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Abstract

Let K be a field of prime characteristig and letG be a finite group with a Sylowp-subgroup of
orderp. For any finite-dimensionaf G-moduleV and any positive integer, let L"(V) denote thenth
homogeneous component of the free Kealgebra generated by (a basis ®f) ThenL"(V) can be
considered as K G-module, called thath Lie power ofV. The main result of the paper is a formula
which describes the module structureldf(\V) up to isomorphism.

2000Mathematics subject classificatioprimary 17B01; secondary 20C20.

1. Introduction

LetG beagroupan& afield. For any finite-dimension& G-moduleV, letL (V) be
the free Lie algebra ovef freely generated by ar-basis ofV. ThenL (V) may be
regarded as K G-module on which each element@facts as a Lie algebra automor-
phism. Furthermore, each homogeneous compoh&f¥) is a finite-dimensional
submodule, called thith Lie power ofV.

In this paper we consider the case whiréas prime characteristigandG is a
finite group with a Sylowp-subgroup of ordep. We give a formula which describes
L"(V) up to isomorphism for every finite-dimension&lG-moduleV. The formula
has a strong resemblance to Brandt's character formula in characteristiélfdmat [
the proof is much deeper.

In [6] a similar (but slightly simpler) formula was obtained for the case wiikre
is cyclic of orderp. The present paper builds o8] and earlier papers by the author,
Kovéacs and Sifir: particularly p]. The results cover the symmetric group of degree
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with p < r < 2p and the general linear group @, p). These cases were studied

in [8, 17, 10], but closed formulae could not be given there except in special cases.
We shall examine some of the connections between these papers and the present pay
in Section7 below.

For any groupG and any fieldK, we consider the Green ring (representation
ring) Rggs. This is the ring formed from isomorphism classes of finite-dimensional
K G-modules, with addition and multiplication coming from direct sums and tensor
products, respectively. For any finite-dimensioKab-moduleV we also writeV for
the corresponding element 8. ThusV" corresponds to theth tensor power of
V, andL"(V) may also be regarded as an elemenRpg.

In [5] it is shown that there exisZ-linear functionsdi 5, %, ... on Rgg such
that, for every finite-dimension# G-moduleV and every positive integer,

1
(1.1) L"(V) = - Z DY L (V).
din

(The sum on the right-hand side is divisible byn R¢s.) The functionsd}; are
called theLie resolventdor G overK. As shown in p],

(1.2) Do (V) = pn/dyd LIV,

din

whereu denotes the Mbius function. Furthermore,
(1.3) dh s = n(mys when chatK) {n;

hereyd denotes theith Adams operation o« formed by means of symmetric
powers (see Sectichbelow). In particular®i, ; is the identity function.

Let G be any group and leK be a field of prime characteristis. DefineZ-
linear functions¢s : Rce — Rke as follows. Forn not divisible by p define
&Re = My, In particulargls is the identity function. Defingls = kg, that
is, £ (V) = pLP(V) — VP for every finite-dimensionak G-moduleV. Fork > 1,
with k even, define

8o = P2 (vE +ekeovd ).

(Note that functions are written on the left andlenotes composition of functions.)
Fork > 1, with k odd, define

K K k—1 2 k—2
tle=—P (v + 80wl +eliovl ).

Finally, forn = p*m, wherep { m, defines, = g‘,fke o K- Thus the functiong, s
are defined in terms qgfth Lie powers and Adams operations.
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THEOREM1.1. Let K be a field of prime characteristip and letG be a finite
group with a Sylowp-subgroup of order at mogi. Then, for every finite-dimensional
K G-moduleV,

1
Ln(V) — ﬁ Zé-lge(vn/d).

din

In other words, the Lie resolvents are givendy, = ;¢ for all n. More can be
said in the cases whef&is a p’-group and where the Syloyw-subgroup is hormal:
see the beginning of Sectidrand the last part of Sectid) respectively.

COROLLARY 1.2. LetK, p, G andV be as in the th&aorem. Let be a positive
integer, and writen = pm wherep { m. Thend}, = ®¢; o 7 and

1
L“<V)=EZ<I>EG<L"‘<VP ).
i=0

The first statement comes from the fact thigt = é‘,f:; o ¢k, by definition ofz 5.
The second statement then follows ly1j: we write each divisod of n asd = p'q,
where 0< i < k andq | m, and use the facts thétl , = ®£¢ o @} and eachdl
is linear. Hence the structure of arbitrary Lie powers is determined by the functions
d),’ikG andmth Lie powers for integerm not divisible byp. It would be interesting to
know if the corollary is true for all groups.

If we wish to use Theoreni.1 for a particular groups we need to be able to
calculate the functions] ;. Thus we need to be able to figd; (or, equivalently,pth
Lie powers) and the Adams operatioft§. In Sectionss and7 we discuss how this
might be done provided that enough information is available about the @odjne
calculation of the/¢ is simplified a little by the fact that these functions are periodicin
n, as shown in Section. It is clear, however, that there will be significant difficulties
in practice except in small special cases such as where the $ykwbgroup ofG is
normal and self-centralizing.

2. Preliminaries

Throughout this sectio is any field. We start by considering an arbitrary gr@ip
but in the second half of the secti@will be finite.

We have already mentioned the Green rRRg;. This is a freeZ-module with a
basis consisting of the (isomorphism classes of) finite-dimensional indecomposable
K G-modules. We writd ¢ for the Green algebra, defined by = C ®; Rke.
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Thus Tk is a commutativeC-algebra. The identity element d¢fcs, denoted of
course by 1, is the isomorphism class of the trivial one-dimensiéiaimodule.

For any extension fiell of K there is a ring homomorphism: Rxs — Rgie
determined by K ® V for every finite-dimensionak G-moduleV. It follows
from the Noether-Deuring Theorem (sdd[(29.7)]) that is an embedding.

If 6 : A— Bisahomomorphism of groups, then evé&B-moduleV can be made
into aK A-module by taking the action of each elemgmaf A onV to be the same as
the action ob(g). Thust determines aring homomorphigi: Rcg — Rka. If0is
surjective the* is an embedding. IAis a subgroup oB andg is the inclusion map
thend* is called restriction fronB to A and, forV € Rgg, we sometimes writ® | 5
instead ob*(V).

