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Abstract

Inspired by a statement of W. Luh asserting the existence of entire functions having together with all
their derivatives and antiderivatives some kind of additive universality or multiplicative universality on
certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we
introduce in this paper the new concept of U-operators, which are defined on the space of entire functions
Concrete examples, including differential and antidifferential operators, composition, multiplication and
shift operators, are studied. A result due to Luh, Martirosian aitldviabout the existence of universal
entire functions with gap power series is also strengthened.

2000 Mathematics subject classificatioprimary 30E10; secondary 47A16, 47B33, 47B38, 47EQ5,
47G10.

Keywords and phrasesuniversal function, gap series, composition operator, differential operator,
integral operator, Taylor shift, U-operator.

1. Introduction

Let us denote byN the set of positive integers, & the set of all integers, bid,
the setN U {0}, by C the complex plane, b¥d (G) the FEchet space of all complex
holomorphic functions on a domai c C, endowed with the compact-open topology,
and by A(K) the set of all functions which are continuous Knand holomorphic
in its interior K°, whereK c C is a compact set. Introducing the maximum norm
I fllk := maxex | f(2)], the spacéA(K) becomes a Banach space.

Since Birkhoff proved in 19291[7] the existence of an entire functignwhich is
universal in the sense that the sequence of its additive tran§faizs- n) : n € N} is
dense in the space of entire functiefis= H (C), a great number of papers have been
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written about these topics, yielding in many cases unexpected results. An excellent
survey (updated till 1998) for the concepts, history and results about the subject of
universality and the related one of hypercyclicity 1§][

In 1941 Seidel and Walsh3§] extended Birkhoff's theorem to non-Euclidean
translates on the unit disk = {|z] < 1}. In 1988 Zappa37] also established
an analogous result to that of Birkhoff, this time for the punctured complex plane
C* := C\ {0}. He proved the existence of a holomorphic functibron C* with
the property that for any compact ¢€tc C*, whose complement is connected, the
set of the multiplicative translatgd (c2) : ¢ € C*} is dense inA(K). In this line
of research, Montes and the first authdt][(compare alsoZ3]) have characterized
the sequence®,) C Aut(G) := {automorphisms o6}, whereG c Cis a domain
for which there exist functions € H(G) such that the sequencé o ¢,) has the
analogous universal property for compact subse@.diVe recall this characterization
in Theoreml.1below, but some terminology is first needed. .BY(G) we denote the
family of all compact subsets @, while .# (G) will stand for the family

{K € 2#(G) : C\ K is connectegd= {K € ¥ (G) : G\ K is connectef

A sequencégp,) C Aut(G) is said to beun-awaywhenever it acts properly discon-
tinuously onG, that is, giverK € ¢ (G), there isn € N such thatk N ¢,(K) = @.

THEOREM1.1. Let (¢,) C Aut(G). Then the following conditions are equiva-
lent

(&) The sequencep,) is run-away.

(b) There exists a functioti € H(G) such that(f o ¢,) is dense inA(K) for all
K e .Z(G).

(c) There exists a residual set of functiohss H(G) such that( f o ¢,) is dense in
A(K) forall K € .#(G).

We point out that in parts (b)—(c) the density(df o ¢,) can occur inH (G) itself
whenevelG is not isomorphic taC*. Taking into accountthdz — z+n: n € N},
{z—nz:neN}and{z—~ (n—1—-n2/((n—1z—n):n e N}are run-away
sequences of automorphisms@fC* andD respectively, Theorerh.1 extends and
unifies Birkhoff-Seidel-Walsh-Zappa’s theorems. It should be pointed out that several
authors, including Luh, Duyos-Ruis, Blair, Rubel, Grosse-Erdmann, Gethner, Shapiro
and Godefroy, had earlier extended Birkhoff's theorem in some direction] 8gf®f
a complete list of references.

We now focus our attention on arecent result of Luh thatimproves Birkhoff-Zappa’'s
theorems, but this time following another point of view. Irfit’ denotes as usual the
derivative of f of orderj if j € No, andifj e N the symbolf = denotes the unique
antiderivativeF of orderj satisfyingF®(0) = 0 forallk € {0,1,...,j — 1}. His
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statement (seefl, Theorem]) is proved constructively and, after adapting notations,
reads as follows.

THEOREM1.2. Let be(a,) C C a given sequence with, — oco. Then there exists
an entire functionf with the following properties:

(a) Forany fixedj € 7, the sequence dfadditive translate's{ f ) (z+a,) : n € N}
is dense inA(K) for all K € . (Q).

(b) For any fixedj € 7, the sequence oiultiplicative translate’s{ f ©’(a,z) : n e
N} is dense inA(K) for all K e .# (C*).

As a matter of fact, in 34, Theorem] the sequende,) is just assumed to be
unbounded, but the formulation is equivalent because a subsequence tending to infinity
can be taken out. Luh’s theorem also asserted a further property, feamely, the
sequence of derivativgd *!V : n € N} is dense inA(K) for all K € .# (C) ([x]
denotes the integer part &). We will not consider this property because it is of a
different nature and, in addition, it can be derived by using Baire-category methods
together with the fact that the differentiation operator&ims densely hereditarily
hypercyclic—seel8] for concepts, results and references—which in turn is a strong
generalization of MacLane’s theorer®J about the existence of an entire function
whose sequence of derivatives is densé& inTheoreml.2 provides two novelties if
it is compared to Birkhoff-Zappa's theorem. First, the functionan be replaced by
the result of the action oif of the operatorsof differentiation and antidifferentiation,
and secondly, the universal functidncan be chosen to bentire, even in the case in
which the domain *, this time) is not the whole plan€. In [36, Kapitel 4] some
extensions of Theorem2are shown by replacin@+a,), (&,2) to certain sequences
($(2)), not necessarily holomorphic, defined on some subsets of

The two novelties described in the last paragraph motivate the introduction of the
new concept of ‘U-operators’, that will be developed in the subsequent sections of this
paper. Concrete examples of this new kind of operators as well as sufficient conditions
will be given, and Theorerth.2 will be strongly improved. It should be pointed out
that, by following a different point of view, several other kinds of operators have
been recently introduced regarding the ‘wild’ behaviour near the boundary that they
produce when acting on certain holomorphic functions in a domath dfhe starting
point of this related theory is, in turn, a strong result also due to [2Zhdbout the
existence of holomorphic ‘monsters’, sée 2, 6, 7, 8, 9, 10, 14, 22, 25, 26, 28, 34].

Finally, in the last part of Section 6 we will strengthen a recent deep result due to
Luh, Martirosian and Mller [27, Theorem 1], who proved constructively the existence
of an entire function with lacunary power series expansion having dense additive and
multiplicative translates. An improved version of their result is establisheddn [
Theorem 2]. Such a version reads as follows.
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THEOREM1.3. Let Q C N, with upper densityA(Q) = 1 and let (a,) be a
complex sequence withh — oo asn — oco. Then there exists an entire functidn
with lacunary power series (z) = > .-, ¢,z" with ¢, = O for n ¢ Q satisfying the
following properties

(@) The sequencgf (z+ a,) : n € N}is dense inA(K) for all K € .#(C).
(b) The sequencgf (a,2) : n € N}is dense inA(K) for all K € .# (C*).

Asin Theoreni.2 the sequenc@,) can be just assumed to be unbounded. Several
notions of density of a subset b, will be recalled in Sectiof.

2. U-operators: sufficient criteria and first examples

Observe first that in Theoref2 both sequence& + a,) and(a,z) tend to in-
finity uniformly on compact subsets, respectivelyGrandC*. Hence, in order that
everything works well with the new kind of operators to be introduced, the domains
G to be considered must henbounded because otherwise every entire function
would be bounded o6, which would prevent the desired density of any sequence of
‘G-translates’ of it. Specifically, we assume that the set

w(G) = {(gon) C Aut(G) : ¢, % % uniformly on compacta irG}

be nonempty, in which case we say ti@ais anw-domain It is clear that if(p,) €
w(G), then(g,) is run-away. Note that the sequences given at the beginning of this
section are respectively in(C) andw (C*), soC andC* arew-domains. In fact, it is

not difficult to see that

a)((C)={(an+an):bn7éO forall ne N and a, —> oo, %M—oioo}

and
w(CH) = {(anz):an £0 forall ne N and a, —> oo}.

As for an essentially different example, the upper halfpldmez > 0} is also anw-
domain; indeed, tak¢ (z2) = (2z—1)/(2—2) (¢ Aut(D)), ¥, = Y o--- oy (n-fold),

h(z) = (z—i)/(z+i)andg, = h™to ¥, o h (n € N); then(g,) € w({Imz > 0}).

