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Abstract

In this paper we continue our previous studies and derive all possible expressions for a meromorphic
function and its differential polynomials when they share two finite distinct vadues CM (counting
multiplicities) in majority.
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1. Introduction

Let f denote a nonconstant meromorphic function in the complex plane. We shall
use the standard notations in Nevanlinna’s value distribution theory of meromorphic
functions such as the characteristic functibtr, f), the counting function of the
polesN(r, f), and the proximity functiom(r, f) (see, for example3]). By S(r, f)
we denote any quantity satisfyir®r, f) = o(T (r, f)) asr — oo possibly outside a
set ofr of finite linear measure. A meromorphic functiar(z oo) is called asmall
function with respect td provided thafT (r, a) = S(r, f).

For a small functiora with respect to two meromorphic functiorfsandg, we
say thatf andg sharea IM (CM) provided thatf — a andg — a have the same
zeros ignoring (counting) multiplicities. Obviously, two meromorphic functions will
have more common properties if they share more values or small functions. In
fact, Nevanlinna 7] has proved the famous 5-value theorem which says that two
nonconstant meromorphic functions must be equal if they share five values IM. In
general, it is difficult to get relationship between two meromorphic functions when
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they just share four or less values IM. The number of shared values of two meromorphic
functions may be reduced if some additional conditions been added. For instance, it
was shown by Lee-Yan@] thatif f is entire and shares two finite values CM with

thenf = f’. Since then, the subject of sharing values between meromorphic or entire
functions and their derivatives or linear differential polynomials has been studied by

many mathematicians, see, for examp 5, 6, 10]. In 1993, Rissmann{] proved

the following result: Letf be a meromorphic function and

L(f):=f® 4a  f& D 4. af

wherek > 2 and theg;’s are polynomials. Iff andL(f) share two distinct values

in C counting multiplicities, therL(f) = f up to some exceptional cases which
were also given. Unfortunately this result is not published in any journal. Three
years later, Bernstein-Chang-Li][obtained a similar result for entire functions of
several complex variables. As a special case, they proved that any nonconstant entir
function f andits linear differential polynomial ( f) (with all coefficients being small
meromorphic functions of ) must be equal if the two functions share two values CM.

In [4] the present authors generalized this result and proved the following

THEOREMA. Let f be a nonconstant entire function and
1) L(fy:==ci+cf+cf +---4+c,f™,

wherec (¢, # 0), (i = —1,0,1,...,n) are small meromorphic functions df.
Leta; and a, be two distinct values i€. If f and L(f) sharea; CM, and share
a, IM, thenf = L(f) or f andL(f) have the following expressions

f=a+ (@ —a)l-e)% L(f)=2a—a + @ —ae,
wherea is an entire function.

Recently, Wang10] improved above result as follows:

THEOREMB. Let f be a nonconstant entire function ahdf) the linear differential
polynomial defined irf1). If f andL(f) share two complex numbeas anda, IM,
andifr(a) > (n+2)/(n+ 3), wheren is the highest order of the derivative involved
in theL (), then the conclusion in Theorefnstill holds, where

inf No(r, 1/(f —ay))

t@) =t f,L(f) =1 = Nr 1/(f —ay))’
1, otherwise

if N(r, 1/(f —ay) #0;

is the notation introduced by Mues[if]. HereNo(r, 1/(f —a,)) denote the counting
function of thosey-points of f and L () of the same multiplicities but counted only
once. Note that(c) = 1for a CM shared value.
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It was shown in 4] that the result in Theorer® is not true if we remove the
conditionz(a;) > (n+ 2)/(n+ 3). Itis conjectured,10], that this number can be
replaced by 1/2. Wheifi andL (f) share two values IM, it has been a challenging
problem to find some more precise relationships betwfeandL (). In the present
paper, we prove that the numbqer+2) /(n+ 3) in TheorenB can be replaced by 2/3.
As an application, we give all the forms of entire functiohsf f share two small
functions IM withc_; + ¢ f + ¢, T/, wherec_;, ¢, andc; are small functions of .

Before stating our results, we recall the d#fims of sharing small functions in
the sense of IMor CM*, which is a generalization of the definition in the sense of
IM or CM. Let f andg be two nonconstant meromorphic functions, andhléte a
small function with respect td andg. Denote byN(r, f = a = g) the reduced
counting function of the commae-points of f andg ignoring the multiplicities, and
Ne(r, f = a = g) the reduced counting function of the commaxpoints of f andg
with the same multiplicities.

