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Abstract

Inspired by a statement of W. Luh asserting the existence of entire functions having together with all
their derivatives and antiderivatives some kind of additive universality or multiplicative universality on
certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we
introduce in this paper the new concept of U-operators, which are defined on the space of entire functions.
Concrete examples, including differential and antidifferential operators, composition, multiplication and
shift operators, are studied. A result due to Luh, Martirosian and Müller about the existence of universal
entire functions with gap power series is also strengthened.

2000 Mathematics subject classification: primary 30E10; secondary 47A16, 47B33, 47B38, 47E05,
47G10.
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1. Introduction

Let us denote byN the set of positive integers, byZ the set of all integers, byN0

the setN ∪ {0}, byC the complex plane, byH .G/ the Fréchet space of all complex
holomorphic functions on a domainG ⊂ C, endowed with the compact-open topology,
and by A.K / the set of all functions which are continuous onK and holomorphic
in its interior K 0, whereK ⊂ C is a compact set. Introducing the maximum norm
‖ f ‖K := maxz∈K | f .z/|, the spaceA.K / becomes a Banach space.

Since Birkhoff proved in 1929 [12] the existence of an entire functionf which is
universal in the sense that the sequence of its additive translates{ f .z+ n/ : n ∈ N} is
dense in the space of entire functionsE := H .C/, a great number of papers have been
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written about these topics, yielding in many cases unexpected results. An excellent
survey (updated till 1998) for the concepts, history and results about the subject of
universality and the related one of hypercyclicity is [18].

In 1941 Seidel and Walsh [35] extended Birkhoff’s theorem to non-Euclidean
translates on the unit diskD = {|z| < 1}. In 1988 Zappa [37] also established
an analogous result to that of Birkhoff, this time for the punctured complex plane
C

∗ := C \ {0}. He proved the existence of a holomorphic functionf on C∗ with
the property that for any compact setK ⊂ C

∗, whose complement is connected, the
set of the multiplicative translates{ f .cz/ : c ∈ C

∗} is dense inA.K /. In this line
of research, Montes and the first author [11] (compare also [23]) have characterized
the sequences.'n/ ⊂ Aut.G/ := {automorphisms ofG}, whereG ⊂ C is a domain
for which there exist functionsf ∈ H .G/ such that the sequence. f ◦ 'n/ has the
analogous universal property for compact subsets ofG. We recall this characterization
in Theorem1.1below, but some terminology is first needed. ByK .G/ we denote the
family of all compact subsets ofG, whileM .G/ will stand for the family

{K ∈ K .G/ : C \ K is connected} = {K ∈ K .G/ : G \ K is connected}:
A sequence.'n/ ⊂ Aut.G/ is said to berun-awaywhenever it acts properly discon-
tinuously onG, that is, givenK ∈ K .G/, there isn ∈ N such thatK ∩ 'n.K / = ∅.

THEOREM 1.1. Let .'n/ ⊂ Aut.G/. Then the following conditions are equiva-
lent:

(a) The sequence.'n/ is run-away.
(b) There exists a functionf ∈ H .G/ such that. f ◦ 'n/ is dense inA.K / for all

K ∈M .G/.
(c) There exists a residual set of functionsf ∈ H .G/ such that. f ◦ 'n/ is dense in

A.K / for all K ∈M .G/.

We point out that in parts (b)–(c) the density of. f ◦ 'n/ can occur inH .G/ itself
wheneverG is not isomorphic toC∗. Taking into account that{z 7→ z + n : n ∈ N},
{z 7→ nz : n ∈ N} and{z 7→ .n − 1 − nz/=..n − 1/z − n/ : n ∈ N} are run-away
sequences of automorphisms ofC, C∗ andD respectively, Theorem1.1extends and
unifies Birkhoff-Seidel-Walsh-Zappa’s theorems. It should be pointed out that several
authors, including Luh, Duyos-Ruis, Blair, Rubel, Grosse-Erdmann, Gethner, Shapiro
and Godefroy, had earlier extended Birkhoff’s theorem in some direction, see [18] for
a complete list of references.

We now focus our attention on a recent result of Luh that improves Birkhoff-Zappa’s
theorems, but this time following another point of view. In itf . j / denotes as usual the
derivative of f of order j if j ∈ N0, and if j ∈ N the symbolf .− j / denotes the unique
antiderivativeF of order j satisfyingF .k/.0/ = 0 for all k ∈ {0;1; : : : ; j − 1}. His
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statement (see [24, Theorem]) is proved constructively and, after adapting notations,
reads as follows.

THEOREM 1.2. Let be.an/ ⊂ C a given sequence withan → ∞. Then there exists
an entire functionf with the following properties:

(a) For any fixedj ∈ Z, the sequence of‘additive translates’ { f . j /.z+ an/ : n ∈ N}
is dense inA.K / for all K ∈M .C/.
(b) For any fixedj ∈ Z, the sequence of‘multiplicative translates’ { f . j /.anz/ : n ∈
N} is dense inA.K / for all K ∈M .C∗/.

As a matter of fact, in [24, Theorem] the sequence.an/ is just assumed to be
unbounded, but the formulation is equivalent because a subsequence tending to infinity
can be taken out. Luh’s theorem also asserted a further property forf , namely, the
sequence of derivatives{ f .[|an |]/ : n ∈ N} is dense inA.K / for all K ∈ M .C/ ([x]
denotes the integer part ofx). We will not consider this property because it is of a
different nature and, in addition, it can be derived by using Baire-category methods
together with the fact that the differentiation operator onE is densely hereditarily
hypercyclic—see [18] for concepts, results and references—which in turn is a strong
generalization of MacLane’s theorem [29] about the existence of an entire function
whose sequence of derivatives is dense inE . Theorem1.2 provides two novelties if
it is compared to Birkhoff-Zappa’s theorem. First, the functionf can be replaced by
the result of the action onf of theoperatorsof differentiation and antidifferentiation,
and secondly, the universal functionf can be chosen to beentire, even in the case in
which the domain (C∗, this time) is not the whole planeC. In [36, Kapitel 4] some
extensions of Theorem1.2are shown by replacing.z+an/; .anz/ to certain sequences
.Sn.z//, not necessarily holomorphic, defined on some subsets ofC.

The two novelties described in the last paragraph motivate the introduction of the
new concept of ‘U-operators’, that will be developed in the subsequent sections of this
paper. Concrete examples of this new kind of operators as well as sufficient conditions
will be given, and Theorem1.2 will be strongly improved. It should be pointed out
that, by following a different point of view, several other kinds of operators have
been recently introduced regarding the ‘wild’ behaviour near the boundary that they
produce when acting on certain holomorphic functions in a domain ofC. The starting
point of this related theory is, in turn, a strong result also due to Luh [22] about the
existence of holomorphic ‘monsters’, see [1, 2, 6, 7, 8, 9, 10, 14, 22, 25, 26, 28, 34].

Finally, in the last part of Section 6 we will strengthen a recent deep result due to
Luh, Martirosian and M¨uller [27, Theorem 1], who proved constructively the existence
of an entire function with lacunary power series expansion having dense additive and
multiplicative translates. An improved version of their result is established in [28,
Theorem 2]. Such a version reads as follows.
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THEOREM 1.3. Let Q ⊂ N0 with upper densityS1.Q/ = 1 and let .an/ be a
complex sequence withan → ∞ asn → ∞. Then there exists an entire functionf
with lacunary power seriesf .z/ = ∑∞

n=0 cnzn with cn = 0 for n =∈ Q satisfying the
following properties:

(a) The sequence{ f .z + an/ : n ∈ N} is dense inA.K / for all K ∈M .C/.
(b) The sequence{ f .anz/ : n ∈ N} is dense inA.K / for all K ∈M .C∗/.

As in Theorem1.2, the sequence.an/ can be just assumed to be unbounded. Several
notions of density of a subset ofN0 will be recalled in Section6.

2. U-operators: sufficient criteria and first examples

Observe first that in Theorem1.2 both sequences.z + an/ and .anz/ tend to in-
finity uniformly on compact subsets, respectively inC andC∗. Hence, in order that
everything works well with the new kind of operators to be introduced, the domains
G to be considered must beunbounded, because otherwise every entire function
would be bounded onG, which would prevent the desired density of any sequence of
‘ G-translates’ of it. Specifically, we assume that the set

!.G/ :=
{
.'n/ ⊂ Aut.G/ : 'n

n→∞−−→ ∞ uniformly on compacta inG
}

be nonempty, in which case we say thatG is an!-domain. It is clear that if.'n/ ∈
!.G/, then.'n/ is run-away. Note that the sequences given at the beginning of this
section are respectively in!.C/ and!.C∗/, soC andC∗ are!-domains. In fact, it is
not difficult to see that

!.C/ =
{
.an + bnz/ : bn 6= 0 for all n ∈ N and an

n→∞−−→ ∞;
an

bn

n→∞−−→ ∞
}

and

!.C∗/ =
{
.anz/ : an 6= 0 for all n ∈ N and an

n→∞−−→ ∞
}
:

As for an essentially different example, the upper halfplane{Im z > 0} is also an!-
domain; indeed, take .z/ = .2z−1/=.2− z/ .∈ Aut.D//;  n =  ◦ · · · ◦ (n-fold),
h.z/ = .z − i /=.z + i / and'n = h−1 ◦  n ◦ h (n ∈ N); then.'n/ ∈ !.{Im z > 0}/.
It should be warned that not every unbounded domain is an!-domain. For instance,
if G has finite connectivity≥ 3 then by Heins’ theorem [20] the group Aut.G/ is
finite, hence no sequence in Aut.G/ can be run-away and, consequently,!.G/ = ∅.
Finally, an unbounded infinite-connected domain may not be an!-domain: just take
G = C \ [{1=n : n ∈ N} ∪ {0}]; a simple application of the Casorati-Weierstrass
theorem and of the Open Mapping Theorem for holomorphic functions shows that
Aut.G/ reduces to the identity onG.
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Next, we give the definition of U-operators. Observe that in it the condition onG
of being an!-domain is in fact not strictly necessary, but we keep it because otherwise
the property would become vacuous. Byoperatorwe mean a (notnecessarily linear)
continuous selfmapping on some space, mainly onE .

