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Abstract

In this paper we continue our previous studies and derive all possible expressions for a meromorphic
function and its differential polynomials when they share two finite distinct valuesa1;a2 CM (counting
multiplicities) in majority.

2000Mathematics subject classification: primary 30D35.
Keywords and phrases: meromorphic function, small function, sharing value, differential polynomial.

1. Introduction

Let f denote a nonconstant meromorphic function in the complex plane. We shall
use the standard notations in Nevanlinna’s value distribution theory of meromorphic
functions such as the characteristic functionT.r; f /, the counting function of the
polesN.r; f /, and the proximity functionm.r; f / (see, for example, [3]). By S.r; f /
we denote any quantity satisfyingS.r; f / = o.T.r; f // asr → ∞ possibly outside a
set ofr of finite linear measure. A meromorphic functiona .6≡ ∞/ is called asmall
function with respect tof provided thatT.r;a/ = S.r; f /.

For a small functiona with respect to two meromorphic functionsf andg, we
say that f and g sharea IM (CM) provided that f − a and g − a have the same
zeros ignoring (counting) multiplicities. Obviously, two meromorphic functions will
have more common properties if they share more values or small functions. In
fact, Nevanlinna [7] has proved the famous 5-value theorem which says that two
nonconstant meromorphic functions must be equal if they share five values IM. In
general, it is difficult to get relationship between two meromorphic functions when
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they just share four or less values IM. The number of shared values of two meromorphic
functions may be reduced if some additional conditions been added. For instance, it
was shown by Lee-Yang [8] that if f is entire and shares two finite values CM withf ′,
then f ≡ f ′. Since then, the subject of sharing values between meromorphic or entire
functions and their derivatives or linear differential polynomials has been studied by
many mathematicians, see, for example, [2, 5, 6, 10]. In 1993, Rüssmann [9] proved
the following result: Letf be a meromorphic function and

L. f / := f .k/ + ak−1 f .k−1/ + · · · + a0 f

wherek ≥ 2 and theaj ’s are polynomials. Iff andL. f / share two distinct values
in C counting multiplicities, thenL. f / = f up to some exceptional cases which
were also given. Unfortunately this result is not published in any journal. Three
years later, Bernstein-Chang-Li [1] obtained a similar result for entire functions of
several complex variables. As a special case, they proved that any nonconstant entire
function f and its linear differentialpolynomialL. f / (with all coefficientsbeing small
meromorphic functions off ) must be equal if the two functions share two values CM.
In [4] the present authors generalized this result and proved the following

THEOREM A. Let f be a nonconstant entire function and

L. f / := c−1 + c0 f + c1 f ′ + · · · + cn f .n/;(1)

whereci .cn 6= 0/, .i = −1;0;1; : : : ;n/ are small meromorphic functions off .
Let a1 and a2 be two distinct values inC. If f and L. f / sharea1 CM, and share
a2 IM, then f = L. f / or f and L. f / have the following expressions

f = a2 + .a1 − a2/.1 − eÞ/2; L. f / = 2a2 − a1 + .a1 − a2/e
Þ;

whereÞ is an entire function.

Recently, Wang [10] improved above result as follows:

THEOREM B. Let f be a nonconstant entire function andL. f / the linear differential
polynomial defined in(1). If f and L. f / share two complex numbersa1 anda2 IM,
and if−.a1/ > .n +2/=.n +3/, wheren is the highest order of the derivative involved
in theL. f /, then the conclusion in TheoremA still holds, where

−.a1/ = −.a1; f; L. f // =




lim inf
r →∞

SN0.r;1=. f − a1//

SN.r;1=. f − a1//
; if SN.r;1=. f − a1// 6≡ 0;

1; otherwise

is the notation introduced by Mues in[5]. Here SN0.r;1=. f −a1// denote the counting
function of thosea1-points of f and L. f / of the same multiplicities but counted only
once. Note that−.c/ = 1 for a CM shared valuec.
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It was shown in [4] that the result in TheoremB is not true if we remove the
condition−.a1/ > .n + 2/=.n + 3/. It is conjectured, [10], that this number can be
replaced by 1/2. Whenf andL. f / share two values IM, it has been a challenging
problem to find some more precise relationships betweenf andL. f /. In the present
paper, we prove that the number.n+2/=.n+3/ in TheoremB can be replaced by 2/3.
As an application, we give all the forms of entire functionsf if f share two small
functions IM withc−1 + c0 f + c1 f ′, wherec−1; c0, andc1 are small functions off .

