FIXED POINT FREE ACTIONS OF GROUPS OF EXPONENT 5 ENRICO JABARA

(Received 8 April 2002; revised 11 April 2003)

Communicated by R. B. Howlett

Abstract

In this paper we prove that if V is a vector space over a field of positive characteristic $p \neq 5$ then any regular subgroup A of exponent 5 of GL(V) is cyclic. As a consequence a conjecture of Gupta and Mazurov is proved to be true.

2000 Mathematics subject classification: primary 20E25, 20F50.

1. Introduction

A group *G* is called *periodic* if any element of *G* has finite order and *of finite exponent e* if, for any $g \in G$, we have $g^e = 1$. Obviously any group of finite exponent is periodic, but the contrary is not true in general. We also recall that a group *G* is called *locally finite* if each finite subset of *G* is contained in a finite subgroup of *G*.

A well-known conjecture of Burnside says that a finitely generated group of finite exponent e is necessarily finite (or, equivalently, that any group of finite exponent is locally finite).

This conjecture has been proved only for e = 2 (in this case the group is abelian), for e = 3 (Levi and van der Waerden [4], see also [8, 14.2.2]), for e = 4 (Sanov [9], see also [8, 14.2.3]) and for e = 6 (Hall [3]), while nothing is known for the case e = 5. In some classes of groups Burnside's conjecture is true; for example, Burnside proved that if F is a field of characteristic 0, then any subgroup of finite exponent of GL(n, F) is finite. However Burnside's conjecture is not true in general, as Novikov and Adjan proved in a series of papers of great length. Successively Adjan constructed infinite groups of exponent e with a finite numbers of generators for any odd exponent $e \ge 665$ (see [1]).

^{© 2004} Australian Mathematical Society 1446-8107/04 \$A2.00 + 0.00

Enrico Jabara

It is therefore quite natural to ask if, given a natural number *e* and a vector space *V* over a field *F* of characteristic finite and coprime with *e*, there exists an infinite subgroup *A* of GL(V) of exponent *e* that is regular (that is, with the property that $\alpha(v) \neq v$ for any $v \neq 0$ and any $\alpha \in A$, $\alpha \neq 1$). If *e* is a prime number, it can be conjectured that *A* is necessarily cyclic. This conjecture is certainly true if the dimension of *V* over *F* is finite (this fact was proved by Burnside; see [8, 10.5.6]).

In this paper, we consider the case e = 5 and prove

THEOREM 1.1. If V is a vector space over a field of positive characteristic $p \neq 5$ then any regular subgroup A of exponent 5 of GL(V) is cyclic.

We observe that the action of A is regular over V if and only if any non-identity element of A has minimal polynomial that divide $x^4 + x^3 + x^2 + x + 1$. In group-theoretic terms, this means that in the semidirect product of V by A there are not elements of order 5p.

2. Notation and preliminary results

We fix two distinct primes *p* and *q*. Let *F* be a field of characteristic *p*, *V* a vector space over *F* and *A* a subgroup of the automorphism group of *V* of exponent *q* and such that for any $\alpha \in A$, $\alpha \neq 1$ we have $\operatorname{Fix}_V(\alpha) = \{0\}$. It is easy to verify that for any $\alpha \in A \setminus \{1\}$ and any $v \in V$ we have

(1)
$$v + \alpha(v) + \alpha^2(v) + \dots + \alpha^{q-1}(v) = 0.$$

In the ring $\operatorname{End}_{F}(V)$ identity (1) can be written as follows

(2)
$$1 + \alpha + \alpha^2 + \dots + \alpha^{q-1} = 0$$

for any $\alpha \in A \setminus \{1\}$.

REMARK. For any pair of elements $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ we have $[\alpha, \beta] \neq 1$.

If $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ commute, then $\alpha \beta^i$ (i = 0, 1, ..., q - 1) are all non identity elements of *A*. If we write the fundamental relation (2) for these elements, we get $1 + \alpha \beta^i + \cdots + (\alpha \beta^i)^{q-1} = 0$ for i = 0, 1, ..., q - 1. Summing term by term and using the fact $[\alpha, \beta] = 1$ we get

$$q + \alpha(1 + \beta + \dots + \beta^{q-1}) + \dots + \alpha^{q-1}(1 + \beta + \dots + \beta^{q-1}) = 0$$

but, by (2), $1 + \beta + \cdots + \beta^{q-1} = 0$, and therefore q = 0 while $p \neq q$. This contradiction proves the statement.