DEFINITION 2.1. We say that an operatorT : E → E is aU-operatorwhenever the
following property is satisfied:

Given an!-domainG ⊂ C and a sequence.'n/ ∈ !.G/, there exists a dense
subset of entire functionsf such that the sequence{..T f / ◦ 'n/|K : n ∈ N} is
dense inA.K / for everyK ∈M .G/.

For the sake of convenience, we rewrite the last definition in the language of
universality. Recall that if X;Y are topological spaces then a sequenceTn : X → Y
.n ∈ N/ of continuous selfmappings is said to beuniversalwhenever there is some
elementx ∈ X, also called universal (for.Tn/), whose orbit{Tnx : n ∈ N} is dense in
Y. And .Tn/ is said to bedensely universalif the setU ..Tn// of universal elements
for .Tn/ is dense inX. If X; Y are linear topological spaces and the mappingsTn

are also linear then the word ‘universal’ is frequently replaced by ‘hypercyclic’. The
condition given in Definition2.1tells us that, for givenG, K ∈ M .G/ and.'n/, the
sequence

Tn : f ∈ E 7→ ..T f / ◦ 'n/|K ∈ A.K / .n ∈ N/(1)

is densely universal.
We need to reformulate Definition2.1 in a more comfortable way. This will be

done in Theorem2.2, but for this the following topological lemma is necessary. Its
content can be found in [11, Lemma 2.9] (see [24, Lemma 3] for the special case
G = C

∗).

LEMMA 2.1. For every domainG ⊂ C there exists a sequence.Km/ ⊂M .G/ such
that for everyK ∈M .G/ there is a positive integerm0 with K ⊂ K

0

m0
.

We remark that while in Definition2.1 the universal functionf does not depend
on the compact setK , in part (b) of the next result it is allowed todependon K . As
usual,B.a; r / (SB.a; r /) will stand for the open (closed, respectively) ball with center
a and radiusr (a ∈ C, r > 0).

THEOREM 2.2. Assume thatT is an operator onE . Then the following properties
are equivalent:

(a) T is a U-operator.
(b) Given an!-domain G ⊂ C, a sequence.'n/ ∈ !.G/ and a compact set

K ∈M .G/, the sequence.Tn/ defined by(1) is densely universal.
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(c) Given an!-domainG ⊂ C, ¦ = .'n/ ∈ !.G/, K ∈ M .G/, " > 0 and
g ∈ A.K /, the set

A.T;G; K ; ¦; "; g/ := { f ∈ E : ∃n ∈ N with ‖.T f / ◦ 'n − g‖K < "}(2)

is dense inE .
(d) Given an!-domainG ⊂ C, ¦ = .'n/ ∈ !.G/, K ∈ M .G/, " > 0, r > 0,

g ∈ A.K / andh ∈ E , the set

U .T;G; K ; ¦; "; r; g;h/ := { f ∈ E : ‖ f − h‖SB.0;r / < "(3)

and∃n ∈ N such that‖.T f / ◦ 'n − g‖K < "}
is nonempty.

PROOF. It is straightforward that (c) and (d) are equivalent because the family of
setsD.h; "; r / (h ∈ E , " > 0, r > 0) given by

D.h; "; r / = { f ∈ E : ‖ f − h‖SB.0;r / < "}
is a basis for the topology ofE , and

U .T;G; K ; ¦; "; r; g;h/ = A.T;G; K ; ¦; "; g/ ∩ D.h; "; r /:

On the other hand, it is trivial that (a) implies (b). Assume now that (b) holds.
Then (c) is satisfied sinceU ..Tn// = ⋂{A.T;G; K ; ¦; "; g/ : " > 0; g ∈ A.K /}.

Finally, our goal is to prove thatT is a U-operator by starting from (c). Observe
first that each set defined by (2) can be written as

A.T;G; K ; ¦; "; g/ =
⋃
n∈N

Tn
−1.BK .g; "//;

whereBK .g; "/ is the open ball{h ∈ A.K / : ‖h − g‖K < "} in A.K /. Therefore the
continuity of eachTn shows thatA.T;G; K ; ¦; "; g/ is an open subset ofE . But note
that if .gj / is any fixed denumerable dense subset ofA.K / (for instance,.gj / may be
the set of restrictions toK of polynomials whose coefficients have rational real and
imaginary parts) thenU ..Tn// = ⋂

j ;k∈N A.T;G; K ; ¦;1=k; gj /. HenceU ..Tn// is
a countable intersection of dense subsets in the Baire spaceE . At this point it is
convenient to writeTn = T .K /

n , with the emphasis in the fact that for givenG; ¦ the
sequence.Tn/ depends onK . In order to see thatT is a U-operator it must be shown
that the setL .T;G; ¦ / := ⋂{U ..T .K /

n // : K ∈ M .G/} is dense inE . But if .Km/

is the sequence of compact sets furnished by Lemma2.1then

L .T;G; ¦ / =
⋂
m∈N
U ..T .Km/

n //:(4)
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Indeed, givenK ∈ M .G/ there existsm0 ∈ N with K ⊂ Km0. If f ∈ U ..T .Km0/
n //

then for each fixed polynomialP.z/ there is a sequence{n1 < · · · < nj < · · · } ⊂ N

such that.T f /.'nj
.z// → P.z/ ( j → ∞) uniformly on Km0, hence onK . Now

Mergelyan’s theorem [33, Chapter 20] implies that the set of polynomials is dense
in A.K /, therefore the sequence{..T f /◦'n/|K : n ∈ N} is also dense inA.K /, which
proves (4). Thus,L .T;G; ¦ / is a countable intersection of residual subsets inE .
ThenL .T;G; ¦ / is residual itself, so dense, and this finishes the proof.

From the proof it is clear that in parts (c)–(d) it can be supposed thatg is just a
polynomial.

Our next task should be, obviously, to identify some U-operator. It happens that
the simplest operator does the job.

THEOREM 2.3. The identity operatorI onE is a U-operator.

PROOF. Let us try to apply condition (d) in Theorem2.2. Fix G, ¦ = .'n/; K , ", r , g
as in that theorem and consider the setU := U .T = I ;G; K ; ¦; "; r; g;h/given by (3).
We want to show thatU 6= ∅, that is, there is an entire functionf and somen ∈ N
with ‖ f −h‖SB.0;r / < " and‖ f ◦'n −g‖K < ". Since'n.z/ → ∞.n → ∞/ uniformly
on K , there existsn with |'n.z/| > r for all z ∈ K . ThenSB.0; r / ∩ 'n.K / = ∅. In
addition,'n.K / is a compact subset ofG with connected complement because'n is
an isomorphism onG. Therefore the setL := SB.0; r / ∪ 'n.K / is a compact subset
of C with connected complement. Consider the functionF : L → C defined by

F.z/ =
{

h.z/ if |z| ≤ r ;

g.'−1
n .z// if z ∈ 'n.K /:

We haveF ∈ A.L/, so by Mergelyan’s theorem there exists a polynomialf with
‖ f − F‖L < ". This implies that‖ f − h‖SB.0;r / < " and‖ f − g ◦ '−1

n ‖'n.K / < ". But
the last inequality is the same as‖ f ◦ 'n − g‖K < ", which finishes the proof.

We can now produce a big family of U-operators via composition of operators.

THEOREM 2.4. Suppose thatT; S are operators onE in such a way thatT is a
U-operator andS is linear and onto. ThenT Sis a U-operator.

PROOF. If we follow the notations in the proof of Theorem2.2one must demonstrate
that for fixed!-domainG and sequence¦ ∈ !.G/ the setL .T S;G; ¦ / is dense
in E . For this, observe thatL .T S;G; ¦ / = S−1.L .T;G; ¦ //, henceL .T S;G; ¦ /
is dense becauseL .T;G; ¦ / is dense and the Open Mapping Theorem (recall thatE

is an F-space) guarantees that ifV ⊂ E is a nonempty open set thenS.V/ is also a
nonempty open set.
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The last theorem carries an important consequence, namely, every differentiation
operatorD j . j ≥ 0/ is a U-operator. Here, as usual,D0 = I andD j f = f . j / ( j ∈ N).
But much more can be obtained. Recall that an entire function8.z/ = ∑∞

j =0 aj zj is
called ofexponential typewhenever there exist positive constantsA; B such that

|8.z/| ≤ Aexp.B|z|/ .z ∈ C/:

In such a case the series8.D/ = ∑∞
j =0 aj D j defines an operator onE . Hence, it is

a kind of infinite order differentiation operator with constant coefficients. Consider
the translation operators−a (a ∈ C) defined as−a f .z/ = f .z + a/ (z ∈ C, f ∈ E ).
It happens that a linear operatorSonE commutes with the translation operators−a if
and only if it commutes with the differentiation operatorD if and only if S = 8.D/
for some8 ∈ E with exponential type if and only if there is a complex Borel measure
¼ onC with compact support such thatS f.z/ = ∫

f .z+w/d¼.w/ for all z ∈ C and
all f ∈ E , see for instance [17, Section 5].