Before stating our results, we recall the definitions of sharing small functions in
the sense of IM∗ or CM∗, which is a generalization of the definition in the sense of
IM or CM. Let f andg be two nonconstant meromorphic functions, and leta be a
small function with respect tof andg. Denote bySN.r; f = a = g/ the reduced
counting function of the commona-points of f andg ignoring the multiplicities, and
SNE.r; f = a = g/ the reduced counting function of the commona-points of f andg
with the same multiplicities.

DEFINITION 1. The small functiona is said to be shared byf andg in the the sense
of IM ∗, if

SN
(

r;
1

f − a

)
− SN.r; f = a = g/ = S.r; f /;

and

SN
(

r;
1

g − a

)
− SN.r; f = a = g/ = S.r; g/:

Similarly, a is said to be shared byf andg in the sense of CM∗, if

SN
(

r;
1

f − a

)
− SNE.r; f = a = g/ = S.r; f /;

and

SN
(

r;
1

g − a

)
− SNE.r; f = a = g/ = S.r; g/:

Using [4, Theorem 2] we can easily see that TheoremA remains to be valid when
f is a nonconstant meromorphic function satisfyingSN.r; f / = S.r; f /, and f; L. f /
share a small functiona1 CM∗, and share another small functiona2 IM ∗. In fact,
Theorem 2 in [4] can be extended further as follows:

THEOREM C. Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, and L. f / is the linear differential polynomial defined in(1).
Let a1 anda2 be two distinct small functions off . If f and L. f / sharea1 CM∗ and
sharea2 IM∗, then f = L. f / or f and L. f / have the following expressions

f = a2 + .a1 − a2/.1 − h/2; L. f / = 2a2 − a1 + .a1 − a2/h;
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whereh is a meromorphic function satisfyingSN.r;h/+ SN.r;1=h/ = S.r; f /.

REMARK. Here we would like to point out that the functioneÞ in [4, Theorem 2]
should be replaced byh as in TheoremC.

In this paper, by further counting the zeros and poles of the auxiliary functions
and using some of our earlier results (see [4]), we are able to improve TheoremC by
proving the following main result:

THEOREM 1.1. Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, andg = L. f / is the linear differential polynomial defined in(1).
Let a1 anda2 be two distinct complex numbers. Ifmax{−.a1/; −.a2/} > 1=2, then f
andg assume one of the following cases:

(a) f = g.
(b) f = a2 + .a1 − a2/.1 − h/2 and g = 2a2 − a1 + .a1 − a2/h, whereh is a

meromorphic function satisfyingSN.r;h/+ SN.r;1=h/ = S.r; f /.
(c) f = a1 + .a2 − a1/.1 − h/2 and g = 2a1 − a2 + .a2 − a1/h, whereh is a

meromorphic function satisfyingSN.r;h/+ SN.r;1=h/ = S.r; f /.
(d) There exists an integerk ≥ 3 such thatkÞ = ', where

Þ = f ′ − g′

f − g
− g′

g − a1
− g′

g − a2
;(2)

' = f ′. f − g/

. f − a1/. f − a2/
:(3)

If, furthermore,max{−.a1/; −.a2/} > 2=3, then one of the first three cases above must
hold.

When the linear differential polynomialg in Theorem1.1 is restricted to involve
only the first derivative off , we have the following result:

THEOREM 1.2. Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, and g = c−1 + c0 f + c1 f ′, where c−1; c0 and c1 are small
meromorphic functions off . Leta1 anda2 be two distinct small functions off . If f
andg sharea1 anda2 IM∗, then one of the following cases holds

(a) f = g.
(b) f = a2 + .a1 − a2/.1 − h/2, g = 2a2 − a1 + .a1 − a2/h;
(c) f = a1 + .a2 − a1/.1 − h/2, g = 2a1 − a2 + .a2 − a1/h;
(d) f = .a1 + a2/=2 + .a2 − a1/.h + 1=h/=4, g = .a1 + a2/=2 + .a2 − a1/h=2,

whereh is a meromorphic function satisfyingSN.r;h/+ SN.r;1=h/ = S.r; f /.
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COROLLARY 1.3. If c−1; c0 andc1 are constants andc0 6= 1, c1 6= 0, then for any
distinct rational functionsa1.z/ anda2.z/, the equation

.c1 f ′ + c0 f + c−1/
2 − 2 f .c1 f ′ + c0 f + c−1/+ .a1 + a2/ f − a1a2 = 0(4)

has no transcendental meromorphic solution.