It should be warned that not every unbounded domain is-glomain. For instance,

if G has finite connectivity>= 3 then by Heins’ theorenm2[)] the group AutG) is

finite, hence no sequence in A®) can be run-away and, consequentlyG) = ¢.
Finally, an unbounded infinite-connected domain may not be-domain: just take

G = C\ [{1/n : n € N} U {0}]; a simple application of the Casorati-Weierstrass
theorem and of the Open Mapping Theorem for holomorphic functions shows that
Aut(G) reduces to the identity 08.



[5] U-operators 63

Next, we give the definition of U-operators. Observe that in it the conditio® on
of being arw-domain is in fact not strictly necessary, but we keep it because otherwise
the property would become vacuous. 8yeratorwe mean arfot necessarily linear)
continuous selfmapping on some space, mainlygon

DEFINITION 2.1. We say that an operatdr: & — & is aU-operatorwhenever the
following property is satisfied:

Given anw-domainG ¢ C and a sequenc@,) € w(G), there exists a dense
subset of entire function$ such that the sequen¢€@T f) o ¢k : h € N} is
dense inA(K) for everyK € .# (G).

For the sake of convenience, we rewrite the last definition in the language of
universality. Fecall that if X, Y are topological spaces then a sequefice X — Y
(n € N) of continuous selfmappings is said to beiversalwhenever there is some
elementx € X, also called universal (faiT,)), whose orbif T,x : n € N} is dense in
Y. And (T,) is said to bedensely universaf the set? ((T,)) of universal elements
for (T,) is dense inX. If X, Y are linear topological spaces and the mappimgs
are also linear then the word ‘universal’ is frequently replaced by ‘hypercyclic’. The
condition given in Definitior2.1tells us that, for givers, K € .# (G) and(¢,), the
sequence

1) To:fed—> ({(THoplk € AAK) (neN)

is densely universal.

We need to reformulate DefinitioR.1in a more comfortable way. This will be
done in Theoren2.2, but for this the following topological lemma is necessary. Its
content can be found inl[, Lemma 2.9] (seeZ4, Lemma 3] for the special case
G =0).

LEmMMA 2.1. Forevery domairG C C there exists a sequen¢é,,) C .# (G) such
that for everyK e .# (G) there is a positive integan, with K C K,‘;O.

We remark that while in Definitio®.1 the universal functiorf does not depend
on the compact s&, in part (b) of the next result it is allowed ttependon K. As
usual,B(a, r) (B(a, r)) will stand for the open (closed, respectively) ball with center
aandradius (ae C,r > 0).

THEOREM 2.2. Assume thal is an operator ons’. Then the following properties
are equivalent

(@) T is aU-operator.
(b) Given anw-domainG c C, a sequencdy,) € »(G) and a compact set
K e .#(G), the sequenc€l,) defined by(1) is densely universal.
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(c) Given anw-domainG c C, 0 = (¢, € w(G), K € .#(G), ¢ > 0 and
g € A(K), the set

(2) AT, G K,0,60) :={f €&:3IneNwith [(Tf) opy— gllx < &}

is dense in¥.
(d) Given anw-domainG c C, 0 = (¢,) € w(G), K € #(G),e > 0,r > 0,
g € A(K) andh € &, the set

(3) U(T,G,K,o,er,g,h):={fef:|f-hlge<e
and3n € N such that|| (T f) o ¢, — gllk < €}

is nonempty.

PrOOF. It is straightforward that (c) and (d) are equivalent because tmdyfaf
setsD(h,¢,r) (he &,¢ > 0,r > 0) given by

D(h,e,r)y={f e&:|f —hlgor < &}
is a basis for the topology @f, and
U, G,K,o,¢,r1,9,h)=A(T,G,K,o,¢,9) N D(h, &,r).

On the other hand, it is trivial that (a) implies (b). Assume now that (b) holds.
Then (c) is satisfied sinc# ((T,)) = ({A(T, G, K,0,¢,09) : ¢ > 0,9 € AK)}.

Finally, our goal is to prove thak is a U-operator by starting from (c). Observe
first that each set defined bg)(can be written as

A(T,G,K,0,¢,9) =T (Bc(g. ©)),
neN

whereBy (g, ¢) is the open ballh € A(K) : ||h — gllx < ¢} in A(K). Therefore the
continuity of eachr, shows thatA(T, G, K, o, ¢, g) is an open subset &f. But note
that if (g;) is any fixed denumerable dense subseAd) (for instance(g;) may be
the set of restrictions t& of polynomials whose coefficients have rational real and
imaginary parts) ther ((T,)) = ﬂj,keN A(T, G, K,0,1/k, g;). Hence7 ((T,)) is
a countable intersection of dense subsets in the Baire sfacat this point it is
convenient to writel, = T, with the emphasis in the fact that for giv€) o the
sequencéT,) depends oK. In order to see thaf is a U-operator it must be shown
that the set?(T, G, o) := {Z (TX)) : K € .#(G)} is dense ing. But if (K,)
is the sequence of compact sets furnished by Le@rthen

(4) ZL(T.G,0) =) Z(T¥)).

meN
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(Kmg)

Indeed, giverK € .#(G) there existsng € N with K € K. If f € Z((Ta ™))
then for each fixed polynomid?(z) there is a sequende; < --- <n; <---} C N
such that(T f)(¢n,(2)) — P(2) (j — oo) uniformly on K, hence onK. Now
Mergelyan's theorem33, Chapter 20] implies that the set of polynomials is dense
in A(K), therefore the sequenf@&T f)og,)|k : N € N} is also dense iR\(K), which
proves @). Thus, Z(T, G, o) is a countable intersection of residual subsets’in
ThenZ(T, G, o) is residual itself, so dense, and this finishes the proof. O

From the proof it is clear that in parts (c)—(d) it can be supposedd¢limjust a
polynomial.

Our next task should be, obviously, to identify some U-operator. It happens that
the simplest operator does the job.

THEOREM 2.3. The identity operatot on & is a U-operator.

PrOOF. Letustrytoapply condition (d) in Theored2 FixG, o = (¢,), K, &,r,g
asinthattheoremand considerthelde:= U(T = |, G, K, 0, ¢, T, g, h) given by ().
We want to show that # ¢, that is, there is an entire functiohand somen € N
with || f —h|lge,) < e¢and| fop,—gllk < €. Sincep,(2) — oo(n — oo) uniformly
on K, there exist1 with |¢,(2)| > r forall z € K. ThenB(0,r) N gy(K) = @. In
addition,¢,(K) is a compact subset & with connected complement becaysés
an isomorphism oi. Therefore the sdt := B(0,r) U ¢,(K) is a compact subset
of € with connected complement. Consider the functionL — C defined by

h(z) if |z| <r;
Fo={ "
9(p,*(2) if z € pa(K).

We haveF € A(L), so by Mergelyan’'s theorem there exists a polynonfiakith
| f — F|l. < &. Thisimplies thaf| f — hl|gq,, < ¢and||f —go g, |« < é&. But
the last inequality is the same @ o ¢, — g|lk < &, which finishes the proof. O

We can now produce a big family of U-operators via composition of operators.

THEOREM 2.4. Suppose thaT, S are operators or¥’ in such a way thafl is a
U-operator andSis linear and onto. Thefl Sis a U-operator.

ProoOF. If we follow the notations in the proof of TheorelrPone must demonstrate
that for fixedw-domainG and sequence € »(G) the setZ (T S G, o) is dense
in &. For this, observe tha¥#” (TS G, o) = S Y Z(T, G, 0)), henceZ(TS G, o)
is dense becaus# (T, G, o) is dense and the Open Mapping Theorem (recalléhat
is an F-space) guarantees thaVifc & is a nonempty open set th&{V) is also a
nonempty open set. O
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The last theorem carries an important consequence, namely, every differentiation
operatoD! (j > 0) is a U-operator. Here,as usuB® = | andD’' f = fU (j e N).
But much more can be obtained. Recall that an entire funabion = »_° a2 is
called ofexponential typevhenever there exist positive constaAtsB such that

|[®(2)] < Aexp(Blz|) (ze C).

In such a case the seriégD) = Y, a;D! defines an operator afi. Hence, it is

a kind of infinite order differentiation operator with constant coefficients. Consider
the translation operatorg (a € C) defined ag,f(2) = f(z+a) (ze C, f € &).

It happens that a linear operat®pon 4 commutes with the translation operateysf

and only if it commutes with the differentiation operafrif and only if S= ®(D)

for some® e & with exponential type if and only if there is a complex Borel measure
w on € with compact support such th&tf(z) = [ f(z+ w) du(w) forall z e Cand

all f € &, see for instancel[/, Section 5].

