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Abstract

Let K be a field of prime characteristicp and letG be a finite group with a Sylowp-subgroup of
order p. For any finite-dimensionalK G-moduleV and any positive integern, let Ln.V/ denote thenth
homogeneous component of the free LieK -algebra generated by (a basis of)V . Then Ln.V/ can be
considered as aK G-module, called thenth Lie power ofV . The main result of the paper is a formula
which describes the module structure ofLn.V/ up to isomorphism.

2000Mathematics subject classification: primary 17B01; secondary 20C20.

1. Introduction

Let G be a group andK a field. For any finite-dimensionalK G-moduleV , let L.V / be
the free Lie algebra overK freely generated by anyK -basis ofV . ThenL.V /may be
regarded as aK G-module on which each element ofG acts as a Lie algebra automor-
phism. Furthermore, each homogeneous componentLn.V/ is a finite-dimensional
submodule, called thenth Lie power ofV.

In this paper we consider the case whereK has prime characteristicp andG is a
finite group with a Sylowp-subgroup of orderp. We give a formula which describes
Ln.V/ up to isomorphism for every finite-dimensionalK G-moduleV . The formula
has a strong resemblance to Brandt’s character formula in characteristic zero [4], but
the proof is much deeper.

In [6] a similar (but slightly simpler) formula was obtained for the case whereG
is cyclic of orderp. The present paper builds on [6] and earlier papers by the author,
Kovács and St¨ohr: particularly [9]. The results cover the symmetric group of degreer
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with p ≤ r < 2p and the general linear group GL.2; p/. These cases were studied
in [8, 17, 10], but closed formulae could not be given there except in special cases.
We shall examine some of the connections between these papers and the present paper
in Section7 below.

For any groupG and any fieldK , we consider the Green ring (representation
ring) RK G. This is the ring formed from isomorphism classes of finite-dimensional
K G-modules, with addition and multiplication coming from direct sums and tensor
products, respectively. For any finite-dimensionalK G-moduleV we also writeV for
the corresponding element ofRK G. ThusVn corresponds to thenth tensor power of
V , andLn.V/ may also be regarded as an element ofRK G.

In [5] it is shown that there existZ-linear functions81
K G, 82

K G, : : : on RK G such
that, for every finite-dimensionalK G-moduleV and every positive integern,

Ln.V/ = 1

n

∑
d|n
8d

K G.V
n=d/:(1.1)

(The sum on the right-hand side is divisible byn in RK G.) The functions8n
K G are

called theLie resolventsfor G over K . As shown in [5],

8n
K G.V/ =

∑
d|n
¼.n=d/d Ld.Vn=d/;(1.2)

where¼ denotes the M¨obius function. Furthermore,

8n
K G = ¼.n/ n

S when char.K / - n;(1.3)

here n
S denotes thenth Adams operation onRK G formed by means of symmetric

powers (see Section2 below). In particular,81
K G is the identity function.

Let G be any group and letK be a field of prime characteristicp. DefineZ-
linear functions� n

K G : RK G → RK G as follows. Forn not divisible by p define
� n

K G = ¼.n/ n
S. In particular,� 1

K G is the identity function. Define� p
K G = 8

p
K G, that

is, � p
K G.V/ = pLp.V /− V p for every finite-dimensionalK G-moduleV . For k > 1,

with k even, define

�
pk

K G = −pk−2
(
 

pk

S + �
p

K G ◦  pk−1

S

)
:

(Note that functions are written on the left and◦ denotes composition of functions.)
For k > 1, with k odd, define

�
pk

K G = −pk−3
(
 

pk

S + �
p

K G ◦  pk−1

S + �
p2

K G ◦  pk−2

S

)
:

Finally, for n = pkm, wherep - m, define� n
K G = �

pk

K G ◦ �m
K G. Thus the functions� n

K G

are defined in terms ofpth Lie powers and Adams operations.
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THEOREM 1.1. Let K be a field of prime characteristicp and let G be a finite
group with a Sylowp-subgroup of order at mostp. Then, for every finite-dimensional
K G-moduleV ,

Ln.V/ = 1

n

∑
d|n
� d

K G.V
n=d/:

In other words, the Lie resolvents are given by8n
K G = � n

K G for all n. More can be
said in the cases whereG is a p′-group and where the Sylowp-subgroup is normal:
see the beginning of Section7 and the last part of Section6, respectively.

COROLLARY 1.2. Let K , p, G and V be as in the theorem. Letn be a positive
integer, and writen = pkm wherep - m. Then8n

K G = 8
pk

K G ◦8m
K G and

Ln.V/ = 1

pk

k∑
i =0

8
pi

K G.L
m.V pk−i

//:

The first statement comes from the fact that� n
K G = �

pk

K G ◦ �m
K G, by definition of� n

K G.
The second statement then follows by (1.1): we write each divisord of n asd = pi q,
where 0≤ i ≤ k andq | m, and use the facts that8d

K G = 8
pi

K G ◦8q
K G and each8pi

K G

is linear. Hence the structure of arbitrary Lie powers is determined by the functions
8

pk

K G andmth Lie powers for integersm not divisible byp. It would be interesting to
know if the corollary is true for all groups.

If we wish to use Theorem1.1 for a particular groupG we need to be able to
calculate the functions� n

K G. Thus we need to be able to find� p
K G (or, equivalently,pth

Lie powers) and the Adams operations n
S. In Sections6 and7 we discuss how this

might be done provided that enough information is available about the groupG. The
calculation of the n

S is simplified a little by the fact that these functions are periodic in
n, as shown in Section7. It is clear, however, that there will be significant difficulties
in practice except in small special cases such as where the Sylowp-subgroup ofG is
normal and self-centralizing.

2. Preliminaries

Throughout this sectionK is any field. We start by considering an arbitrary groupG,
but in the second half of the sectionG will be finite.

We have already mentioned the Green ringRK G. This is a freeZ-module with a
basis consisting of the (isomorphism classes of) finite-dimensional indecomposable
K G-modules. We write0K G for the Green algebra, defined by0K G = C ⊗Z RK G.
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Thus0K G is a commutativeC-algebra. The identity element of0K G, denoted of
course by 1, is the isomorphism class of the trivial one-dimensionalK G-module.

For any extension field̂K of K there is a ring homomorphism� : RK G → RK̂ G

determined byV 7→ K̂ ⊗K V for every finite-dimensionalK G-moduleV . It follows
from the Noether-Deuring Theorem (see [11, (29.7)]) that� is an embedding.

If � : A → B is a homomorphism of groups, then everyK B-moduleV can be made
into aK A-module by taking the action of each elementg of A on V to be the same as
the action of�.g/. Thus� determines a ring homomorphism�∗ : RK B → RK A. If � is
surjective then�∗ is an embedding. IfA is a subgroup ofB and� is the inclusion map
then�∗ is called restriction fromB to A and, forV ∈ RK B, we sometimes writeV↓A

instead of�∗.V/.
If V is a finite-dimensionalK G-module then, for every positive integern, Ln.V/

denotes thenth Lie power ofV , as already defined. Similarly,
∧n.V/ denotes thenth

exterior power ofV , andSn.V/ thenth symmetric power ofV. All of these are finite-
dimensionalK G-modules and may be regarded as elements ofRK G. The exterior and
symmetric powers may be encoded by their Hilbert series

∧
.V; t/ andS.V; t/. These

are the power series in an indeterminatet with coefficients inRK G defined by

∧
.V; t/ = 1 + ∧1.V/t + ∧2.V/t2 + · · · ;

S.V; t/ = 1 + S1.V/t + S2.V/t2 + · · · :

We shall need to use the two types of Adams operations onRK G defined by means
of exterior powers and symmetric powers. Following [5] and [6] we denote these by
 n

∧ and n
S, respectively. We summarise the basic facts and refer to [5] for further

details. In the ring of all symmetric functions in variablesx1; x2; : : : , thenth power
sum may be written as a polynomial in the elementary symmetric functions and as a
polynomial in the complete symmetric functions:

xn
1 + xn

2 + · · · = ²n.e1; : : : ;en/ = ¦n.h1; : : : ;hn/:(2.1)

For each positive integern,  n
∧ and n

S areZ-linear functions onRK G such that, for
every finite-dimensionalK G-moduleV,

 n
∧.V/ = ²n.