2. Lemmas

Let f be a meromorphic function, anda be a small function off . In the following,
SN.k.r;1=. f − a// is defined to be the counting function of all zeros off .z/ − a.z/
with multiplicities greater than or equal tok, and any such zero is counted once only;
SN[k].r;1=. f − a// is defined similarly, but it counts the zeros off .z/ − a.z/ with
multiplicities k.

LEMMA 2.1 ([4]). Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, andg = L. f / is the linear differential polynomial defined in(1).
Furthermore, leta1 anda2 be two distinct small functions off . If f and g sharea1

anda2 IM∗, and if f 6= g, then

T.r; f / = SN
(

r;
1

f − a1

)
+ SN

(
r;

1

f − a2

)
+ S.r; f /;(5)

T.r; f / ≤ 2T.r; g/+ S.r; f /:(6)

LEMMA 2.2 ([4]). Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, andg = L. f / is the linear differential polynomial defined in(1).
Furthermore, leta1 and a2 be two distinct complex numbers. Iff and g sharea1

anda2 IM∗, and if f 6= g, then
∑n

j =0 cj' j = 0, where' j is defined by the recurrence
formula

' j +1 = ' ′
j + '' j ; '0 = 1; j = 0;1; : : : ;n − 1;

and' is the function defined in(3).

LEMMA 2.3. Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, andg = L. f / is the linear differential polynomial defined in(1).
Furthermore, leta1 anda2 be two distinct small functions off . If f and g sharea1

anda2 IM∗, and if T.r; f / = T.r; g/+ S.r; f /, then f = g.

PROOF. With loss of generality, we assume that botha1 andb2 are complex numbers,
otherwise, do the following transformation

F = . f − a1/=.a2 − a1/; G = .g − a1/=.a2 − a1/:
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Since f andg sharea1 anda2 IM ∗, we see thatF andG share 0;1 IM∗, andG is a
differential polynomial ofF with all coefficients being small functions ofF .

Let

 = g′. f − g/

.g − a1/.g − a2/
:(7)

SinceT.r; f / = T.r; g/ + S.r; f /, by the proof of Lemma2.2 (see [4, page 353]),
we can getT.r;  / = S.r; f /, and f = g.

LEMMA 2.4. Suppose thatf is a nonconstant meromorphic function satisfying
SN.r; f / = S.r; f /, andg = L. f / is the linear differential polynomial defined in(1).
Furthermore, leta1 anda2 be two distinct small functions off . If f and g sharea1

anda2 IM∗, and if f 6= g, then

SN.2

(
r;

1

g − a1

)
+ SN.2

(
r;

1

g − a2

)
= S.r; f /:

PROOF. Without loss of generality, we assume that botha1 and a2 are complex
numbers. Let' be the function defined in (3). Since f andg sharea1;a2 IM ∗, and
f 6= g, it is easily seen that' 6= 0, andT.r; '/ = S.r; f /. Rewrite (3) as

f ′ = '. f − a1/+w1.g − a2/;(8)

wherew1 = f ′=. f − a2/. Taking derivative and replacingf ′ by the right-hand side
of (8), we get

f ′′ = '2. f − a1/+w2.g − a2/;(9)

where'2 = ' ′ + '2, and

w2 = w′
1 + 'w1 +w1g′=.g − a2/:(10)

Similarly, using (8), we get

f . j / = ' j . f − a1/+w j .g − a2/; j = 1;2; : : : ;(11)

where' j andw j are defined by the following recurrence formulae

' j +1 = ' ′
j + '' j ; '0 = 1; j = 0;1; : : : ;(12)

w j +1 = w′
j + w1' j +w j

g′

g − a2
; j = 1;2; : : : :(13)