The preceding remark shows that any finite subgroup of A must have order q. We observe that infinite groups in which any proper (non trivial) subgroup has order q have been constructed by Ol'šanskiĭ ([7]). Groups of this type are called *Tarski monsters*.

Before proving Theorem 1.1, we want to expose the ideas behind the proof. We suppose for a moment that q = 3 (and not knowing the theorem of Levi and van der Warden [4]); then we can write (2) as

(3)
$$1 + \alpha + \alpha^{-1} = 0 \text{ for all } \alpha \in A \setminus \{1\}.$$

If *A* is not cyclic, there exist $\alpha, \beta \in A \setminus \{1\}$ with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$ and from (3) we get

$$\begin{cases} 1 + \alpha + \alpha^{-1} = 0, \\ 1 + \alpha\beta + \beta^{-1}\alpha^{-1} = 0, \\ 1 + \alpha\beta^{-1} + \beta\alpha^{-1} = 0, \end{cases}$$

summing each member we obtain

$$3 + \alpha(1 + \beta + \beta^{-1}) + (1 + \beta + \beta^{-1})\alpha^{-1} = 0$$

but, from (3), $1 + \beta + \beta^{-1} = 0$. From this we get the contradiction 3 = 0 while $p \neq 3$.

3. Proof of Theorem 1.1 (p = 2)

We suppose q = 5; to prove Theorem 1.1 we suppose that there exists a counterexample, that is, a vector space V over a field F of characteristic $p \neq 5$ and a non cyclic group A of exponent 5 acting regularly on V.

We fix the following notation: the indices in the sums will always be from 0 to 4 and considered mod 5. We shall often use the fundamental relation (2) in the form

(4)
$$1 + \alpha + \alpha^2 + \alpha^3 + \alpha^{-1} = 0$$

or in the form

(5)
$$1 + \alpha + \alpha^2 + \alpha^{-2} + \alpha^{-1} = 0.$$

We shall always denote by α and β two non identity elements of A with $\langle \alpha \rangle \cap \langle \beta \rangle = \{1\}$.

The proof is in various steps.

STEP 1. We have $\sum_{i,j} \beta^{i+j} \alpha \beta^{i+2j} \alpha \beta^{i+j} = 0$.

PROOF. If we put i + j = r we obtain

$$\sum_{i,j} \beta^{i+j} \alpha \beta^{i+2j} \alpha \beta^{i+j} = \sum_{r} \left\{ \beta^{r} \alpha \beta^{r} \left(\sum_{j} \beta^{j} \right) \alpha \beta^{r} \right\}$$

and we conclude because $\sum_{j} \beta^{j} = 0$.

We put
$$\overline{\sigma} = \sum_i \beta^i \alpha \beta^i$$
 and $\underline{\sigma} = \sum_i \beta^i \alpha^{-1} \beta^i$.

STEP 2. $\overline{\sigma} + \underline{\sigma} = 0.$

PROOF. If i = 0, 1, ... 4, by (4) we get

$$1 + \alpha \beta^{i} + \alpha \beta^{i} \alpha \beta^{i} + \alpha \beta^{i} \alpha \beta^{i} \alpha \beta^{i} + \beta^{-i} \alpha^{-1} = 0$$

summing the five preceding equalities and recalling that

$$\alpha\left(\sum_{i}\beta^{i}\right)=0 \text{ and } \left(\sum_{i}\beta^{-i}\right)\alpha^{-1}=0$$

we get

(6)
$$\alpha\left(\sum_{i}\beta^{i}\alpha\beta^{i}\right) + \alpha\left(\sum_{i}\beta^{i}\alpha\beta^{i}\alpha\beta^{i}\right) = -5$$

and

(7)
$$\sum_{i} \beta^{i} \alpha \beta^{i} + \sum_{i} \beta^{i} \alpha \beta^{i} \alpha \beta^{i} = -5\alpha^{-1}.$$