THEOREM2.5. (@) If Sis an onto linear operator o’ thenSis a U-operator.
(b) If Sis a linear operator oné&” that commutes with translations thehis a
U-operator.

PrOOF. As for part (a), combine Theorerfis3-2.4. Now part (b) is a consequence
of the Malgrange-Ehrenpreis theorem that asserts that every differentiation operatol
@ (D) is surjective or¥’, see L6, 30]. O

One might believe that having dense range and being a U-operator are equivalent
Nevertheless, this ifalse Indeed, each antidifferentiation operar™(N < N)
givenbyD~N(f) = f N isa U-operator (see Section 4) but evidently it has not dense
range. We want to pose here the following question (compare with Thebfefa)):

Is a U-operator any operator o& with dense range

An answer to this question is unknown to us to this date.

We now focus our attention on the search of workable conditions under which an
operatorT on& is a U-operator. For this, let us introduce two new concepts. We say
thatT hasw-dense rangevhenever there iR > 0 such that the restriction mapping

TM fed&— (Tf)|M € A(M)

has dense range for al € .# ({|z] > R}). Any operator on5” with dense range
has, obviouslyw-dense range. We say thatis w-stablewhenever the following
property is satisfied: For every> 0 there isR > 0 such that for eacti € &, each
¢ > 0 and eactM € .#Z ({|z] > R}) there exist$ > 0 andS e .# ({|z]| > r}) such
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thatifg e &£ and| f —g|ls < §then||Tf— Tg|lm < &. This property has obviously
an easier formulation if is linear.

For instance, by using Malgrange-Ehrenpreis’ theorem together with Mergelyan’s
theorem, it is easy to see that every nonzero differential opedatbr hasw-dense
range. Also the antidifferential operatdr ™ hasw-dense range; indeed, an adequate
application of Mergelyan’s theorem yields that the polynomials with a zero of order
> N at the origin are dense IA(M) whenevetM e .# (C) with 0 ¢ M, and these
polynomials are clearly inthe rangebf N. Onthe other hand, from Cauchy’s integral
formula for derivatives, it is not difficult to realize thét(D) is w-stable whenever
® is of subexponential typeRecall thatd is of subexponential type whenever given
¢ > 0 thereis a constarK = K(g) > 0 such thaj®(z)| < Kef@ for all z € C;
equivalently,nja,|¥" — 0 (n — oo) if ®(2) = - a,2". Every entire function of
subexponential type is, trivially, of exponential type.

A combination ofw-denseness ana-stability will give a positive result.

THEOREM 2.6. Assume thafl is an operator on& such that for every > 0
there isR > 0 satisfying that for eaciM € .# ({|z| > R}) the following properties
hold:

(i) The restriction mappindy, has dense range.

(i) Foreveryf € & and everye > Othere existt > 0OandSe .Z({|z| > r})
suchthatifp € & and||f —¢|ls < édthen||Tf —Ty|u < &.

ThenT is a U-operator.

PrROOF. Fix anw-domainG C C, o0 = (¢,) € w(G), K € .#Z(G), e > 0,r > 0,

g € A(K), h € &, and the corresponding set(T, G, K, g, ¢,r, g, h) =: U given
by (3). Our goal is to prove that # @.

Sinceo € w(G) there existsn € N with ¢,(K) C {|z| > R}, whereR > 0 is the
number associated tagiven by hypothesis. Observe that(K) € .# (G)(C .# (Q))
because, is a homeomorphism froi® into itself. Therefore, by (i) and the fact that
go ¢t € Alpnm(K)), there exists an entire functiofj such that

(5) ITfi—go (Pr;l”%(K) <eg/2.

Now, by (i) there exist > 0 andS € .# (C) with S C {|z| > r} such that for all
pes

(6) lo — fills <8 impliesthat [T — T fill, «) < ¢&/2.

Note that the complement of the compactiset= B(0, r) U Sis connected because
SandB(0, r) share this property and they are disjoint. Hence Runge’s approximation
theorem together with the fact thitis holomorphic on an open subset containing
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allows to select a polynomidl (so f € &) satisfying|| f — F||. < min{$, ¢}, where
F : L — Cis the function belonging té\(L) given by
F@) = h(z) ?f ze B(O,r);
fi(zy If ze S
Thus, we obtain| f — h|lgo, < € and, in addition,|f — f,||s < §. Due to ©),
the last inequality yield§ T f — T fi|l,.«) < /2. Now, this together withg) and
the triangle inequality givepT f — g o ¢t ll,.«) < &, Which is clearly equivalent to

(T f)opm—0llk <e. Summarizing,f is an entire function satisfyingf —hl g, <¢
and||(T f) o o — glixk < & for somem € N. In other wordslJ ## @. O

COROLLARY 2.7. Suppose thal is an operator ons” which isw-stable and has
w-dense range. Theh is a U-operator.

The remarks aboub (D) just before Theorerd.6together with Corollar.7yield
againthat, atleast for entire functiod@sof subexponential typ&; (D) is a U-operator.
Observe that this time the proof does not depend on the fact tisah U-operator,
compare the proof of Theoref5.

3. Composition and multiplication operators

In this section we investigate conditions for the composition and multiplication op-
erators to be U-operators. Recall thapiE & then its associated right-composition
operatoIC,, left-composition (or superposition) operatgy and multiplication oper-
atorM,, are defined o&” asC,(f) = fog, L,(f) =¢o f, M, (f) = fe. Observe
thatC, andM,, are linear buL, is not, except for trivial cases.

As for right-composition operators we suspect that only the similarities on the
plane, that is, the polynomiadgz) = az+ b of degree one or, equivalently, the auto-
morphisms ofC (which in turn are the unique one-to-one entire functions), generate
U-operators. Although we have not been able to give a complete characterization, we
have obtained the following result.

THEOREM 3.1. Assume thap is an entire function. We have
(a) If C, is a U-operator therp is a polynomial.
(b) If ¢ is a similarity thenC, is a U-operator.
(€) If p(2) = P((z— a)V) for somex € C, some positive integeM > 2 and some
polynomialP thenC, is not a U-operator.
(d) If ¢ is a polynomial withdegregyp) = 2 thenC, is not a U-operator.
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PROOF. Fix any valuea € C. If ¢ were not a polynomial then the point of
infinity would be an essential singularity fgr, whence by Casorati-Weierstrass’
theorem a sequende,) ¢ C with z, - oo(n — oo) could be found in such a
way thatg(z,) — a(n — o0). Consider thew-domainG := C, the sequence
o := (¢n(2) = 2+ z,) € w(C) and the compact s&t := {0} € .# (C). Assume that
f satisfies the property of Definitigh1for T := C,. Then forg = 0 we would get
anincreasing sequen@e) C Nwith f(¢(¢n,(2))) — 9(2) (j — o0) on A(K), that
is, f(p(z,;)) = 0(j — o0). But (f(¢(z,))) tends tof (a), hencef (a) = 0 for all
a € C, thatis,f = 0, which is clearly impossible. This proves (a). On the other hand,
if ¢ is a similarity then, clearlyC, is linear, onto (so it has dense range) anstable.
Therefore part (b) is a consequence of either Thedténga) or Corollary2.7. As
for (d), observe that any polynomialz) = aZ + bz+ c of degree two can be written
in the formg(z) = P((z — @)?), wherea = —b/2a andP(z) = az— ¢ — (b?/4a).
Hence (d) follows from (c).