From (11) and by the definition ofg, we get

g = c−1 + c0a1 +
(

n∑
j =0

cj' j

)
. f − a1/+

(
n∑

j =1

cjw j

)
.g − a2/:
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By Lemma2.2, we have
∑n

j =0 cj' j = 0. Hence

g = c−1 + c0a1 +
(

n∑
j =1

cjw j

)
.g − a2/:(14)

Suppose thatz0 is ana2-point ofg of multiplicity k ≥ 2 as well as a simplea2-point
of f , andz0 is not the pole or zero of anycj . Then we have

w′
1.z/

w1.z/
+ g′.z/

g.z/− a2
= k − 1

z − z0
+ O.1/:(15)

Equality (15) and (10) imply thatz0 is a pole ofw2 of multiplicity 2. By recurrence
formula (13), we can see thatz0 is a pole ofw j of multiplicity j . Therefore, from (14),
we getk ≥ n. Hence the multiplicities of ‘almost all’ multiplea2-points ofg are great
than or equal ton.

Suppose thatz1 is ana2-point ofg of multiplicity k ≥ n+1. It follows from (14) that
a2 = c−1.z1/+c0.z1/a1. If SN.n+1.r;1=.g−a2// 6= S.r; f /, then we geta2 = c−1+c0a1.
Therefore, by (14), we get

∑n
j =1 cjw j = 1. This is impossible becausez1 is a pole of

w j of multiplicity j . HenceSN.n+1 .r;1=.g − a2// = S.r; f /, and thus

SN.2

(
r;

1

g − a2

)
= SN[n]

(
r;

1

g − a2

)
+ S.r; f /:

On the other hand, thea2-points ofg of multiplicity n are poles ofwn+1.g − a2/. By
(11), these points must be poles off .n+1/ − 'n+1. f − a1/. Note that f is a function
satisfyingSN.r; f / = S.r; f /. We get

SN[n]

(
r;

1

g − a2

)
= S.r; f /:

HenceSN.2.r;1=.g−a2// = S.r; f /. Similarly, we haveSN.2.r;1=.g−a1// = S.r; f /.
This completes the proof of Lemma2.4.

3. Proofs of the results

PROOF OFTHEOREM 1.1. Let

þ j = f ′

f − aj
− g′

g − aj
; j = 1;2:(16)

By the lemma of the logarithmic derivative, we see thatþ j ( j = 1;2) are meromorphic
functions satisfyingm.r; þ j / = S.r; f /. Since f andg sharea1 anda2 IM ∗, we have

T.r; þ j / = SN
(

r;
1

f − aj

)
− SN.r; f = aj = g/+ S.r; f /; j = 1;2:(17)



98 Chung-Chun Yang and Ping Li [8]

Suppose thatz1 is ana1-point of f of multiplicity k as well as a simplea1-point
of g. By computation, we get

'.z1/ = k
f ′.z1/− g′.z1/

a1 − a2
= kþ2.z1/:

If there exists a positive integerk such that'−kþ2 = 0, thenT.r; þ2/ = T.r; '=k/ =
S.r; f /. Hencef andg sharea2 CM∗. By TheoremC, Case (b) must hold. Similarly,
if there exists a positive integerk such that' − kþ1 = 0, then Case (c) must hold.

In the following, we assume that' − kþ1 6= 0 and' − kþ2 6= 0 for any integerk.
Then we have

SN[k]

(
r;

1

f − a1

)
≤ SN

(
r;

1

' − kþ2

)
≤ T.r; þ2/+ S.r; f /; k = 1;2; : : :(18)

Similarly,

SN[k]

(
r;

1

f − a2

)
≤ SN

(
r;

1

' − kþ1

)
≤ T.r; þ1/+ S.r; f /; k = 1;2; : : :(19)

By Lemma2.4, we haveSN.2.r;1=.g − aj // = S.r; f /, j = 1;2. Therefore,

SN[1]

(
r;

1

f − aj

)
= SNE.r; f = aj = g/+ S.r; f /; j = 1;2:(20)

Letw1 = f ′=. f − a2/. We haveT.r;w1/ = SN.r;1=. f − a2//+S.r; f /. It is obvious
that anya1-point of f of multiplicity k is a zero ofw1 of multiplicity k−1. Therefore,