The sum $\overline{\sigma} = \sum_{i} \beta^{i} \alpha \beta^{i}$ is invariant with respect to the substitutions $\alpha \rightsquigarrow \beta^{j} \alpha \beta^{j}$ with j = 0, 1, ..., 4. If we make these substitutions in (7) and we take a sum, we get

$$5\sum_{i}\beta^{i}\alpha\beta^{i}+\sum_{i,j}\beta^{i+j}\alpha\beta^{i+2j}\alpha\beta^{i+j}=-5\sum_{j}\beta^{-j}\alpha^{-1}\beta^{-j}.$$

By Step 1 we have $\sum_{i,j} \beta^{i+j} \alpha \beta^{i+2j} \alpha \beta^{i+j} = 0$ and since char $F = p \neq 5$ we obtain the relation we wanted.

STEP 3. $\alpha \overline{\sigma} + \underline{\sigma} \alpha^{-1} = -5.$

PROOF. We observe that, since *A* has exponent 5, the relation (6) can be written as $\alpha \left(\sum_{i} \beta^{i} \alpha \beta^{i} \right) + \left(\sum_{i} \beta^{-i} \alpha^{-1} \beta^{-i} \right) \alpha^{-1} = -5.$

STEP 4. $\overline{\sigma}^2 + \underline{\sigma}^2 = -25$.

300

PROOF. We have observed before that $\overline{\sigma}$ and $\underline{\sigma}$ are invariant with respect to the substitutions $\alpha \rightsquigarrow \beta^j \alpha \beta^j$ with j = 0, 1, ..., 4. So we make these substitutions in $\alpha \overline{\sigma} + \underline{\sigma} \alpha^{-1} = -5$, we sum the five equalities and we get the desired result. \Box

STEP 5. Theorem 1.1 is true if p = 2.

PROOF. Let p = 2. By Step 2 we have $\overline{\sigma} = \underline{\sigma}$ and, recalling Step 4 we obtain the following contradiction $0 = 2\overline{\sigma}^2 = \overline{\sigma}^2 + \underline{\sigma}^2 = -25$.

4. Proof of Theorem 1.1 (p = 3)

From now on, we suppose that p = 3 and therefore the relations obtained in Steps 2–4 have the form:

$$\begin{cases} \overline{\sigma} + \underline{\sigma} = 0, \\ \alpha \overline{\sigma} + \underline{\sigma} \alpha^{-1} = 1, \\ \overline{\sigma}^2 + \underline{\sigma}^2 = 2. \end{cases}$$

In particular, $\overline{\sigma}^2 = \underline{\sigma}^2 = 1$.

STEP 6. We have

- (a) $\alpha \overline{\sigma} = 1 + \overline{\sigma} \alpha^{-1};$
- (b) $\alpha^{-1}\overline{\sigma} = \overline{\sigma}\alpha 1.$

PROOF. From $\overline{\sigma} = -\underline{\sigma}$ and from $\alpha \overline{\sigma} + \underline{\sigma} \alpha^{-1} = 1$ we get (a).

Multiplying $\alpha \overline{\sigma} + \underline{\sigma} \alpha^{-1} = 1$ on the left by α^{-1} and on the right by α we obtain $\alpha^{-1}\underline{\sigma} + \overline{\sigma}\alpha = 1$ that gives (b).

STEP 7. If we put $\rho = \alpha + \alpha^{-1}$ and $\varphi = \alpha \overline{\sigma}$ we get

- (a) $\rho \in GL(V)$ has order 8 and $\rho^2 = 1 \rho$;
- (b) $\varphi \in GL(V)$ has order 8 and $\varphi^2 = 1 + \varphi$;
- (c) $[\rho, \varphi] = 1.$

PROOF. From the relations obtained in Step 6, we get

$$\rho\overline{\sigma} = (\alpha + \alpha^{-1})\overline{\sigma} = 1 + \overline{\sigma}\alpha^{-1} + \overline{\sigma}\alpha - 1 = \overline{\sigma}(\alpha + \alpha^{-1}) = \overline{\sigma}\rho$$

and therefore $[\rho, \overline{\sigma}] = 1$; since $[\rho, \alpha] = 1$ we also have $[\rho, \varphi] = 1$. Then

$$\begin{split} \rho^2 &= (\alpha + \alpha^{-1})^2 = \alpha^2 + \alpha^{-2} + 2 = -1 - \alpha - \alpha^{-1} + 2 = 1 - \rho \quad \text{and} \\ \rho^4 &= (1 - \rho)^2 = 1 - 2\rho + \rho^2 = 1 - 2\rho + 1 - \rho = -1. \end{split}$$