THEOREM 2.5. (a) If S is an onto linear operator onE thenS is a U-operator.
(b) If S is a linear operator onE that commutes with translations thenS is a

U-operator.

PROOF. As for part (a), combine Theorems2.3–2.4. Now part (b) is a consequence
of the Malgrange-Ehrenpreis theorem that asserts that every differentiation operator
8.D/ is surjective onE , see [16, 30].

One might believe that having dense range and being a U-operator are equivalent.
Nevertheless, this isfalse. Indeed, each antidifferentiation operatorD−N.N ∈ N/

given byD−N. f / = f .−N/ is a U-operator (see Section 4) but evidently it has not dense
range. We want to pose here the following question (compare with Theorem2.5(a)):

Is a U-operator any operator onE with dense range?

An answer to this question is unknown to us to this date.
We now focus our attention on the search of workable conditions under which an

operatorT onE is a U-operator. For this, let us introduce two new concepts. We say
thatT has!-dense rangewhenever there isR> 0 such that the restriction mapping

TM : f ∈ E → .T f /|M ∈ A.M/

has dense range for anyM ∈ M .{|z| > R}/. Any operator onE with dense range
has, obviously,!-dense range. We say thatT is !-stablewhenever the following
property is satisfied: For everyr > 0 there isR > 0 such that for eachf ∈ E , each
" > 0 and eachM ∈ M .{|z| > R}/ there existsŽ > 0 andS ∈ M .{|z| > r }/ such
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that if g ∈ E and‖ f − g‖S < Ž then‖T f − T g‖M < ". This property has obviously
an easier formulation ifT is linear.

For instance, by using Malgrange-Ehrenpreis’ theorem together with Mergelyan’s
theorem, it is easy to see that every nonzero differential operator8.D/ has!-dense
range. Also the antidifferential operatorD−N has!-dense range; indeed, an adequate
application of Mergelyan’s theorem yields that the polynomials with a zero of order
≥ N at the origin are dense inA.M/ wheneverM ∈ M .C/ with 0 =∈ M , and these
polynomials are clearly in the range ofD−N. On the other hand, from Cauchy’s integral
formula for derivatives, it is not difficult to realize that8.D/ is !-stable whenever
8 is of subexponential type. Recall that8 is of subexponential type whenever given
" > 0 there is a constantK = K ."/ > 0 such that|8.z/| ≤ K e"|z| for all z ∈ C;
equivalently,n|an|1=n → 0 (n → ∞) if 8.z/ = ∑∞

n=0 anzn. Every entire function of
subexponential type is, trivially, of exponential type.

A combination of!-denseness and!-stability will give a positive result.

THEOREM 2.6. Assume thatT is an operator onE such that for everyr > 0
there isR > 0 satisfying that for eachM ∈ M .{|z| > R}/ the following properties
hold:

(i) The restriction mappingTM has dense range.
(ii) For every f ∈ E and every" > 0 there existŽ > 0 and S ∈ M .{|z| > r }/

such that if' ∈ E and‖ f − '‖S < Ž then‖T f − T'‖M < ".

ThenT is a U-operator.

PROOF. Fix an!-domainG ⊂ C, ¦ = .'n/ ∈ !.G/, K ∈ M .G/, " > 0, r > 0,
g ∈ A.K /, h ∈ E , and the corresponding setU .T;G; K ; ¦; "; r; g;h/ =: U given
by (3). Our goal is to prove thatU 6= ∅.

Since¦ ∈ !.G/ there existsm ∈ N with 'm.K / ⊂ {|z| > R}, whereR> 0 is the
number associated tor given by hypothesis. Observe that'm.K / ∈M .G/.⊂ M .C//

because'n is a homeomorphism fromG into itself. Therefore, by (i) and the fact that
g ◦ '−1

m ∈ A.'m.K //, there exists an entire functionf1 such that

‖T f1 − g ◦ '−1
m ‖'m.K / < "=2:(5)

Now, by (ii) there existŽ > 0 andS ∈M .C/ with S ⊂ {|z| > r } such that for all
' ∈ E

‖' − f1‖S < Ž implies that ‖T' − T f1‖'m.K / < "=2:(6)

Note that the complement of the compact setL := SB.0; r /∪S is connectedbecause
SandSB.0; r / share this property and they are disjoint. Hence Runge’s approximation
theorem together with the fact thatF is holomorphic on an open subset containingL
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allows to select a polynomialf (so f ∈ E ) satisfying‖ f − F‖L < min{Ž; "}, where
F : L → C is the function belonging toA.L/ given by

F.z/ =
{

h.z/ if z ∈ SB.0; r /;
f1.z/ if z ∈ S:

Thus, we obtain‖ f − h‖SB.0;r / < " and, in addition,‖ f − f1‖S < Ž. Due to (6),
the last inequality yields‖T f − T f1‖'m.K / < "=2. Now, this together with (5) and
the triangle inequality gives‖T f − g ◦ '−1

m ‖'m.K / < ", which is clearly equivalent to
‖.T f /◦'m −g‖K<". Summarizing,f is an entire function satisfying‖ f −h‖SB.0;r /<"
and‖.T f / ◦ 'm − g‖K < " for somem ∈ N. In other words,U 6= ∅.

COROLLARY 2.7. Suppose thatT is an operator onE which is!-stable and has
!-dense range. ThenT is a U-operator.

The remarks about8.D/ just before Theorem2.6together with Corollary2.7yield
again that, at least for entire functions8 of subexponential type,8.D/ is a U-operator.
Observe that this time the proof does not depend on the fact thatI is a U-operator,
compare the proof of Theorem2.5.

3. Composition and multiplication operators

In this section we investigate conditions for the composition and multiplication op-
erators to be U-operators. Recall that if' ∈ E then its associated right-composition
operatorC' , left-composition (or superposition) operatorL' and multiplication oper-
ator M' are defined onE asC'. f / = f ◦ ', L'. f / = ' ◦ f , M'. f / = f '. Observe
thatC' andM' are linear butL' is not, except for trivial cases.

As for right-composition operators we suspect that only the similarities on the
plane, that is, the polynomials'.z/ = az+ b of degree one or, equivalently, the auto-
morphisms ofC (which in turn are the unique one-to-one entire functions), generate
U-operators. Although we have not been able to give a complete characterization, we
have obtained the following result.

THEOREM 3.1. Assume that' is an entire function. We have:

(a) If C' is a U-operator then' is a polynomial.
(b) If ' is a similarity thenC' is a U-operator.
(c) If '.z/ = P..z − Þ/N/ for someÞ ∈ C, some positive integerN ≥ 2 and some

polynomialP thenC' is not a U-operator.
(d) If ' is a polynomial withdegree.'/ = 2 thenC' is not a U-operator.
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PROOF. Fix any valuea ∈ C. If ' were not a polynomial then the point of
infinity would be an essential singularity for', whence by Casorati–Weierstrass’
theorem a sequence.zn/ ⊂ C with zn → ∞.n → ∞/ could be found in such a
way that'.zn/ → a.n → ∞/. Consider the!-domain G := C, the sequence
¦ := .'n.z/ = z + zn/ ∈ !.C/ and the compact setK := {0} ∈M .C/. Assume that
f satisfies the property of Definition2.1 for T := C'. Then forg ≡ 0 we would get
an increasing sequence.nj / ⊂ N with f .'.'nj

.z/// → g.z/ . j → ∞/ on A.K /, that
is, f .'.znj // → 0. j → ∞/. But . f .'.znj /// tends to f .a/, hencef .a/ = 0 for all
a ∈ C, that is, f ≡ 0, which is clearly impossible. This proves (a). On the other hand,
if ' is a similarity then, clearly,C' is linear, onto (so it has dense range) and!-stable.
Therefore part (b) is a consequence of either Theorem2.5 (a) or Corollary2.7. As
for (d), observe that any polynomial'.z/ = az2 +bz+c of degree two can be written
in the form'.z/ = P..z − Þ/2/, whereÞ = −b=2a and P.z/ = az− c − .b2=4a/.
Hence (d) follows from (c).