SN[2]

(
r;

1

f − a1

)
+ 2SN[3]

(
r;

1

f − a1

)
+ 3SN.4

(
r;

1

f − a1

)

≤ N

(
r;

1

w1

)
≤ T.r;w1/ ≤ SN

(
r;

1

f − a2

)
+ S.r; f /:

It follows that
1

3
SN[2]

(
r;

1

f − a1

)
+ 2

3
SN[3]

(
r;

1

f − a1

)
+ SN.4

(
r;

1

f − a1

)

≤ 1

3
SN
(

r;
1

f − a2

)
+ S.r; f /:

From (17), (18) and the above inequality, we deduce that

SN
(

r;
1

f − a1

)
− SNE.r; f = a1 = g/

= SN[2]

(
r;

1

f − a1

)
+ SN[3]

(
r;

1

f − a1

)
+ SN.4

(
r;

1

f − a1

)
+ S.r; f /
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= 2

3
SN[2]

(
r;

1

f − a1

)
+ 1

3
SN[3]

(
r;

1

f − a1

)
+ 1

3
SN[2]

(
r;

1

f − a1

)

+ 2

3
SN[3]

(
r;

1

f − a1

)
+ SN.4

(
r;

1

f − a1

)
+ S.r; f /

≤
[
SN
(

r;
1

f − a2

)
− SNE.r; f = a2 = g/

]
+ 1

3
SN
(

r;
1

f − a2

)
+ S.r; f /

= 4

3
SN
(

r;
1

f − a2

)
− SNE.r; f = a2 = g/+ S.r; f /:

On the other hand, from (17)–(20), we get

SNE.r; f = a1 = g/+ SNE.r; f = a2 = g/ ≤ SN
(

r;
1

f − aj

)
+ S.r; f /(21)

for j = 1;2. Hence

SNE .r; f = a2 = g/ ≤ 2

3
SN
(

r;
1

f − a2

)
+ S.r; f /;

which implies that−.a2/ ≤ 2=3. The inequality−.a1/ ≤ 2=3 can be obtained similarly.
Therefore, the condition max{−.a1/; −.a2/} > 2=3 implies that one of the first three
cases in Theorem1.1must hold.

LetÞ be the function defined in (2). From (3), we see that the zeros off − g must
be the zeros of' as long as they are not thea1-points ora2-points of f . Furthermore,
the multiple zeros off − g must be the zeros of'. Therefore, ‘almost all’ of the zeros
of f − g are simple. By Lemma2.4, ‘almost all’ of theaj -points (j = 1;2) of g are
also simple. HenceT.r; Þ/ = S.r; f /. By computation, we see that the equation

kÞ.z/ − '.z/ = 0

holds for ‘almost all’aj -points (j = 1;2) of f of multiplicity k ≥ 3. If

SN.3

(
r;

1

f − a1

)
+ SN.3

(
r;

1

f − a2

)
6= S.r; f /;

then there exists an integerk ≥ 3 such thatkÞ − ' = 0. Therefore, Case (d) in
Theorem1.1holds. If

SN.3

(
r;

1

f − a1

)
+ SN.3

(
r;

1

f − a2

)
= S.r; f /;

then from (21), (20) and (19) we can deduce that

SNE.r; f = a1 = g/ ≤ SN
(

r;
1

f − a2

)
− SNE.r; f = a2 = g/+ S.r; f /
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= SN[2]

(
r;

1

f − a2

)
+ SN.3

(
r;

1

f − a2

)
+ S.r; f /

≤ SN
(

r;
1

f − a1

)
− SNE.r; f = a1 = g/+ S.r; f /;

which implies 2SNE.r; f = a1 = g/ ≤ SN.r;1=. f −a1//+S.r; f /. Hence−.a1/ ≤ 1=2.
Similarly, we can get−.a2/ ≤ 1=2. Therefore, the condition max{−.a1/; −.a2/} > 1=2
implies that one of the four cases in Theorem1.1must hold. This completes the proof
of Theorem1.1.