∧1.V/; : : : ;
∧n.V//;  n

S.V/ = ¦n.S
1.V/; : : : ; Sn.V//;(2.2)

 1
∧.V/−  2

∧.V/t +  3
∧.V /t

2 − · · · = d

dt
log

∧
.V; t/;(2.3)

 1
S.V /+  2

S.V/t +  3
S.V/t

2 + · · · = d

dt
log S.V; t/:(2.4)

Also, n
∧ =  n

S when char.K / - n. Furthermore, the following result was established
in [5, Theorem 5.4].
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LEMMA 2.1. Letq andn be positive integers such thatq is not divisible bychar.K /.
Then q

∧ ◦  n
∧ =  

qn
∧ and q

S ◦  n
S =  

qn
S .

In Section1 we described the basic properties of the Lie resolvents8n
K G. Like

the Adams operations, these areZ-linear functions onRK G. Also, in Section1, we
definedZ-linear functions� n

K G on RK G in the case whereK has prime characteristic
p. We shall establish some elementary properties of these various functions onRK G.
Whenever we discuss� n

K G we assume implicitly thatK has prime characteristicp.

LEMMA 2.2. Let � : A → B be a homomorphism of groups, yielding the ring
homomorphism�∗ : RK B → RK A. Then, for every positive integern and every
finite-dimensionalK B-moduleV ,

Ln.�∗.V// = �∗.Ln.V //;
∧n.�∗.V// = �∗.

∧n.V//; Sn.�∗.V// = �∗.Sn.V//:

PROOF. This is straightforward.

LEMMA 2.3. Let � : A → B be a homomorphism of groups, yielding the ring
homomorphism�∗ : RK B → RK A. Then, for every positive integern,

 n
∧ ◦ �∗ = �∗ ◦  n

∧;  n
S ◦ �∗ = �∗ ◦  n

S;

8n
K A ◦ �∗ = �∗ ◦8n

K B; � n
K A ◦ �∗ = �∗ ◦ � n

K B:

PROOF. The results for n
∧,  n

S and8n
K G follow from (2.2), (1.2) and Lemma2.2.

The result for� n
K G follows from its definition.

LEMMA 2.4. Let � : RK G → RK̂ G be the ring embedding associated with an ex-
tension fieldK̂ of K . Then, for every positive integern and every finite-dimensional
K G-moduleV ,

Ln.�.V // = �.Ln.V //;
∧n.�.V // = �.

∧n.V//; Sn.�.V // = �.Sn.V //;

 n
∧ ◦ � = � ◦  n

∧;  n
S ◦ � = � ◦  n

S; 8n
K̂ G ◦ � = � ◦8n

K G; � n
K̂ G ◦ � = � ◦ � n

K G:

PROOF. This is similar to the proof of Lemmas2.2and2.3.

LEMMA 2.5. Let V be a finite-dimensionalK G-module, andI a one-dimensional
K G-module. Then, for every positive integern,

Ln.I V / = I n Ln.V/;
∧n.I V / = I n∧n.V/; Sn.I V / = I n Sn.V/;

 n
∧.I V / = I n n

∧.V/;  n
S.I V / = I n n

S.V/; 8n
K G.I V / = I n8n

K G.V/;

� n
K G.I V / = I n� n

K G.V/;  n
∧.I / =  n

S.I / = I n; 8n
K G.I / = � n

K G.I / = ¼.n/I n:
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PROOF. This is mostly straightforward. For the statement about8n
K G.I /, note that

Ld.I n=d/ = 0 for divisorsd of n such thatd > 1. The statement about� n
K G.I / comes

easily from its definition, using the results for n
S.I / and8p

K G.I /.

From now on in this section, assume thatG is finite, and writep = char.K /. (We
are particularly interested in the case wherep 6= 0.) Let K̂ be the algebraic closure
of K and letGp′ be the set of all elements ofG of order not divisible byp. Let1
be theC-algebra consisting of all class functions fromGp′ to C, that is, functionsŽ
such thatŽ.g/ = Ž.g′/ wheneverg andg′ are elements ofGp′ which are conjugate
in G. Let c be the least common multiple of the orders of the elements ofGp′ ,
and choose and fix primitivecth roots of unity¾ in K̂ and! in C. Then, for every
finite-dimensionalK G-moduleV we may define the Brauer character ofV to be the
element Br.V/ of 1 such that ifg ∈ Gp′ has eigenvalues¾ k1; : : : ; ¾ kr in its action
on V then Br.V/.g/ = !k1 + · · · + !kr . (See [3, Section 5.3].) Furthermore, we
may extend the definition linearly so that Br.V/ is defined for an arbitrary elementV
of 0K G. Then Br: 0K G → 1 is aC-algebra homomorphism.

For each positive integern, define a function n
0 : 1 → 1 by  n

0 .Ž/.g/ = Ž.gn/

for all Ž ∈ 1 andg ∈ Gp′ . Clearly n
0 is an algebra endomorphism of1 and

 m
0 ◦  n

0 =  mn
0 ;(2.5)

for all positive integersm andn.

LEMMA 2.6. Let V be a finite-dimensionalK G-module. Then, for alln,

Br. n
∧.V // =  n

0 .Br.V// = Br. n
S.V //:

PROOF. This is well known: however, for the reader’s convenience we sketch a
proof. If g ∈ Gp′ has eigenvalues¾ k1; : : : ; ¾ kr on V , then, fori = 1; : : : ;n,

Br.
∧i .V//.g/ = ei .!

k1; : : : ; !kr /; Br.Si .V//.g/ = hi .!
k1; : : : ; !kr /:

Thus, by (2.2) and (2.1),

Br. n
∧.V //.g/ = ²n

(
e1.!

k1; : : : ; !kr /; : : : ;en.!
k1; : : : ; !kr /

)
= !k1n + · · · + !kr n = Br.V/.gn/ =  n

0 .Br.V//.g/:

This gives the result for n
∧. The result for n

S is similar.

The following result is Brandt’s character formula [4], as generalised to Brauer
characters (see, for example, [7, (5.4)] or [17, (2.11)]).
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LEMMA 2.7. Let V be a finite-dimensionalK G-module. Then, for alln,

Br.Ln.V // = 1

n

∑
d|n
¼.d/ d

0 .Br.Vn=d//:

We can now calculate the Brauer characters associated with8n
K G and� n

K G.

LEMMA 2.8. Let V be a finite-dimensionalK G-module. Then, for alln,

Br.8n
K G.V// = ¼.n/ n

0 .Br.V // = Br.�n
K G.V //:

PROOF. By (1.1), Br.Ln.V// = 1
n

∑
d|n Br.8d

K G.V
n=d//. Hence, by Lemma2.7and

induction onn, we have Br.8n
K G.V // = ¼.n/ n

0 .Br.V//. It remains to prove that
Br.� n

K G.V // = ¼.n/ n
0 .Br.V// for all n.