Finally, let us prove (c). Assume that'.z/ = P..z − Þ/N/ with Þ; N; P as in
the hypothesis, and consider the!-domainG := C \ {Þ}, the sequence.'n.z/ :=
Þ + n.z − Þ// ∈ !.C \ {Þ}/ and the circle arcK := {Þ + exp.i t / : 0 ≤ t ≤ 2³=N},
which is inM .C \ {Þ}/ becauseN ≥ 2. Suppose, by the way of contradiction,
that C' is a U-operator. Then we would obtain an entire functionf such that one
can associate to the functiong.z/ := 1=.z − Þ/ ∈ A.K / an adequate increasing
sequence.nj / ⊂ N satisfying.C' f /.'nj

.z// → g.z/. j → ∞/ uniformly on K , that
is, f .P.nN

j .z − Þ/N// → 1=.z − Þ/ ( j → ∞) uniformly on K . Therefore, after
taking N-powers,

lim
j →∞

sup
z∈K

∣∣∣∣ f .P.nN
j .z − Þ/N//N − 1

.z − Þ/N

∣∣∣∣ = 0:

Consider the circle arcsK¹ = Þ + !¹.K − Þ/ (¹ ∈ {0;1; : : : ; N − 1}), where
!¹ = exp.2³¹=N/. Of course,K0 = K . Denote byS the circle with centerÞ and
radius 1. ThenS= K0 ∪ K1 ∪· · · ∪ K N−1. Givenz ∈ S there is¹ ∈ {0;1; : : : ; N −1}
with z ∈ K¹, soÞ + !−1

¹ .z − Þ/ ∈ K . But also∣∣∣∣ f
(
P.nN

j .Þ + !−1
¹ .z − Þ/− Þ/N/

)N − 1

.Þ + !−1
¹ .z − Þ/− Þ/N

∣∣∣∣
=

∣∣∣∣ f
(
P.nN

j .z − Þ/N /
)N − 1

.z − Þ/N

∣∣∣∣
because!N

¹ = 1. Hence the limj →∞ supz∈S of the last expression equals zero. In other
words,

f
(
P.nN

j .z − Þ/N/
)N → 1

.z − Þ/N
. j → ∞/
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uniformly on S. Then there existsj0 ∈ N such that∣∣∣∣ f
(
P.nN

j0
.z − Þ/N/

)N − 1

.z − Þ/N

∣∣∣∣ < 1 .z ∈ S/;

so |[.z − Þ/ f
(
P.nN

j0.z − Þ/N/
)]N − 1| < 1 for all z ∈ S. But, due to the Maximum

Modulus Principle, the last inequality holds for allz in the open ball of centerÞ and
radius 1, in particular forz = Þ, that is, 1< 1. This is absurd, so the theorem is
proved.

Next, we show a characterization of the property of U-operator forL' in terms of
existence of an ‘approximate right inverse’ for', see [9, Section 3]. The characteri-
zation in termsonly of ' remains as an open question.

THEOREM 3.2. Assume that' is an entire function. Then the following properties
are equivalent:

(a) The superposition operatorL' is a U-operator.
(b) There is a sequence. fn/ ⊂ E such that.' ◦ fn/ tends to the identity function

locally uniformly inC.

PROOF. Let us suppose that (a) holds. Then by takingT = L', G = C, 'n.z/ =
z + n (n ∈ N) in Definition 2.1 one obtains the existence of at least one entire
function f such that, for every closed ballB, .L' f /.'n.z// → z .n → ∞/ in
A.B/. Equivalently,'. f .z + n// → z asn → ∞ uniformly on B. Therefore (b)
is satisfied if we just takefn.z/ = f .z + n/.n ∈ N/. Conversely, assume that (b)
holds. From the continuity of' it is easy to see thatL' is always!-stable. On
the other hand, if we fix a setM ∈ M .C/ and g ∈ E then we have thatg.M/
is compact, whence supz∈g.M/ |'. fn.z// − z| → 0 (n → ∞) or, that is the same,
supz∈M |'. fn.g.z/// − g.z/| → 0 (n → ∞). This tells us that

L'. fn ◦ g/
n→∞−−→ g in A.M/;

hence the restriction mapping.L'/M : f ∈ E → .L' f /|M ∈ A.M/ has dense range
due to Mergelyan’s theorem. Consequently,L' has!-dense range and the result is
completely proved after an application of Corollary2.7.

We point out here that, in order that (b) is satisfied, the injectivity of' is sufficient
but not necessary (in fact, any entire universal function in the sense of Birkhoff—see
Section1—satisfies (b)), and its surjectivity is necessary but not sufficient, see [9,
Section 3].

We finish this section by characterizing the multiplication U-operators.
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THEOREM 3.3. Let be given an entire function'. Then the following properties are
equivalent:

(a) For all operator T on E that is !-stable and has!-dense range,M'T is a
U-operator.
(b) The multiplication operatorM' is a U-operator.
(c) There exists an operatorT onE such thatM'T is a U-operator.
(d) The setZ.'/ of zeros of' is finite.

PROOF. Because the identity operator is!-stable and has!-dense range (so it is a
U-operator), it is trivial that (a) implies (b) and that (b) implies (c).

Assume now that (c) holds, that is,M'T is a U-operator for some operatorT
on E . Let us suppose, by a way of contradiction, that (d) is false, so there are
points zn (n ∈ N) tending to infinity with'.zn/ = 0 for all n. If G = C and
.'n.z/ := z + zn/ ∈ !.G/ then there must be an entire functionf such that the
sequence.' ◦ 'n/..T f / ◦ 'n/ is dense inA.K := {0}/ = {the constants}, which
is absurd because'.'n.0//.T f /.'n.0// = 0 for all n. Therefore the zero set of'
is finite. Finally, we start from the fact thatZ.'/ is finite. Our aim is to prove
(a), hence let us fix an!-stable operatorT on E with !-dense range. From the
continuity of', it is immediate thatM'T is also!-stable. On the other hand, there is
R > 0 such that the restriction mappingTM : f ∈ E → .T f /|M ∈ A.M/ has dense
range for anyM ∈ M .{|z| > R}/. We can suppose without loss of generality that
R > max{|z| : z ∈ Z.'/}. Let us fix " > 0, M ∈ M .{|z| > R}/ andg ∈ A.M/.
Theng=' ∈ A.M/, therefore there existsf ∈ E with ‖T f − .g='/‖M < "=‖'‖M .
Hence‖.M'T/ f − g‖M < " and M'T also as!-dense range. Now Corollary2.7
anew finishes the proof.

4. Integral operators

In this section we discover some classes of integral operators defined on the spaceE ,
including the antidifferentiation operatorD−N, which are U-operators.

The symbol' will denote an entire function' : C × C → C of two complex
variables. The Volterra operator of the first kind associated to' is defined by

V' : f ∈ E 7→ V' f ∈ E ; .V' f /.z/ =
∫ z

0

f .t/'.z; t/dt .z ∈ C/;

where the integral is taken along any rectifiable arc joining the origin toz. We will
prove in due course that, under adequate conditions on the kernel', the Volterra
operatorV' with or without a perturbation by a differential operator is a U-operator.
In particular, our results also include Volterra operators of the second class½I + V'.
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Now, we recall the notion of (generally infinite order) antidifferential operators with
constant coefficients, see [4, Section 2]. Let9.z/ = ∑∞

j =0 cj zj be a formal complex
power series. By taking into account that

D− j f .z/ =
∫ z

0

f .t/
.z − t/ j −1

. j − 1/! dt . j ∈ N; f ∈ E ; z ∈ C/

it is not difficult to see that if we assume in addition that limj →∞ |cj |1=j= j = 0 then
the series9.D−1/ = ∑∞

j =0 cj D− j defines an operator onE . Indeed, if we set

'.z; t/ =
∞∑
j =1

cj
.z − t/ j −1

. j − 1/!

then ' is entire in both variables and9.D−1/ = c0I + V'. Of course, Volterra
operators and operators9.D−1/ include the operatorsD−N (N ∈ N).

The following lemmas will reveal useful in order to find integral U-operators. But
a little further notation is needed. By@A we mean the boundary of any setA ⊂ C. If
K is a compact set anda ∈ K then Aa.K / will denote the subspace of all functions
of A.K / with a zero ata, endowed with the same norm‖ · ‖K . In order to avoid
problems with integration along arcs we will consider the class5 of closed Jordan
regionsL whose boundary@L is a polygonal closed curve which consists of finitely
many segments that are parallel to the axes. Observe that each integral

∫ b

a F.t/dt
makes sense and is unambiguously defined for eachF ∈ A.L/ and each pair of points
a;b ∈ L wheneverL ∈ 5. Indeed, the complement ofL is connected anda;b can
be joined by a piecewise continuously differentiable arc lying inL.

LEMMA 4.1. Let S be an operator onE and' : C × C → C an entire function
of two variables. Assume that there exists anR > 0 such that for eachr > R and
eachM ∈ M .{|z| > r }/ there areL ∈ M .{|z| > r }/ ∩5 with M ⊂ L and a point
a ∈ @L \ M such that

(a) the operatorS extends continuously to a mappingS1 : A.L/ → A.M/,
(b) the mappingQ : Aa.L/ → A.M/ defined by

Q f .z/ = S1 f .z/ +
∫ z

a

f .t/'.z; t/dt .z ∈ M/

has dense range.

ThenS+ V' is a U-operator.