Finally, let us prove (c). Assume tha{z) = P((z — «)") with o, N, P as in
the hypothesis, and consider thedomainG := C\ {«}, the sequencép,(2) :=
a+Nn(z-—a)) €w(C\ {a}) and the circle arK := {& + exp(it) : 0 <t < 27 /N},
which is in . (C \ {«}) becauseN > 2. Suppose, by the way of contradiction,
thatC, is a U-operator. Then we would obtain an entire functiosuch that one
can associate to the functigg(z) := 1/(z — «) € A(K) an adequate increasing
sequencen;) C N satisfying(C, f)(¢n,(2)) — 9(2)(j — oo) uniformly onK, that
is, f(P(n}'(z—a))) = 1/(z—a) (j — o0) uniformly on K. Therefore, after
taking N-powers,

1
(Z—a)

lim sup

1720 zeK

fFPMY (- )" )N —

Consider the circle arc&, = o« + o, (K —a) (v € {0,1,..., N — 1}), where
w, = exp(2rv/N). Of course K, = K. Denote byS the circle with centexr and
radius 1. Ther8= KoUK ;U---UKy_;. Givenz € Sthereisv € {0,1,..., N -1}
with z € K,, soa + w;*(z — a) € K. But also

1
(¢ + ;% (z—a) —a)N

l f(P((@ + o, (z—a) - a)N))N —

= f (POMNz—a)" )" —
f(POlE-M) -
because! = 1. Hence the lim. ., sup.s of the last expression equals zero. In other
words,

f (P(n}\'(z—oz)'\'))N — (j = o0

1
(z—a)"
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uniformly on S. Then there exist§ € N such that

f (PNz—a)™)" — —l <1 (ze9),

1
(Z—a)
so|[(z—a) f (P(nY(z—a)™))IN — 1] < 1forallz € S. But, due to the Maximum
Modulus Principle, the last inequality holds for alin the open ball of center and
radius 1, in particular foz = «, that is, 1< 1. This is absurd, so the theorem is
proved. O

Next, we show a characterization of the property of U-operatok foin terms of
existence of an ‘approximate right inverse’ forsee P, Section 3]. The characteri-
zation in term®nly of ¢ remains as an open question.

THEOREM 3.2. Assume thap is an entire function. Then the following properties
are equivalent

(a) The superposition operatdr, is a U-operator.
(b) There is a sequendd,) C & such that(p o f,) tends to the identity function
locally uniformly inC.

PROOF. Let us suppose that (a) holds. Then by taking= L,, G = C, ¢,(2) =
z+ n (n € N) in Definition 2.1 one obtains the existence of at least one entire
function f such that, for every closed baB, (L, f)(¢n(2)) — z (n — o0) in
A(B). Equivalently,p(f(z+ n)) — zasn — oo uniformly on B. Therefore (b)
is satisfied if we just takd,(z) = f(z+ n)(n € N). Conversely, assume that (b)
holds. From the continuity op it is easy to see thdt, is alwaysw-stable. On
the other hand, if we fix a sél € .#(C) andg € & then we have thag(M)
is compact, whence sy, l¢(f.(2)) —z| — 0 (n — oo) or, that is the same,
Sup.y le(fh(9(2)) — 9(2)] — 0 (N — o0). This tells us that

L,(fiog) =3 g in AM),

hence the restriction mappirig,)v : f € & — (L, f)|w € A(M) has dense range
due to Mergelyan’s theorem. Consequently, hasw-dense range and the result is
completely proved after an application of Coroll&ry. O

We point out here that, in order that (b) is satisfied, the injectivity &f sufficient
but not necessary (in fact, any entire universal function in the sense of Birkhoff—see
Sectionl—satisfies (b)), and its surjectivity is necessary but not sufficient, $ee [
Section 3].

We finish this section by characterizing the multiplication U-operators.
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THEOREM 3.3. Let be given an entire functign Then the following properties are
equivalent

(a) For all operator T on & that is w-stable and hasvo-dense rangeM,T is a
U-operator.

(b) The multiplication operatoM,, is a U-operator.

(c) There exists an operatdr on & such thatM, T is a U-operator.

(d) The setZ(p) of zeros ofy is finite.

PrROOF. Because the iddity operator isw-stable and has-dense range (so it is a
U-operator), itis trivial that (a) implies (b) and that (b) implies (c).

Assume now that (c) holds, that i8], T is a U-operator for some operatdr
on &. Let us suppose, by a way of contradiction, that (d) is false, so there are
points z, (n € N) tending to infinity withp(z,) = 0 for alln. If G = € and
(pn(2) == z+ z,) € w(G) then there must be an entire functidnsuch that the
sequencdy o ¢,)((Tf) o ¢,) is dense INA(K := {0}) = {the constanis which
is absurd becausg(¢,(0)(T f)(¢,(0)) = 0 for all n. Therefore the zero set qf
is finite. Finally, we start from the fact that(¢) is finite. Our aim is to prove
(a), hence let us fix am-stable operatol on & with w-dense range. From the
continuity ofg, it is immediate thaM, T is alsow-stable. On the other hand, there is
R > 0 such that the restriction mappifg, : f € & — (T )|y € A(M) has dense
range for anyM € .#Z ({|z]| > R}). We can suppose without loss of generality that
R > max|z| : z € Z(p)}. Letusfixe > 0, M € .Z({|z]| > R}) andg € A(M).
Theng/¢ € A(M), therefore there existé € & with |[Tf — (g/¢)llm < &/ll@llm-
Hence||(M,T)f —gllw < ¢ andM, T also asw-dense range. Now Corollarg.7
anew finishes the proof. O

4. Integral operators

Inthis section we discover some classes of integral operators defined on th&space
including the antidifferentiation operat&—", which are U-operators.

The symboly will denote an entire functiop : C x C — C of two complex
variables. The Volterra operator of the first kind associateglitodefined by

V,:fe&V,feéd, (wa)(z):/ fhpz t)dt (ze ©),
0

where the integral is taken along any rectifiable arc joining the origin td/e will
prove in due course that, under adequate conditions on the kerrké \Volterra
operatorV, with or without a perturbation by a differential operator is a U-operator.
In particular, our results also include Volterra operators of the seconddlassV,,.
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Now, we recall the notion of (generally infinite order) antidifferential operators with
constant coefficients, seé, [Section 2]. LetW (z) = Zj"’:o c;z! be a formal complex
power series. By taking into account that

z _ +\i—-1
DH@:/fmgfﬂ—
0 (J—

i dt (jeN, fed&, zeO

it is not difficult to see that if we assume in addition that ling, |c;|*!/j = O then
the seriest(D1) = Zj"’:o c; D! defines an operator afi. Indeed, if we set

. (Z-p
$en =20 g
=1 :

then ¢ is entire in both variables andt(D~!) = c| + V,. Of course, Volterra
operators and operato#s D) include the operator®—N (N € N).

The following lemmas will reveal useful in order to find integral U-operators. But
a little further notation is needed. ByA we mean the boundary of any skt C. If
K is a compact set aral € K then A,(K) will denote the subspace of all functions
of A(K) with a zero ata, endowed with the same norin- ||x. In order to avoid
problems with integration along arcs we will consider the clEssf closed Jordan
regionsL whose boundaryL is a polygonal closed curve which consists of finitely
many segments that are parallel to the axes. Observe that each irfgléﬁrab dt
makes sense and is unambiguously defined for EaghA(L) and each pair of points
a,b € L whenevelL e I1. Indeed, the complement &f is connected and, b can
be joined by a piecewise continuously differentiable arc lying in

LEMMA 4.1. Let S be an operator onrf’ andg : € x € — C an entire function
of two variables. Assume that there existsRn- 0 such that for eaclh > R and
eachM € .# ({|z| > r}) there areL € .# ({|z] > r}) N IT with M C L and a point
a € oL \ M such that

(a) the operatorS extends continuously to a mappiBg: A(L) — A(M),
(b) the mappingQ : As(L) — A(M) defined by

Qua:aua+/fam@nm (ze M)

has dense range.
ThenS+V, is a U-operator.

PrROOF. Fix a setU = U(T = S+V,,G,K,o = (¢n),e,1,0,h) as in @).
According Theoren®.2, we should show tha # ¢#. We may suppose > R
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without loss of generality. SincK is a compact subset @ ando € w(G), there

is n € N such thatg,(K) N B(O,r) = #. ThenM := ¢,(K) € .Z{|z| > r})
becaus®, is automorphism o. By hypothesis, there existse .# ({|z| > r}) N 11
with M c L and a poina € dL such that (a) and (b) are satisfied. It is clear that
we can find a rectifiable Jordan apcjoining the origin toa with y N L = {a} and
such that the compact sBt0,r) U y U L has connected complement. By using a
suitable parametrization of the ar¢it is not difficult to construct a functioif, that is
continuous orB(0, r) Uy, agrees witth on B(0, r) and satisfied, (a) = 0. Consider
the mappinds; : A(y) — A(M) given by

(7 S (@ = 9(¢,'(2) —/ fhez Hdt (ze M).
Y

It is well defined becausg € A(K),K c G, M = ¢,(K) andg,* € H(G). It
follows from (b) that there exists a functioil € A,(L) such that

8 IQh@) - ST@ <e (zeM).

On the other hand, the mappiisy: A(L) — A(M) is continuous (by (a)). Also the
mappingsS; and

S A(L) - AM), ng(Z):/ fHe(z,t)dt (ze M)

are obviously continuous. Therefore, b)) @and @), there exists§ > 0 such that if
f € & satisfies

9 [f(2) - .2l <6 (zey) and [f(9) — f(2)| <6 (ze L)
then
(10) IST@2+ ST -ST@<e (zeM).