DeriniTION 1. The small functiora is said to be shared biyandg in the the sense
of IM*, if

N(r~1-)-N¢.f=a=g) =S f
<r7 f — a) - (rv =a= g) - (r7 )v

and

N (r ! N, f =a=gq) = S(r
<7g_a>_ (7 _a_g)_ (7g)

Similarly, a is said to be shared by andg in the sense of CM if

_ 1 _
N(r, f—a>_NE(r’ f=a=g9) =95, f),

and

N (r ! Ne(r, f =a=q) = S(r
(’g—a>_ er, T =a=9)=3(r, Q).

Using [4, Theorem 2] we can easily see that Theorememains to be valid when
f is a nonconstant meromorphic function satisfyM¢, f) = S(r, f), andf, L(f)
share a small function; CM*, and share another small functian IM*. In fact,
Theorem 2 in 4] can be extended further as follows:

THEOREM C. Suppose thatf is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f), and L(f) is the linear differential polynomial defined if1).
Leta, anda, be two distinct small functions df. If f andL(f) sharea, CM* and
sharea, IM*, thenf = L(f) or f andL(f) have the following expressions

f=ay+ (@ —a)l-h? L(f)=2a—a + @ —ah,
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whereh is a meromorphic function satisfyirtg(r, h) + N(r, 1/h) = S(r, f).

ReEMARK. Here we would like to point out that the functi@fi in [4, Theorem 2]
should be replaced Ry as in Theorent.

In this paper, by further counting the zeros and poles of the auxiliary functions
and using some of our earlier results (sé@,[we are able to improve Theoretby
proving the following main result:

THEOREM 1.1. Suppose thaf is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f),andg = L(f) is the linear differential polynomial defined {f).
Leta; anda, be two distinct complex numbers.nifaXz(a;), t(a,)} > 1/2, then f
andg assume one of the following cases

@ f=g

(b) f =a+ (& —a)l-h?andg = 2a, — a; + (& — ay)h, whereh is a
meromorphic function satisfyiny (r, h) + N(r, 1/h) = S(r, ).

c f=a+(@—-a)@—-h?andg = 23, — a, + (&, — a)h, whereh is a
meromorphic function satisfyiny (r, h) + N(r, 1/h) = S(r, ).

(d) There exists an integds > 3 such thatkke = ¢, where

f/_g/ g/ g/
2 = - - ,
@) T g g-a g-a
fr(f —
© R

(f —a)(f —a)

If, furthermore max{z (ay), t(ax)} > 2/3, then one of the first three cases above must
hold.

When the linear differential polynomigl in Theoreml.1is restricted to involve
only the first derivative off, we have the following result:

THEOREM 1.2. Suppose thaf is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f), andg = ¢c_; + cof + ¢, f’, wherec_y, ¢, and ¢, are small
meromorphic functions of. Leta; anda, be two distinct small functions df. If f
andg sharea; anda, IM*, then one of the following cases holds

@ f=g

(b) f=a+(a—a)(l—h)? g=2a—a+ (& —a)h;

(c) f=ar+(@m—a)@d—h? g=2a —a+(@—ah;

(d f=@+a)/2+@—-a)h+1/h)/4 g=(+a)/2+ @ —a)h/2
whereh is a meromorphic function satisfyirtg(r, h) + N(r, 1/h) = S(r, f).
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CoROLLARY 1.3. If c_;, ¢g and c; are constants andy # 1, ¢; # 0, then for any
distinct rational functiong, (z) anda,(2), the equation

(4) (i f' +cf+c)?—2fc ' +cf +c )+ (@+a)f—aa=0

has no transcendental meromorphic solution.

2. Lemmas

Let f be a meromorphic function, ardoe a small function of . In the following,
Nu(r, 1/(f — a)) is defined to be the counting function of all zerosfak) — a(z)
with multiplicities greater than or equal kp and any such zero is counted once only;
Ny (r, 1/(f — @)) is defined similarly, but it counts the zeros 6fz) — a(z) with
multiplicities k.

LeEmMmMA 2.1 ([4]). Suppose that is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f), andg = L(f) is the linear differential polynomial defined {f).
Furthermore, leta; anda, be two distinct small functions df. If f andg sharea;

anda, IM*, and if f # g, then
(5) T, f)y=N{(r ! >+Nr 1 >+arn
o - f—a 7

(6) T, f) <2T(r,9) + S, f).