PROOF. Fix a setU = U .T = S + V';G; K ; ¦ = .'n/; "; r; g;h/ as in (3).
According Theorem2.2, we should show thatU 6= ∅. We may supposer > R
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without loss of generality. SinceK is a compact subset ofG and¦ ∈ !.G/, there
is n ∈ N such that'n.K / ∩ SB.0; r / = ∅. Then M := 'n.K / ∈ M .{|z| > r }/
because'n is automorphism ofG. By hypothesis, there existsL ∈M .{|z| > r }/∩5
with M ⊂ L and a pointa ∈ @L such that (a) and (b) are satisfied. It is clear that
we can find a rectifiable Jordan arc joining the origin toa with  ∩ L = {a} and
such that the compact setSB.0; r / ∪  ∪ L has connected complement. By using a
suitable parametrization of the arc , it is not difficult to construct a functionf1 that is
continuous onSB.0; r /∪ , agrees withh on SB.0; r / and satisfiesf1.a/ = 0. Consider
the mappingS2 : A. / → A.M/ given by

S2 f .z/ = g.'−1
n .z// −

∫


f .t/'.z; t/dt .z ∈ M/:(7)

It is well defined becauseg ∈ A.K /; K ⊂ G, M = 'n.K / and'−1
n ∈ H .G/. It

follows from (b) that there exists a functionf2 ∈ Aa.L/ such that

|Q f2.z/ − S2 f1.z/| < " .z ∈ M/:(8)

On the other hand, the mappingS1 : A.L/ → A.M/ is continuous (by (a)). Also the
mappingsS2 and

S3 : A.L/ → A.M/; S3 f .z/ =
∫ z

a

f .t/'.z; t/dt .z ∈ M/

are obviously continuous. Therefore, by (7) and (8), there existsŽ > 0 such that if
f ∈ E satisfies

| f .z/− f1.z/| < Ž .z ∈  / and | f .z/ − f2.z/| < Ž .z ∈ L/(9)

then

|S1 f .z/+ S3 f .z/ − S2 f .z/| < " .z ∈ M/:(10)

Consider the functionf3 : L0 → C defined as

f3.z/ =
{

f1.z/ if z ∈ SB.0; r / ∪  ;

f2.z/ if z ∈ L ;

whereL0 := SB.0; r / ∪  ∪ L. From the factf1.a/ = 0 = f2.a/ one obtains that
f3 ∈ A.L0/. But the compact setL0 has connected complement. Consequently,
it follows from Mergelyan’s theorem that there exists a polynomialf satisfying
‖ f − f3‖L0 < min{"; Ž}. Hence,‖ f − h‖SB.0;r / < " and (9) holds. Then f also
satisfies (10), which can be rewritten as|T f .z/ − g.'−1

n .z//| < " (z ∈ M). But this
is equivalent to‖.T f / ◦ 'n − g‖K < ". Summarizing,f ∈ U , soU 6= ∅.
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We remark that if the operatorS is linear then, due to the density ofE in A.L/,
condition (a) is equivalent to the following: For every" > 0, there is aŽ > 0 such
that if f ∈ E and‖ f ‖L < Ž then‖S f‖M < ".

LEMMA 4.2. For everyL ∈ 5and everya ∈ L, there exists a finite positive constant
þ = þ.L ;a/ satisfying the following property: To eachz ∈ L we can associate a
piecewise continuously differentiable arcz : [0;1] → L joining a to z and a finite
subsetFz ⊂ [0;1] such that| ′

z.u/| ≤ þ|z− a| for all u ∈ [0;1] \ Fz.

PROOF. Let us fix L ;a as in the statement. From the shape ofL it is evident that a
numberR ∈ .0;+∞/ can be chosen in such a way thatB.a; R/ ∩ L is starlike with
respect toa. If z ∈ B.a; R/ ∩ L then we simply definez as the segment joininga to
z, that is,z.u/ = a+ .z−a/u (0 ≤ u ≤ 1), hence| ′

z.u/| = |z−a| for all u ∈ .0;1/.
Assume now thatz ∈ L \ B.a; R/. Let N be the number of segments of@L. Then it is
clear that one can pick a polygonal arcz ⊂ L joining a to z consisting ofm = m.z/
segments which are parallel to the axes, withm ≤ N. Now if we parametrize
such segments in the obvious way on[0;1=m]; [1=m;2=m]; : : : ; [.m − 1/=m;1]
then | ′

z.u/| is not greater thanmdiam.L/ in the interior of each one. Therefore
| ′

z.u/| ≤ N diam.L/ for all u ∈ [0;1] \ Fz, where Fz = {0;1=m;2=m; : : : ;1}.
Hence| ′

z.u/| ≤ N diam.L/|z−a|=R for such values ofu wheneverz ∈ L \ B.a; R/.
Thus, the constantþ := max{1; N diam.L/=R} does the job.

LEMMA 4.3. If L ∈ 5, a ∈ L, ' is an entire function of two variables andÞ is an
entire function withÞ.z/ 6= 0 for all z ∈ L, then the operatorQÞ;' : Aa.L/ → Aa.L/
given byQÞ;' f .z/ = Þ.z/ f .z/ + ∫ z

a f .t/'.z; t/dt .z ∈ L/ is onto.

PROOF. Observe first thatQÞ;' f is well defined becauseQÞ;' f .a/ = 0 for all
f ∈ Aa.L/. SinceÞ.z/ 6= 0 for all z ∈ L, the statement is derived from the fact that
the operatorI − K : Aa.L/ → Aa.L/ is invertible (so onto), whereK is the operator

K f .z/ =
∫ z

a

f .t/'1.z; t/dt .z ∈ L/

and'1.z; t/ = −'.z; t/=Þ.z/. If the spectrum¦.K / reduces to{0} one would have
¦.I − K / = {1}, hence 0=∈ ¦.I − K /, so obtaining the invertibility ofI − K .
Therefore, according to Gelfand’s formula for the spectral radius, it must be shown
that limn→∞ ‖K n‖1=n = 0, where‖K ‖ = sup{‖K f ‖L : ‖ f ‖L ≤ 1}, the norm in the
spaceL.Aa.L// of linear operators onAa.L/. Take a constantþ ∈ .0;+∞/ and
the family of arcs{z : z ∈ L} joining a to z as Lemma4.2 asserts. Therefore, the
length of each partial arcz|[0;u] from a up to .u/ is not greater thatþu|z − a| and,
in particular,|z.u/ − a| ≤ þu|z − a| (u ∈ [0;1]).
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Let us fix f ∈ Aa.L/ with ‖ f ‖L ≤ 1 and denoteC = sup{|'1.z; t/| : z; t ∈ L}.
From the definition of the operatorK we obtain, for allz ∈ L,

|K f .z/| =
∣∣∣∣∫ 1

0

f .z.u//'1.z; z.t//
′
z.u/du

∣∣∣∣
≤

∫ 1

0

| f .z.u//||'1.z; z.t//|| ′
z.u/| du ≤ Cþ|z − a|:

Then

|K 2 f .z/| =
∣∣∣∣∫
z

.K f /.t/'1.z; t/dt

∣∣∣∣ =
∣∣∣∣∫ 1

0

.K f /.z.u//'1.z; z.u//
′
z.u/du

∣∣∣∣
≤

∫ 1

0

|K f .z.u//|C| ′
z.u/| du ≤ C2þ

∫ 1

0

|z.u/ − a|þ|z− a| du

≤ C2þ3|z − a|2
∫ 1

0

u du = C2þ3|z − a|2
2! :

By induction we are led to the following inequality, which holds for everyn ∈ N:

|K n f .z/| ≤ Cnþn+1|z− a|n

n! ≤ Cnþn+1 diam.L/n

n! .z ∈ L/:

Whence

‖K n‖1=n ≤ Cþ
diam.L/þ1=n

.n!/1=n

n→∞−−→ 0

and we are done.

Recall thatZ. f / denotes the subset ofG consisting of the zeros of a function
f : G → C. We are now ready to establish our theorem.

THEOREM 4.4. Assume thatN ∈ N0 and thatan.z/ .n = 0; : : : ; N/ are entire
functions, in such a way thataN.z/ has finitely many zeros. Assume also thatP is
a polynomial and that8 is an entire function of subexponential type. Let9.z/ =∑∞

j =0 cj zj be a formal power series withlim j →∞.|cj |1=j= j / = 0. We have:

(A) The operatorT on E defined byT f .z/ = ∑N
j =0 aj .z/ f . j /.z/ + V'.z/ ( f ∈ E ,

z ∈ G) is a U-operator.
(B) If P is non-zero thenP.D/ + V' is a U-operator. If P is nonconstant then
P.D/ + 9.D−1/ is a U-operator. If½ ∈ C \ {0} then the Volterra operator of the
second kind½I + V' is a U-operator.
(C) If for someN ∈ N0 the entire functionw 7→ .@N'=@zN/.w;w/ has finitely
many zeros and each functionw 7→ .@n'=@zn/.w;w/ .n = 0; : : : ; N − 1/ vanishes
identically thenV' is a U-operator.
(D) If 9 is non-zero then9.D−1/ is a U-operator. In particular, ifP is non-zero
thenP.D−1/ is a U-operator.
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(E) If 8 is nonconstant then8.D/ + P.D−1/ is a U-operator.

PROOF. It is evident that (B) is a consequence of (A). Furthermore, (D) is derived
from (C). Indeed, for the casec0 = 0, let N = min{ j ∈ N0 : cj +1 6= 0}. Then
9.D−1/ = V' with '.z; t/ = ∑∞

j =N cj +1.z − t/ j = j !, hence

@N'

@zN
.w;w/ = cN+1 6= 0 = @n'

@zn
.w;w/ .n = 0; : : : ; N − 1/

for all w ∈ C and (C) applies. The casec0 6= 0 follows in a similar way from (B).
Thus, our goal is to prove (A), (C) and (E). As for (A), let us check that the hypothe-

ses (a)–(b) of Lemma4.1are fulfilled whenS is defined asS f = ∑N
j =0 aj .·/D j f .