Consider the functiorf; : Ly — C defined as

fi(z2) if ze B(O,r)Uy;
f3(2) = .
fo(z) if ze L,

wherel, := B(0,r) Uy U L. From the factf;(a) = 0 = f,(a) one obtains that

f3 € A(Lo). But the compact sett, has connected complement. Consequently,
it follows from Mergelyan’s theorem that there exists a polynomnfiasatisfying

I f — fsll, < min{e,8}. Hence,|f — h|go, < ¢ and @) holds. Thenf also
satisfies {0), which can be rewritten a3 f(2) — 9(¢,*(2))| < ¢ (z € M). But this

is equivalent td|(T f) o ¢, — gl < &. Summarizing,f € U, soU # . O
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We remark that if the operat@ is linear then, due to the density &fin A(L),
condition (a) is equivalent to the following: For every> 0, there is & > 0 such
thatif f € & and| f| . < § then||Sf|lm < &.

LEMMA 4.2. ForeveryL e ITandevena € L, there exists afinite positive constant
B = B(L,a) satisfying the following property: To eache L we can associate a
piecewise continuously differentiable grg: [0, 1] — L joining a to z and a finite
subset~, C [0, 1] such thaty,(u)| < Blz—a| forall u € [0, 1]\ F,.

PrOOF. Letus fixL, a as in the statement. From the shapé.afis evident that a
numberR € (0, +00) can be chosen in such a way thigta, R) N L is starlike with
respectta. If z € B(a, R) N L then we simply define, as the segment joining to
z, thatis,y,(u) = a+(z—a)u (0 < u < 1), hencey,(u)| = |z—alforallu € (0, 1).
Assume now that € L \ B(a, R). LetN be the number of segmentsaf. Thenitis
clear that one can pick a polygonal axcc L joining a to z consisting ofm = m(z)
segments which are parallel to the axes, with< N. Now if we parametrize
such segments in the obvious way fh 1/m], [1/m,2/m], ..., [(m — 1)/m, 1]
then |y,(u)| is not greater thamdiam(L) in the interior of each one. Therefore
ly,(u)] < Ndiam(L) for all u € [0,1] \ F, whereF, = {0,1/m,2/m, ..., 1}.
Hencely,(u)| < Ndiam(L)|z—a|/Rfor such values ofl whenever € L \ B(a, R).
Thus, the constart := max{1, N diam(L)/R} does the job. O

LEmmA 4.3.If L € TT,a € L, ¢ is an entire function of two variables andis an
entire function withu(z) # Oforall z € L, then the operatof, , : Aa(L) — Aq(L)
givenbyQ,, f(2) = a(2) f(2) + [ f(D)e(z, t)dt (z € L) is onto.

PrOOF. Observe first thaQ, , f is well defined becaus®, , f(a) = 0 for all
f € Au(L). Sincea(z) # 0 forall z € L, the statement is derived from the fact that
the operatot — K : A;(L) — As(L) is invertible (so onto), wherK is the operator

Kf(z):/zf(t)wl(z,t)dt (zel)

andg,(z,t) = —(z,t)/a(z). If the spectrunv (K) reduces tq0} one would have

o(l — K) = {1}, hence 0¢ o(l — K), so obtaining the invertibility ofi — K.
Therefore, according to Gelfand’s formula for the spectral radius, it must be shown
that lim,_, ., [|[K"|¥" = 0, where||K | = sup||[Kf]|, : || f]l. < 1}, the norm in the
spacel (Aq(L)) of linear operators o,(L). Take a constang € (0, +o0) and

the family of arcsy, : z € L} joining a to z as Lemma4.2 asserts. Therefore, the
length of each partial arg,| o, from a up toy (u) is not greater thau|z — a| and,

in particular,|y,(u) — a| < Bujz—a| (u € [0, 1]).
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Letus fix f € Ay(L) with || f||. < 1 and denot&€ = sug|g:(z,t)| : z,t € L}.
From the definition of the operat#t we obtain, foralz € L,

1
IKf(2)| = / f (2 (U)e1(z, y2(1)y, (U) du
0

1
5/ [ f (W) lle(Z, v ()] y,(w)|du < CB|z— al.
0
Then

1
IK2f(2)| = / (KE) (2 U)e1(z, v (W) y, (w) du
0

/(Kf)(t)fﬂl(Z,t)dt‘ =
Yz

1 1
s/ KT (y(u)ICly,(w|du < Czﬂ/ ly,(u) —alplz—aldu
0 0

1 C283|z — a2
<C?B3|z— a|2/ udu= L
o 2!
By induction we are led to the following inequality, which holds for every N:

chpgntiiz —al" _ cpridiam(L)"

n
IK'f(2)| < ol ol (zel).
Whence
diam(L)AY" 1o
1
IK"IY" < CB (o 0
and we are done. O

Recall thatZ(f) denotes the subset & consisting of the zeros of a function
f : G — C. We are now ready to establish our theorem.

THEOREM4.4. Assume thalN € Nj and thata,(z) (n = 0, ..., N) are entire
functions, in such a way thaty (z) has finitely many zeros. Assume also tRais
a polynomial and thatd is an entire function of subexponential type. Nefz) =
> oc;2Z be aformal power series withm;_ . (/¢;|¥//j) = 0. We have

(A) The operatorT on & defined byT f(z) = Z;\':O 32fP2) +V,(2 (f € &,

z € G) is a U-operator.

(B) If P is non-zero therP(D) + V, is a U-operator. IfP is nonconstant then
P(D) + ¥(D™) is a U-operator. IfA € C\ {0} then the Volterra operator of the
second kind.1 +V, is a U-operator.

(C) If for someN € N the entire functionw — (dN¢/9zV)(w, w) has finitely

many zeros and each functien— (3"¢/0z")(w, w) (n = 0, ..., N — 1) vanishes

identically thenV,, is a U-operator.

(D) If ¥ is non-zero thent (DY) is a U-operator. In particular, ifP is non-zero

thenP (DY) is a U-operator.
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(E) If ® is nonconstant the (D) + P(D?) is a U-operator.

PrROOF. It is evident that (B) is a consequence of (A). Furthermore, (D) is derived
from (C). Indeed, for the cas® = O, let N = min{j € Ny : ¢j;; # 0}. Then
W(D™) =V, with (z,t) = 377 ¢;1(z— 1) /]!, hence

N n
(Z—N(w w) =Cny1 # 0= 2;?
for all w € C and (C) applies. The casg # 0 follows in a similar way from (B).

Thus, our goalis to prove (A), (C) and (E). As for (A), let us check that the hypothe-
ses (a)—(b) of Lemma.1are fulfilled whenSis defined assf = 3"} ja;() D’ f.

Clearly, (a) holds for every pair of sekd, L € .# (C) with M c L. On the other
hand, choos® = 1+ max{|z| : ze€ Z(ay)} and fixr > RandM € .Z ({|z] >r}). It
is not difficult to realize that a connected compactset {|z| > r} can be constructed
in such a way thaM c L° C\ L is connected, andL consists of finitely many
segments which are parallel to the axes, thaliss .# ({|z] > r}) N I1. Hence,
condition (b) of Lemma4.1 will be satisfied as soon as we show that the operator
Q: AY(L) - A(M) defined by

(w,w) (n=0,...,N—1

Qf(z) = Zaj(z)f(”(z) +/ fez tdt (ze M)
j=0
has dense range, wheads any fixed point ingL (soa € L \ M) andAY(L) is the
subspace oA, (L) consisting of all functions € A(L) that areN-times continuously
differentiable inL with f™(@) =0forn=0,..., N.

For this, consider any entire functiof(z, t) of two complex variables such that
for eachz € C the functiont € C — ¥ (z,t) € Cis anN-antiderivative ofp(z, -) (of
coursey = ¢if N = 0)insuchawaythav!y/dt!)(z,a) =0forj =0,..., N—1.
After integration by partsN times) we obtain, forf € AY(L),

/Z f(We(z,u)du

z anf
=/a f(u)W(z, u)du
N—-1

N n—-1 N n—-1
=> (D" [fm)(z) P n‘f(zz) £ @) P n'f(za)}

n=0

+ (—1)”/ f N W)y (z, u)du

N-1 gN-n- 1¢

=) (—1)" f<”>(z) proe €2 2) + (DN /Zf(N)(u)x//(Z, u) du.
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Hence

N-1 z
QU@ =av@fV@+) b@f"@ + (—1>“/ FM )y (z b dt

n=0

for certain entire functions, (n=10, ..., N —1).

