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Abstract

In this paper, we prove that for a transcendental meromorphic functionf .z/ on the complex plane, the
inequalityT.r; f / < 6N.r;1=. f 2 f .k/ − 1//+ S.r; f / holds, wherek is a positive integer. Moreover, we
prove the following normality criterion: LetF be a family of meromorphic functions on a domainD and
let k be a positive integer. If for eachf ∈F , all zeros off are of multiplicity at leastk, and f 2 f .k/ 6= 1
for z ∈ D, thenF is normal in the domainD. At the same time we also show that the condition on
multiple zeros off in the normality criterion is necessary.
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1. Introduction

In 1979 Mues [1] proved that for a transcendental meromorphic functionf .z/ in
the open plane,f 2 f ′ − 1 has infinitely many zeros. This is a qualitative result.
Later, Zhang [2] obtained a quantitative result, proving that the inequalityT.r; f / <
6N.r;1=. f 2 f ′ − 1//+ S.r; f / holds. Naturally, we ask whether the above inequality
is still true whenN.r;1=. f 2 f ′ − 1// is replaced byN.r;1=. f 2 f .k/ − 1//. In this
paper, we solve this problem and obtain

THEOREM 1. Let f .z/ be a transcendental function in the complex plane and letk
be a positive integer. Then

T.r; f / < 6N

(
r;

1

f 2 f .k/ − 1

)
+ S.r; f /:
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From Theorem1, we have at once:

COROLLARY. Let f .z/ be a transcendental meromorphic function and letk be a
positive integer. Thenf 2 f .k/ − 1 assumes every non-zero finite value infinitely often.

Using Mues’ result, Pang [2] proved:

THEOREM A ([2]). LetF be a family of meromorphic function on a domainD. If
each f ∈ F satisfiesf 2 f ′ 6= 1, thenF is normal on domainD.

Now, utilizing Theorem1 we also can obtain the following theorem:

THEOREM 2. LetF be a family of meromorphic functions on a domainD and let
k be a positive integer. If for eachf ∈ F , f has only zeros of multiplicity at leastk
and f 2 f .k/ 6= 1, thenF is normal on domainD.

The following example shows that the condition on multiple zeros off in Theorem2
is necessary.

EXAMPLE. Let k ≥ 2 be a positive integer andF = {nzk−1 : n = 1;2; : : : }. So,
each f ∈ F satisfiesf 2 f .k/ 6= 1. ButF is not normal at the origin.

2. Some lemmas

LEMMA 1. Let f .z/ be a transcendental function. Thenf 2 f .k/ is not identically
constant.

PROOF. Suppose thatf 2 f .k/ ≡ C. Obviously,C 6= 0. So f 6= 0 and 1= f 3 =
C−1 f .k/= f . Hence we obtain

3T.r; f / = m

(
r;

1

f 3

)
+ O.1/ = O.1/

{
m

(
r;

f .k/

f

)
+ 1

}
= S.r; f /:

This contradicts the assumption thatf .z/ is a transcendental function.

LEMMA 2. Let f .z/ be a transcendental meromorphic function,g.z/ = f 2 f .k/ −1
andh.z/ = g′= f = f f .k+1/ + 2 f ′ f .k/. Then

3T.r; f / < SN.r; f / + 2N

(
r;

1

f

)
+ N

(
r;

1

g

)
− N

(
r;

1

h

)
+ S.r; f /(2.1)

[N.r; f /− SN.r; f /] + m.r; f /+ 2m

(
r;

1

f

)
+ N

(
r;

1

h

)

< N

(
r;

1

g

)
+ S.r; f /:

(2.2)
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PROOF. By Lemma1, we knowg 6≡ C andh 6≡ 0. Set

1

f 3
= f 2 f .k/

f 3
− g′

f 3

g

g′ ;

so

3m.r; f / < m

(
r;

g

g′

)
+ S.r; f / < N

(
r;

g′

g

)
− N

(
r;

g

g′

)
+ S.r; f /

= SN.r; g/+ N

(
r;

1

g

)
− N

(
r;

1

g′

)
+ S.r; f /

= SN.r; g/+ N

(
r;

