J. Aust. Math. Soc.  78 (2005), 37-57
Multiplicities in Hayman's alternative

Walter Bergweiler
  Mathematisches Seminar
  Christian-Albrechts-Universität zu Kiel
  Ludewig-Meyn Str. 4
  D-24098 Kiel
  Germany
  bergweiler@math.uni-kiel.de
and
J. K. Langley
  School of Mathematical Sciences
  University of Nottingham
  NG7 2RD
  UK
  jkl@maths.nott.ac.uk


Abstract
In 1959 Hayman proved an inequality from which it follows that if $f$ is transcendental and meromorphic in the plane then either $f$ takes every finite complex value infinitely often or each derivative $f^{(k)}$, $k \geq 1$, takes every finite non-zero value infinitely often. We investigate the extent to which these values may be ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken into account.
Download the article in PDF format (size 176 Kb)

TeXAdel Scientific Publishing ©  Australian MS