If V is a finite-dimensionaK G-module then, for every positive integey L" (V)
denotes thath Lie power ofV, as already defined. Similarly,"(V) denotes thath
exterior power of/, andS"(V) thenth symmetric power of/. All of these are finite-
dimensionaK G-modules and may be regarded as elemenk@f The exterior and
symmetric powers may be encoded by their Hilbert sexi@é, t) andS(V, t). These
are the power series in an indeterminiateth coefficients inRy s defined by

ANV D =1+ AWt + A2+ -
S(V,t) =14+ SVt + SS(Ht2 + .- .

We shall need to use the two types of Adams operatiorR@ndefined by means
of exterior powers and symmetric powers. Followi§dnd [6] we denote these by
Yy and g, respectively. We summarise the basic facts and refes]téof further
details. In the ring of all symmetric functions in variablesx., . .., thenth power
sum may be written as a polynomial in the elementary symmetric functions and as a
polynomial in the complete symmetric functions:

(21) X:[| + X; + e = pn(el, ey en) = Un(hl, R hn)

For each positive integer, ! andyd areZ-linear functions orR¢g such that, for
every finite-dimensionak G-moduleV,

22)  YIV) = oAV, ANVD), Ya(V) = 0n(SHV), ., ST(V)),

(2.3) YV — PO+ (V2 — - = % log A(V, 1),
(2.4) Vs(V) + YWt + Y32 4 -+ = % log S(V, t).

Also, ¥ = ¥2 when cha¢K) 1 n. Furthermore, the following result was established
in [5, Theorem 5.4].
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LEmmA 2.1. Letq andn be positive integers such thais not divisible bycharK).
Theny! o y" = " andyd o ¥l = ¢ 2"

In Sectionl we described the basic properties of the Lie resolverits. Like
the Adams operations, these @inear functions orRxs. Also, in Sectionl, we
definedz-linear functions;;; on Rgg in the case wher& has prime characteristic
p. We shall establish some elementary properties of these various functidtigon
Whenever we discusyg s we assume implicitly thalk has prime characteristi

LEMMA 2.2. Letd : A — B be a homomorphism of groups, yielding the ring
homomorphisn®* : Rz — Rxa. Then, for every positive integer and every
finite-dimensionaK B-moduleV,

L@ (V) = 0" (L"(V)), A"O"(V)) =" (A"(V)), SO (V) =0"(S(V)).
PrROOF. This is straightforward. O

LEMMA 2.3. Letd : A — B be a homomorphism of groups, yielding the ring
homomorphism@* : Rz — Rka. Then, for every positive integar

Ylob* =0 oy, Yio0" =0 oy,

Oy p00" =60% 0 Dy, a0l =0%0lip.

PrROOF. The results fory?, ¥& and ®} 4 follow from (2.2), (1.2) and Lemma2.2
The result forz ¢ ; follows from its definition. O

LEMMA 2.4. Lett : Rkc — Rgg be the ring embedding associated with an ex-
tension fieldK of K. Then, for every positive integarand every finite-dimensional
K G-moduleV,

LP"(V)) = «(L"(V)), A"V) =uA"(V), S'V)) =S'(V)),
Ylot=1toy!, Ylot=1oyyg, ool =to®ys, CRsol=1t0ls.

PrROOF. This is similar to the proof of Lemmais2and2.3. O

LEMMA 2.5. LetV be a finite-dimensionadk G-module, and a one-dimensional
K G-module. Then, for every positive integer

L"(V) = 1"L"(V), ANV = ["ANV), S(IV) = 1"S"(V),
Yi(V) = 1" (V) ye(V) = 1"3(V), Qi (V) = 1"y (V),
Se(V) =1"%a (V) v =ys(h) =1"  Die(l) =) = nmI™.
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PrROOF. This is mostly straightforward. For the statement alsb (1), note that
L9(1"9) = 0 for divisorsd of n such thad > 1. The statement abogif; (1) comes
easily from its definition, using the results fp(1) and®g s (1). O

From now on in this section, assume ti&ts finite, and writep = chaK). (We
are particularly interested in the case where: 0.) LetK be the algebraic closure
of K and letG, be the set of all elements @ of order not divisible byp. Let A
be theC-algebra consisting of all class functions frdgy, to C, that is, functionss
such thais(g) = 8(g') wheneverg andg’ are elements oG, which are conjugate
in G. Let c be the least common multiple of the orders of the elementS pof
and choose and fix primitiveth roots of unitys in K andw in €. Then, for every
finite-dimensionaK G-moduleV we may define the Brauer charactenNbto be the
element B¢V) of A such that ifg € G, has eigenvalues®, ..., &% in its action
onV then BrV)(g) = o + --- + 0. (See B, Section 5.3].) Furthermore, we
may extend the definition linearly so that(®) is defined for an arbitrary elemevit
of 'ke. Then Br: I'kg — A is aC-algebra homomorphism.

For each positive integer, define a function/ : A — A by ¥§(8)(9) = 8(g")
forall§ € A andg € G,. Clearlyy is an algebra endomorphism afand

(2.5) Yo' oYy = Yo',

for all positive integersn andn.
LEMMA 2.6. LetV be a finite-dimensionak G-module. Then, for alh,
Br(y. (V) = ¥g(Br(V)) = Br(y3(V)).

ProoFr. This is well known: however, for the reader’s convenience we sketch a
proof. If g € G, has eigenvalues®, ..., g% onV, then, fori = 1,...,n,

Br(A' (V))(@) = g(@",...,0), BrS(V))(Q) =h @, ...,0%).
Thus, by £.2) and @.1),

Br(y!(V))(©@) = pn (@@, ... ), ... @, ... "))
=" 4+ " = Br(V)(g") = 5 (Br(V))(g).

This gives the result fog. The result fonyg is similar. O

The following result is Brandt's character formuld],[ as generalised to Brauer
characters (see, for exampl@, [5.4)] or [17, (2.11)]).