1

g

)
− N

(
r;

1

f h

)
+ S.r; f /

= SN.r; g/+ N

(
r;

1

g

)
− N

(
r;

1

f

)
− N

(
r;

1

h

)
+ S.r; f /:

Hence

3T.r; f / = 3m

(
r;

1

f

)
+ 3N

(
r;

1

f

)
+ O.1/

< SN.r; f /+ 2N

(
r;

1

f

)
+ N

(
r;

1

g

)
− N

(
r;

1

h

)
+ S.r; f /:

Thus the inequality (2.1) is proved. Since

3T.r; f / = m.r; f /+ N.r; f /+ 2m

(
r;

1

f

)
+ 2N

(
r;

1

f

)
+ O.1/;

the inequality (2.2) can be obtained.

LEMMA 3. Let f .z/, g.z/, h.z/ .k ≥ 2/ be as stated above and let

a1 = 2.k + 1/2 − .3k + 7/.k2 − 4k − 29/

.k + 3/
;

a2 = −.k + 5/.k2 − 4k − 29/;

a3 = 2.k + 2/.k + 3/.k + 5/;

a4 = −4.k + 3/.k + 1/;

a5 = 4.k2 − 4k − 29/;

and

F.z/ = a1

(
g′.z/
g.z/

)2

+ a2

(
g′.z/
g.z/

)′
+ a3

(
h′.z/
h.z/

)′

+ a4

(
h′.z/
h.z/

)2

+ a5

(
g′.z/
g.z/

h′.z/
h.z/

)
:

(2.3)

ThenF 6≡ 0.

PROOF. Suppose thatF.z/ ≡ 0, we claim that

(i) g.z/ 6= 0;
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(ii) h.z/ 6= 0;
(iii) all zeros of f .z/ are simple.

Suppose first thatz1 is a zero ofg.z/ of multiplicity l (l ≥ 1). Fromg.z1/ = 0
andg = f 2 f .k/ − 1 we can getf .z1/ 6= 0;∞. Sincez1 is a zero of order.l − 1/ of
g′ = f h we have thatz1 be a zero ofh.z/ of multiplicity l − 1. Using the Laurent
series ofF.z/ at the pointz1, we can get the coefficient of.z − z1/

−2:

A.l / = .a1 + a4 + z5/l
2 − .a2 + a3 + 2a4 + a5/l + .a3 + a4/:

From the definition ofai , i = 1; : : : ;5, we have

A.l / = −.k + 5/2.k + 7/

k + 3
l 2 − .k + 1/.k + 5/.k + 7/l + 2.k + 1/2.k + 3/:

Obviously,A.l / 6= 0 for all positive integersl . So the pointz1 is a pole ofF.z/ which
contradictsF.z/ ≡ 0. Hence conclusion (i)g.z/ 6= 0 holds.

Suppose next thatz2 is a zero ofh.z/of orderl (l ≥ 1). By (i) we haveg.z2/ 6= 0;∞.
Using the Laurent series ofF.z/ at the pointz2, we can get the coefficient of.z−z2/

−2

asB.l / = −a3l + a4l 2. From the definition ofai , i = 1; : : : ;5, we have

B.l / = −2.k + 1/.k + 3/.k + 5/l − 4.k + 1/.k + 3/l2 < 0;

so that the pointz2 is a pole ofF.z/which contradictsF.z/ ≡ 0. Hence conclusion (ii)
h.z/ 6= 0 holds.

Usingh.z/ = f f .k+1/ + 2 f ′ f .k/ and (ii) (h.z/ 6= 0), we can get (iii).
Set�.z/ = h.z/=g.z/, we can deduce that�.z/ is an entire function, all zeros

of �.z/ can occur only at multiple poles off .z/ and the following expressions hold:

g′

g
= f h

g
= f �;

h′

h
= g′

g
+ �′

�
= f � + �′

�
:

Substituting the above two equalities in the expression (2.3) for F.z/, we get

.a1 + a4 + a5/ f 2�2 + .a2 + a3 + 2a4 + a5/ f �′(2.4)

+
[

a3

(
�′

�

)′
+ a4

(
�′

�

)2
]

+ .a2 + a3/ f ′� ≡ 0:

Obviously,a2 + a3 = .k +5/2.k +7/ 6= 0 and� 6≡ 0, otherwiseg′=g = f � ≡ 0, that
is, g ≡ C which contradicts the result of Lemma1.