Clearly, (a) holds for every pair of setsM; L ∈ M .C/ with M ⊂ L. On the other
hand, chooseR = 1+max{|z| : z ∈ Z.aN/} and fixr > R andM ∈M .{|z| > r }/. It
is not difficult to realize that a connectedcompact setL ⊂ {|z| > r } can be constructed
in such a way thatM ⊂ L0;C \ L is connected, and@L consists of finitely many
segments which are parallel to the axes, that is,L ∈ M .{|z| > r }/ ∩ 5. Hence,
condition (b) of Lemma4.1 will be satisfied as soon as we show that the operator
Q : AN

a .L/ → A.M/ defined by

Q f .z/ =
N∑

j =0

aj .z/ f . j /.z/ +
∫ z

a

f .t/'.z; t/dt .z ∈ M/

has dense range, wherea is any fixed point in@L (soa ∈ L \ M) and AN
a .L/ is the

subspace ofAa.L/ consisting of all functionsf ∈ A.L/ that areN-times continuously
differentiable inL with f .n/.a/ = 0 for n = 0; : : : ; N.

For this, consider any entire function .z; t/ of two complex variables such that
for eachz ∈ C the functiont ∈ C 7→  .z; t/ ∈ C is anN-antiderivative of'.z; ·/ (of
course, = ' if N = 0) in such a way that.@ j =@ t j /.z;a/ = 0 for j = 0; : : : ; N−1.
After integration by parts (N times) we obtain, forf ∈ AN

a .L/,∫ z

a

f .u/'.z;u/du

=
∫ z

a

f .u/
@N 

@ t N
.z;u/du

=
N−1∑
n=0

.−1/n
[

f .n/.z/
@N−n−1 

@ t N−n−1
.z; z/− f .n/.a/

@N−n−1 

@ t N−n−1
.z;a/

]
+ .−1/N

∫ z

a

f .N/.u/ .z;u/du

=
N−1∑
n=0

.−1/n f .n/.z/
@N−n−1 

@ t N−n−1
.z; z/+ .−1/N

∫ z

a

f .N/.u/ .z;u/du:
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Hence

Q f .z/ = aN.z/ f .N/.z/+
N−1∑
n=0

bn.z/ f .n/.z/ + .−1/N

∫ z

a

f .N/.t/ .z; t/dt

for certain entire functionsbn (n = 0; : : : ; N − 1).
But f .n/ = D−N+n

a f .N/ .n = 0; : : : ; N − 1/ for f ∈ AN
a .L/, whereD− j

a h denotes
the uniquej -antiderivativeH of order j of h such thatH .k/.a/ = 0 (k = 0; : : : ; j −1).
Therefore,

∑N−1
n=0 bn.z/ f .n/.z/ = ∑N−1

n=0 bn.z/
(

D−N+n
a f .N/

)
.z/. Then our mappingQ

can be written as

Q f .z/ = aN.z/D
N f .z/+

∫ z

a

.DN f .t// 1.z; t/dt;

where 1 is an entire function of two variables; specifically,

 1.z; t/ = .−1/N .z; t/+
N−1∑
n=0

bn.z/
.z − t/N−n−1

.N − n − 1/! :

Next, let us consider the operatorQaN ; 1 : Aa.L/ → Aa.L/, whereQaN ; 1 is defined
as in Lemma4.3; it should be observed thataN.z/ 6= 0 for all z ∈ L because
L ⊂ {|z| > r }. Then, by Lemma4.3, QaN ; 1 : Aa.L/ → Aa.L/ is onto. But
Aa.L/ is dense inA.M/; indeed, ifg ∈ A.M/ then the functiong.z/=.z − a/ also
belongs toA.M/ becausea =∈ M , so given" > 0 Mergelyan’s theorem furnishes
a polynomialP with |P.z/ − .g.z/=.z − a//| < "=diam.L/ (z ∈ M). Hence the
functionP1.z/ := .z−a/P.z/ is in Aa.L/ and satisfies‖P1−g‖M < ". Consequently,
QaN ; 1 : Aa.L/ → A.M/ has dense range. HenceQ has also dense range because
Q = QaN ; 1 ◦ DN and the mappingDN : AN

a .L/ → Aa.L/ is, trivially, onto. This
completes the proof of (A).

Let us prove (C). We will again try to apply Lemma4.1. Condition (a) is trivially sat-
isfied forS = 0. Let R = max{|z| : z ∈ Z. f /} and fixr > RandM ∈M .{|z| > r }/.
As before, choose any compact setL ∈ 5 with L ⊂ {|z| > r } andM ⊂ L0. Fix any
a ∈ @L, soa ∈ L \ M . We should verify condition (b) of Lemma4.1.

By hypothesis

@N'

@zN
.w;w/ 6= 0 = @n'

@zn
.w;w/ .w ∈ L ; n = 0; : : : ; N − 1/:(11)

Consider the mappingQ : Aa.L/ → A.M/ given by Q f .z/ = ∫ z

a f .t/'.z; t/dt.
Our goal is to show that it has dense range. By using an application of Mergelyan’s
theorem which is similar to that used in the proof of part (A) we obtain that the linear
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combinations of.z− a/m (m ≥ N + 2) are dense inA.M/. HenceQ will have dense
range as soon as we find for a fixedm ≥ N + 2 a function f ∈ Aa.L/ such that

f .z/ = .z − a/m .z ∈ L/:(12)

Due to (11) and to Leibniz’s rule, the functionQ f is .N + 1/-times continuously
differentiable onL with

Dn.Q f /.w/ =
∫ w

a

f .t/
@n'

@zn
.w; t/dt .n = 0; : : : ; N/(13)

and

DN+1.Q f /.w/ = f .w/
@N'

@zN
.w;w/ +

∫ w

a

f .t/
@N+1'

@zN+1
.w; t/dt

for all w ∈ L. Now, the not-equal part of (11) and Lemma4.3 for Þ.w/ :=
.@N'=@zN/.w;w/ and' changed to@N+1'=@zN+1 imply that DN+1 ◦ Q : Aa.L/ →
Aa.L/ is onto, whence there exists a functionf ∈ Aa.L/ with DN+1.Q f /.w/ =
m!.w − a/m−N−1=.m − N − 1/! for all w ∈ L. ThenDN+1[Q f − h] = 0 onL, where
h.z/ := .z−a/m:But Dn[Q f −h].a/ = 0 (n = 0; : : : ; N) by (13), henceQ f −h = 0
on L, which proves (12) and (C).

Finally, we prove (E). Let8.D/ = ∑∞
n=0 anzn be an entire function of subexpo-

nential type,M ∈ M .C/, L ∈ 5 with L0 ⊃ M anda ∈ @L. Since.n!|an|/1=n → 0
(n → ∞) we get|an| ≤ .dist.M; @L/=2/n=n! for n large enough. From this and
from Cauchy’s inequalities one obtains easily that given" > 0 there is aŽ > 0 such
that if f ∈ E and‖ f ‖L < Ž then‖8.D/ f ‖M < ". In other words, the condition
given just after Lemma4.1 is satisfied for the linear operatorS = 8.D/, hence con-
dition (a) in that lemma is fulfilled. The extension of8.D/ to a continuous mapping
A.L/ → A.M/ will be also denoted by8.D/, and similarly for related operators.
Therefore, our final task is to verify condition (b) of Lemma4.1, that is, we should
check that the mappingQ : Aa.L/ → A.M/ given by Q f = 8.D/ f + P.D−1/ f
has dense range. By Mergelyan’s theorem it suffices to show that given an" > 0 and
a polynomialg there existsf ∈ Aa.L/ such that‖Q f − g‖M < ".

For this, assume thatP.z/ = p0zN + p1zN−1 + · · · + pN and define the new
entire function81 of subexponential type by81.z/ = zN8.z/ + ∑N

n=0 pnzn. Then
Q = 81.D/ ◦ J ◦ D−N

a , where D−N
a : Aa.L/ → AN

a .L/, J : AN
a .L/ → A.K /

and81.D/ : A.K / → A.M/. Here K is a member in5 that has been selected
to satisfy M ⊂ K 0 ⊂ K ⊂ L0 (so a =∈ K ), and J is the inclusionJ. f / = f .
Note that81.D/ : A.K / → A.M/ is well defined by the same reasoning as that in
the beginning of the proof of this part. Since81 6= 0 (because8 is nonconstant)
Malgrange-Ehrenpreis’ theorem guarantees that81.D/ : E → E is onto, hence
81.D/ : A.K / → A.M/ has dense range becauseE is dense inA.M/ due to
Mergelyan’s theorem. Again by an adequate application of Mergelyan’s theorem (the
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facta =∈ K is crucial) we have thatJ has dense range. ButD−N
a is clearly onto, so it

has dense range. Consequently,Q also has dense range and we are done.

We stress here that not every Volterra operator is a U-operator. For instance, set
'.z; t/ := sin.³z/, G := C, .'n.z/ := z + n/ ∈ !.G/ andK := {0}, and fix f ∈ E .
Then (

.V' f / ◦ 'n

)
.z/ = 0

n→∞−−→ 0 for all z ∈ K ;

so
(
.V' f / ◦ 'n

)
is not dense inA.K / = {constants} andV' cannot be a U-operator.

5. Large linear manifolds of entire functions with universal translates

Before continuing our research of further classes of U-operators we take a break
in this section in order to establish the promised improvement of Theorem1.2, see
Theorem5.2 below. It will be shown that the family of entire functions which are
universal in the sense of the former theorem is very large in both topological and
algebraic senses.

The following statement can be found in [8] and it will be needed in Theorem5.2.
It furnishes a sufficient condition for the existence of large linear manifolds of vectors
which are simultaneously hypercyclic with respect to each member of a countable
family of sequences of linear mappings. It is in turn an extension of an assertion due
to the first author, see [5, Theorem 2]. It should be noted that in [8] the final spaces
Yk were all the same, but a glance to the proof reveals that they can be different.