[7] Modular Lie representations of finite groups 407

LEMMA 2.7. LetV be a finite-dimensiondk G-module. Then, for alh,

1
Br(L"(V)) == 3 u(d)yg (Br(v™™).

din

We can now calculate the Brauer characters associatedbyithandsy ;.

LEMMA 2.8. LetV be a finite-dimensiondk G-module. Then, for alh,
Br(®y (V) = umyg (Br(V)) = Br(gs (V).

PROOF. By (1.1), Br(L"(V)) = £ >, Br(®% s (V""). Hence, by Lemma.7and
induction onn, we have B(®}(V)) = w(n)yg(Br(V)). It remains to prove that

Br¢gs(V)) = w(myg (Br(V)) for all n.
If ptnthens?g(V) = u(nya(V) and the result follows by Lemmaé. Also,
& = DPRe, so the result fokfs follows from the first part. This implies that

Br¢is(U)) = —yy (Br(U)) forallU € Ree.
Suppose thdt > 1 andk is even. Then, by the definition ka@
Br(¢fe (V) = —p2Br(y€ (V) — p2Briclewd (V).
Hence, by Lemma&.6and the result fogf,

Br(zP5(V)) = —p 2y Br(v)) + p 2yl Br(v))).

Therefore, by 2.5), Br(g,ka(V)) =0= M(pk)vfg’k(Br(V)). Thus the result holds for
{,f:; The result foz,fke whenk > 1 andk is odd is proved in a similar way using the

results forz P andz .
Now suppose that = p*m, wherep t m. Then, by the definition of?,

Br(z2s (V) = Brcfe (s (V) = n(p)vd (Brgls (V)
= 1 (POYE (MY Br(V))) = () (Br(V)).
This is the required result. O

Recall thatRg s has aZ-basis consisting of the finite-dimensional indecomposable
K G-modules. LetR«g)proj @aNd( Rk )nonp e theZ-submodules spanned, respectively,
by the projective and the non-projective indecomposables. Thew, forRxs, we
can writeV = Vyroj + Vhonp Uniquely, whereVy; € (Ri)proj @NdVionp € (R 6 )nonp-

LEMMA 2.9. LetU,V € Rkg. If Unonp = Vionp@ndBr(U) = Br(V) thenU = V.
In particular, if G is a p’-group andBr(U) = Br(V) thenU = V.

PROOF. The hypotheses yield BU,) = Br(Vy,). However, ifW andW' are
finite-dimensional projectiv& G-modules such that BW) = Br(W’) thenW = W’
(see B, Corollary 5.3.6]). Thus,o = Vprop, and sdd = V. O
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3. Exterior and symmetric powers

Throughout this section, l&€ be a field of prime characteristigand letG be a
finite group with a normal Sylowp-subgroup of ordep. As we shall see, there are
certain basic indecomposatifeG-modulesJ;, Js, ..., J,. The main purpose of this
section is to give formulae for the power serige&);, t) andS(J;, t). The formula for
A(J, 1) is due to Kouwenhoverif] and was also proved by Hughes and Kempét.[
The formula forS(J;, t) is a corollary of a result in14].

Kouwenhoven'’s results are primarily concerned with(@Lp) and go beyond what
is required here. In orderto keep the treatment as simple as possible we have therefor
chosen to follow 14]. However, we use slightly different notation and we consider
right K G-modules instead of lefk G-modules. IfV is a left KG-module thenV
becomes a righK G-module by defininggg = g~*v for allv € V, g € G. This
gives a one-one correspondence between left and Kgbtmodules. We shall use
this correspondence in order to interpret the result 4ffds results about righ G-
modules, noting that the correspondence commutes with taking direct sums, tensol
products, exterior powers and symmetric powers.

Let P be the (normal) Sylowp-subgroup ofG. Thus P has a complement
in G, and G is a semidirect productc = HP, whereH is a p-group. Let
P ={1,a,...,aP1}. There is a right action oP on the group algebr P given
by multiplication and a right action afl given bya' — h=*a'h for all h ¢ H and
i =0,...,p—1. Inthis wayK P becomes a righKk G-module. For =1, ..., p,
therth power of the augmentation ideal isP(a — 1)", and this is invariant under
the action ofG. Thus, forr = 1, ..., p, we obtain a righk G-moduleJ, defined by
J = KP/KP(a—1)". Itis easily verified that}, has dimensiom and corresponds
to the left modulev, of [14]. (Also, the isomorphism class @df does not depend on
the choice of complemeiid.) Furthermore,J; = 1 in the Green rindRgc.

For eachh € H, let m(h) be the element ofl,..., p — 1} determined by
h—*ah = a™", and letm(h) also denote the corresponding element of the prime sub-
field of K. There is then a homomorphism: H — K ~ {0} given bya(h) = m(h)
for all h. This yields a one-dimensional rigit H-module, which we also denote
by «. Furthermore, we regard as a rightK G-module, by means of the projection
G — H. ltis easily verified that this module corresponds to the ke@-module
denoted by, or « in [14]. In Rgg, as inRky, we havea”! = 1. Indeedp has
multiplicative orderg whereq = |H/Cy(P)].

As shown by the pullback construction describedlid]] there exists a finitg'-
group H and an extension fiel& of K with homomorphism® : H — H and
B: H — K ~ {0} suchtha®t is surjective ang(h)? = a(4(h)) forall h € H. LetG
be the semidirect produ¢i P with P normal such that, for att € H, the action of
h on P by conjugation is given by the action 6th). Thusé extends to a surjective
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homomorphisn® : G — G which is the identity orP.

We regard the rindrg ¢ as a subring oRz¢ by means of the embedding R¢c —
Rk described at the beginning of SectidrAlso, we regardrz¢ as a subring oRga
by means of the embeddirig obtained fromy : G — G, as described in Sectich
ThusRkg is a subring ofRgz. Itis easily verified that the images und¥ro ¢ of the
K G-modulesJ, and« are isomorphic to th& G-modules defined in the same way for
G overK. Thus there is no conflict of notation. By Lemnag and2.4, the exterior
and symmetric powers & in Rx¢ are the same as the exterior and symmetric powers
of J in Rgg. Thus we may usézg in order to find expressions fox(J,, t) and
S(J,1).

