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Abstract

In this paper, we prove that for a transcendental meromorphic funétionon the complex plane, the
inequalityT(r, f) < 6N(r, 1/(f2f® — 1)) 4+ S(r, f) holds, wheré is a positive integer. Moreover, we
prove the following normality criterion: Le# be a family of meromorphic functions on a dom&rand
letk be a positive integer. If for each € .Z, all zeros off are of multiplicity at leask, and f2 f ® = 1

for z € D, then.Z is normal in the domairD. At the same time we also show that the condition on
multiple zeros off in the normality criterion is necessary.
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1. Introduction

In 1979 Mues ]] proved that for a transcendental meromorphic functfaz) in

the open planef?f’ — 1 has infinitely many zeros. This is a qualitative result.
Later, Zhang [2] obtained a quantitative result, proving that the inequilityf) <
6N(r,1/(f2f' —1)) + S(r, f) holds. Naturally, we ask whether the above inequality
is still true whenN(r, 1/(f2f’ — 1)) is replaced byN(r, 1/(f2f® — 1)). In this
paper, we solve this problem and obtain

THEOREM 1. Let f (2) be a transcendental function in the complex plane andd let
be a positive integer. Then

1
T(r, f) < 6N (I’, m) + S(r, f)
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From Theoreni, we have at once;:

COROLLARY. Let f(2) be a transcendental meromorphic function andKdie a
positive integer. Theri? f ® — 1 assumes every non-zero finite value infinitely often.

Using Mues’ result, Pand’] proved:

THEOREMA ([2]). Let.# be a family of meromorphic function on a domdn If
eachf e .Z satisfiesf?f’ # 1, then.Z is normal on domairD.

Now, utilizing Theoreni we also can obtain the following theorem:

THEOREM 2. Let.Z be a family of meromorphic functions on a dom&irand let
k be a positive integer. If for each € .Z, f has only zeros of multiplicity at leakt
and f2f® £ 1, then.Z is normal on domairD.

The following example shows that the condition on multiple zerdsinfTheoren®
iS necessary.

EXAMPLE. Letk > 2 be a positive integer an& = (nz2*:n=1,2,...}. So,
eachf ¢ .7 satisfiesf2f® £ 1. But.Z is not normal at the origin.

2. Some lemmas

LEMMA 1. Let f(2) be a transcendental function. Thei f® is not identically
constant.

PrROOF. Suppose thaf2f® = C. Obviously,C # 0. Sof # 0 and ¥f3 =
C-1f®/f. Hence we obtain

1 (k)
3T, f) = m(r, F) +01) =001 {m(r, T) + 1} = S(r, ).
This contradicts the assumption thiatz) is a transcendental function. O

LEMMA 2. Let f (2) be a transcendental meromorphic functigiiz) = f2f® —1
andh(z) = g//f = ff&D L 2§ 0, Then

_ 1 1 1
(2.1) 3T, f) < N(r, f) + 2N (r, T) + N (r, a) —N (r, ﬁ) + S(r, f)
_ 1 1

(2.2) [N(, f) — N(r, )]+ m(r, f)+2m<r, T>+N<r, ﬁ)

<N (r, E) + S(r, f).
g
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(3]
ProOF. By Lemmal, we knowg # C andh = 0. Set

1 fo(k) g/ g

3~ 3 f3g’

o]
amar, f) < m(r g) + S(r, f) < N (r g) —N (r,g> + S(r, )

g g g

=N(r,g)+N< ) N(r é)JrS(r f)

=N(r,g)+N< ) N(r f—1h>+S(r f)

_ 1 1 1
=N(r,g)+N< 6) ( T)—N(r, H>+S(r, ).

Hence

1 1
3T(r, f) =3m (r, T) + 3N (r, T) + 0
< N, f)+2N r,1 + N r,l —N r,} + S(r, f).
f g h
Thus the inequality4.1) is proved. Since

3T, fy=m(r, f)+ N(, f) +2m (r, %) + 2N (r, %) + 0(),

the inequality 2.2) can be obtained.

