a constant function. O

LEMMA 4.2. Let p € [1, +oo[ andh an entire function orC?. We suppose
(i) thereexistg € {1,...,d} such that

(21) |h(Z)| =< M(ZL”-’ZJ'*l’ Zj+17~--’zd)ea(Rer)27 Vze Cd,

for somea > 0 and M a positive function or€?.
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(ii)

(22) Ihirallkp < +00,

Thenh = 0.

PrROOF. From @22) the Fubini’s theorem yields that there is a §etc R9~1, with

E° of Lebesgue measure zero such that for(gll ..., X;_1, Xj11, ..., Xq) € E we
have
/ [N(X1, -+ oy X1 X Xjts - oo Xa) | Pok(Xa, oo, X1, X, Xjst, - -+, Xg) X < 4-00.
R

Let us write forx € R,

h(x) =h(Xs, ..., Xj_1, X, Xj41, ..., X¢) and

6k(X) = a)k(Xl, DR Xj,l, X7 Xj+l7 ceey Xd)‘

Clearly ax(x) is of the formay(X) = [[,cr, 18 + a;X|*@ wherea, = [Tz aix
and there are three cases
(i) ax(x)isidentically zero ofR. This case occursifand onlydf = Oande; = 0

for somexa € R, and can be disregarded because pdir{s. . ., Xj_1, Xj41, - - -, Xd)
such that, = 0 for somex € R, are in a set of Lebesgue measure zerRin* and
then they can be supposed to belondefo

(i) @k(x) is a constantif for ale € R, o; = 0.

(i) @x(x) vanishes only on a finite number of points, preciselyXee —a, /«;,
a € R, ande; # 0. Inthis case the s¢by, < 1} = {X € R; @ (X) < 1} is compact.
Now we have

/|h<x>|pdx=/ |h<x>|pdx+/ Ih( [P dx
R (o<1} {x>1}

5/ |h(x)|”dx+/ Ih(x) [P (X) dX < +00.
{@<1)

{wk>1}

Indeed, the first integral in the right hand side of the above inequality is fiaitalse
x — |h(x)|Pis continuous on the compact §&f < 1} and the second integral is also
finite by the initial hypothesis. Therefore we have proved that

/|h(X1,... ,Xj,l, X7 Xj+l7"' ’Xd)|pdx < +Oos
R

for almost all(Xy, ... , Xj_1, Xj41, --- , Xa) € RI"L Clearly in case (ii) this is also
true.
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Now using 1) and applying the same method as2htp the function

z; — h(Xl, e X1, Z Xy, - e Xq)
we see that it is zero ofi for almost all(xy, ... , Xj_1, Xj 41, ... , Xa) € R The
continuity ofh and analytic extension imply thatis zero onC¢. O

5. An LP version of Hardy’s theorem

THEOREMS5.1. Let f be a measurable function d&® such that
(23) 1€ I p < oo and ([P ZL(F)llkq < +o0,

for some constanta > 0,b > 0,1 < p,q < 4+oo and at least one op andq is
finite. Then

— ifab> 1/4, we havef = 0 almost everywhere.
— ifab< 1/4,forall § € ]a, 1/4b[,

the functions of the forni (x) = P(x)e~*IXI”, whereP is an arbitrary polynomial on
RY, satisfy(23).

To prove this result we need the following three lemmas.

LEMMA 5.2. Leta > 0. Forall y € RY, we have
(24) V(e X% (y) = Ce @I’
whereC = 2#+9a9/2¢ 17 ~9/2 with ¢, the constant given bt).

PROOF. As the functionx — e2*I° belongs to (RY), the relation {4) shows
that'V (e 2I")(y) = Z-10.Zp (e @) (y).

But from [12, page 535], we have

(25) Fo(e ) (&) = a7 92 L lEI 4,

and we obtain the result of the lemma by applying the classical inverse Fourier
transform to relationZ5). O

LEMMA 5.3. Let p € [1,+oc] and f a measurable function oR? such that
e f |, , < +oo, for somea > 0. Then He""”x”Z‘V(f)Hp < 400, where|| - ||, is
the norm of the usual Lebesgue spacgR?).
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PROOF. From the hypothesis it follows that € LE(RY). Then by Theoren3.1,
the function'V (f) is defined almost everywhere ®{. Now we consider two cases.
@) If p €[1, +oo[, we have

p
H eaHtztV(f)Hz < / eapl\xl\2 (/ eaHY\\Zl f (y)|eay2dvx(y)> dx.
Rd Rd

Applying Hélder’s inequality in the middle integral we obtain

HeaHXHZtV(f)Hz < / eapl\xl\2 (/ eapl\)’l\zl f(y)|P de(y)>
Rd Rd

, p/p
X (/ e—arlyl dvx(y)> dx,
Rd

wherep’ is the conjugate exponent pf By Lemma5.2we deduce that the right hand
side of the precedent inedjig is equal to(C(p)¥2)P/? [, 'V (€] f])P)(x) dx,
whereC is the constant in formul&2d). Using the relationi8), we have

H eaHXHZtV(f)H ; < (C(p/)d/Z)l/p/ H eaHsz f Hk,p < 4o00.