We regardRg as a subring oRKG by means of the embeddlng given by the
prOJectlonG — H. Clearlya € Rgi. The homomorphisrg : H - K~ {0} yields
an element oRg 5 which we also denote bg. From the properties g8 we see that
B? = a. Hencep?~2 = 1 andp~! exists. Note that ifp = 2 we havex = 1 and
charK) = 2: thus the definition o givesg = 1 in this case.

As in [14], but using instead ofu to avoid the notation for the bbius function,
we extendRgg by an element satisfyingi?— 81 J,A+1 = 0to form a commutative
ring Rgz[1]. Note that this is a freBzg-module: Rgg[1] = Rgg @& Rgg). Also, A is
invertible in Rgz[A]. We shall find expressions fgy(J,, t) andS(J;, t) as elements
of the power series rin@ga[A][[t]].

By [14, Lemma 1.3],

r—1
(31) J = lgrflz)\‘rflfﬂ’
i=0

forr = 1,..., p. Also, by [14, Theorem 1.4]Rgg[7] is generated byRg and,
that is, Rgg[A] = Rgg[r]. Tensoring withC we obtainl'gg[A] = T'gg[r], where
I'ke = C® Regandl'zg = C® Rgy.

By [12, (81.90)], the algebrBgg is semisimple. Thus it is isomorphic to the direct
sum ofm copies ofC, wherem is the number of indecomposalieG-modules. Thus
there are exactlyn non-zero algebra homomorphisigg — C. The restrictions to

z& of these homomorphisms are called the ‘specieRgf. Note thatifU, V € Rga
and¢(U) = ¢ (V) for every specieg thenU = V.

Let M, denote the subset @f consisting of all 2th roots of unity except for 1
and—1. Thusy?"? 4 y?* +... + y>+ 1 =0forally € M3,. By the proof of
[14, Theorem 1.6], for each € {8, B~} U M;, there is aC-algebra homomorphism
¢, : TralrAl — T'rg given by¢,(x) = x forall x € I'rg and¢, (1) = y.
Also, for eachh € H there is aC- algebra homomorphism, : 'z — C such
that, for all y € I'zq, en(x) is the value ah of the Brauer character of, that is,
en(x) = Br(x)(h). Fory e {8, 7"} UM;, andh H, let¢n, = eno¢,. Thus
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¢n,, is aC-algebra homomorphis, , : I'zg[A] — C. The following result is 14,
Theorem 1.6], apart from minor notational differences.

LEMMA 3.1. Foreachy € {8, B71}U M;, and eacth € H, the restriction obpn,
to Rgg is a species oRgs. The homomorphismg, , and ¢y , restrict to the same
species if and only i andh’ are conjugate ifd andy’ € {y, y ~1}. Every species of
Rgg arises as the restriction of songg ,, .

In particular,¢, s gives the same species @ég;-1. Since elements oRgg are
determined by their images under the species, we obtain the following result.

COROLLA}ZY 3.2.LetU,V € Rga. If ¢, (U) = ¢, (V) forall y € {8} U M,
andallhe H,orif ¢, (U) = ¢, (V) forall y € {8} U MJ, thenU = V.

2p?

The description of\(J;, t) is as follows.

THEOREM 3.3 ([15, Lemma, page 1709]1§, Theorem 1.10))Forr =1, ..., p,
r—1 ‘
NG =[a+pria2.
j=0

We writeW = J, — aJ,_;anda = 1+ o + -+ + P2 recalling thax?* = 1.
By direct calculation fromg.1) we get the following result.

LEMMA 3.4. For the homomorphismg,; and¢, , wherey € M3, we have

2p?
$s(Jp) =1+a, ¢p(Ip1) =0, ¢ (W) =1,
#,(Jp) =0, ¢, (Jp-1) = —yPBP% ¢, (W) = yPgP.
Forr =1,..., p, write

Xe =L —-W )AL —tP) (L - AN It + AP —-- )L

Thus, by Theorer.3

r—1
X, =1-WtHA -t [Ja-p a2t
j=0
Let the homomorphismg,; and¢, actonl'gg[A][[t]] by action on coefficients. Then
it is easily verified that; (X,) = [[|5(1 — «/t)~* and, fory € Mj,,

r—1

¢, (X)) = (L= P 0yP )@ — ) [ [ - gy )

j=0
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Replacinga by Br(«)(h) andg by Br(8)(h), forh e H, we obtain expressions for
¢n s (X;) andey , (X; ). Comparison with]4, Proposition 1.13] shows thaj 5(X;) =
dnp(S(J, 1) andgn, (X)) = ¢én,(S(J,t)). Therefore, by Corollang.2, X, =
S(J;,t). Thus we have the following result.

THEOREM 3.5 (based on14, Proposition 1.13))Forr =1,..., p,

S(I, ) =1 —(Jp—ady ) A -t A, DT
r—1

=1-(Jp—ad ) 'tHA-tH [Ja-p a2y

j=0
4. Adams operations

We continue to use all the notation of Secti@nin particular,G is a finite group
with a normal Sylow p-subgroup of ordemp. We shall find expressions for the
elements/ ) (J) andyd(J) of Res. By Lemmas2.3and2.4, it suffices to find such
expressions withirRgs. Recall thaix”~! = 1 andB? = «, so thatg?*~? = 1. For
refl,...,p}wewritee; = 1+ + --- + ', Of particular importance is,_;,
which we also denote by, as in Lemma.4 above. For each non-negative integer
we havex'a = &. Thusa, & = ra. The identity element oRzg[A] is denoted by 1
or J;, as convenient. As in Sectidh letW = J, —aJ,_;.

LEmMMA 4.1. For every non-negative integer

Wh — "1, 1+ J, ifnisodd
B "I+ (1—-pB"J, ifniseven.