Thus, by the equality (2.4), we have

f ′ ≡ 1

�
l11.z/+ f l12.z/+ f 2�l13.z/;(2.5)
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wherel1i .z/ (i = 1;2;3) are differential monomials of.�′=�/. Differentiating both
sides of (2.5), we have

f ′′ = − 1

�

�′

�
l11.z/ + 1

�
l ′
11.z/+ f ′l12.z/ + f l ′

12.z/ + 2 f f ′�l13.z/

+ f 2�

[
�′

�
l13.z/+ l ′13.z/

]
:

Using the above equality and (2.5), we get

f ′′ = 1

�
l21.z/+ f l22.z/+ f 2�l23.z/ + f 3�2l24.z/;

where l2i .z/ (i = 1; : : : ;4) are differential monomials of.�′=�/. Continuing the
above process we obtain

f .k/ = 1

�
lk1.z/+ f lk2.z/ + f 2�lk3.z/+ · · · + f k+1�klkk+2.z/;(2.6)

wherelki.z/ (i = 1; : : : ; k = 2) are differential monomials of.�′=�/.
Now, supposez3 is a zero off . Combining (2.5), (2.6) and�.z3/ 6= 0;∞, we have

f ′.z3/ = 1

�.z3/
l11.z3/; f .k/.z3/ = 1

�.z3/
lk1.z3/:

Further, by the above two equalities and the expression forg.z/ andh.z/ in Lemma2,
we have

g.z3/ = −1; h.z3/ = 2 f ′.z3/ f .k/.z3/ = 2

�2.z3/
l11.z3/lk1.z3/:

Substituting the above equality in the expression for�.z/ = h.z/=g.z/ we have

�3.z3/ = −2l11.z3/lk1.z3/:(2.7)

SetG.z/ = �3.z/ + 2l11.z/lk1.z/. We distinguish two cases.
Case 1.G.z/ 6≡ 0. By (2.7) and (iii) we have

N

(
r;

1

f

)
= SN

(
r;

1

f

)
≤ N

(
r;

1

G

)
< T.r;G/ + O.1/(2.8)

< O{T.r; �/} + O.1/;

T.r; �/ = m.r; �/ = m

(
r;

h

g

)
= m

(
r;

g′

g

1

f

)
≤ m

(
r;

1

f

)
+ S.r; f /:(2.9)
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Applying (2.2) of Lemma2, and combining withN.r;1=G/ = 0 we have

m.r;1= f / = S.r; f /:(2.10)

By (2.10), (2.9) and (2.8), we have

N .r;1= f / = S.r; f /:(2.11)

Combining (2.10) and (2.11) we getT.r; f / = T .r;1= f / + O.1/ = S.r; f /. This
gives a contradiction, sincef is a transcendental meromorphic function.

Case 2.G.z/ ≡ 0. Using the expression forG.z/, and noting thatl11.z/, lk1.z/ are
differential monomials of.�′=�/ we deduce that

T.r; �/ = m.r; �/ = S.r; �/:(2.12)

Again, using the expression forG.z/ and the fact thatG.z/ ≡ 0 we have

�3 ≡ −2l11.z/lk1.z/:(2.13)

From (2.12), we deduce that�.z/ is a polynomial or a constant. If� is a polynomial,
then the right-hand side of (2.13) is a constant or rational function and the left-hand
side of (2.13) is a polynomial, and this gives a contradiction. So� is a constant. If
� ≡ 0, usingg′=g = f � ≡ 0, we deduce thatg is a constant, which contradicts
Lemma1.

Hence,�.z/ ≡ C, whereC 6= 0. Substituting this equality in (2.4), we have

.a1 + a4 + a5/C
2 f 2 + .a2 + a3/C f ′ ≡ 0;

so f ′ = C1 f 2, that is,.1= f /′ ≡ −C1, whereC1 6= 0 is a constant. Then we deduce
that f .z/ is a rational function, but this is impossible. This completes the proof.