LEMMA 5.1. Let X and Yk .k ∈ N/ be metrizable topological vector spaces such
that X is Baire and separable. Assume that, for eachk ∈ N, T .k/

n : X → Yk .n ∈ N/ is
a sequence of continuous linear mappings satisfying that.T .k/

nj
/ is densely hypercyclic

for every sequence{n1 < n2 < · · · < nj < · · · } ⊂ N. Then there is a dense linear
submanifoldM ⊂ X such thatM \ {0} ⊂ ⋂

k∈NU ..T
.k/

n //.

THEOREM 5.2. Suppose that.Sj / is a countable family of U-operators onE and
that .Gk/ is a countable family of!-domains inC. For eachk, assume that{'n;k :
n ∈ N} ∈ !.Gk/. Then we have:

(a) There exists a residual subset of entire functionsf such that each sequence
{..Sj f / ◦ 'k;n/|K : n ∈ N} is dense inA.K / for everyK ∈ M .Gk/, everyk and
every j .
(b) If everySj is linear then there exists a dense linear manifoldM ⊂ E such that

each non-zero functionf ∈ M satisfies the same density property given in(a).
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PROOF. With the notation of Section2 we have that for eachj , k and eachK ∈
M .Gk/ the sequence of mappings

S.K /j ;k;n : f ∈ E 7→ ..Sj f / ◦ 'k;n/|K ∈ A.K / .n ∈ N/
is densely hypercyclic. SinceE is a Baire space andA.K / is second-countable the
setU ..S.K /j ;k;n// of hypercyclic vectors for that sequence is a denseGŽ-subset ofE ,
see [18, Theorem 1]. Now for givenk let us select a sequence.Kk;m/ ⊂ M .Gk/ as
that given in Lemma2.1. Denote byA the subset of functionsf ∈ E satisfying the
property stated in (a). Then

A =
⋂
j ;k;K

U ..S.K /j ;k;n// =
⋂
j ;k;m

U ..S.Kk;m/

j ;k;n //;

where the second equality is derived as in the proof of Theorem2.2. Then A is a
countable intersection of denseGŽ-subsets ofE , thereforeA is itself a denseGŽ-subset,
hence a residual subset ofE . This proves (a).

As for (b) chooseX := E , Yk;m := A.Kk;m/ andT . j ;k;m/
n := S.Kk;m/

j ;k;n in Lemma5.1(a
trivial variant of it has been used by employing double and triple indexes) and take into
account that each subsequence.T . j ;k;m/

np
/ of .T . j ;k;m/

n / is densely hypercyclic because
eachSj is a U-operator and a subsequence of a member of!.Gk/ also belongs to
!.Gk/. This concludes the proof.

COROLLARY 5.3. Let be given a countable family.Gk/ of!-domains inC and, for
eachk ∈ N, a sequence{'k;n : n ∈ N} ∈ !.Gk/. Then there exists a residual set
A ⊂ E and a dense linear manifoldM ⊂ E satisfying the following:

(a) For any fixed f ∈ A, j ∈ Z and k ∈ N the sequence of ‘Gk-translates’
{ f . j /.'k;n.z// : n ∈ N} is dense inA.K / for all K ∈M .Gk/.
(b) The inclusionM \ {0} ⊂ A holds.

PROOF. Differentiation and antidifferentiation operatorsD j ( j ∈ Z) are U-oper-
ators.

6. Taylor shifts and gap series

In this final section a kind of operators is considered onE when it is regarded as
the space of complex sequences.an/ with |an|1=n → 0 (n → ∞). In this setting and
in connection with universality, the weighted backward shifts have been studied in
[3, 17, 19, 31]. Recall that ifw = {wn : n ∈ N0} is a complex sequence then the
weighted backward shift associated tow is the mapping defined onE as

Bw : f .z/ =
∞∑

n=0

anzn 7−→ .Bw f /.z/ =
∞∑

n=0

wnan+1zn:
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It is easy to see that if the sequence{|wn|1=n : n ∈ N} is bounded thenBw defines
actually an operator onE . Observe that the differentiation operatorD is the special
caseD = Bw with weight sequencewn = n + 1. In [3] the first author introduced a
more general notion which is closed under composition, namely, the Taylor shifts (in
[19] they are called ‘pseudo-shifts’, and they are considered in a more general setting).
An operatorT : E → E it said to be aTaylor shiftif and only if there are a complex
sequencew = {wn : n ∈ N0} and a one-to-one selfmapping' : N0 → N0 such that
T f .z/ = ∑∞

n=0wna'.n/zn wheneverf .z/ = ∑∞
n=0 anzn ( f ∈ E , z ∈ C). Equivalently,

T is linear and, for everyn ∈ N0,

T.zn/ =
{
wmzm if n = '.m/;

0 if n =∈ '.N0/:

Then we will denoteT = Tw;'. We remark thatBw = Tw;' with '.n/ = n + 1.
Clearly,Tw;' is not one-to-one if' is not onto.

The following theorem provides with a sufficient criterium for a Taylor shift to be
a U-operator. It covers the case of differentiation operatorsDN (N ∈ N0), which of
course are already known to be U-operators as particular instances of operators8.D/.

THEOREM 6.1. Let be given a complex sequence{wn : n ∈ N0} and a one-to-one
selfmapping' : N0 → N0 satisfying the following properties:

(a) 0< infn∈N |wn|1=n ≤ supn∈N |wn|1=n < +∞ andw0 6= 0,
(b) 0< lim inf n→∞ '.n/=n ≤ supn∈N '.n/=n < +∞.

Then the Taylor shiftTw;' is a U-operator.

PROOF. As seen in [3, Theorem 3.2], the last inequality in (a) together with the first
inequality in (b) guarantees thatT := Tw;' is a well-defined operator onE . Recall
that T is linear. According to Corollary2.7 (a), it is enough to show thatT is onto.
For this, fix an entire functiong.z/ = ∑∞

n=0 bnzn. Let us define

an =
{

b'−1.n/=w'−1.n/ if n ∈ '.N0/;

0 otherwise:

Observe thatw j 6= 0 for all j . Consider the power seriesf .z/ = ∑∞
n=0 anzn. It

is clear that, formally,T f = g. Hence it suffices to check thatf ∈ E , that is,
limn→∞ |an|1=n = 0. We have∣∣∣∣ b'−1.n/

w'−1.n/

∣∣∣∣1=n

=
(
|b'−1.n/|1='−1.n/

)'−1.n/=n ·
(

1

|w'−1.n/|1='−1.n/

)'−1.n/=n

:



82 L. Bernal-Gonźalez and J. A. Prado-Tendero [24]

Now observe that|w'−1.n/|1='−1.n/ is bounded away from zero by the first inequality
of (a), that'−1.n/=n is asymptotically bounded away from zero by the last inequality
of (b) and that|b'−1.n/|1='−1.n/ → 0 asn → ∞ becauseg is entire. Therefore,

lim
n→∞

|an|1=n = lim
n→∞

∣∣∣∣ b'−1.n/

w'−1.n/

∣∣∣∣1=n

= 0;

as required.

It is natural to ask whether non-onto Taylor shifts U-operators can exist. They
exist indeed, even with' = the identity onN0. Specifically, we next study the Euler
differential operator, see its definition below. It is related to certain lacunary power
series, which will be also dealt with in the final part of this section.

Assume that8.z/ = ∑∞
n=0 cnzn is an entire function of subexponencial type.

Consider the operatorE : E → E given by E f .z/ = z f ′.z/. Then theEuler
differential operator8.E/ associated to8 is defined as

8.E/ : f ∈ E → 8.E/ f =
∞∑

n=0

cn En f ∈ E :

It happens that8.E/ is in fact a linear well-defined operator onE , and that
8.E/ f .z/ = ∑∞

n=08.n/anzn wheneverf .z/ = ∑∞
n=0 anzn, see [21, pages 46–54].

Hence8.E/ = Tw;' with wn = 8.n/, '.n/ = n .n ∈ N0/.
In order to establish the desired property for8.E/ we need two auxiliary lemmas.

The first one is classic and can be found in [13, Theorem 9.1.4]. The second one is a
recent lacunary result and may be seen in [26, Lemma] and [28, Lemma], see also [27,
Lemma 2]. A little further terminology is in order. Recall that if Q ⊂ N0 and¹.A/
denotes the number of elements of a finite setA then theupper(lower, respectively)
densityS1.Q/ (1.Q/, respectively) ofQ and themaximal(minimal, respectively)
density1max.Q/ (1min.Q/, respectively) ofQ in the sense of P´olya [32] are defined
as

S1.Q/ = lim sup
n→∞

¹.Q ∩ [0;n]/
n

; 1.Q/ = lim inf
n→∞

¹.Q ∩ [0;n]/
n

;

1max.Q/ = lim
Þ→1−

(
lim sup

r →∞

¹.Q ∩ [0; r ]/− ¹.Q ∩ [0; Þr ]/
.1 − Þ/r

)
;

1min.Q/ = lim
Þ→1−

(
lim inf

r →∞
¹.Q ∩ [0; r ]/− ¹.Q ∩ [0; Þr ]/

.1 − Þ/r

)
:

Thedensity1.Q/ of Q is defined as

1.Q/ = lim
n→∞

¹.Q ∩ [0;n]/
n

;
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if such a limit exists, that is, ifS1.Q/ = 1.Q/. In addition, we denote byEQ the
subspace ofE consisting of all entire functions with null Taylornth-coefficient at the
origin for everyn =∈ Q. Therefore,EQ is a space of gap series. Note that8.E/ f ∈ EQ

if Q = N0 \8−1.0/. Moreover, forA ⊂ C and forÞ ∈ [0; ³/ we set

AÞ := {zei � : z ∈ A; |� | ≤ Þ}:

LEMMA 6.2. If 8 is a non-zero entire function of subexponential type then

1
(
N0 \8−1.0/

) = 1:

LEMMA 6.3. Let K ∈ M .C/ with 0 ∈ K 0 and assume thatQ is a subset ofN0

satisfying at least one of the following two conditions:

(a) The component ofK containing the origin is starlike with respect to0 and
S1.Q/ = 1.
(b) The minimal density satisfies1min.Q/ = Ž ∈ .0;1] and there exists a Jordan

arc  connecting∞ with the boundary of the maximal disk with center0 which is
contained inK 0 and having the property³.1−Ž/ ∩ K = ∅.