PROOF. We use the homomorphisngg and¢,, for y € M3, as defined in Sec-

tion 3. Note that these homomorphisms dixands. Suppose that is odd. Then, by
Lemma3.4, we findgg (W") = 1 = ¢ (—p"*J,_1 + Jp) and
¢, (W) = yPB" P = ¢, (=" 35 1 4 Jp).
Thus, by CorollanB.2, W" = —g"*J, ; + J,. The proof for evem is similar. O
By Theorem3.3and @.3),

r—1
YHI) = YR Y0 = =Y BT T4 g A
j=0
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Hence, as stated id}, page 1720],

r—1
(4.1) yhN(g) = grn ZA(’*PZ“” for allr andn.

j=0
THEOREM4.2. Letk be a positive integer and lete {1, ..., p}. If r is odd,

YP(3) =13 — Jp) + o Jp.
If p= 2,
» 25— ) if k=1;
Y (h) = {23l if k> 2.
If pis odd and is even,
—IB" Jpo1 o Jp if kisodd
- P13, +eJ, if kiseven.

v = {

PrOOF. We assume thap is odd, noting that the proof fop = 2 is similar but
much easier. Suppose first thias odd. By @.1),

r—1 r—1 r—1
Gp(Wl (3)) = BIP Y BT =Y I = Y T — .
j=0 i=0 i=0

Also, by Lemma3.4,
G N — )+ dy) =1 a4+ (l+a)=—Ta+o +ra =ao.

Fory € My, (4.1) gives

r—1

k _ (3 _1_9i (3 _ K —

b, (W (J)) = By T = g gt
j=0

Also, by Lemma3.4, ¢, (r B~ *(J; — Jp) + o Jp) =B 1. Thus, forr odd, the result
follows by Corollary3.2.

Now suppose thatis even. Note that + p — p* =r (mod 2p — 2) if k is odd,
andr + p—p*=r+p—1 (mod 2p — 2) if k is even. Thus it suffices to show that

PP (3) = 1B o+ o dp.
By (4.1), ¢ﬂ(1/fA”k(Jr)) = a,, just as for odd. Also, by Lemma&.4,

Gp(—TB PP I i+ d) =—Ta+oa(l+a)=—Ta+o +ra=q.
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Fory € My, (4.1) gives
r—1
Gy (W (3)) = BRI = By T R,
j=0
Also, by Lemma3.4,
¢y(_rﬁr+pfpk ‘prl + o Jp) — rﬂrﬂ)fpkypﬂpr — I’,Bripk)/p~
Thus the result again follows by CorollaBy2. O

LEMMA 4.3. Letn be a positive integerand e {1, ..., p}. Then

YA — ) = | fn#0 (modp)
S T p(dy = WEDRY if n=0  (mod p).

PrOOF. By (2.4) and Theoren3.5,

Ys(J) + Yat + -
_d w9 ey g N
=5 log(1 — W''tP) it log(1 —tP) T log A(Jr, —1).

Hence, by 2.3 and multiplication byt,

Ws(I) = Yr(INt + WE(F) — 2N + -
= _pW*ltP(l_ erltp)fl + pt”(l— tp)fl'

The result follows by comparing coefficients. O
THEOREM4.4. Letk be a positive integer and lete {1, ..., p}. If r is odd,

YE) =(p—(P—DFH&— Iy +a .
Ifr is even,
P —Jp) +(P—1)B Jp1+ o Jp if kis odd

pk —
Vs (&) = {p(Jl— Jp) +(p—1)B P13+ J, if kiseven.

ProOOF. This holds for bothp odd andp = 2. It follows by straightforward
calculations from Lemma4.3, Theorem4.2and Lemmat. 1 O

LEMMA 4.5. Forall k, i andr, &' 3) = ol &' (3).

PROOF. This follows from Lemma2.5, sincea'™ = o'. O
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The following lemma is proved by direct calculation from Theordm and
Lemmad4.5, using the linearity ofy{ andy& .

LEMMA 4.6. Letr € {1, ..., p}. If r is odd,

WEoyd)(3) = WE o yZ)(3) = W& o yd)(I) = W o))
=(P-P+P-D(Pp-1F "+ par)(d — Ip) + o Jp.
Ifr is even,

WEoyd)(I) = pL—p+(P—N) +a)(d— Iy
+(p-r)BP I+ Jp,

WE oy ) I) = pA—p+ (pP—1)B P +a)(d — Iy)
+(p—1)B P I+ dp,

WE o yd)(3) = pL—p+(P—1)F +a)(d— Iy
+(P—r)B" 1+ Iy,

W owd)(I) = pA—p+(P—DF P +a)(d — I
+(p— r)ﬂer71 + ar Jp'

The remaining lemma of this section follows easily from Theoredand Lem-
ma4.6. Itis required for the calculations in Sectién

LEMMA 4.7. Letr € {1, ..., p}. If r is odd,
(Y& +9E 0+ pUd)(d) = (—¥E + YL vl + pYd(3) = po i
(& +y& oyd +pYd(3) = (—Yd+yEoyE + pyd)(3) = par du.
If r is even,

(V2 +9E oyl + pYd)(d) = P(p — 1B (I + B° 2 Jp s — Ip) + Poy i,
(—9& + Yoyl + pYd) () = p(p — DA (I + o1 — Ip) + Py dy,

(& + & o pd + pYd) () = p(p —DF P I+ B 1 — Jp) + Par i,
(¥ + v o g + pyd)(d) = p(p —NE P LI + Jpa — Jp) + pa du.

5. The key special case

Let K be a field of prime characteristjg, and letQ be a group of ordep(p — 1)
generated by elemengsandb with relationsa® = 1, bP! = 1 andb~'ab = a',
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wherel is a positive integer such that the imagel oh K has multiplicative order
p — 1. In other wordsQ is isomorphic to the holomorph of a group of ordgerin
this section we shall prove Theoreiml for Q by proving the following result.

THEOREMS.1. LetK be a field of prime characteristip and letQ be isomorphic
to the holomorph of a group of order. Thendy , = ¢¢, forall n.

TheK Q-modules);, ..., J, andx are defined as in Secti@ When convenientwe
also uses such tha{8? = «, as in Sectior8. There are, up to isomorphism, precisely
p(p — 1) indecomposabl& Q-modules. In, Section 4] these were denoted by,
fori =0,...,p—2andr =1,..., p, and further details can be found there. Itis
easily checked that, in the notation of the present papek: o' J;.