If p - n then� n
K G.V/ = ¼.n/ n

S.V/ and the result follows by Lemma2.6. Also,
�

p
K G = 8

p
K G, so the result for� p

K G follows from the first part. This implies that
Br.� p

K G.U // = − p
0 .Br.U // for all U ∈ RK G.

Suppose thatk > 1 andk is even. Then, by the definition of� pk

K G,

Br.� pk

K G.V// = −pk−2 Br. pk

S .V// − pk−2 Br.� p
K G. 

pk−1

S .V///:

Hence, by Lemma2.6and the result for� p
K G,

Br.� pk

K G.V // = −pk−2 
pk

0 .Br.V //+ pk−2 
p
0 . 

pk−1

0 .Br.V///:

Therefore, by (2.5), Br.� pk

K G.V// = 0 = ¼.pk/ 
pk

0 .Br.V //. Thus the result holds for
�

pk

K G. The result for� pk

K G whenk > 1 andk is odd is proved in a similar way using the
results for� p

K G and� p2

K G.
Now suppose thatn = pkm, wherep - m. Then, by the definition of� n

K G,

Br.� n
K G.V// = Br.� pk

K G.�
m
K G.V/// = ¼.pk/ 

pk

0 .Br.�m
K G.V///

= ¼.pk/ 
pk

0 .¼.m/ 
m
0 .Br.V /// = ¼.n/ n

0 .Br.V//:

This is the required result.

Recall thatRK G has aZ-basis consisting of the finite-dimensional indecomposable
K G-modules. Let.RK G/proj and.RK G/nonpbe theZ-submodules spanned, respectively,
by the projective and the non-projective indecomposables. Then, forV ∈ RK G, we
can writeV = Vproj + Vnonp, uniquely, whereVproj ∈ .RK G/proj andVnonp ∈ .RK G/nonp.

LEMMA 2.9. Let U;V ∈ RK G. If Unonp = Vnonp andBr.U / = Br.V/ thenU = V .
In particular, if G is a p′-group andBr.U / = Br.V / thenU = V .

PROOF. The hypotheses yield Br.Uproj/ = Br.Vproj/. However, if W and W′ are
finite-dimensional projectiveK G-modules such that Br.W/ = Br.W′/ thenW ∼= W′

(see [3, Corollary 5.3.6]). ThusUproj = Vproj, and soU = V .
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3. Exterior and symmetric powers

Throughout this section, letK be a field of prime characteristicp and letG be a
finite group with a normal Sylowp-subgroup of orderp. As we shall see, there are
certain basic indecomposableK G-modulesJ1; J2; : : : ; Jp. The main purpose of this
section is to give formulae for the power series

∧
.Jr ; t/ andS.Jr ; t/. The formula for∧

.Jr ; t/ is due to Kouwenhoven [15] and was also proved by Hughes and Kemper [14].
The formula forS.Jr ; t/ is a corollary of a result in [14].

Kouwenhoven’s results are primarily concerned with GL.2; p/ and go beyond what
is required here. In order to keep the treatment as simple as possible we have therefore
chosen to follow [14]. However, we use slightly different notation and we consider
right K G-modules instead of leftK G-modules. IfV is a left K G-module thenV
becomes a rightK G-module by definingvg = g−1v for all v ∈ V, g ∈ G. This
gives a one-one correspondence between left and rightK G-modules. We shall use
this correspondence in order to interpret the results of [14] as results about rightK G-
modules, noting that the correspondence commutes with taking direct sums, tensor
products, exterior powers and symmetric powers.

Let P be the (normal) Sylowp-subgroup ofG. Thus P has a complement
in G, and G is a semidirect product,G = H P, where H is a p′-group. Let
P = {1;a; : : : ;ap−1}. There is a right action ofP on the group algebraK P given
by multiplication and a right action ofH given byai 7→ h−1ai h for all h ∈ H and
i = 0; : : : ; p − 1. In this wayK P becomes a rightK G-module. Forr = 1; : : : ; p,
the r th power of the augmentation ideal isK P.a − 1/r , and this is invariant under
the action ofG. Thus, forr = 1; : : : ; p, we obtain a rightK G-moduleJr defined by
Jr = K P=K P.a − 1/r . It is easily verified thatJr has dimensionr and corresponds
to the left moduleVr of [14]. (Also, the isomorphism class ofJr does not depend on
the choice of complementH .) Furthermore,J1 = 1 in the Green ringRK G.

For eachh ∈ H , let m.h/ be the element of{1; : : : ; p − 1} determined by
h−1ah = am.h/, and letm.h/ also denote the corresponding element of the prime sub-
field of K . There is then a homomorphismÞ : H → K r {0} given byÞ.h/ = m.h/
for all h. This yields a one-dimensional rightK H -module, which we also denote
by Þ. Furthermore, we regardÞ as a rightK G-module, by means of the projection
G → H . It is easily verified that this module corresponds to the leftK G-module
denoted byVÞ or Þ in [14]. In RK G, as in RK H , we haveÞ p−1 = 1. Indeed,Þ has
multiplicative orderq whereq = |H=CH.P/|.

As shown by the pullback construction described in [14], there exists a finitep′-
group H̃ and an extension field̂K of K with homomorphisms� : H̃ → H and
þ : H̃ → K̂ r {0} such that� is surjective andþ.h/2 = Þ.�.h// for all h ∈ H̃ . Let G̃
be the semidirect product̃H P with P normal such that, for allh ∈ H̃ , the action of
h on P by conjugation is given by the action of�.h/. Thus� extends to a surjective
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homomorphism� : G̃ → G which is the identity onP.
We regard the ringRK G as a subring ofRK̂ G by means of the embedding� : RK G →

RK̂ G described at the beginning of Section2. Also, we regardRK̂ G as a subring ofRK̂ G̃

by means of the embedding�∗ obtained from� : G̃ → G, as described in Section2.
ThusRK G is a subring ofRK̂ G̃. It is easily verified that the images under�∗ ◦ � of the
K G-modulesJr andÞ are isomorphic to thêK G̃-modules defined in the same way for
G̃ over K̂ . Thus there is no conflict of notation. By Lemmas2.2and2.4, the exterior
and symmetric powers ofJr in RK G are the same as the exterior and symmetric powers
of Jr in RK̂ G̃. Thus we may useRK̂ G̃ in order to find expressions for

∧
.Jr ; t/ and

S.Jr ; t/.
We regardRK̂ H̃ as a subring ofRK̂ G̃ by means of the embedding given by the

projectionG̃ → H̃ . ClearlyÞ ∈ RK̂ H̃ . The homomorphismþ : H̃ → K̂ r {0} yields
an element ofRK̂ H̃ which we also denote byþ. From the properties ofþ we see that
þ2 = Þ. Henceþ2p−2 = 1 andþ−1 exists. Note that ifp = 2 we haveÞ = 1 and
char.K̂ / = 2 : thus the definition ofþ givesþ = 1 in this case.