But f® =D N fNM (n=0,...,N—1)for f € A¥(L), whereD, 'h denotes
the uniquej -antiderivativeH of orderj of hsuchthaH®(@) =0k =0,..., j—1).
Therefore ") 5 by(2) f ™ (2) = Y1y ba(2) (DN £ M) (2). Then our mapping)
can be written as

Qf(» =an(2D" f(2) +/ (DM () yu(z, b dt,
a
whereyr; is an entire function of two variables; specifically,

N N-1 (Z _ t)an—l
Yz t) = (DVy(zt) + nX_;bn(a -t
Next, let us consider the operatQg, », : Aa(L) — Aq(L), whereQ,, ,, is defined
as in Lemmad4.3, it should be observed thaty(z) # 0 for all z € L because
L C {lz] > r}. Then, by Lemma&t.3 Qa, 4, : Aa(L) — Aq(L) is onto. But
A.(L) is dense inA(M); indeed, ifg € A(M) then the functiorg(z)/(z — a) also
belongs toA(M) because ¢ M, so givens > 0 Mergelyan’s theorem furnishes
a polynomial P with |P(z2) — (9(2)/(z — a@))| < ¢/diam(L) (z € M). Hence the
functionPy(z) := (z—a)P(2) isin Ay(L) and satisfie§ P, —g|lm < ¢. Consequently,
Qanvr @ Aa(L) — A(M) has dense range. HenGehas also dense range because
Q = Qa,.y, o DN and the mappind™ : AY(L) — A,(L) is, trivially, onto. This
completes the proof of (A).

Letus prove (C). We willagain try to apply Lemmal. Condition (a) is trivially sat-
isfiedforS=0. LetR=max{|z| : ze Z(f)}andfixr > RandM e .# ({|z] > r}).
As before, choose any compact et IT with L C {|z| > r} andM c L°. Fix any
ae€ dL,soa e L\ M. We should verify condition (b) of Lemma L

By hypothesis

Ny g

(11) a?(w»w) #0= Py

(w,w) (wel,n=0,...,N—=1).

Consider the mappin® : A,(L) — A(M) given by Qf(2) = [} f(p(z t)dt.
Our goal is to show that it has dense range. By using an application of Mergelyan’s
theorem which is similar to that used in the proof of part (A) we obtain that the linear
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combinations ofz—a)™ (m > N + 2) are dense iA\(M). HenceQ will have dense
range as soon as we find for a fixed> N + 2 a functionf € A,(L) such that

(12) f@=@z—-a" (zel).

Due to (L1) and to Leibniz's rule, the functio®@ f is (N + 1)-times continuously
differentiable onL with

(13) D"(Qf)(w) = / f(t)znz‘f(w,t)dt (n=0,....,N)
and
aN w aN+l
DY™H(Q ) (w) = f(w)aTN‘”(w,w +/a f(t)aZNf(w,t)dt

for all w € L. Now, the not-equal part ofl() and Lemma4.3 for a(w) :=
(ANgp/azZN)(w, w) andg changed tdN*1p/9zN* imply that DN*1o Q : Ag(L) —
A.(L) is onto, whence there exists a functidne A,(L) with DN*1(Qf)(w) =
m!(w —a)™ N1/ (m— N —1)!forallw € L. ThenDN*[Qf — h] = 0 onL, where
h(z) .= (z—a)".ButD"[Qf—h](@ =0(n=0,..., N)by (13, henceQf —h =0
on L, which proves 12) and (C).

Finally, we prove (E). Letb(D) = ) a,z" be an entire function of subexpo-
nential typeM € .# (C), L € IT with L° > M anda € dL. Since(n!|a,|)¥" — 0
(n — o0) we getla,] < (dist(M, aL)/2)"/n! for n large enough. From this and
from Cauchy’s inequalities one obtains easily that gigen 0 there is & > 0 such
thatif f € & and| f|. < 6 then||®(D)f||w < . In other words, the condition
given just after Lemmd.1is satisfied for the linear operat&= & (D), hence con-
dition (a) in that lemma is fulfilled. The extension®f D) to a continuous mapping
A(L) — A(M) will be also denoted byp (D), and similarly for related operators.
Therefore, our final task is to verify condition (b) of Lemmadl, that is, we should
check that the mappin® : A,(L) — A(M) given byQf = ®(D)f + P(D™H f
has dense range. By Mergelyan’s theorem it suffices to show that giver-@hand
a polynomialg there existsf € A;(L) such thaf|Qf — gllu < e.

For this, assume tha®(z) = pyz" + p.2N1 + --- + py and define the new
entire functiond, of subexponential type bg,(z2) = z2N®(z) + Z,’LO p.z". Then
Q = ®1(D) o Jo DN, whereD;N : Ay(L) — AY(L), J : AV(L) - AK)
and®,(D) : A(K) - A(M). HereK is a member inll that has been selected
to satisfyM c K° ¢ K c L% (soa ¢ K), andJ is the inclusionJ(f) = f.
Note that®;(D) : A(K) — A(M) is well defined by the same reasoning as that in
the beginning of the proof of this part. Sindg # 0 (becauseb is nonconstant)
Malgrange-Ehrenpreis’ theorem guarantees thatD) : & — & is onto, hence
®,(D) : A(K) - A(M) has dense range becauseis dense inA(M) due to
Mergelyan’s theorem. Again by an adequate application of Mergelyan’s theorem (the
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facta ¢ K is crucial) we have thal has dense range. BO; M is clearly onto, so it
has dense range. Consequern@also has dense range and we are done. O

We stress here that not every Volterra operator is a U-operator. For instance, se
¢(z,t) :=sin(mz), G :=C, (¢,(2) :=z+n) € w(G) andK := {0}, and fix f € &.
Then

(V,Hop) (=020 forall ze K,

so((V¢, f)o (pn) is not dense iMA(K) = {constantsandV, cannot be a U-operator.

5. Large linear manifolds of entire functions with universal translates

Before continuing our research of further classes of U-operators we take a break
in this section in order to establish the promised improvement of Thetrgnsee
Theoremb5.2 below. It will be shown that the family of entire functions which are
universal in the sense of the former theorem is very large in both topological and
algebraic senses.

The following statement can be found i8] gnd it will be needed in Theoret2
It furnishes a sufficient condition for the existence of large linear manifolds of vectors
which are simultaneously hypercyclic with respect to each member of a countable
family of sequences of linear mappings. Itis in turn an extension of an assertion due
to the first author, se&s] Theorem 2]. It should be noted that i@] the final spaces
Y were all the same, but a glance to the proof reveals that they can be different.

LEmmA 5.1. Let X and Y, (k € N) be metrizable topological vector spaces such
that X is Baire and separable. Assume that, for ekehN, T® : X — Y, (n € N) is
a sequence of continuous linear mappings satisfying(fﬁ#t) is densely hypercyclic
for every sequencg; < n, < --- < n; < ---} C N. Then there is a dense linear
submanifoldM c X such thatM \ {0} C (o Z ((T,)).

THEOREM5.2. Suppose thatS;) is a countable family of U-operators afi and
that (Gy) is a countable family ofo»-domains inC. For eachk, assume thaty, y :
n € N} € w(Gy). Then we have

(a) There exists a residual subset of entire functidnsuch that each sequence
{((§ ) opkn)lk : N € N} is dense inA(K) for everyK e .#(Gy), everyk and
everyj.

(b) If everyS; is linear then there exists a dense linear manifddc & such that
each non-zero functiofi € M satisfies the same density property give(a
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PrOOF. With the notation of Sectio2 we have that for each, k and eactK ¢
A (Gy) the sequence of mappings

Shifeé> (SHomnlk e AK) (nNeN)

is densely hypercyclic. Sinc# is a Baire space and(K) is second-countable the
set@/((s(ﬁi?n)) of hypercyclic vectors for that sequence is a de@sesubset of#’,
see [L8, Theorem 1]. Now for giverk let us select a sequencK, ) C .#(Gy) as
that given in Lemm&.1 Denote byA the subset of function$ € & satisfying the
property stated in (a). Then

A= 27«SK) =7k,

j.k,K j.k,m

where the second equality is derived as in the proof of Thed@nThenA is a
countable intersection of denGg-subsets of’, thereforeAis itself a dens&;-subset,
hence aresidual subset&f This proves (a).