LEmMMA 3. Let f(2), g(2), h(2) (k > 2) be as stated above and let

2 - - J—
a =2k g 17 - SKEDE —4K=29  ag=2k+2k+3)k+5),
k+3 a, = —4k+3)k+1),

a = —(k +5)(kK* — 4k — 29), 2. — 4K — 4K — 29),

and
_ g'(2) g2 h@) !
o - al<9(2>> i <9(2)> +a3<h(z)>
+a“(h(z)) +a5<g(z) ho )

ThenF # 0.

PrROOF. Suppose thaF (z) = 0, we claim that
) 9@ #0;
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(i) h@2) #0;

(iii) all zeros of f (z) are simple.

Suppose first that, is a zero ofg(z) of multiplicity | (I > 1). Fromg(z) =0
andg = f2f® — 1 we can getf (z;) # 0, co. Sincez is a zero of ordefl — 1) of
g = fh we have thaty be a zero oh(z) of multiplicity | — 1. Using the Laurent
series ofF (z) at the pointz;, we can get the coefficient 0z — z,)~2:

Al = (&g + &+ z)I1° — (@ + as + 284 + @)l + (a3 + av).
From the definition of;,i = 1,...,5, we have

_k+5%k+7)

Al = k+3

17— (k+ Dk +5)(K+ DI + 2(k + 1P(k + 3).
Obviously, A(l) # 0 for all positive integerk. So the point is a pole off (2) which
contradicts~ (z) = 0. Hence conclusion (§(2) # 0 holds.

Suppose nextthaisa zero oh(z) of order (I > 1). By (i) we haveg(z) # 0, cc.
Using the Laurent series &f(z) at the pointz,, we can get the coefficient ¢f — z,) =2
asB(l) = —agl + a4l%2. From the definition of;,i = 1, ..., 5, we have

B(l) = —2(k + 1)(k +3)(k + 5| — 4k + 1)(k+3)F <0,

so that the poing, is a pole ofF (z) which contradict$= (z) = 0. Hence conclusion (ii)
h(z) # 0 holds.
Usingh(z) = ff®*Y 4+ 21/ ® and (ii) (h(z) # 0), we can get (iii).
Set¢(2) = h(2)/9(2), we can deduce that(z) is an entire function, all zeros
of ¢ (2) can occur only at multiple poles df(z) and the following expressions hold:
g _fh h_g ¢ ¢
g g o5 g ¢ f¢+¢'

Substituting the above two equalities in the expresstod) for F(z), we get

(2.4) (& +as +as) f29% + (@ + ag + 28, + as) f ¢/

N/ 7\ 2
+ |:a3<%> +a4<%> j|+(az+a3)f/¢50.

Obviously,a, +a; = (k+5)?(k+7) # 0 andg # 0, otherwisey /g = f¢ = 0, that
is, g = C which contradicts the result of Lemma
Thus, by the equalityZ.4), we have

1
(2.5) f'= glll(z) + flia(2) + f2¢l13(2),
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wherely;(2) (i = 1, 2, 3) are differential monomials afp’/¢). Differentiating both
sides of £.5), we have

1¢ 1
f=— —glll(z) + =13, @ + fl2(2) + fl(2) + 2Ff'¢l13(2)
¢ ¢
+ 2 [%ug(z) n |;3<z>] |
Using the above equality and.g), we get
1
"= g|21(2) + fl2(2) + f29l3(2) + F2¢%124(2),
wherel,;(2) (i = 1,...,4) are differential monomials of¢’/¢). Continuing the

above process we obtain
1
@8 Y= 2@+ fle@ + Fla@ + -+ 9@,

whereli(2) (i =1, ..., k = 2) are differential monomials ai’/¢).
Now, suppose; is a zero off . Combining @.5), (2.6) and¢ (z3) # 0, oo, we have

1
f(z) = ——11(%), f<k)(23) = l1(Z).

1
¢(Z) ¢(2)

Further, by the above two equalities and the expressiog(frandh(z) in Lemma2,
we have

9(z) = -1, h(z) =2f(z)f%2z) = 111(Z8) ] (23).

2
% (Zs)
Substituting the above equality in the expressionfft@) = h(z)/g(z) we have
(2.7) $*(z3) = —211(2) ().