301

In particular, $\rho \in GL(V)$ and $\rho^8 = 1$. Moreover,

$$\begin{split} \varphi^2 &= \alpha \overline{\sigma} \alpha \overline{\sigma} = \alpha (1 + \alpha^{-1} \overline{\sigma}) \overline{\sigma} = 1 + \alpha \overline{\sigma} = 1 + \varphi \quad \text{and} \\ \varphi^4 &= (1 + \varphi)^2 = 1 + 2\varphi + \varphi^2 = 1 + 2\varphi + 1 + \varphi = -1. \end{split}$$

In particular, $\varphi \in GL(V)$ and $\varphi^8 = 1$.

STEP 8. The group $B = \langle \rho^2, \varphi^2 \rangle \leq GL(V)$ is abelian and $|B| \leq 4$.

PROOF. By Step 7, *B* is certainly abelian, moreover ρ^2 and φ^2 have order 4 and therefore, since $\rho^4 = -1 = \varphi^4$, $|B| \le 8$. We prove that *B* has order (at most) 4 showing that $\rho^2 \varphi^{-2}$, which has order 2, acts fixed points freely over *V* and it is therefore equal to -1.

If we put $V_0 = \text{Fix}_V(\rho^2 \varphi^{-2})$ we have that V_0 is a $\langle \rho, \varphi \rangle$ -invariant subspace of V (because $\langle \rho, \varphi \rangle$ is abelian).

If, by contradiction, $V_0 \neq \{0\}$ and using the same symbols for the restrictions of the automorphisms to V_0 , from Step 7 we get $1 - \rho = \rho^2 = \varphi^2 = 1 + \varphi$, that is, $\alpha \overline{\sigma} = \varphi = -\rho = -\alpha - \alpha^{-1}$. Using Step 6 (a) we get $1 + \overline{\sigma}\alpha^{-1} = -\alpha - \alpha^{-1}$ and $\overline{\sigma} = -1 - \alpha - \alpha^2$ and $1 = \overline{\sigma}^2 = 1 + \alpha + \alpha^2 + \alpha^4 + 2\alpha + 2\alpha^2 + 2\alpha^3 = 1 + 2\alpha + 2\alpha^3 + \alpha^4$, that is, $\alpha^4 = \alpha + \alpha^3$ and $\alpha^2 = \alpha + \alpha^{-1} = \rho$ which gives the required contradiction: $1 = \rho^8 = (\alpha^2)^8 = \alpha$.

STEP 9. Theorem 1.1 is true if p = 3.

PROOF. By Step 8 we have $|B| \le 4$ and since $\rho^4 = -1 = \varphi^4$, this is possible only in two ways:

(I) $\rho^2 = \varphi^2$ but this gives a contradiction, because in the proof of Step 8 we have seen that $\rho^2 \varphi^{-2}$ acts fixed points freely on V.

(II) $\rho^2 = -\varphi^2$ then, by Step 7, $1 - \rho = -1 - \varphi$ and $\varphi = 1 + \rho$. Then, recalling Step 6, $1 + \overline{\sigma}\alpha^{-1} = \alpha\overline{\sigma} = \varphi = 1 + \rho$ and $\overline{\sigma} = \rho\alpha = 1 + \alpha^2$; this implies $1 = \overline{\sigma}^2 = (1 + \alpha^2)^2 = 1 + 2\alpha^2 + \alpha^4$ and $\alpha^2 = 1$: a contradiction.

5. Sketch of the proof of Theorem **1.1** for $p \ge 7$

We remark that if char $F = p \ge 7$, we can obtain the same result in a way similar to the one used for p = 3, but using arguments *ad hoc* for any prime number *p*.