(i) If p =400, we have

VDol = / e f (e P dv(y), < e H], V(e ) ),

Rd

and from Lemma.2, we obtaine®I*|'V (f)(x)| < C||e?"f |, < +oo, whereC
is the constant ofa4). This completes the proof. O

LEMMA 5.4. Let p € [1,+oc] and f a measurable function oR? such that
e f |, , < +oo for somea > 0. Then the function defined @ by

(26) Zo(H)(2) = / F 00K (X, —i2)w 00X,
[Rd

is well defined and entire 0. Moreover there exists a positive const@nsuch that
for all £, n € RY, we have

(27) | Zo(f)(E +in)| < Cenlia,

ProOOF. The first assertion follows from the hypothesis on the functfoand
Holder’s inequality usingX) and the derivation theorem under the integral sign. We
will now prove 7).
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As the functionf € L}(R?), we deduce from1(9) that for all&, n € RY, we have

%<f><s+in>=/

V() oe ! i dx.
Rd

Thus
. Zo(F)E+in)| < e|r7|2/4a/ eauxuz|tv(f)(X)|e—auxuzﬂx,n)—(nnu2/4a>dX’

Rd

2 2
< e|n|2/4a/ e[tV () (x)| gm0/ gy
Rd

and using klder’s inequality and Lemm?@a.3, we obtain

yp
|yD( f )(%— 4 i 7,])| < el\n\|2/4aH eaHXHZtV( f ) H . (/ efaM\Xf(’)/Za)"Z dX) ,
Rd
wherep' is the conjugate exponent pf Then @7) clearly follows. O

PrROOF OFTHEOREM 5.1 We will divide the proof in several steps.
Step 1.ab > 1/4.
Consider the functioh defined onC® by

d
(28) h(z) = (]_[ eZ?/“a) Zo(H)(2).
j=1

This function is entire oi€® and using 27) we obtain
(29) INE +in)| < Cel™,

for all ¢ € RY andn e RY. In the following we consider two cases.
() If g < 400, we have

Ihigsllk g = / eI/ 25 (1)(y)| ex(y) dy.
Rd
— / |ebHyH2yD(f)(y)|qeq<<1/4a>—b>uyu2wk(y) dy.
Rd
Using the fact thaab > 1/4 and the hypothesi28), we obtain

(30) Ihgellig < 1€Y1 Z5(F)lq < +oo.

From relations29) and @0), it follows from Lemma4.2thath(z) = 0 for all z € C°.
Thus.Z,(f)(y) = 0forally € RY. The injectivity of Z, then implies the result of
the theorem in this case.
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(ii) Assumeq = +oo. Asab > 1/4, then from £3) we obtain

(31) Ihjollcoo < 1€ 20 ()0 < +00.
From (29), (31) and Lemmat.1, it follows that there exists a positive const&@nsuch
that for ally € RY, h(y) = C. On the other hand, fron26) we have

(32) Zo(f)(y) =Ce WP/ vyeRd
But the assumption o ( f) is expressed as
(33) 1 Zo(D)(y)| < Me™™I" ae,

for some constari! > 0. The continuity ofZ,( f) on R shows that inequality33)
holds everywhere. Then we must ha@e® IV < M everywhere by 32)
and @3). This is impossible sincab > 1/4, unlessC = 0. Thus.Z,(f)(y) =0
everywhere and theh = 0 a.e. onRY.

Step 2.ab= 1/4.

() Ifl < p<+ooandl<q < +oo, with the same proof as for the point (i) of
the first step, we obtaifi = 0 a.e. onR¢.

(i) If1 < p < +oo0 andq = +oo, we deduce from Lemm@a 3, Corollary3.2and
(23) that the functioniV ( f) satisfies

[PV (H)| < 400 and [ Z(V ()] < +oo.

Then using §, page 66], we see tha¥ (f)(x) = 0 a.e. onRY. Thus.Z,(f)(y) =0
for all y e RY, which implies thatf = 0 a.e. and the proof is complete.

Step 3.ab < 1/4.

Let 2 be the algebra of polynomial functions ®&{. By considering the gen-
eralized Hermite polynomials oR? studied by Rsler in [L2] we deduce that the
Dunkl transform of a functionf (x) = P(x)e™**I’, whereP e 2, is of the form
Zo(F)(y) = Q(y)e Wi /% for someQ e . These functions clearly satisfy the
conditions 23). The proof of Theorerb.1is complete. O

6. An analogue of Hardy’s theorem

In this section we determine the functioffissatisfying @3) in the special case
p = q = +oo. The result we obtain, is an analogue for the Dunkl transform of the
classical Hardy’s theorem.
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THEOREMG6.1. Let f be a measurable function dkf such that
(34) 1f ()] < Me@™* and [ Zp(f)(y)| < Me PP,

almost everywhere fox, y € RY and for some constants> 0, b > 0andM > 0.
Then

(i) Ifab> 1/4, we havef =0a.e.
(i) If ab = 1/4, the functionf is of the formf (x) = Coe @I”, for some real
constaniC,.
(i) If ab < 1/4, there are infinitely many nonzero functiohsatisfying(34).

ProoOF. (i) If ab > 1/4, the point (ii) of the first step of the proof of Theoré&m.
gives also the result.
(i) From (34), Lemmab.2and Corollary3.2, the functiontV ( f) satisfies

V()| < CMe@* and [Z(V(H))(y)| < Me I,

for almost allx, y € RY, whereC is the constant in formula2g). Using Hardy’s
theorem for the classical Fourier transform (s€gpage 137]) we obtaidV (f)(x) =
C.e @I’ whereC, is a real constant. We deduce frofi9) that there exist€, € R
such that:.Z, (f)(y) = C,e W%, Thus by using25) we havef (x) = Coe2IXI°,
with Cy a real constant and the result of point (i) is proved.

(iii) If ab < 1/4, the functions defined in the third step of the proof of Theobeln
clearly satisfy also the condition84). This completes the proof of Theoreédr. [
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