As in [14], but using½ instead of¼ to avoid the notation for the M¨obius function,
we extendRK̂ G̃ by an element½ satisfying½2−þ−1 J2½+1 = 0 to form a commutative
ring RK̂ G̃[½]. Note that this is a freeRK̂ G̃-module: RK̂ G̃[½] = RK̂ G̃ ⊕ RK̂G̃½. Also,½ is
invertible in RK̂ G̃[½]. We shall find expressions for

∧
.Jr ; t/ andS.Jr ; t/ as elements

of the power series ringRK̂ G̃[½][[t]].
By [14, Lemma 1.3],

Jr = þr −1
r −1∑
j =0

½r −1−2 j ;(3.1)

for r = 1; : : : ; p. Also, by [14, Theorem 1.4],RK̂ G̃[½] is generated byRK̂ H̃ and½,
that is, RK̂ G̃[½] = RK̂ H̃ [½]. Tensoring withC we obtain0K̂ G̃[½] = 0K̂ H̃ [½], where
0K̂ G̃ = C⊗ RK̂ G̃ and0K̂ H̃ = C⊗ RK̂ H̃ .

By [12, (81.90)], the algebra0K̂ G̃ is semisimple. Thus it is isomorphic to the direct
sum ofm copies ofC, wherem is the number of indecomposablêK G̃-modules. Thus
there are exactlym non-zero algebra homomorphisms0K̂ G̃ → C. The restrictions to
RK̂ G̃ of these homomorphisms are called the ‘species’ ofRK̂G̃. Note that ifU;V ∈ RK̂ G̃

and�.U / = �.V/ for every species� thenU = V .
Let M ∗

2p denote the subset ofC consisting of all 2pth roots of unity except for 1
and−1. Thus 2p−2 +  2p−4 + · · · +  2 + 1 = 0 for all  ∈ M ∗

2p. By the proof of
[14, Theorem 1.6], for each ∈ {þ; þ−1} ∪ M ∗

2p there is aC-algebra homomorphism
� : 0K̂ G̃[½] → 0K̂ H̃ given by � .�/ = � for all � ∈ 0K̂ H̃ and � .½/ =  .
Also, for eachh ∈ H̃ there is aC-algebra homomorphism"h : 0K̂ H̃ → C such
that, for all� ∈ 0K̂ H̃ , "h.�/ is the value ath of the Brauer character of� , that is,
"h.�/ = Br.�/.h/. For  ∈ {þ; þ−1} ∪ M ∗

2p andh ∈ H̃ , let �h; = "h ◦ � . Thus
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�h; is aC-algebra homomorphism�h; : 0K̂ G̃[½] → C. The following result is [14,
Theorem 1.6], apart from minor notational differences.

LEMMA 3.1. For each ∈ {þ; þ−1} ∪ M ∗
2p and eachh ∈ H̃ , the restriction of�h;

to RK̂ G̃ is a species ofRK̂ G̃. The homomorphisms�h; and�h′; ′ restrict to the same
species if and only ifh andh′ are conjugate inH̃ and ′ ∈ {;  −1}. Every species of
RK̂ G̃ arises as the restriction of some�h; .

In particular,�h;þ gives the same species as�h;þ−1. Since elements ofRK̂ G̃ are
determined by their images under the species, we obtain the following result.

COROLLARY 3.2. Let U;V ∈ RK̂ G̃. If �h; .U / = �h; .V/ for all  ∈ {þ} ∪ M∗
2p

and all h ∈ H̃ , or if � .U / = � .V / for all  ∈ {þ} ∪ M∗
2p, thenU = V .

The description of
∧
.Jr ; t/ is as follows.

THEOREM 3.3 ([15, Lemma, page 1709]; [14, Theorem 1.10]).For r = 1; : : : ; p,

∧
.Jr ; t/ =

r −1∏
j =0

.1 + þr −1½r −1−2 j t/:

We write W = Jp − ÞJp−1 andÞ̄ = 1 + Þ + · · · + Þ p−2, recalling thatÞ p−1 = 1.
By direct calculation from (3.1) we get the following result.

LEMMA 3.4. For the homomorphisms�þ and� , where ∈ M ∗
2p, we have

�þ.Jp/ = 1 + Þ̄; �þ.Jp−1/ = Þ̄; �þ.W/ = 1;

� .Jp/ = 0; � .Jp−1/ = − pþ p−2; � .W/ =  pþ p:

For r = 1; : : : ; p, write

Xr = .1 − Wr −1t p/.1 − t p/−1.1 − ∧1.Jr /t + ∧2.Jr /t
2 − · · · /−1:

Thus, by Theorem3.3,

Xr = .1 − Wr −1t p/.1 − t p/−1
r −1∏
j =0

.1 − þr −1½r −1−2 j t/−1:

Let the homomorphisms�þ and� act on0K̂ G̃[½][[t]] by action on coefficients. Then
it is easily verified that�þ.Xr / = ∏r −1

j =0.1 − Þ j t/−1 and, for ∈ M ∗
2p,

� .Xr / = .1 − þ p.r −1/ p.r −1/t p/.1 − t p/−1
r −1∏
j =0

.1 − þr −1 r −1−2 j t/−1:
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ReplacingÞ by Br.Þ/.h/ andþ by Br.þ/.h/, for h ∈ H̃ , we obtain expressions for
�h;þ .Xr / and�h; .Xr /. Comparison with [14, Proposition 1.13] shows that�h;þ .Xr / =
�h;þ .S.Jr ; t// and�h; .Xr / = �h; .S.Jr ; t//. Therefore, by Corollary3.2, Xr =
S.Jr ; t/. Thus we have the following result.

THEOREM 3.5 (based on [14, Proposition 1.13]).For r = 1; : : : ; p,

S.Jr ; t/ = .1 − .Jp − ÞJp−1/
r −1t p/.1 − t p/−1∧.Jr ;−t/−1

= .1 − .Jp − ÞJp−1/
r −1t p/.1 − t p/−1

r −1∏
j =0

.1 − þr −1½r −1−2 j t/−1:

4. Adams operations

We continue to use all the notation of Section3. In particular,G is a finite group
with a normal Sylowp-subgroup of orderp. We shall find expressions for the
elements n

∧.Jr / and n
S.Jr / of RK G. By Lemmas2.3and2.4, it suffices to find such

expressions withinRK̂ G̃. Recall thatÞ p−1 = 1 andþ2 = Þ, so thatþ2p−2 = 1. For
r ∈ {1; : : : ; p}, we writeÞr = 1 + Þ + · · · + Þr −1. Of particular importance isÞp−1,
which we also denote bȳÞ, as in Lemma3.4above. For each non-negative integeri ,
we haveÞi Þ̄ = Þ̄. ThusÞr Þ̄ = r Þ̄. The identity element ofRK̂ G̃[½] is denoted by 1
or J1, as convenient. As in Section3, let W = Jp − ÞJp−1.

LEMMA 4.1. For every non-negative integern,

Wn =
{

−þn+1Jp−1 + Jp if n is odd;

þn J1 + .1 − þn/Jp if n is even.

PROOF. We use the homomorphisms�þ and� , for  ∈ M ∗
2p, as defined in Sec-

tion 3. Note that these homomorphisms fixÞ andþ. Suppose thatn is odd. Then, by
Lemma3.4, we find�þ.Wn/ = 1 = �þ.−þn+1Jp−1 + Jp/ and

� .W
n/ =  pþn+p−1 = � .−þn+1 Jp−1 + Jp/:

Thus, by Corollary3.2, Wn = −þn+1 Jp−1 + Jp. The proof for evenn is similar.

By Theorem3.3and (2.3),

 1
∧.Jr /−  2

∧.Jr /t +  3
∧.Jr /t

2 − · · · =
r −1∑
j =0

þr −1½r −1−2 j .1 + þr −1½r −1−2 j t/−1:
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Hence, as stated in [15, page 1720],

 n
∧.Jr / = þ.r −1/n

r −1∑
j =0

½.r −1−2 j /n for all r andn.(4.1)

THEOREM 4.2. Let k be a positive integer and letr ∈ {1; : : : ; p}. If r is odd,

 pk

∧ .Jr / = rþr −1.J1 − Jp/+ Þr Jp:

If p = 2,

 2k

∧ .J2/ =
{

2.J2 − J1/ if k = 1;

2J1 if k ≥ 2.