SetG(2) = ¢*(2) + 211(2)l1(2). We distinguish two cases.
Case 1.G(2) # 0. By (2.7) and (iii) we have

(2.8) N (r, %) = N(r, %) <N (r, é) <Tr, G)+0®1)

< O{T(r,¢)} + O,

_ _ n_ g1 1
(2.9) T(r,¢) =m(r,¢) = m(r, g) = m(r, g f) < m(r, f) + S(r, f).
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Applying (2.2 of Lemma2, and combining witiN(r, 1/G) = 0 we have

(2.10) m(r,1/f) = S(r, f).

By (2.10, (2.9 and @.8), we have

(2.11) N (r,1/f) = S(r, f).

Combining .10 and .11 we getT(r, f) = T (r,1/f) + O(1) = S(r, f). This
gives a contradiction, sincé is a transcendental meromorphic function.

Case 2.G(z) = 0. Using the expression f@(z), and noting thalt,(2), l,1(2) are
differential monomials of¢’/¢) we deduce that

(2.12) T, ¢) =m(,¢) = S(r, ¢).
Again, using the expression f@(z) and the fact thaG(z) = 0 we have
(2.13) ¢° = —21Da(2).

From .12, we deduce thap(2) is a polynomial or a constant. ¢f is a polynomial,
then the right-hand side o2(13 is a constant or rational function and the left-hand
side of .13 is a polynomial, and this gives a contradiction. &@ a constant. If
¢ = 0, usingg’/g = f¢ = 0, we deduce thag is a constant, which contradicts
Lemmal.

Hencegp(2) = C, whereC # 0. Substituting this equality ir2(4), we have

(a1 + a, + a5)C?*f2 + (3 + a3)Cf =0,

so f’ = C,f?, thatis,(1/f) = —C,, whereC, # 0 is a constant. Then we deduce
that f (z) is a rational function, but this is impossible. This completes the proaf.

LEMMA 4. Let f(2), g(2), h(2),k > 2, F(2) be stated as above. Then all simple
poles off (z) are zeros of(2).

PROOF. Suppose, is a simple pole off (z), then

f(Z) =

2 {14 bo(z—20) + bu(z— 22+ Oz — )},
Z-2)

wherea # 0, by, b, are constants. Sinde> 2, we have

g(z) = f2fk 1
_(=D*kla’®

= g g3 (L 2@ = 2) + (b5 + 20) (2~ 20)° + O((2 ~ 2)°)}.
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/ -1 k+lk! 2
h(z) = gT = ((Z_)ka‘s{(us) + K+ Dby(z — 20) + (k — Dby(z — 2)°

+0((z—2)*)}.

Hence, we have

C (-1
% = (Z(_ ;O){(k+3) — 2b(z — 20) 4 (205 — 4b) (2 — 20)* + O((z — 20)) }
h’ -1 1
ne (Z(_;O)m{(k+3)2—(k+l)bo(2—zo)
K+ 1)?
+[(k13) b§—2<k—1>b1] (z—zo>2+0(<z—zo>3>},

g\ __ 1
(5> =z {(k+3)? — 4k + 3)by(z — 29)

+ [4k + HEE — 8(k + 3)by] (2 — 20)* + O((2 — 2)°)},

AN 1
(%) = G+ 3 — @~ 4b) (2 - 2" + Oz~ %))}
i
h

ot 1 o [KAED e o _2)?
(%) = s |- [og - 2k- 0] e
+0((z~ 20)3)} ,
h"\? 1 1 . X
(F) = Z—2)° (k+3)2{(k+3) —2(k + D (k + 3)bg(z — 2o)
+ [(k+ D?*2k + 7B — 4(k — D (k + 37D, ](z — 20)°* + O((z — )},
gr__ 1 2_ _
T = oz (kY - Gk Dz - 2)

+ 1Bk + 7)b; — 2Bk +5)bi](z - 2)* + O((z — 2)) }.

By substituting all of the above equalities in the expressiaf)(of F(z) and per-
forming some easy calculations we obtain thdz) = O((z — %)). S0,z is the zero
of F(2). This completes the proof. O

LEMMA 5 ([3]). Let Z be a family of meromorphic functions on the unit disc
such that all zeros of functions i# have multiplicity at leask. Leta be a real
number satisfyin@ < o« < k. ThenZ is not normal in any neighbourhood af € A
if and only if there exist

(i) pointsz € A, 7 — z;

(i) positive numbergy, px — 0;and
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(i) functionsf, € Z

such thato, * fy(z + k&) — g(&) spherically uniformly on compact subsets@f
whereg is a nonconstant meromorphic function.