PROOF OFTHEOREM 1.2. Suppose thatf 6= g. Then by Lemma2.4 ‘almost all’
aj -points (j = 1;2) of g are simple. IfSN.2.r;1=. f − a1// = S.r; f /, then f andg
sharea1 CM∗. By TheoremA, Case (b) holds. Similarly, Case (c) holds provided that
SN.2.r;1=. f − a2// = S.r; f /.

In the following, we assume thatSN.2.r;1=. f − aj // 6= S.r; f / for j = 1;2. Note
thataj .z/ = c−1.z/+ c0.z/aj .z/ holds for ‘almost all’aj -points of f andg. We have

aj = c−1 + c0aj ; j = 1;2:(22)

Sincea1 6= a2, it follows from (22) thatc0 = 1 andc−1 = 0. Henceg = f + c1 f ′.
This and (3) lead to

. f − g/2 = −c1'. f − a1/. f − a2/:(23)

If −c1' 6= 1, theng.g − 2 f / = −c1'. f − a1/. f − a2/− f 2 is a polynomial inf
of degree 2. Therefore,

T.r; g.g − 2 f // = 2T.r; f /+ S.r; f /:(24)

Note that g − 2 f is linear differential polynomial inf , henceT.r; g − 2 f / ≤
T.r; f /+ S.r; f /. Thus

T.r; g.g − 2 f / ≤ T.r; g/+ T.r; f /+ S.r; f / ≤ 2T.r; f /+ S.r; f /:(25)

HenceT.r; f / = T.r; g/ + S.r; f /. It follows that f = g by Lemma2.3, which
contradicts the assumption.

If −c1' = 1, then (23) becomes. f − g/2 = . f − a1/. f − a2/, which leads to

f = g2 − a1a2

2g − a1 − a2
:(26)

Note thatf is a function satisfyingSN.r; f / = S.r; f /andg = L. f /. Equation (26)
implies

SN.r;h/+ SN.r;1=h/ = S.r; f /;
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whereh = .2g − a1 − a2/=.a2 − a1/. Obviously, f andg can be expressed as follows

f = a1 + a2

2
+ a2 − a1

4

(
h + 1

h

)
; g = a1 + a2

2
+ a2 − a1

2
h;

which completes the proof of Theorem1.2.

PROOF OFCOROLLARY 1.3. If f is a transcendental meromorphic solution of (4),
then

. f − g/2 = . f − a1/. f − a2/;(27)

whereg = c1 f ′ + c0 f + c−1. From (27), we can see thatf and g share botha1

anda2 IM ∗, andSN.r; f / = S.r; f /. By Theorem1.2, we get

f = a1 + a2

2
+ a2 − a1

4

(
h + 1

h

)
;(28)

g = a1 + a2

2
+ a2 − a1

2
h;(29)

whereh is a meromorphic function satisfyingSN.r;h/+ SN.r;1=h/ = S.r; f /. Since
g = c1 f ′ + c0 f + c−1, it follows from (28) that

g = c−1 + c0
a1 + a2

2
+
(

c0
a2 − a1

4
+ c1

(
a′

2 − a′
1

4
+ a2 − a1

4

h′

h

))
h

+ c1
a′

1 + a′
2

2
+
(

c0
a2 − a1

4
+ c1

(
a′

2 − a′
1

4
− a2 − a1

4

h′

h

))
1

h
:

This and (29) lead to

c−1 + c0
a1 + a2

2
+ c1

a′
1 + a′

2

2
= a1 + a2

2
;

c0
a2 − a1

4
+ c1

(
a′

2 − a′
1

4
+ a2 − a1

4

h′

h

)
= a2 − a1

2
;

c0
a2 − a1

4
+ c1

(
a′

2 − a′
1

4
− a2 − a1

4

h′

h

)
= 0:

From the last two equations, we get.1− c0/.a2 − a1/ = c1.a′
2 − a′

1/. Therefore, there
exist a nonzero constantA such thata2.z/ − a1.z/ = Ae.1−c0/z=c, which is not any
rational function, and contradicts the assumption. This also completes the proof of
Corollary1.3.
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Concluding remarks

(i) It seems to be an interesting and challenging problem to find the least nonnega-
tive numberd such that Theorem1.1remains to be valid when max.−.a1/; −.a2// > d.

(ii) We wonder whether Theorem1.2 is true if g is replaced by an arbitrary linear
differential polynomial.
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