If p is odd andr is even,

 pk

∧ .Jr / =
{

−rþr Jp−1 + Þr Jp if k is odd;

−rþr +p−1Jp−1 + Þr Jp if k is even.

PROOF. We assume thatp is odd, noting that the proof forp = 2 is similar but
much easier. Suppose first thatr is odd. By (4.1),

�þ. 
pk

∧ .Jr // = þ.r −1/pk
r −1∑
j =0

þ.r −1−2 j /pk =
r −1∑
j =0

Þ.r −1− j /pk =
r −1∑
j =0

Þr −1− j = Þr :

Also, by Lemma3.4,

�þ.rþ
r −1.J1 − Jp/+ Þr Jp/ = −rþr −1Þ̄ + Þr .1 + Þ̄/ = −r Þ̄ + Þr + r Þ̄ = Þr :

For  ∈ M∗
2p, (4.1) gives

� . 
pk

∧ .Jr // = þ.r −1/pk

r −1∑
j =0

 .r −1−2 j /pk = rþ.r −1/pk = rþr −1:

Also, by Lemma3.4, � .rþr −1.J1 − Jp/+ Þr Jp/ = rþr −1. Thus, forr odd, the result
follows by Corollary3.2.

Now suppose thatr is even. Note thatr + p − pk ≡ r .mod 2p − 2/ if k is odd,
andr + p − pk ≡ r + p − 1 .mod 2p − 2/ if k is even. Thus it suffices to show that

 pk

∧ .Jr / = −rþr +p−pk

Jp−1 + Þr Jp:

By (4.1), �þ. 
pk

∧ .Jr // = Þr , just as forr odd. Also, by Lemma3.4,

�þ.−rþr +p−pk

Jp−1 + Þr Jp/ = −r Þ̄ + Þr .1 + Þ̄/ = −r Þ̄ + Þr + r Þ̄ = Þr :
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For  ∈ M ∗
2p, (4.1) gives

� . 
pk

∧ .Jr // = þ.r −1/pk
r −1∑
j =0

 .r −1−2 j /pk = rþ.r −1/pk

 pk = rþr −pk

 p:

Also, by Lemma3.4,

� .−rþr +p−pk

Jp−1 + Þr Jp/ = rþr +p−pk

 pþ p−2 = rþr −pk

 p:

Thus the result again follows by Corollary3.2.

LEMMA 4.3. Letn be a positive integer andr ∈ {1; : : : ; p}. Then

 n
S.Jr /−  n

∧.Jr / =
{

0 if n 6≡ 0 .mod p/;

p.J1 − W.r −1/n=p/ if n ≡ 0 .mod p/.

PROOF. By (2.4) and Theorem3.5,

 1
S.Jr /+  2

S.Jr /t + · · ·
= d

dt
log.1 − Wr −1t p/− d

dt
log.1 − t p/− d

dt
log

∧
.Jr ;−t/:

Hence, by (2.3) and multiplication byt ,

. 1
S.Jr /−  1

∧.Jr //t + . 2
S.Jr /−  2

∧.Jr //t
2 + · · ·

= −pWr −1t p.1 − Wr −1t p/−1 + ptp.1 − t p/−1:

The result follows by comparing coefficients.

THEOREM 4.4. Let k be a positive integer and letr ∈ {1; : : : ; p}. If r is odd,

 
pk

S .Jr / = .p − .p − r /þr −1/.J1 − Jp/+ Þr Jp:

If r is even,

 
pk

S .Jr / =
{

p.J1 − Jp/ + .p − r /þr Jp−1 + Þr Jp if k is odd;

p.J1 − Jp/ + .p − r /þr +p−1Jp−1 + Þr Jp if k is even.

PROOF. This holds for bothp odd andp = 2. It follows by straightforward
calculations from Lemma4.3, Theorem4.2and Lemma4.1.

LEMMA 4.5. For all k, i andr ,  pk

S .Þ
i Jr / = Þi 

pk

S .Jr /.

PROOF. This follows from Lemma2.5, sinceÞipk = Þi .
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The following lemma is proved by direct calculation from Theorem4.4 and
Lemma4.5, using the linearity of p

S and p2

S .

LEMMA 4.6. Let r ∈ {1; : : : ; p}. If r is odd,

. 
p
S ◦  p

S/.Jr / = . 
p2

S ◦  p2

S /.Jr / = . 
p2

S ◦  p
S/.Jr / = . 

p
S ◦  p2

S /.Jr /

= .p − p2 + .p − 1/.p − r /þr −1 + pÞr /.J1 − Jp/+ Þr Jp:

If r is even,

. 
p
S ◦  p

S/.Jr / = p.1 − p + .p − r /þr + Þr /.J1 − Jp/

+ .p − r /þr +p−1Jp−1 + Þr Jp;

. 
p2

S ◦  p2

S /.Jr / = p.1 − p + .p − r /þr +p−1 + Þr /.J1 − Jp/

+ .p − r /þr +p−1Jp−1 + Þr Jp;

. 
p2

S ◦  p
S/.Jr / = p.1 − p + .p − r /þr + Þr /.J1 − Jp/

+ .p − r /þr Jp−1 + Þr Jp;

. 
p
S ◦  p2

S /.Jr / = p.1 − p + .p − r /þr +p−1 + Þr /.J1 − Jp/

+ .p − r /þr Jp−1 + Þr Jp:

The remaining lemma of this section follows easily from Theorem4.4 and Lem-
ma4.6. It is required for the calculations in Section5.

LEMMA 4.7. Let r ∈ {1; : : : ; p}. If r is odd,

.− p
S +  

p2

S ◦ p
S + p p2

S /.Jr / = .− p2

S +  
p
S ◦  p

S + p p
S/.Jr / = pÞr J1;

.− p2

S +  
p2

S ◦ p2

S + p p
S /.Jr / = .− p

S +  
p
S ◦  p2

S + p p2

S /.Jr / = pÞr J1:

If r is even,

.− p
S +  

p2

S ◦  p
S + p p2

S /.Jr / = p.p − r /þr .J1 + þ p−1Jp−1 − Jp/+ pÞr J1;

.− p2

S +  
p
S ◦  p

S + p p
S /.Jr / = p.p − r /þr .J1 + Jp−1 − Jp/+ pÞr J1;

.− p2

S +  
p2

S ◦  p2

S + p p
S /.Jr / = p.p − r /þr +p−1.J1 + þ p−1Jp−1 − Jp/ + pÞr J1;

.− p
S +  

p
S ◦  p2

S + p p2

S /.Jr / = p.p − r /þr +p−1.J1 + Jp−1 − Jp/+ pÞr J1:

5. The key special case

Let K be a field of prime characteristicp, and letQ be a group of orderp.p − 1/
generated by elementsa andb with relationsap = 1, b p−1 = 1 andb−1ab = al ,
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wherel is a positive integer such that the image ofl in K has multiplicative order
p − 1. In other words,Q is isomorphic to the holomorph of a group of orderp. In
this section we shall prove Theorem1.1for Q by proving the following result.

THEOREM 5.1. Let K be a field of prime characteristicp and letQ be isomorphic
to the holomorph of a group of orderp. Then8n

K Q = � n
K Q for all n.