3. Proof of theorems

PrROOF OFTHEOREM 1. Whenk = 1, this is the result of Zhang]. So we assume
thatk > 2. By Lemma3, F(z) # 0. Thus by Lemmd we have

(3.1) Ny(r, f) = N(r,1/F) = T(r, F) + O(1),

where inNy(r, f) only simple poles off (z) are to be considered. BZ.(), we know
that the poles of-(z) can occur only at multiple poles df(z) or zeros ofg(z), or
zeros ofh(z), and all poles of- (2) are of multiplicity at most 2. So

(3.2) N(r, F) < 2Np(r, f) +2N(r, 1/9) + 2N(r, 1/h) + S(r, f),

where in N(z(r, f) only multiple poles off (z) are to be considered, and each pole is
counted only once. Obviously, we have

(3.3) m(r, F) = S(r, ).

By (3.1), (3.2 and 3.3, we have

(3.4) Ny (r, f) < 2Ne(r, )+ 2N(r, 1/9) + 2N(r, 1/h) + S(r, f).
Combining Lemm&, (2.1) and @.4) gives

(3.5) 3T(r, f) < 3Np(r, f)+2N(r, 1/f) +3N(r,1/9) + N(r, 1/h) + S(r, ).
On the other hand, using Lemrdand @.2), we have

(3.6) 3Np(r, f) 4+ N(r,1/h)y < 3[N(r, f) — N(r, f)] + N(r, 1/h)
< 3N(r, 1/g) + S(r, ).

Thus, by 8.5 and 3.6), we obtain

3T(r, f) < 6N(r,1/g9) + 2N(r, 1/f) + S(r, f)
< 6N(r,1/g9) + 2T (r, f) + S(r, ),

thatis, T(r, f) < 6N(r, 1/9) + S(r, f). This completes the proof of Theorein O
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PROOF OFTHEOREM 2. We may assume th&t = A. Suppose tha# is not normal
on A. Then, takingg = k/3 and applying Lemma, we can findf, € .Z, z, € A
andp, — O+ such that

fa(z + oné)

0 = ga(®) — 9E)
Pn

locally uniformly with respect to the spherical metric, wheyds a nonconstant
meromorphic function oft. By the assumption,

Gr(EN(G(ENY — 1= oy > £z + paE) Ty (Z0 + pod) — 1
= 2@+ pé) 13 (Z + pu§) — 1

£ 0.
So

(3.7) gE)gRE) —1#0 or giE)ghE) —1=0.

By Hurwitz’s theorem, all zeros af(¢) are of multiplicity at leask and it is easy to
see thag?(€)g® (&) # 0. Henceg?(£)g® (&) — 1 # 0. According to Mues’s result
(k = 1) and Theoren (k > 2) we find thatg(¢) is not a transcendental meromorphic
function. Ifg(¢) is a polynomial, then its degree is at m&st 1 which contradicts
the fact that the zeros @f(¢) are of multiplicity at leask. If g(&) is a nonconstant
rational function, we segj(¢§) = Q(&)/P (&), whereQ(&) and P (&) are two prime
polynomials and sep = deqg P) andq = deqg Q). From @3.7) we deduce that there
exists a polynomiah(¢) such that

h) +1
hE) -

It is easy to verify that the difference between the degree of the numerator of
9%(£)g® (&) and the degree of the denominator gfi£)g® (¢) is 3(q — p) — k.
It follows from (3.8) thatk = 3(q — p) and(q — p) > 1.

We setn = (q — p) andg(é) = at"+ --- + a, + R(&)/P (&), whereR(¢) and
P (&) are two prime polynomials and dgg) — deg R) > 0. Noting thatg® (&) =
(R(&)/P(&))®, it follows from (3.8) that degP) — deg R) = —n, which contradicts
deg P) — degR) > 0. Thus, we obtain our result. O

(3.8) (&) g¥E) =
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