As for (b) chooseX := &, Ym := A(Kim) andT0km = S in Lemmas.1(a
trivial variant of it has been used by employing double and triple indexes) and take into
account that each subsequeri@g ™) of (T,*™) is densely hypercyclic because
eachS; is a U-operator and a subsequence of a member(G) also belongs to
w(Gy). This concludes the proof. O

COROLLARY 5.3. Let be given a countable familgy) of w-domains inC and, for
eachk € N, a sequencégp,, : N € N} € w(Gi). Then there exists a residual set
A C & and a dense linear manifoll C & satisfying the following

(@) For any fixedf € A, j € Z andk € N the sequence ofGy-translates’
{fD(pn(2) : n e N}isdenseinA(K) forall K € .7 (Gy).
(b) The inclusionM \ {0} ¢ A holds.

ProoF.  Differentiation and antidifferentiation operatdds (j < Z) are U-oper-
ators. O

6. Taylor shifts and gap series

In this final section a kind of operators is consideredfowhen it is regarded as
the space of complex sequencag) with |a,|*" — 0 (N — o0). In this setting and
in connection with universality, the weighted backward shifts have been studied in
[3, 17, 19, 31]. Recall that ifw = {w, : n € Ny} is a complex sequence then the
weighted backward shift associateditas the mapping defined ofi as

Bw : f(Z) = Zanzn — (Bw f)(Z) = ananJrlZn'
n=0

n=0
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It is easy to see that if the sequen¢e,|¥" : n € N} is bounded therB,, defines
actually an operator of. Observe that the differentiation operairis the special
caseD = B, with weight sequence, = n+ 1. In [3] the first author introduced a
more general notion which is closed under composition, namely, the Taylor shifts (in
[19] they are called ‘pseudo-shifts’, and they are considered in a more general setting).
An operatofT : & — & it said to be araylor shiftif and only if there are a complex
sequencey = {w, : N € Ng} and a one-to-one selfmappigg: Ng — N such that
Tf(2 =Y ", whd,mZ" Wheneverf (z) = ) a,2" (f € &,z e C). Equivalently,

T is linear and, for everm € Ny,

wnZ™  if n=e(m);

T(@) = { .
0 if n¢ p(Np).

Then we will denoteT = T,,. We remark tha8, = T,
Clearly, T, , is not one-to-one ip is not onto.

The following theorem provides with a sufficient criterium for a Taylor shift to be
a U-operator. It covers the case of differentiation operafg N € Ny), which of

course are already known to be U-operators as particular instances of op@nddrs

with ¢(n) = n + 1.

0, ¢

THEOREM6.1. Let be given a complex sequeres, : n € Ny} and a one-to-one
selfmappingy : Ng — Ny satisfying the following properties
(@) O< infoen |wal¥™ < sup,y lwnlY™ < 400 andwg # 0,
(b) O< Iliminf,_ . ¢(N)/N < sup,.¢n)/n < +oo.
Then the Taylor shifT,, , is a U-operator.

PrOOF. As seeninB, Theorem 3.2], the last inequality in (a) together with the first
inequality in (b) guarantees that:= T, , is a well-defined operator ofi. Recall
thatT is linear. According to Corollar.7 (a), it is enough to show that is onto.
For this, fix an entire functiog(z) = ", b,z". Let us define

By-1m) /Wy If N € 9(No);
a, = .
0 otherwise
Observe thatw; # 0 for all j. Consider the power serielS(z) = Y~ a,z". It
is clear that, formally,Tf = g. Hence it suffices to check thdt € &, that is,
liM,_ . |a,]¥" = 0. We have

~1(my/n e~ tm/n
= <|b¢71(n)|l/¢7l(n))(p o . (%)
1 .
| Wy-1(n) |1/</7 (n)

1/n
bwfl(n)

Wo-1(n)
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Now observe thatw, 1, |¥¢"™ is bounded away from zero by the first inequality
of (a), thatp~1(n)/n is asymptotically bounded away from zero by the last inequality
of (b) and thatb, :,|** "™ — 0 asn — oo becausg is entire. Therefore,

1/n

n _ lim b‘ﬂfl(n) -0

n—o0

lim |ay|
n—oo Wy-1(n)

as required. O

It is natural to ask whether non-onto Taylor shifts U-operators can exist. They
exist indeed, even with = the identity onNy. Specifically, we next study the Euler
differential operator, see its definition below. It is related to certain lacunary power
series, which will be also dealt with in the final part of this section.

Assume thatd(z) = ) 7,c,2" is an entire function of subexponencial type.
Consider the operatoE : & — & given by Ef(z) = zf'(2). Then theEuler
differential operatord (E) associated t@ is defined as

PE): fes > dEF=) E'fes.

n=0

It happens thatb(E) is in fact a linear well-defined operator ofy, and that
O(E)f(z2) = > oy ®P(Ma,z" wheneverf(z) = Y 7 a,z", see P1, pages 46-54].
Hence®(E) =T, , with w, = ®(n), ¢(N) = n (n € Np).

In order to establish the desired propertyda(E) we need two auxiliary lemmas.
The first one is classic and can be foundif,[Theorem 9.1.4]. The second one is a
recentlacunary result and may be seer2if) Lemma] and 28, Lemma], see als@J/,
Lemma 2]. A little further terminology is in order. éRall that if Q ¢ Ny andv(A)
denotes the number of elements of a finite Aehen theupper(lower, respectively)
density A(Q) (A(Q), respectively) ofQ and themaximal(minimal respectively)
densityAna(Q) (Amin(Q), respectively) ofQ in the sense of &ya [32] are defined
as

@ = limsup™ D A () = iminf

i i v( QN[O r) —v(QNIO,ar])
Anax(Q) = aIerl[ (Ilm sup ) ,

r—o0 (1—0[)|'
v(QN[0.rh) —v(QNI[O, ar]))
(1—oa) '

v(Q N[O, n
—

Amin(Q) = Iirrl[ (Iim inf
ThedensityA (Q) of Q is defined as

_ . v(QnN[o,n)
M@_ﬂl__F__’
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if such a limit exists, that is, iN(Q) = A(Q). In addition, we denote by, the
subspace of’ consisting of all entire functions with null Taylath-coefficient at the
origin for everyn ¢ Q. Thereforegy, is a space of gap series. Note theaE) f € &g
if Q =Ng\ ®1(0). Moreover, forA c C and fora € [0, ) we set

A, ={ze":ze A |0] < al.
LEMMA 6.2. If ® is a non-zero entire function of subexponential type then
A(No\ @7%0) =1L

LEMMA 6.3. Let K e .#(C) with 0 e K° and assume tha® is a subset ofNg
satisfying at least one of the following two conditions

(@) The component oK containing the origin is starlike with respect tand
AQ =1

(b) The minimal density satisfies,,(Q) = § € (0, 1] and there exists a Jordan
arc y connectingoo with the boundary of the maximal disk with cen@ewhich is
contained inK°® and having the property, s N K = @.

Suppose that > 0 and that f is holomorphic on some open set containilig
such thatf has a power series representation around the origin of the fo(m) =
Y o oanz" witha, = 0for n ¢ Q. Then there exists a polynomil € &4 such that
[f(z2) — P(z)] <eforall ze K.

The proof of the following result is inspired by that dff, Theorem 4.6].

THEOREM6.4. If ® is a non-zero entire function of subexponential type then the
Euler differential operatord (E) is a U-operator.

ProOF. According to Corollary2.7, we would be done as soon as we prove that
@ (E) hasw-dense range and is-stable.

Fix anyR > 0, anyM € .#Z ({|z]| > R}) and anyg € A(M). By Mergelyan’'s
theorem, there exists a polynom#a| such that

(14) 192 = Pi(2)| <¢/2 (ze M).

ConsiderQ := B(0, R) U {|z] > R}, K := B(0, R/2) UM andQ := Ny \ @ %(0).
Then, by Lemmab.2, A(Q) = 1. ButK € .#(C), 0 € K®and is an open
set containingK, therefore from Lemmd.3 (under condition (a)) there is some
polynomial P € &4 such that

(15) 112 - P@| <e/2 (z€K),
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wheref : Q — Cis defined as
P if R;

(16) f(2) = 1(2) l Iz| > R;
0 if |zl <R

By (14)—(16) we get
a7 92 — P@| <e (ze M).

Now, we define the polynomi&las follows. Assume thd(2) = > _on01...n) 2"
Thenh(z) := ZnEQm{Oylw'_N}(an/cD(n))z”. Trivially, h € & and®(E)h = P. Thus,
by (17), |(®(E)h)(z2) — g(2)| < ¢ for all z € M. This shows that the restriction
mapping®(E)y : € — A(M) has dense range, 90(E) hasw-dense range. As for
w-stability, fixr > 0 and selecR :=r. Giveneg > 0 andM € .Z({|z| > r}) we
have to find§ > 0 andS € .# ({|z| > r}) such that|®(E) f |y < & wheneverf
is an entire function with| f||ls < §. We can choose a compact sete IT (see
the notation just before Lemmé&1) such thatM c S* ¢ S C {|z| > r}, so
Se #({|z| >r}). Seta :=inf{|t —z :t e, ze M} > 0, wherel' = 3S. Let
us denote8 := max|t| : t € I'}, henceB € (0, +o0). Sinced(z) := Y - ,c,z" has
subexponential type, there exists a cons@rt (0, +00) such that

C/a)\"
|n|<_<£> (n € Np).