We can always find commuting elements ρ and φ (as defined in Step 7), satisfying $\rho^2 + \rho - 1 = 0$ and $\varphi^2 + 5\varphi + 2^{-1} \cdot 25 = 0$. The orders of these automorphisms are divisors of $p^2 - 1$ and depends on the prime p, as Table 1 shows, but we haven't been able to find a method of proof valid for any p.

It seems hard to prove the same conjecture for A in the case in which q = 7 (or greater), with the methods used in this paper.

302

Fixed point free actions of groups of exponent 5 TABLE 1.

303

р	3	7	11	13	17	19
ho	8	16	10	28	36	18
$ \varphi $	8	24	11 10 40	12	4	72

6. An application

If G is a periodic group, we denote by $\omega(G)$ the set of the orders of the elements of G. In [2] Gupta and Mazurov proved that if $\omega(G)$ is a proper subset of $\{1, 2, 3, 4, 5\}$, then either G is locally finite or there exists a normal nilpotent 5'-subgroup N of G such that G/N is a group of exponent 5. The same authors have conjectured that if $N \neq \{1\}$ then G is locally finite. This conjecture is equivalent to

CONJECTURE ([2]). Let A be an automorphism group of an elementary abelian $\{2, 3\}$ -group G such that every non-trivial element of A fixes in G only the trivial element. If A is of exponent 5 then A is cyclic.

The conjecture is true by Theorem 1.1; hence we have proved:

THEOREM 6.1. If $\omega(G) \subseteq \{1, 2, 3, 4, 5\}$ and $\omega(G) \neq \{1, 5\}$ then the group G is locally finite.

To establish Theorem 6.1, we need (in addition to the results of [2]) the following facts:

- The groups of exponent 4 are locally finite ([9]).
- If $\omega(G) = \{1, 2, 3, 4, 5\}$ then G is locally finite ([5]).
- If $\omega(G) = \{1, 2, 3, 5\}$ then $G \simeq A_5([10])$.

We recall that if $\omega(G) = \{1, 2\}$ then *G* is elementary abelian, if $\omega(G) = \{1, 3\}$ then *G* is nilpotent of class at most 3 ([4]), and that the groups *G* with $\omega(G) = \{1, 2, 3\}$ are described in [6].

References

- S. I. Adyan, 'Periodic groups of odd exponent', in: Proceedings of the Second International Conference on the Theory of Groups, Australian Nat. Univ., 1973, Lecture Notes in Math. 372 (Springer, Berlin, 1974) pp. 8–12.
- [2] N. D. Gupta and V. D. Mazurov, 'On groups with small orders of elements', Bull. Austral. Math. Soc. 60 (1999), 197–205.
- [3] M. Hall, 'Solution of the Burnside problem for exponent six', Illinois J. Math. 2 (1958), 764–786.

Enrico Jabara

- [4] F. W. Levi and B. L. van der Waerden, 'Über eine besondere Klasse von Gruppen', Abh. Math. Sem. Univ. Hamburg 9 (1932), 154–158.
- [5] V. D. Mazurov, 'Groups of exponent 60 with prescribed orders of elements', *Algebra i Logika* 39 (2000), 329–346; English translation: *Algebra and Logic* 39 (2000), 189–198.
- [6] B. H. Neumann, 'Groups whose elements have bounded orders', J. London Math. Soc. 12 (1937), 195–198.
- [7] A. Ju. Ol'šanskiĭ, 'An infinite group with subgroups of prime order', *Izv. Akad. Nauk SSSR Ser. Mat.* 44 (1980), 309–321.
- [8] D. J. S. Robinson, A course in the theory of groups (Springer, Berlin, 1982).
- [9] I. N. Sanov, 'Solution of Burnside's problem for exponent 4', *Leningrad Univ. Ann. Math. Ser.* 10 (1940), 166–170.
- [10] A. K. Zhurtov and V. D. Mazurov, 'A recognition of simple groups L₂(2^m) in the class of all groups', *Sibirsk. Math. Zh.* 40 (1999), 75–78; English translation: *Siberian Math. J.* 40 (1999), 62–64.

Dipartimento di Informatica Universitá di Ca' Foscari Via Torino 155–30174 Venezia Italy e-mail: jabara@dsi.unive.it