TheK Q-modulesJ1; : : : ; Jp andÞ are defined as in Section3. When convenient we
also useþ such thatþ2 = Þ, as in Section3. There are, up to isomorphism, precisely
p.p − 1/ indecomposableK Q-modules. In [6, Section 4] these were denoted byJi;r ,
for i = 0; : : : ; p − 2 andr = 1; : : : ; p, and further details can be found there. It is
easily checked that, in the notation of the present paper,Ji;r = Þi Jr .

By [6, Theorem 4.4] withi = 0, combined with [6, Lemma 4.1], we have

∑
d|n
.8d

K Q ◦  n=d
S /.Jr / =


Jr for n = 1;

−p.Jp − ÞJp−1 − J1/ for n = p;

0 for n 6= 1; p,

(5.1)

for r = 2; : : : ; p. Also, by Lemma2.5,

8n
K Q.J1/ = ¼.n/J1; for all n, and(5.2)

8n
K Q.Þ

i Jr / = Þni8n
K Q.Jr /; for all n, i and r :(5.3)

Equations (5.2)–(5.3) yield8n
K Q.Þ

i J1/ for all n and alli . Forr ≥ 2, (5.1) and (5.3)
yield 8n

K Q.Þ
i Jr / in terms of Adams operations and values of the functions8d

K Q for
proper divisorsd of n. Thus81

K Q, 82
K Q, : : : are the unique linear functions onRK Q

satisfying (5.1)–(5.3).

LEMMA 5.2. If n = pkm wherep - m, then8n
K Q = 8

pk

K Q ◦ ¼.m/ m
S .

PROOF. By [6, Theorem 4.4, Lemma 4.6 and Lemma 5.1 (ii)], we have8n
K Q =

8
pk

K Q ◦8m
K Q. The result follows by (1.3).

By (5.1) with n = p,  p
S.Jr / + 8

p
K Q.Jr / = −p.Jp − ÞJp−1 − J1/, for all r ≥ 2.

However,� p
K Q = 8

p
K Q, by the definition of� p

K Q. Thus, for allr ≥ 2,

�
p

K Q.Jr / = pJ1 + pÞJp−1 − pJp −  
p
S.Jr /:(5.4)

Also, by Lemma2.5,

�
p

K Q.J1/ = −J1:(5.5)
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From the definition of� n
K Q, if n = pkm wherep - m, then

� n
K Q = �

pk

K Q ◦ ¼.m/ m
S :(5.6)

The following result is easily obtained from (5.5), (5.4) and Theorem4.4. (Recall
thatþ2 = Þ andÞ̄ = 1 + Þ + · · · + Þ p−2.)

LEMMA 5.3. We have� p
K Q.J1/ = −J1 and� p

K Q.Jp/ = pÞJp−1 − .1 + Þ̄/Jp. Also,
for p odd,� p

K Q.Jp−1/ = .pÞ − þ p−1/Jp−1 − Þ̄Jp.

SinceRK Q is spanned by the modulesÞi Jr , Theorem4.4and Lemma4.5give

 
p
S =  

p3

S =  
p5

S = · · · and  
p2

S =  
p4

S =  
p6

S = · · · on RK Q:(5.7)

LEMMA 5.4. Let m be a positive integer, wherem ≥ 3. Then

− pm

S +  
p2

S ◦  pm−2

S + p pm−1

S + �
p

K Q ◦
(
− pm−1

S +  
p
S ◦ pm−2

S + p pm−2

S

)
= 0:

PROOF. Let � and� ′ be the linear functions onRK Q defined by

� = − p
S +  

p2

S ◦  p
S + p p2

S + �
p

K Q ◦ .− p2

S +  
p
S ◦  p

S + p p
S/;

� ′ = − p2

S +  
p2

S ◦  p2

S + p p
S + �

p
K Q ◦ .− p

S +  
p
S ◦  p2

S + p p2

S /:

By (5.7), it suffices to prove that� = � ′ = 0. By Lemma4.5, pk

S .Þ
i Jr / = Þi 

pk

S .Jr /

for all k, i andr . Similarly, by Lemma2.5, � p
K Q.Þ

i Jr / = Þi �
p

K Q.Jr /. Hence it suffices
to show that�.Jr / = � ′.Jr / = 0 for all r . This follows by direct calculation from
Lemmas4.7and5.3.

COROLLARY 5.5. For all k ≥ 3, � pk

K Q = p� pk−1

K Q .

PROOF. By (5.7) and the definition of� pk

K Q, we have� pk

K Q = p2�
pk−2

K Q for all k ≥ 4.

Thus it suffices to prove that� p3

K Q = p� p2

K Q. However,

�
p3

K Q − p� p2

K Q = − p3

S − �
p

K Q ◦  p2

S − �
p2

K Q ◦  p
S − p� p2

K Q

= − p3

S − �
p

K Q ◦  p2

S + . 
p2

S + �
p

K Q ◦  p
S/ ◦  p

S + p. p2

S + �
p

K Q ◦  p
S/

= − p3

S +  
p2

S ◦  p
S + p p2

S + �
p

K Q ◦ .− p2

S +  
p
S ◦  p

S + p p
S/:

This is equal to 0, by Lemma5.4. Therefore� p3

K Q = p� p2

K Q.

LEMMA 5.6. For k ≥ 2,
∑k

j =0 �
pj

K Q ◦ pk− j

S = 0.
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PROOF. For k = 2, the result follows from the definition of� p2

K Q. Suppose that
m ≥ 3 and that the result holds fork = m − 1. Then, by Corollary5.5,

m∑
j =0

�
pj

K Q ◦  pm− j

S =  
pm

S + �
p

K Q ◦  pm−1

S + �
p2

K Q ◦  pm−2

S +
m∑

j =3

�
pj

K Q ◦  pm− j

S

=  
pm

S + �
p

K Q ◦  pm−1

S + �
p2

K Q ◦  pm−2

S + p
m−1∑
j =2

�
pj

K Q ◦  pm−1− j

S

=  
pm

S + �
p

K Q ◦  pm−1

S + �
p2

K Q ◦  pm−2

S − p. pm−1

S + �
p

K Q ◦  pm−2

S /:

By definition,� p2

K Q = −. p2

S + �
p

K Q ◦  p
S/. Therefore

∑m
j =0 �

pj

K Q ◦  pm− j

S is equal to

−
(
− pm

S +  
p2

S ◦  pm−2

S + p pm−1

S + �
p

K Q ◦
(
− pm−1

S +  
p
S ◦  pm−2

S + p pm−2

S

))
:

This is equal to 0, by Lemma5.4. Hence the result holds fork = m. By induction,
the result holds for allk ≥ 2.

PROOF OFTHEOREM 5.1. We need to prove that8n
K Q = � n

K Q for all n. By (5.6)

and Lemma5.2, it suffices to prove that8pk

K Q = �
pk

K Q for all k ≥ 0. We consider
(5.1)–(5.3) restricted to values ofn which are powers ofp. These equations uniquely
determine the linear functions81

K Q;8
p
K Q;8

p2

K Q; : : : . Hence it suffices to show that
the functions� 1

K Q; �
p

K Q; �
p2

K Q; : : : satisfy the same equations. Equations (5.2) and (5.3)
for the� pk

K Q are given by Lemma2.5. This leaves (5.1). For n = 1 the required result
is clear. Forn = p it is given by (5.4). Finally, for n = pk with k ≥ 2, the result is
given by Lemma5.6.

6. Normal Sylow subgroup

In this section we prove Theorem1.1 for the case in which the Sylowp-subgroup
of G has orderp and is normal. It suffices to prove the following result.