By [6, Theorem 4.4] with = 0, combined with §, Lemma 4.1], we have

J for n=1;
(51) D (@heovd)d) =1 -pJ—adi—d) for n=p;
din 0 forn#1, p,

forr =2,..., p. Also, by Lemma2.5,

(5.2) cI>’,‘<Q(J1) = n(n)Jy, forall n, and
(5.3) Pho(@' J) = a"PYo(J), forall n,i andr.

Equations$.2—(5.3 yield d)',LQ(a‘ Jy) forallnandalli. Forr > 2, (5.1) and 6.3
yield CI>',‘<Q(0¢i J)) in terms of Adams operations and values of the functi@ﬁg for
proper divisorgd of n. Thus®y,, ®% o, ... are the unique linear functions drx o
satisfying 6.1)—(5.3).

LEMMA 5.2. If n = p“mwherep { m, then®} , = d),’ikQ o pu(Myd.

PROOF. By [6, Theorem 4.4, Lemma 4.6 and Lemma 5.1 (ii)], we hag, =
d),’ikQ o ®R . The result follows by1.3). 0

By (5.1) with n = p, ¥5(J) + @R () = —p(Jp —aJp_1 — Jp), forallr > 2.
However,g“,fQ = ®F , by the definition ot,fQ. Thus, for allr > 2,

KQ’
(5.4) Zko(I) = P+ pady_i— pp — ().
Also, by Lemma2.5,

(5.5) £Po(d) = — .
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From the definition of;,'gQ, if n = p*mwherep { m, then

(5.6) £l = &ho o WMyl

The following result is easily obtained frorf.g), (5.4) and Theoremd.4. (Recall
thatp? = anda =1+ a +--- +aP2)

LEMMA 5.3. We haverlo(J) = —J andédo(Jp) = pady 1 — (14 @) Jp. Also,
for podd,s¢o(Jp-1) = (P — BP ) Jp 1 — @ Jp.

SinceRyq is spanned by the modulesJ,, Theorem4.4and Lemmat.5give
G7) W=yl =yl = and p =y =y = on R

LEMMA 5.4. Letm be a positive integer, whera > 3. Then

—yd 98 0wl 4 puld oo (< udowd +pyl) =0,

PROOF. Let y andy’ be the linear functions oR o defined by

Xx=—VE+ UL ol + pul + 800 (—vE +vLovwl + pyd),
X =V + 98 ovd + Pyl 4000 (v +vEowd + pyd).

By (5.7), it suffices to prove that = x’ = 0. By Lemmad.5, ¢£ (@' ) = o'y ()
forallk, i andr. Similarly, by Lemma2.5, &0 (' &) = o' £¢o(J). Hence it suffices
to show thaty(J,) = x’(J) = 0 for allr. This follows by direct calculation from
Lemmas4.7and5.3. O

COROLLARY 5.5. For all k > 3, ;,f; = pz,fgl.

PROOF. By (5.7) and the definition ot,f;, we haveg,fi3 = ng“,fgz for all k > 4.
Thus it suffices to prove thatfg = p{,‘,f;. However,

o — pelo = —vE —&loo vl —rfo o vl — pilo
= Y8 o + W+ 8000 UD) o Y+ pWE + 800 0 vd)
=y Y oyl Py + oo (—vE +yLovl + pyd).

This is equal to 0, by Lemm&a.4. Therefore;,?f3 = p{,‘,f;. O

LEMMA 5.6. Fork = 2,3 ¢fp oyl =0.
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PrROOF. For k = 2, the result follows from the definition c@f,f;. Suppose that
m > 3 and that the result holds far=m — 1. Then, by Corollang.5,

m m
j m—j m m—1 2 m—2 i m—j
S oo vl = + 800wl efoovl + D tfoo vk
— =
) m-1
m m—1 2 m— j m—1—j
=9 +ilqo vl eloo vl Y tloo vl

j=2

=8 + 8o 0wl +eloo vl - pwE +¢loo vl ).
By definition g‘KQ = —(l/fs + g‘KQ o Yd). ThereforeZ Og“KQ oy s equal to

— (v v oud H pud o (v HvEoud + pud)).

This is equal to 0, by Lemm&a.4. Hence the result holds fér = m. By induction,
the result holds for ak > 2. O

PROOF OFTHEOREM 5.1 We need to prove thaby , = ¢ foralln. By (5.6)

and Lemmab.2, it suffices to prove thaﬁ) KQ = g‘KQ for all k > 0. We consider
(5.2)—(5.3 restricted to values ofwhlch are powers op. These equations uniquely
determine the linear functlor:BﬁQ, KQ» <I>,’2Q,.... Hence it suffices to show that
the functlonsl;KQ, {KQ, {KQ, ... satisfy the same equations. Equatiohg)and 6.3)
for theg“KQ are given by Lemma.5. This leaves.1). Forn = 1 the required result
is clear. Fom = p it is given by 6.4). Finally, forn = p* with k > 2, the result is

given by Lemméb.6. O

6. Normal Sylow subgroup

In this section we prove Theoreinl for the case in which the Sylow-subgroup
of G has ordemp and is normal. It suffices to prove the following result.

THEOREM6.1. LetK be a field of prime characteristip and letG be a finite group
with a normal Sylowp-subgroup of ordep. Thend} , = ;¢ for all n.

We use the notation of Sectiéh In particular,G = H P, whereP is the Sylow
p-subgroup ofG and H is a p’-group. We consider th& G-modulesJ,, ..., J,
anda. When convenient we also ug G, 8 anda, as in Sectior3.

LEMMA 6.2. The isomorphism classes of finite-dimensional indecompogaBle
modules are represented by the modules J;, wherel <r < pand| ranges over
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a set of representatives of the isomorphism classes of irredui€iblemodules, these
being regarded a& G-modules through the projectidd — H.

PrROOF. This is given by L4, Proposition 1.1], where it is noecessary to assume
that the field is a splitting field. See alsbg] Proposition 4.4]. O

LEMMA 6.3. LetU andV be elements dR«s suchthall |, » = V| » forevery
cyclic subgroupH, of H. ThenU = V.