LEMMA 4. Let f .z/; g.z/;h.z/; k ≥ 2; F.z/ be stated as above. Then all simple
poles of f .z/ are zeros ofF.z/.

PROOF. Supposez0 is a simple pole off .z/, then

f .z/ = a

.z − z0/

{
1+ b0.z − z0/+ b1.z − z0/

2 + O..z − z0/
3/

}
;

wherea 6= 0, b0, b1 are constants. Sincek ≥ 2, we have

g.z/ = f 2 f .k/ − 1

= .−1/kk!a3

.z − z0/
k+3

{
1 + 2b0.z − z0/ + .b2

0 + 2b1/.z − z0/
2 + O..z − z0/

3/
}
;
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h.z/ = g′

f
= .−1/k+1k!a2

.z − z0/
k+3

{
.k + 3/+ .k + 1/b0.z − z0/+ .k − 1/b1.z − z0/

2

+ O..z − z0/
3/

}
:

Hence, we have

g′

g
= .−1/

.z − z0/

{
.k + 3/− 2b0.z − z0/+ .2b2

0 − 4b1/.z − z0/
2 + O..z − z0/

3/
}
;

h′

h
= .−1/

.z − z0/

1

k + 3

{
.k + 3/2 − .k + 1/b0.z − z0/

+
[
.k + 1/2

k + 3
b2

0 − 2.k − 1/b1

]
.z − z0/

2 + O..z − z0/
3/

}
;

(
g′

g

)2

= 1

.z − z0/2

{
.k + 3/2 − 4.k + 3/b0.z − z0/

+ [
4.k + 4/b2

0 − 8.k + 3/b1

]
.z − z0/

2 + O..z − z0/
3/

}
;(

g′

g

)′
= 1

.z − z0/2

{
.k + 3/− .2b2

0 − 4b1/.z − z0/
2 + O..z − z0/

3/
}
;(

h′

h

)′
= 1

.z − z0/
2

1

k + 3

{
.k + 3/2 −

[
.k + 1/2

k + 3
b2

0 − 2.k − 1/b1

]
.z − z0/

2

+ O..z − z0/
3/

}
;

(
h′

h

)2

= 1

.z − z0/
2

1

.k + 3/2
{
.k + 3/4 − 2.k + 1/.k + 3/2b0.z − z0/

+ [
.k + 1/2.2k + 7/b2

0 − 4.k − 1/.k + 3/2b1

]
.z − z0/

2 + O..z − z0/
3/

}
;

g′

g

h′

h
= 1

.z − z0/
2

{
.k + 3/2 − .3k + 7/b0.z − z0/

+ [.3k + 7/b2
0 − 2.3k + 5/b1].z− z0/

2 + O..z − z0/
3/

}
:

By substituting all of the above equalities in the expression (2.3) of F.z/ and per-
forming some easy calculations we obtain thatF.z/ = O..z− z0//. So,z0 is the zero
of F.z/. This completes the proof.

LEMMA 5 ([3]). LetF be a family of meromorphic functions on the unit disc1
such that all zeros of functions inF have multiplicity at leastk. Let Þ be a real
number satisfying0 ≤ Þ < k. ThenF is not normal in any neighbourhood ofz0 ∈ 1
if and only if there exist

(i) pointszk ∈ 1, zk → z0;
(ii) positive numbers²k, ²k → 0; and
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(iii) functions fk ∈ F
such that²−Þ

k fk.zk + ²k¾/ → g.¾/ spherically uniformly on compact subsets ofC,
whereg is a nonconstant meromorphic function.