LEMMA 2.2 ([4]). Suppose that is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f),andg = L(f) is the linear differential polynomial defined {f).
Furthermore, leta; and a, be two distinct complex numbers. fifand g sharea;
anda, IM*, and if f # g, then)_7_;c;¢; = 0, wherey) is defined by the recurrence
formula

(pj+1=<p} +9¢;, 9=1 j=01...,n-1,
andg is the function defined i(B).

LEMMA 2.3. Suppose thatf is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f), andg = L(f) is the linear differential polynomial defined {f).
Furthermore, leta; anda, be two distinct small functions df. If f andg sharea;
anda, IM*, and if T(r, f) =T (r, g) + S(r, f), thenf = g.

ProOOF. With loss of generality, we assume that batlandb, are complex numbers,
otherwise, do the following transformation

F=(f-a)/(@—a), G=(@—a)/(a—a).
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Since f andg sharea; anda, IM*, we see thaF andG share Q1 IM*, andG is a
differential polynomial ofF with all coefficients being small functions &f.
Let

gt -9
7 ==
@ v (9—a)(@—a)
SinceT(r, f) = T(r,g) + S(r, f), by the proof of Lemm&.2 (see §}, page 353]),
we can gefl (r, v) = S(r, f),andf = g. O

LEMMA 2.4. Suppose thatf is a nonconstant meromorphic function satisfying
N(r, f) = S(r, f), andg = L(f) is the linear differential polynomial defined {f).
Furthermore, leta; anda, be two distinct small functions df. If f andg sharea;
anda, IM*, and if f # g, then

Ny (r 1 >+N r 1 )—S(r f)
“Uog-a) " “\g-a) 77

ProOOF. Without loss of generality, we assume that bathanda, are complex
numbers. Lep be the function defined ir3}. Since f andg sharea;, a, IM*, and
f #£ g, itis easily seen that = 0, andT (r, ¢) = S(r, f). Rewrite @) as

(8) f'=@(f —a) +wi(g—a),

wherew; = f’/(f — a,). Taking derivative and replacinfy by the right-hand side
of (8), we get

9) " = @p(f —ag) + wa(g — &),

wheregp, = ¢’ + ¢?, and

(10) wa = wy + pwy + w19/ (g — &).

Similarly, using g), we get

(11) fO=g(f-a)+w@-—a), j=12...,
whereg; andw; are defined by the following recurrence formulae

(12) Qi1 =9 + o9, @o=1 j=01...,

/

(13) Wiy = W + wipj + w; i=12,....

g—a’
From (11) and by the definition of, we get

g=C_1+Coay + (ZCJ‘PJ) (f —a) + (chwj) (9 —a).

j=0 j=1
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By Lemma2.2, we have)_|_,c;¢; = 0. Hence

(14) g=c1+%m+<z)mm)@—@y
j=1

Suppose that, is ana,-point of g of multiplicity k > 2 as well as a simpla,-point
of f, andz, is not the pole or zero of argj;. Then we have
wi(2) gz k-1
wi(z2) 92 —a zZ-12
Equality (15) and (L0) imply thatz, is a pole ofw, of multiplicity 2. By recurrence
formula (13), we can see tha is a pole ofw; of multiplicity j. Therefore, from14),
we getk > n. Hence the multiplicities of ‘almost all’ multiple,-points ofg are great
than or equal tan.

Suppose that, is ana,-point of g of multiplicity k > n+1. Itfollows from (14) that
& = C_1(z)+Co(z)ay. If Npya(r, 1/(g—2a)) # S(r, ), thenwe ged, = c_;+Coay.
Therefore, by 14), we getZ'j‘:l cjw; = 1. This is impossible becauggis a pole of
w; of multiplicity j. HenceNg,, (r, 1/(g — &) = S(r, f), and thus

N(r ! )—N (r 1 >+S(r f)
e\"g=5) =N\ g, .

On the other hand, the-points ofg of multiplicity n are poles ofv,,.1(g — &). By
(11), these points must be poles 6f""Y — ¢,..(f — a;). Note thatf is a function
satisfyingN(r, f) = S(r, f). We get

N (7 1 )—S(r f)
m\"g=g) =01

HenceN(r, 1/(g—ay)) = S(r, f). Similarly, we haveN,(r, 1/(g —a,)) = S(r, f).
This completes the proof of Lemn2a4. O

(15) + 0.