PrOOF. This is given by 6, Corollary 4.4]. It can be obtained by applying

Lemma6.2to G and to the subgroupd,P. O
LEMMA 6.4. LetU be afinite-dimensiond H-module, regarded asld G-module.
Then, forr = 1, ..., p and every positive integer,
YrUJ) =Wy (), YsU ) = ysU)ys(d),

DU ) =y W) Pps(d),  skeU ) =¥ 1(U)5s(I).

PrROOF. By Lemmaz2.4, we may assume th#t is algebraically closed. By Lem-
mas6.3and2.3 it suffices to prove the corresponding results for the subgrélgps
whereHy is a cyclic subgroup oH. Thus we may assume thHit is cyclic. There-
fore U is isomorphic to the direct sum of one-dimensional modules, and it suffices
to consider the case whetkis one-dimensional. Let" denote eithet, 3, ®f o
or¢ls. Thus, by Lemma.5 ¢"(UJ) = U"y"(J) andU" = ¢"(U) = y2(U).

The result follows. O

LEMMA 6.5. Forr =1,..., pandalln, ®}(J) = ¢es(J).

PrROOF. Let Q be the holomorph oP, identified with the groupQ of Section5.
Thus Q = Aut(P)P whereP is generated by and AutP) is generated b}. The
action ofH on P by conjugation gives a homomorphigrh — Aut(P). This extends
to ahomomorphism : G — Q which s the identity or? and gives a homomorphism
7* : Rcg = Rke. Itis easy to check that*(J) = J (using the same notatiod
in connection with bottQ andG). By Theorenb.1, % ,(J) = ¢¢o(J). Hence
‘E*(q)?(Q(Jr)) = r*(g,’gQ(Jr)). Thereforedy 5 (J) = ¢ (J), by Lemma2.3, O

PrROOF OFTHEOREM 6.1 By Lemma6.2, it suffices to show that we have

d)?((;(l\]r) = §£G(|Jr)

forr = 1,..., p and all irreducibleK H-modulesl. However, by Lemmé5.4,
PR (1) =yl (DR (J) andsg (1) = ¥ (1) s (J). Thus the result follows
from Lemma6.5. O



[19] Modular Lie representations of finite groups 419

If we wish to apply Theorert.1for our groupG with a normal Sylowp subgroup
we need to know the Adams operations Bgs and the funcﬂon%’KG (or, at least,
&0s). By Lemmas6.2 and6.4, these can be obtained from the Adams operations on
Rkn and the values of the Adams operations and the functj{ﬁéson the modules

J.. These values c:;f,fkG are given by the following result, in the notation of Sectibn
(Recallthatg? = o ande, =1+ o +--- +a' L)

LEMMA 6.6. We haver s (d) = —J; and¢Ps(Jy) = 0. Forr > 2,

pady 1+ (p—r)B (I — Jp) —J, if risodd
padp 1 —(P—1)B o1 — o Jp if ris even,
pa(p—(p—r)Bt—a)dps if risodd
pa(p—(p—r)B —a)Jp1 i riseven.

flfe(‘]r) = {
£ (d) ={

Furthermoreg,ka(Jr) = pg,fgl(‘]r) for all r andk > 3.

PROOF. We use the homomorphisti : Rqq — Rkg, as inthe proof of Lemma.5.
As observed there;*(J,) = J,. Itis also easy to verify that*(«¢) = « (using the
same notatiow in connection with botfQ andG). The powers of3 in the formulae
of the lemma are actually powers®f sincef? = «. Thus, by Lemma&.3, it suffices
to prove these formulae fo instead ofG. The results for;¢, are obtained by
straightforward calculations fronb(4), (5.5 and Theorend.4. Also, by definition,
{,f;(\]r) = —l/fgz(\]r) — 2o(¥E(J)). This allows the calculation 03‘,2’;. The last
statement of the lemma is given by Coroll&r. O

As far as Adams operations dRcg are concerned, we only need finitely many
because of the periodicity given by the following result.

LEMMA 6.7. Letq = |[H/Cx(P)| and let e be the least common multiple2qig
and the orders of the elementstdf Then, for alln, ¥ = ¢ andyd = y3™.

PrOOF. This was proved in16, Proposition 4.7], using results for @, p). We
sketch an independent proof.

By Lemma6.2 it suffices to show that we havg¢(1J,) = ¢ *¢(J,) and
va(ld) = ¢ J) forr = 1,..., p and all irreducibleK H-modulesl. By
Lemma2.6 and the choice oé, the elementg/ [ (1), ¥e(1), ¥2(1) andyd™(1) of
Rk have the same Brauer character. Thus they are equal, by L&mMmeherefore,
by Lemma6.4, it suffices to prove thapy?(J) = ¢*e(J) andya(J) = ¥3™(J).
In fact we prove the stronger result that, for all ¥"(J) = ¥/ ""%J) and
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Y2(3) = yot?(J,). For this we may assume thit = K andG = G, in the
notation of Sectior3. By (4.1),

r—1

r—1
Y(J) = pr—on ZA('*PZJ)”, w2+2pq(\]r) = BU-Dn+2p0) ZA('*PZ“("*Z"‘”.
j=0

j=0

However, g*—0" = gr-b0+2p0) since? = 1. Also, from the formula forJ,
given by @.1), AP — 1= (A2 — DAPTIB~PT1], € Q, whereQ is the ideal ofR¢g[2]
generated by,. Thereforey"2"%(J) = ¥"(J,)+U, wherel € Q2NR«c. However,
Q2 N Rke = RkeJp. ThusU e (Rke)prjs iN the notation at the end of Secti@n
Also, by Lemma2.6, Br(y>"(J,)) = Br(y"(J)). Thusy""*(J) = ¥"(J) by
Lemma2.9. From this we obtainyd™>"(J,) = ¥2(J,) by Lemmast.3and4.1. [

The values of the Adams operations on fhean, atleastin principle, be calculated
using @.1) and Lemmat.3. (See [ for corresponding calculations for the group of
orderp.)

7. The general case

LetK be a field of prime characteristie If G is a finite p’-group thermd} o = ¢¢ g
for all n, by Lemmas2.8 and 2.9. (Indeed, we also havé}, = u(n)yd by
Lemmas2.6 and2.8). Thus, to complete the proof of Theorelrl, we only need
consider the case whef& is a finite group with a Sylowp-subgroupP of order p.