3. Proof of theorems

PROOF OFTHEOREM 1. Whenk = 1, this is the result of Zhang [4]. So we assume
thatk ≥ 2. By Lemma3, F.z/ 6≡ 0. Thus by Lemma4 we have

N1.r; f / ≤ N .r;1=F/ ≤ T.r; F/+ O.1/;(3.1)

where inN1.r; f / only simple poles off .z/ are to be considered. By (2.3), we know
that the poles ofF.z/ can occur only at multiple poles off .z/ or zeros ofg.z/, or
zeros ofh.z/, and all poles ofF.z/ are of multiplicity at most 2. So

N.r; F/ ≤ 2SN.2.r; f /+ 2N.r;1=g/+ 2N.r;1=h/+ S.r; f /;(3.2)

where inSN.2.r; f / only multiple poles off .z/ are to be considered, and each pole is
counted only once. Obviously, we have

m.r; F/ = S.r; f /:(3.3)

By (3.1), (3.2) and (3.3), we have

N1.r; f / ≤ 2SN.2.r; f /+ 2N.r;1=g/+ 2N.r;1=h/+ S.r; f /:(3.4)

Combining Lemma2, (2.1) and (3.4) gives

3T.r; f / < 3SN.2.r; f /+ 2N.r;1= f /+ 3N.r;1=g/ + N.r;1=h/+ S.r; f /:(3.5)

On the other hand, using Lemma2 and (2.2), we have

3SN.2.r; f /+ N.r;1=h/ ≤ 3[N.r; f / − SN.r; f /] + N.r;1=h/(3.6)

< 3N.r;1=g/+ S.r; f /:

Thus, by (3.5) and (3.6), we obtain

3T.r; f / < 6N.r;1=g/+ 2N.r;1= f /+ S.r; f /

< 6N.r;1=g/+ 2T.r; f /+ S.r; f /;

that is,T.r; f / < 6N.r;1=g/+ S.r; f /. This completes the proof of Theorem1.
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PROOF OFTHEOREM 2. We may assume thatD = 1. Suppose thatF is not normal
on1. Then, takingÞ = k=3 and applying Lemma5, we can find fn ∈ F , zn ∈ 1

and²n → 0+ such that

fn.zn + ²n¾/

²Þn
= gn.¾/ → g.¾/

locally uniformly with respect to the spherical metric, whereg is a nonconstant
meromorphic function onC. By the assumption,

g2
n.¾/.gn.¾//

.k/ − 1 = ²k−3Þ
n f 2

n .zn + ²n¾/ f .k/n .zn + ²n¾/− 1

= f 2
n .zn + ²n¾/ f .k/n .zn + ²n¾/− 1

6= 0:

So

g2.¾/g.k/.¾ / − 1 6= 0 or g2.¾/g.k/.¾ /− 1 ≡ 0:(3.7)

By Hurwitz’s theorem, all zeros ofg.¾/ are of multiplicity at leastk and it is easy to
see thatg2.¾/g.k/.¾ / 6≡ 0. Hence,g2.¾/g.k/.¾ / − 1 6= 0. According to Mues’s result
.k = 1/ and Theorem1 .k ≥ 2/ we find thatg.¾/ is not a transcendental meromorphic
function. If g.¾/ is a polynomial, then its degree is at mostk − 1 which contradicts
the fact that the zeros ofg.¾/ are of multiplicity at leastk. If g.¾/ is a nonconstant
rational function, we setg.¾/ = Q.¾/=P.¾/, whereQ.¾/ and P.¾/ are two prime
polynomials and setp = deg.P/ andq = deg.Q/. From (3.7) we deduce that there
exists a polynomialh.¾/ such that

g2.¾/g.k/.¾ / = h.¾/+ 1

h.¾/
:(3.8)

It is easy to verify that the difference between the degree of the numerator of
g2.¾/g.k/.¾ / and the degree of the denominator ofg2.¾/g.k/.¾ / is 3.q − p/ − k.
It follows from (3.8) thatk = 3.q − p/ and.q − p/ ≥ 1.

We setn = .q − p/ andg.¾/ = a0¾
n + · · · + an + R.¾/=P.¾/, whereR.¾/ and

P.¾/ are two prime polynomials and deg.P/ − deg.R/ > 0. Noting thatg.k/.¾ / =
.R.¾/=P.¾//.k/, it follows from (3.8) that deg.P/− deg.R/ = −n, which contradicts
deg.P/− deg.R/ > 0. Thus, we obtain our result.
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