THEOREM 6.1. Let K be a field of prime characteristicp and letG be a finite group
with a normal Sylowp-subgroup of orderp. Then8n

K G = � n
K G for all n.

We use the notation of Section3. In particular,G = H P, whereP is the Sylow
p-subgroup ofG and H is a p′-group. We consider theK G-modulesJ1; : : : ; Jp

andÞ. When convenient we also usêK , G̃, þ and½, as in Section3.

LEMMA 6.2. The isomorphism classes of finite-dimensional indecomposableK G-
modules are represented by the modulesI ⊗ Jr , where1 ≤ r ≤ p and I ranges over
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a set of representatives of the isomorphism classes of irreducibleK H -modules, these
being regarded asK G-modules through the projectionG → H .

PROOF. This is given by [14, Proposition 1.1], where it is not necessary to assume
that the field is a splitting field. See also [16, Proposition 4.4].

LEMMA 6.3. LetU andV be elements ofRK G such thatU↓H0 P = V↓H0 P for every
cyclic subgroupH0 of H . ThenU = V .

PROOF. This is given by [16, Corollary 4.4]. It can be obtained by applying
Lemma6.2to G and to the subgroupsH0P.

LEMMA 6.4. LetU be a finite-dimensionalK H -module,regarded as aK G-module.
Then, forr = 1; : : : ; p and every positive integern,

 n
∧.U Jr / =  n

∧.U / 
n
∧.Jr /;  n

S.U Jr / =  n
S.U / 

n
S.Jr /;

8n
K G.U Jr / =  n

∧.U /8
n
K G.Jr /; � n

K G.U Jr / =  n
∧.U /�

n
K G.Jr /:

PROOF. By Lemma2.4, we may assume thatK is algebraically closed. By Lem-
mas6.3and2.3 it suffices to prove the corresponding results for the subgroupsH0P,
whereH0 is a cyclic subgroup ofH . Thus we may assume thatH is cyclic. There-
fore U is isomorphic to the direct sum of one-dimensional modules, and it suffices
to consider the case whereU is one-dimensional. Let n denote either n

∧,  n
S,8n

K G

or � n
K G. Thus, by Lemma2.5,  n.U Jr / = Un n.Jr / andUn =  n

∧.U / =  n
S.U /.

The result follows.

LEMMA 6.5. For r = 1; : : : ; p and alln,8n
K G.Jr / = � n

K G.Jr /.

PROOF. Let Q be the holomorph ofP, identified with the groupQ of Section5.
Thus Q = Aut.P/P whereP is generated bya and Aut.P/ is generated byb. The
action ofH on P by conjugation gives a homomorphismH → Aut.P/. This extends
to a homomorphism− : G → Q which is the identity onP and gives a homomorphism
− ∗ : RK Q → RK G. It is easy to check that− ∗.Jr / = Jr (using the same notationJr

in connection with bothQ andG). By Theorem5.1, 8n
K Q.Jr / = � n

K Q.Jr /. Hence
− ∗.8n

K Q.Jr // = −∗.� n
K Q.Jr //. Therefore8n

K G.Jr / = � n
K G.Jr /, by Lemma2.3.

PROOF OFTHEOREM 6.1. By Lemma6.2, it suffices to show that we have

8n
K G.I Jr / = � n

K G.I Jr /

for r = 1; : : : ; p and all irreducibleK H -modules I . However, by Lemma6.4,
8n

K G.I Jr / =  n
∧.I /8

n
K G.Jr / and� n

K G.I Jr / =  n
∧.I /�

n
K G.Jr /. Thus the result follows

from Lemma6.5.
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If we wish to apply Theorem1.1for our groupG with a normal Sylowp-subgroup
we need to know the Adams operations onRK G and the functions� pk

K G (or, at least,
�

p
K G). By Lemmas6.2and6.4, these can be obtained from the Adams operations on

RK H and the values of the Adams operations and the functions�
pk

K G on the modules
Jr . These values of� pk

K G are given by the following result, in the notation of Section3.
(Recall thatþ2 = Þ andÞr = 1+ Þ + · · · + Þr −1.)

LEMMA 6.6. We have� p
K G.J1/ = −J1 and� p2

K G.J1/ = 0. For r ≥ 2,

�
p

K G.Jr / =
{

pÞJp−1 + .p − r /þr −1.J1 − Jp/− Þr Jp if r is odd;

pÞJp−1 − .p − r /þr Jp−1 − Þr Jp if r is even,

�
p2

K G.Jr / =
{

pÞ.p − .p − r /þr −1 − Þr /Jp−1 if r is odd;

pÞ.p − .p − r /þr − Þr /Jp−1 if r is even.

Furthermore,� pk

K G.Jr / = p� pk−1

K G .Jr / for all r andk ≥ 3.

PROOF. We use the homomorphism− ∗ : RK Q → RK G, as in the proof of Lemma6.5.
As observed there,− ∗.Jr / = Jr . It is also easy to verify that− ∗.Þ/ = Þ (using the
same notationÞ in connection with bothQ andG). The powers ofþ in the formulae
of the lemma are actually powers ofÞ, sinceþ2 = Þ. Thus, by Lemma2.3, it suffices
to prove these formulae forQ instead ofG. The results for� p

K Q are obtained by
straightforward calculations from (5.4), (5.5) and Theorem4.4. Also, by definition,
�

p2

K Q.Jr / = − p2

S .Jr / − �
p

K Q. 
p
S .Jr //. This allows the calculation of� p2

K Q. The last
statement of the lemma is given by Corollary5.5.

As far as Adams operations onRK G are concerned, we only need finitely many
because of the periodicity given by the following result.

LEMMA 6.7. Let q = |H=CH.P/| and let e be the least common multiple of2pq
and the orders of the elements ofH . Then, for alln,  n

∧ =  n+e
∧ and n

S =  n+e
S .

PROOF. This was proved in [16, Proposition 4.7], using results for GL.2; p/. We
sketch an independent proof.

By Lemma 6.2 it suffices to show that we have n
∧.I Jr / =  n+e

∧ .I Jr / and
 n

S.I Jr / =  n+e
S .I Jr / for r = 1; : : : ; p and all irreducibleK H -modulesI . By

Lemma2.6and the choice ofe, the elements n
∧.I /,  

n+e
∧ .I /,  n

S.I / and n+e
S .I / of

RK H have the same Brauer character. Thus they are equal, by Lemma2.9. Therefore,
by Lemma6.4, it suffices to prove that n

∧.Jr / =  n+e
∧ .Jr / and n

S.Jr / =  n+e
S .Jr /.

In fact we prove the stronger result that, for alln,  n
∧.Jr / =  

n+2pq
∧ .Jr / and
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 n
S.Jr / =  

n+2pq
S .Jr /. For this we may assume thatK = K̂ and G = G̃, in the

notation of Section3. By (4.1),

 n
∧.Jr / = þ.r −1/n

r −1∑
j =0

½.r −1−2 j /n;  n+2pq
∧ .Jr / = þ.r −1/.n+2pq/

r −1∑
j =0

½.r −1−2 j /.n+2pq/:

However,þ.r −1/n = þ.r −1/.n+2pq/, sinceþ2q = 1. Also, from the formula forJp

given by (3.1), ½2p − 1 = .½2 − 1/½p−1þ−p+1Jp ∈ �, where� is the ideal ofRK G[½]
generatedbyJp. Therefore n+2pq

∧ .Jr / =  n
∧.Jr /+U , whereU ∈ �∩RK G . However,

� ∩ RK G = RK G Jp. ThusU ∈ .RK G/proj, in the notation at the end of Section2.
Also, by Lemma2.6, Br. n+2pq

∧ .Jr // = Br. n
∧.Jr //. Thus n+2pq

∧ .Jr / =  n
∧.Jr / by

Lemma2.9. From this we obtain n+2pq
S .Jr / =  n

S.Jr / by Lemmas4.3and4.1.