3. Proofs of the results

PROOF OFTHEOREM 1.1 Let
B f/ g/
Cf-a g-a’

(16) Bi j=12

By the lemma of the logarithmic derivative, we see fhatj = 1, 2) are meromorphic
functions satisfyingn(r, 8;) = S(r, f). Sincef andg sharea, anda, IM*, we have

17) Tmﬁ0=NQ, )—Nmf=m=m+anﬂ,j=Lz

f—aj
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Suppose that; is ana;-point of f of multiplicity k as well as a simpl@;-point
of g. By computation, we get

f'(z) — g'(z0)

aq —

¢(z1) =K = KB2(z2).
If there exists a positive integ&rsuch thayy —kB, = 0, thenT (r, ) = T(r, ¢/k) =
S(r, f). Hencef andg sharea, CM*. By Theorent, Case (b) must hold. Similarly,
if there exists a positive integ&rsuch thaty — kB; = 0, then Case (c) must hold.

In the following, we assume that— kB; # 0 andy — kB, # 0O for any integek.
Then we have

(18) Ny (r, .
Similarly,

_ 1 _ 1
(19) Ny (r, > <N (r, ) <T@ py+Sr, f), k=12...
f—a ¢ — kB,

! ><N<r ! ><T(rﬁ)+8(r f), k=12
—a/) " To—kg) = Y I

By Lemmaz2.4, we haveN(z(r, 1/(g —a;)) = S(r, f), j =1, 2. Therefore,

_ 1 — .
(20) Ny (r, . ) =Ne(r, f=a,=9)+S(r, ), j=12

a;

Letw, = f'/(f —ay). We haveT (r, w;) = N(r, 1/(f —a,))+S(r, f). Itis obvious
that anya;-point of f of multiplicity k is a zero ofw, of multiplicity k — 1. Therefore,

_ 1 _ 1 — 1
N r, 2N r, — 3N (r,———
[2]< f—a1>+ [3]< f—a1>+ (4< f—a1>

1 — 1
< N<r,—> <T(r,wp) < N<r, >+S(r, f).
w1 f— a
It follows that

1N r ! +2N r ! + N (r !
3@\ f_a/) 3P\ f_q “\"F—a

From (L7), (18) and the above inequality, we deduce that

_ 1 _
N(r, )—NE(r,f=a1=g)

f—a

=Ny (r ! + Nig (1 1 + Nalr 1 + S(r, )
- [2] ’f_al [3] ’f_al 4 ’f—al )




[9] Functions that share two values 99

2— 1 1— 1 1 1
=Ny (r,—— )+ =Ng (r,—— ) + =Ny [ r, ——
3 [2]( f—a1>+3 [3]< f—a1>+3 [2]( f—a1>
+2N r ! + Ng(r 1 + S(r, )
3 [3] ) f—al (4 ) f—al ’

<|N{(r ! )—N(rf—a—)+lﬁr ! >+S(r f)
- f—a e, 1=2=0 3 f—a ’

—4Nr ! Ne(r, f =a,=q) + S(r, )
—3 " Tog) e T ETITSLD

On the other hand, froni{)—(20), we get

_ _ — 1
(21) NE(Ir,f=a1=g)+NE(r,f=az=g)sN<r,]c >+S(r,f)
— g
for j =1, 2. Hence
N(rf—a—)<2ﬁr >+S(rf)
e, —2—9_3 T a , 1),

whichimplies that (a,) < 2/3. Theinequality (a;) < 2/3 can be obtained similarly.
Therefore, the condition méx(a,), t(a;)} > 2/3 implies that one of the first three
cases in Theorerh.1 must hold.

Leta be the function defined ir2]. From @3), we see that the zeros 6f— g must
be the zeros ap as long as they are not tlag-points ora,-points of f. Furthermore,
the multiple zeros of — g must be the zeros @f. Therefore, ‘almost all’ of the zeros
of f — g are simple. By Lemma.4, ‘almost all’ of thea;-points (j = 1, 2) of g are
also simple. Hence (r, «) = S(r, f). By computation, we see that the equation

ka(2) —¢(2) =0

holds for ‘almost all'a;-points (j = 1, 2) of f of multiplicity k > 3. If

N (r 1 + N r 1 s, f)
"o TNe" 15 730D

then there exists an integkr> 3 such thake — ¢ = 0. Therefore, Case (d) in
Theoreml.1holds. If