Defines := era/(ClengthT")) and fix f € & with || f|ls < §. According to P1,
pages 46-54], we have

1 P.(z,t) f (1)

E'f(2) = o ra———

dt (NneNg, ze M),

whereP,(z, t) is a polynomial of two variableg, t satisfying|P,(z,t)] < n!g" for
allze M andt € T. In fact, P, does not depend of. Finally, for everyz € M we
ch(E" )2

obtain
P.(z.t) f (1)
= o Z' ol | e

1 C NI flls ||S Célengthl") w— 1
SZnZn_<zﬂ> et D < Ly

n=0

12(BE)f ()] =

€,

as required. O
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There are other non-onto Taylor shift U-operat®s, with ¢(n) = n(n € N)
which are essentially different from Euler differential operators, but also related to
gap Taylor series. Our resultis contained in Theofeh{see below) and strengthens
Theoreml.3. On the other hand, the conditian(Q) = 1 is ‘essentially’ necessary
in order that the property of density l(K) (K € .# (C*)) can be satisfied for some
f € &4. Indeed, itis shown inq7, Theorem 2] that\n.(Q) = 1.

We now consider the ‘gap operatdg : & — & given by

(loP)(@ = Zanz", where f(z) = Zanz”
neQ n=0

andQ C Ny is fixed. Observe thdig = T, , with ¢(n) = n for all n and

0, ¢

{1 if ne Q;
Wp =
0 ifn¢gQ.

Note that the next theorem i®t contained in Theoreri.4 because, give® C Ny
with A(Q) = 1 andQ # Ny, there exists no entire functioh of subexponential type
satisfying®(n) = 1 forn € Q and®(n) = 0 forn ¢ Q. Indeed, if such a function
exists thenb,(z) := ®(2) — 1 would also be of subexponential type; ijt*(0) = Q,
SOA(Ny \ ®71(0)) = ANy \ Q) = 0 # 1, henced, = 0 by Lemmab.2. Therefore
® = 1, which is absurd.

THEOREM 6.5. Suppose tha® is a subset oN, with A(Q) = 1. We have
(a) The gap operatoiq is a U-operator.
(b) Letbe given a countable fami{fsy) of v-domains inC. For eachk, assume that
{okn : N € N} € w(Gy). Then there exists an infinite-dimensional linear manifold
M C &g such that for everfF € M\ {0} the sequenclF o ¢ )|« : N € N} is dense
in A(K) for everyK € .# (Gy) and every.

PROOF. (a) Assume that a sét := U(T = lg,, G, K, 0 = (¢n),&,1,9,h)asin
part (d) of Theoren?2.2is fixed. As remarked after Theorel®, it can be supposed
without loss of generality thag is a polynomial. It has to be shown thét is
nonempty. Since € w(G), there exists1 € N with B(0,r) N ¢,(K) = @. Consider
the setL := B(0,r) U ¢,(K). ThenL e .#(C) becaus&K e .#(C) andg, is a
homeomorphism fronG into itself. In addition, Oc L° and the component df
containing 0 & B(0, 1)) is starlike with respect to 0. Let us consider the function

) = (|Qri)l(z) if ze BO,r);
9(p,1(2) if ze gy(K).
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Observe thaf is holomorphic on some open set containing Indeed,lh is
entire andg o ¢, € H(G). On the other hand has, obviously, a power series
representation around the origin with gaps at the indexes belongiNg t0Q. By
Lemma6.3 (a), there is a polynomiaP € &5 such thatF(z) — P(2)| < e (z € L).

In particular,||Ioh — Plige,, < ¢ and||P o ¢, — gllx < &. Now define

f=P + INQ\Qh'
Itis clear thatf € & andlqf = P. Hence
If —hlgorn =P+ lnaoh — loh = Inaohllson < €

and|[(Iof) o ¢n — glik < . Consequentlyf € U and we are done.

(b) Let us suppose th&6y) and{g, : n € N} (k € N) are as in the hypothesis.
If we apply part (b) of Theoreny.2 on the constant sequen& = |4 then we
obtain a dense linear manifod C & such that, for allf € M \ {0}, each sequence
{((IgT) ogn)lk : N e N}is dense inA(K) for everyK e .# (Gy) and everyk € N.
DefineM := IQ(M). ThenM is a linear manifold inf,. Moreover, ifF € M \ {0},
thenF = I f for somef e M \ {0}, so the approximation property of the statement
holds. Finally,M is dense in o(&) = &4, henceM must be infinite-dimensional. [

To finish, we would like to say something in the case of the weaker condition
Amin(Q) > 0 for the subsef) C Ny. In such a case, Luh, Martirosian andul&i
were able to prove (se@®, Theorem 1]) that for a given sequen@g) C C tending
to oo (again, the statement is equivalentta,) is unbounded’) there exists a function
f € &4 such that the sequence of translatész + a,) : n € N} is dense inA(K)
for all K € .# (€). In our next (and final) theorem we obtain a strong improvement
with a different proof. We remark that by Mergelyan’s theorem densitj implies
density in everyA(K) with K € .# (C).

THEOREM6.6. Let be given a subsé) ¢ Np with A,;,(Q) > 0 and a sequence
(¢n) € w(©). Then there exists an infinite-dimensional linear manifdidc &5 such
that for everyF € M \ {0} the sequencéF o ¢, : n € N} is dense in the spacg.

PrOOF. We have thap,(2) = a, + b,z (n € N) for some complex sequences),
(b,) with b, # 0 for alln anda, — oo, a,/b, — oo asn — oco. For givens > 0,
r > 0, R > 0 and polynomialgy, h we can select as in the proof of Theorém a
positive integen with B(0,r) N ¢,(B(0, R)) = #. Consider also the corresponding
function F defined onL := B(0, r) U ¢,(B(0, R)) given by

) = (|Qr1)l(z) if ze §(O;r);
9(p,1(2) if ze ga(B(O, R)).
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Now, n can be chosen in such a way that there exists a Jordan@anectingo
with the boundary oB(0, r) such that

(18) Yea—s N L =0,

whereé = Anin(Q) (this will be shown at the end of the proof). Therefore
Lemma6.3(b) applies, yielding a polynomid® € &4 suchthaf|P — F||, <e. Then
as in the proof of Theorer.5 we obtain a functionf € & with || f — hllgo, < €
and||(Io f) o ¢n — QllzoRr < &. Letus define

G(@. R e):={fe&:(C,lo)f —dlsor < ¢ forsomen e N}.

Then we have just proved that ea@lig, R, ¢) is a dense subset éf. On the other
hand, it is not difficult to realize that evefy(g, R, ¢) is open and that

%((C,lo)) = () G(g;,k 1/D),

jkleN

where(g;) is an enumeration of polynomials whose coefficients have rational real

and imaginary parts. By Baire’s theorefr,((C,, 15)) is dense. In other words, the

sequenc&€, I : & — & (n € N) is densely hypercyclic. But the same holds for

every subsequenc(é:%j lo) (N < n; < ---) because, trivially(g,,) also belongs

to w(C). From Lemma5.1 as applied onX := & =: Y for all k (or from [5,

Theorem 2]), there is a dense linear manifbidc & with M\ {0} ¢ 2 ((C,lo)). If

now we defineM := IQ(M) then we can conclude as in the proof of Theo@B(b).
Thus, we would be done ifL@) is obtained for some suitable Jordan ardRecall

thatL = B(0,r) U ¢,(B(0, R)) wheren is such that the union is disjoint. Observe

thate,(B(0, R)) = B(a,, R|by|). If a, = |a,|€, consider the angle

S(n) ={ze C\ {0} : 6, — 7§ < argz < 6, + wd}.

Since lim_ ., b,/a, = 0, we can choose our integerin such a way thatb,/a,| <
sin(t8), soB(ay, R|ba|) C S(n). Let us define the Jordan apc:= {—te® : t > r}.
Theny connectsoo with the point—r of the boundary ofB(0,r). In addition,
Yra—s N B(0,1) = @ andy,_5 C C\ S(n), whence {8) holds. O
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