The values of the Adams operations on theJr can, at least in principle, be calculated
using (4.1) and Lemma4.3. (See [1] for corresponding calculations for the group of
orderp.)

7. The general case

Let K be a field of prime characteristicp. If G is a finitep′-group then8n
K G = � n

K G

for all n, by Lemmas2.8 and 2.9. (Indeed, we also have8n
K G = ¼.n/ n

S by
Lemmas2.6 and2.8). Thus, to complete the proof of Theorem1.1, we only need
consider the case whereG is a finite group with a Sylowp-subgroupP of order p.
We write N for the normalizer ofP in G. Thus N is a finite group with a normal
Sylow p-subgroup of orderp, and the results of Sections 3–6 apply (withN replacing
G). We writeN = H P, whereH is a p′-group.

The subgroupP of G is a trivial-intersection set, so a simple form of the Green
correspondence applies (see [2, Theorem 10.1], where the field does not need to be
algebraically closed): there is a one-one correspondence between finite-dimensional
non-projective indecomposableK G-modules and finite-dimensional non-projective
indecomposableK N-modules. Here, ifV corresponds toV ∗ thenV↓N is the direct
sum ofV∗ and a projective module. It follows that ifV;V ′ ∈ RK G andV↓N = V ′↓N

thenVnonp = V ′
nonp. The proof of Theorem1.1 is completed by the following result.

THEOREM 7.1. Let K be a field of prime characteristicp and letG be a finite group
with a Sylowp-subgroup of orderp. Then8n

K G = � n
K G for all n.

PROOF. Let V be a finite-dimensionalK G-module. Then, by Theorem6.1 and
Lemma 2.3, 8n

K G.V/↓N = � n
K G.V/↓N . Hence, by the Green correspondence,

8n
K G.V/nonp = � n

K G.V /nonp. However, Br.8n
K G.V// = Br.�n

K G.V//, by Lemma2.8.
Therefore8n

K G.V / = � n
K G.V /, by Lemma2.9. This gives the required result.
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By Theorem1.1we can calculate all Lie powersLn.V/ if we canfind tensor powers,
Adams operations and thepth Lie powers of all indecomposables. By the next result,
only finitely many Adams operations need to be found. WithH as defined above, let
q = |H=CH.P/| and lete be the least common multiple of 2pq and the orders of the
p′-elements ofG.

THEOREM 7.2. Let K be a field of prime characteristicp and let G be a finite
group with a Sylowp-subgroup of orderp. Letebe as defined above. Then, for every
positive integern,  n

∧ =  n+e
∧ and n

S =  n+e
S .

PROOF. (For G = GL.2; p/, this is given by [15, Proposition 3.5].) LetV be a
finite-dimensionalK G-module. Then, by Lemma6.7,  n

∧.V/↓N =  n+e
∧ .V/↓N .

Hence, by the Green correspondence, n
∧.V /nonp =  n+e

∧ .V/nonp. However, by
Lemma2.6and the definition ofe, Br. n

∧.V // = Br. n+e
∧ .V//. Thus, by Lemma2.9,

 n
∧.V/ =  n+e

∧ .V/. Similarly, n
S.V/ =  n+e

S .V/. This gives the result.

If we have detailed information about the indecomposableK G-modules andK N-
modules, the Green correspondence, and the Brauer characters ofG, we can hope
to find the Lie powers of a finite-dimensionalK G-moduleV from Lie powers of
K N-modules as follows. SinceLn.V/↓N = Ln.V↓N/, by Lemma2.2, Ln.V/↓N can
be calculated by the methods described at the end of Section6. Thus, by the Green
correspondence, we can determineLn.V /nonp and hence Br.Ln.V/nonp/. However,
Br.Ln.V // is given by Brandt’s character formula (Lemma2.7). Thus we can find
Br.Ln.V /proj/. ThereforeLn.V/proj can be found, at least in principle, by the modular
orthogonality relations. Hence we can findLn.V/.

The connection between Lie powers ofK G-modules and Lie powers ofK N-
modules was a key factor in obtaining the results of [8, 17] and [10]. The following
theorem generalises one of the main qualitative results of [10]. Recall that the.p−1/-
dimensionalK N-moduleJp−1 is as defined in Section3.

THEOREM 7.3. Let K be a field of prime characteristicp and letG be a finite group
with a Sylowp-subgroup of orderp. LetV be a finite-dimensionalK G-module and let
n be a positive integer. Then, in the notation established above, every non-projective
indecomposable summand ofLn.V/ is either a summand of thenth tensor powerVn

or is the Green correspondent of aK N-module of the formI ⊗ Jp−1, whereI is an
irreducible K H -module.

PROOF. We give a sketch only. Note thatLn.V/↓N = Ln.V↓N/ and Vn↓N =
.V↓N/

n. By the Green correspondence it suffices to show that every non-projective
indecomposable summand ofLn.V↓N/ is either a summand of.V↓N/

n or has the
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form I ⊗ Jp−1, where I is an irreducibleK H -module. Thus we may assume that
G = N = H P.

Write n = pkm wherep - m. By Theorem1.1and Corollary1.2,

Ln.V/ = 1

pk

k∑
i =0

�
pi

K G.L
m.V pk−i

//:

However, fori = 0; : : : ; k, Lm.V pk−i
/ is a summand ofVmpk−i

, since p - m (see,
for example, [13, Section 3.1]). Hence it suffices to show, fori ≥ 0, that if Y is a
finite-dimensional indecomposableK G-module then� pi

K G.Y/ is a linear combination
of projectiveK G-modules, summands ofY pi

, and modules of the formI ⊗Jp−1, where
I is an irreducibleK H -module. By Lemma6.2, Y ∼= U ⊗ Jr where 1≤ r ≤ p andU
is an irreducibleK H -module. By Lemma6.4, � pi

K G.Y/ =  
pi

∧ .U /�
pi

K G.Jr /. However,
by (2.2) or (2.3),  pi

∧ .U / is a linear combination of modules which are homomorphic
images ofU pi

. Thus, sinceH is a p′-group, pi

∧ .U / is a linear combination of
summands ofU pi

. It therefore suffices to prove that� pi

K G.Jr / is a linear combination
of projective modules, summands ofJ pi

r , and modules of the formI ⊗ Jp−1. This is
trivial for i = 0 and, by Lemma6.6, it is clear fori ≥ 2. Suppose then thati = 1. By
Lemma6.6, the result is clear forr even,r = 1 andr = p. By the same lemma, it is
true forr odd with 1< r < p provided thatþr −1 J1 is a summand ofJ p

r . This can be
proved as follows, using the notation of Section3.

It is sufficient to consider the case whereK = K̂ and G = G̃. Let �′ be the
ideal of RK G[½] generated bypRK G[½] andJp. Then, as in the proof of Lemma6.7,
½2p − 1 ∈ �′. Also,þ.r −1/p = þr −1. However, by (3.1),

J p
r ≡ þ.r −1/p

r −1∑
j =0

½.r −1−2 j /p .mod�′/:

HenceJ p
r ≡ rþr −1 J1 .mod�′ ∩ RK G/. However,�′ ∩ RK G = pRK G + RK G Jp. Since

r is not divisible byp it follows thatþr −1 J1 is a summand ofJ p
r .
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