N (r 1 + Ng(r 1 =S, f)
\"toe) e T o) T

then from 1), (20) and (L9) we can deduce that

_ _ 1 _
NE(r,f=<’:11=g)§N<r,]c )—NE(r,f=a2=g)+S(r,f)
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_ 1 — 1
= Nz (r, . aZ) + Ng (r, . aZ) + S(r, )

_ 1 _
<N (r, )— Ne(r, f =a, =9) + S(r, ),
f—a

which implies N (r, f =a; =) < N(r, 1/(f —ay))+S(r, f). Hencer(a,) < 1/2.
Similarly, we can get (a,) < 1/2. Therefore, the condition méx(a,), t(ay)} > 1/2
implies that one of the four cases in Theorérhimust hold. This completes the proof
of Theoreml.L O

PROOF OFTHEOREM 1.2 Suppose that # g. Then by Lemm&.4 ‘almost all’
a;-points (j = 1,2) of g are simple. IfN(r, 1/(f —a,)) = S(r, f), then f andg
sharea; CM*. By TheorenA, Case (b) holds. Similarly, Case (c) holds provided that
Ne(r, 1/(f —a)) =S, f).

In the following, we assume thd,(r, 1/(f —a;)) # S(r, f) for j = 1,2. Note
thata; (z) = c_1(2) + c(2)a; (2) holds for ‘almost all'a;-points of f andg. We have

(22) a;, =C + Coqj, J =1, 2.

Sincea; # a,, it follows from (22) thatc, = 1 andc_; = 0. Henceg = f + ¢, f'.
This and ) lead to

(23) (f - 9)2 = —Co(f —a)(f —a).

If —cip # 1,theng(g —2f) = —cio(f —ay)(f —a,) — f2?is a polynomial inf
of degree 2. Therefore,

(24) Tr,g(g—2f)) =2T(r, )+ S(r, f).

Note thatg — 2f is linear differential polynomial inf, henceT(r,g — 2f) <
T(r, f)+ S(r, f). Thus

(25)  T(r,9(g—2f) <T(r, @+ T, f)+S(r, f) <2T(, f)+ S(r, f).

HenceT(r, f) = T(r,g) + S(r, f). It follows that f = g by LemmaZ2.3, which
contradicts the assumption.
If —cip = 1, then @3) becomesg f — g)? = (f — a;)(f — &), which leads to

0> — a1d,
26 - 9 —a%
( ) 29—a1—a2

Note thatf is a function satisfyingN(r, f) = S(r, f)andg = L( f). Equation £6)
implies

N(r, h) + N(,1/h) = S(r, ),
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whereh = (2g — a; — a»)/(a, — a;). Obviously, f andg can be expressed as follows

f = h,

a+a dy — a 1 at+a dy — a
1 2+241<h+>, g:1 2 2 q

2 h 2 2

which completes the proof of Theoreht. O

PrOOF OFCOROLLARY 1.3 If f is a transcendental meromorphic solution 4, (
then

(27) (f —g@?=(f —an(f —a),

whereg = ¢, f' + ¢ f + c_;. From 7), we can see that andg share botha,
anda, IM*, andN(r, f) = S(r, f). By Theoreml.2, we get

ata a—a 1
= h —
(28) f > + 2 ( + h) ,
at+a a—a
2 = h
(29) ¢ 5 >—h.

whereh is a meromorphic function satisfying(r, h) + N(r, 1/h) = S(r, f). Since
g=c f'+cof +c_y, it follows from (28) that

at+a 1 —ah
_ h
9=+t +< ( h))
a:/L+aé a— _/ az a; h E
taT +<C° 2 +Cl< 2 2 h))h'

This and R9) lead to

a1+az a1+aé
2 2
aH—a a;—/ a h’
“©™ +Cl< 4 h)

a—a a,—a; a— alh/
c — — ) =0.
o T 1( 4 4 h)

a +a2

’

C1+GCo

From the last two equations, we gét— cy)(a, — a;) = ¢1(a, — a;). Therefore, there
exist a nonzero constam such thata,(z) — a;(z2) = A-%%¢, which is not any
rational function, and contradicts the assumption. This also completes the proof of
Corollary1.3. O
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Concluding remarks

(i) Itseemstobe aninteresting and challenging problem to find the least nonnega-
tive numbed such that Theorerh.1remains to be valid when méx(ay), t(a,)) > d.

(i) We wonder whether Theorefn2is true if g is replaced by an arbitrary linear
differential polynomial.

(1]
(2]
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