We write N for the normalizer ofP in G. ThusN is a finite group with a normal
Sylow p-subgroup of ordep, and the results of Sections 3—6 apply (witreplacing
G). We writeN = H P, whereH is a p’-group.

The subgrougP of G is a trivial-intersection set, so a simple form of the Green
correspondence applies (sé2 Theorem 10.1], where the field does not need to be
algebraically closed): there is a one-one correspondence between finite-dimensiona
non-projective indecomposablkeG-modules and finite-dimensional non-projective
indecomposabl& N-modules. Here, iV corresponds t&* thenV | is the direct
sum ofV* and a projective module. It follows that¥f, V' € Rgg andV |y = V'],
thenVionp = Ve The proof of Theorem.1is completed by the following result.

nonp*

THEOREM7.1. LetK be afield of prime characteristip and letG be a finite group
with a Sylowp-subgroup of ordep. Thend} , = ¢ for all n.

PrROOF. Let V be a finite-dimensionak G-module. Then, by Theorei®.1 and
Lemma2.3 Pp;(V)iy = ¢&Rs(V)Iy. Hence, by the Green correspondence,
DF c (Vronp = ¢k (Vnonp However, BELdE (V) = Br(ggs(V)), by Lemma2.8.
Therefored (V) = ¢¢s(V), by Lemma2.9. This gives the required result. [
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By Theoreni.lwe can calculate all Lie powelts' (V) if we canfind tensor powers,
Adams operations and thah Lie powers of all indecomposables. By the next result,
only finitely many Adams operations need to be found. Wittas defined above, let
g = |H/Cy(P)| and lete be the least common multiple op2 and the orders of the
p’-elements of.

THEOREM7.2. Let K be a field of prime characteristip and letG be a finite
group with a Sylowp-subgroup of ordeip. Letebe as defined above. Then, for every
positive integen, ¢! = Yy andyd = ¢

PrOOF. (For G = GL(2, p), this is given by 15, Proposition 3.5].) LeV¥ be a
finite-dimensionalk G-module. Then, by Lemm&.7, y"(V)!y = ¢¥1"*(V)ln-
Hence, by the Green correspondeng€(V)nomp = ¥1(V)nonp. HOwever, by
Lemma2.6and the definition o&, Br(y"(V)) = Br(y/\*¢(V)). Thus, by Lemma.9,
YI(V) = ¢e(V). Similarly, y2(V) = ¢2**(V). This gives the result. O

If we have detailed information about the indecomposdb& modules and N-
modules, the Green correspondence, and the Brauer charactersaa can hope
to find the Lie powers of a finite-dimension&IG-moduleV from Lie powers of
K N-modules as follows. Since"(V)|}y = L"(Vly), by Lemma2.2 L" (V)] can
be calculated by the methods described at the end of Se&tidihus, by the Green
correspondence, we can determio®V ),,n, and hence BIL"(V),onp). HoOwever,
Br(L"(V)) is given by Brandt's character formula (Lemr&). Thus we can find
Br(L"(V)p)). Thereforel" (V) can be found, at least in principle, by the modular
orthogonality relations. Hence we can fibé(V).

The connection between Lie powers KfG-modules and Lie powers dk N-
modules was a key factor in obtaining the results&fl[7] and [10]. The following
theorem generalises one of the main qualitative results@f Recall that thep— 1)-
dimensionaK N-moduleJ,_; is as defined in Sectioh

THEOREM 7.3. LetK be a field of prime characteristip and letG be a finite group
with a Sylowp-subgroup of ordep. LetV be afinite-dimensional G-module and let
n be a positive integer. Then, in the notation established above, every non-projective
indecomposable summandIdf(V) is either a summand of theh tensor powei/"
or is the Green correspondent ofkaN-module of the form ® J,_,, wherel is an
irreducible K H-module.

PrOOF. We give a sketch only. Note that" (V)| = L" (V) andV"]y =
(V])". By the Green correspondence it suffices to show that every non-projective
indecomposable summand bf (V| ,) is either a summand aiV | )" or has the
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form | ® Jy_1, wherel is an irreducibleK H-module. Thus we may assume that
G=N=HP.
Write n = p*mwherep { m. By Theorentl.1and Corollaryl.2,

1 <&y
LhV) = % D e (LM(VPT).
i=0

However, fori = 0,...,k, L™(V"") is a summand o¥/™"', sincep { m (see,
for example, 13, Section 3.1]). Hence it suffices to show, for 0, that ifY is a
finite-dimensional indecomposakeG-module thert, s (Y) is a linear combination
of projectiveK G-modules, summands ¥ , and modules of the formng Jp-1, Where
| is anirreduciblék H-module. By Lemm&.2,Y = U ® J, where1<r < pandU
is an irreduciblek H- module. By Lemmdb.4, g‘K'G(Y) x//A' (U){K'G(J ). However,
by (2.2 or (2.3), v? (U) is a linear combination of modules which are homomorphic
images ofU?. Thus, sinceH is a p’-group, ¥” (U) is a linear combination of
summands obl . It therefore suffices to prove tha,fG(J ) is a linear combination
of projective modules, summands &f , and modules of the forrh ® Jp-1. This'is
trivial for i = 0 and, by Lemm#&.6, it is clear fori > 2. Suppose then that= 1. By
Lemmaé.6, the result is clear for evenr = 1 andr = p. By the same lemma, it is
true forr odd with 1< r < p provided tha{g'~*J; is a summand o8P. This can be
proved as follows, using the notation of Sectitn

It is sufficient to consider the case whete= K andG = G. Let Q' be the
ideal of Rcg[A] generated by R¢«s[1] andJ,. Then, as in the proof of Lemnta?7,
AP —1e Q. Also, VP = g1 However, by 8.1),

r—1
JP = pr-be Z AT-1220P (mod Q).

j=0

Hencel? =rB"1J; (mod ' NRks). However2' N Rk = pRcs + ResJp- Since
r is not divisible byp it follows thatg"~*J; is a summand o8 ". O
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