Suppose that" > 0 and that f is holomorphic on some open set containingK
such that f has a power series representation around the origin of the formf .z/ =∑∞

n=0 anzn with an = 0 for n =∈ Q. Then there exists a polynomialP ∈ EQ such that
| f .z/ − P.z/| < " for all z ∈ K .

The proof of the following result is inspired by that of [15, Theorem 4.6].

THEOREM 6.4. If 8 is a non-zero entire function of subexponential type then the
Euler differential operator8.E/ is a U-operator.

PROOF. According to Corollary2.7, we would be done as soon as we prove that
8.E/ has!-dense range and is!-stable.

Fix any R > 0, any M ∈ M .{|z| > R}/ and anyg ∈ A.M/. By Mergelyan’s
theorem, there exists a polynomialP1 such that

|g.z/− P1.z/| < "=2 .z ∈ M/:(14)

Consider� := B.0; R/ ∪ {|z| > R}, K := SB.0; R=2/ ∪ M and Q := N0 \ 8−1.0/.
Then, by Lemma6.2, 1.Q/ = 1. But K ∈ M .C/, 0 ∈ K 0 and� is an open
set containingK , therefore from Lemma6.3 (under condition (a)) there is some
polynomialP ∈ EQ such that

| f .z/ − P.z/| < "=2 .z ∈ K /;(15)
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where f : � → C is defined as

f .z/ :=
{

P1.z/ if |z| > R;

0 if |z| < R:
(16)

By (14)–(16) we get

|g.z/− P.z/| < " .z ∈ M/:(17)

Now, we define the polynomialh as follows. Assume thatP.z/ = ∑
n∈Q∩{0;1;:::;N} anzn.

Thenh.z/ := ∑
n∈Q∩{0;1;:::;N}.an=8.n//zn. Trivially, h ∈ E and8.E/h = P. Thus,

by (17), |.8.E/h/.z/ − g.z/| < " for all z ∈ M . This shows that the restriction
mapping8.E/M : E → A.M/ has dense range, so8.E/ has!-dense range. As for
!-stability, fix r > 0 and selectR := r . Given" > 0 andM ∈ M .{|z| > r }/ we
have to findŽ > 0 andS ∈ M .{|z| > r }/ such that‖8.E/ f ‖M < " wheneverf
is an entire function with‖ f ‖S < Ž. We can choose a compact setS ∈ 5 (see
the notation just before Lemma4.1) such thatM ⊂ S0 ⊂ S ⊂ {|z| > r }, so
S ∈ M .{|z| > r }/. SetÞ := inf{|t − z| : t ∈ 0; z ∈ M} > 0, where0 = @S. Let
us denoteþ := max{|t | : t ∈ 0}, henceþ ∈ .0;+∞/. Since8.z/ := ∑∞

n=0 cnzn has
subexponential type, there exists a constantC ∈ .0;+∞/ such that

|cn| ≤ C

n!
(
Þ

2þ

)n

.n ∈ N0/:

DefineŽ := "³Þ=.C length.0// and fix f ∈ E with ‖ f ‖S < Ž. According to [21,
pages 46–54], we have

En f .z/ = 1

2³ i

∮
0

Pn.z; t/ f .t/

.t − z/n+1
dt .n ∈ N0; z ∈ M/;

wherePn.z; t/ is a polynomial of two variablesz; t satisfying|Pn.z; t/| < n!þn for
all z ∈ M andt ∈ 0. In fact, Pn does not depend onf . Finally, for everyz ∈ M we
obtain

|8.E/ f .z/| =
∣∣∣∣∣

∞∑
n=0

cn.E
n f /.z/

∣∣∣∣∣ ≤ 1

2³

∞∑
n=0

|cn|
∣∣∣∣∮
0

Pn.z; t/ f .t/

.t − z/n+1
dt

∣∣∣∣
≤ 1

2³

∞∑
n=0

C

n!
(
Þ

2þ

)n n!þn‖ f ‖S

Þn+1
length.0/ <

CŽ length.0/

2³Þ

∞∑
n=0

1

2n

= ";

as required.



[27] U-operators 85

There are other non-onto Taylor shift U-operatorsTw;' with '.n/ = n.n ∈ N/

which are essentially different from Euler differential operators, but also related to
gap Taylor series. Our result is contained in Theorem6.5(see below) and strengthens
Theorem1.3. On the other hand, the conditionS1.Q/ = 1 is ‘essentially’ necessary
in order that the property of density inA.K / .K ∈M .C∗// can be satisfied for some
f ∈ EQ. Indeed, it is shown in [27, Theorem 2] that1max.Q/ = 1.

We now consider the ‘gap operator’I Q : E → E given by

.IQ f /.z/ =
∑
n∈Q

anzn; where f .z/ =
∞∑

n=0

anzn

andQ ⊂ N0 is fixed. Observe thatI Q = Tw;' with '.n/ = n for all n and

wn =
{

1 if n ∈ Q;

0 if n =∈ Q:

Note that the next theorem isnot contained in Theorem6.4because, givenQ ⊂ N0

with S1.Q/ = 1 andQ 6= N0, there exists no entire function8 of subexponential type
satisfying8.n/ = 1 for n ∈ Q and8.n/ = 0 for n =∈ Q. Indeed, if such a function
exists then81.z/ := 8.z/−1 would also be of subexponential type; but8−1

1 .0/ = Q,
so1.N0 \8−1

1 .0// = 1.N0 \ Q/ = 0 6= 1, hence81 ≡ 0 by Lemma6.2. Therefore
8 ≡ 1, which is absurd.

THEOREM 6.5. Suppose thatQ is a subset ofN0 with S1.Q/ = 1. We have:

(a) The gap operatorI Q is a U-operator.
(b) Let be given a countable family.Gk/ of!-domains inC. For eachk, assume that

{'k;n : n ∈ N} ∈ !.Gk/. Then there exists an infinite-dimensional linear manifold
M ⊂ EQ such that for everyF ∈ M \ {0} the sequence{.F ◦'k;n/|K : n ∈ N} is dense
in A.K / for everyK ∈M .Gk/ and everyk.

PROOF. (a) Assume that a setU := U .T = IQ; ;G; K ; ¦ = .'n/; "; r; g;h/ as in
part (d) of Theorem2.2 is fixed. As remarked after Theorem2.2, it can be supposed
without loss of generality thatg is a polynomial. It has to be shown thatU is
nonempty. Since¦ ∈ !.G/, there existsn ∈ N with SB.0; r / ∩ 'n.K / = ∅. Consider
the setL := SB.0; r / ∪ 'n.K /. ThenL ∈ M .C/ becauseK ∈ M .C/ and'n is a
homeomorphism fromG into itself. In addition, 0∈ L0 and the component ofL
containing 0 (= SB.0; r /) is starlike with respect to 0. Let us consider the function

F.z/ =
{
.IQh/.z/ if z ∈ SB.0; r /;
g.'−1

n .z// if z ∈ 'n.K /:
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Observe thatF is holomorphic on some open set containingL. Indeed,I Qh is
entire andg ◦ '−1

n ∈ H .G/. On the other hand,F has, obviously, a power series
representation around the origin with gaps at the indexes belonging toN0 \ Q. By
Lemma6.3 (a), there is a polynomialP ∈ EQ such that|F.z/ − P.z/| < " (z ∈ L).
In particular,‖I Qh − P‖SB.0;r / < " and‖P ◦ 'n − g‖K < ". Now define

f := P + IN0\Qh:

It is clear thatf ∈ E and I Q f = P. Hence

‖ f − h‖SB.0;r / = ‖P + IN0\Qh − I Qh − IN0\Qh‖SB.0;r / < "

and‖.IQ f / ◦ 'n − g‖K < ". Consequently,f ∈ U and we are done.
(b) Let us suppose that.Gk/ and{'k;n : n ∈ N} .k ∈ N/ are as in the hypothesis.

If we apply part (b) of Theorem5.2 on the constant sequenceSj = I Q then we
obtain a dense linear manifold̃M ⊂ E such that, for allf ∈ M̃ \ {0}, each sequence
{..IQ f / ◦ 'k;n/|K : n ∈ N} is dense inA.K / for everyK ∈M .Gk/ and everyk ∈ N.
DefineM := I Q.M̃/. ThenM is a linear manifold inEQ. Moreover, ifF ∈ M \ {0},
thenF = I Q f for some f ∈ M̃ \ {0}, so the approximation property of the statement
holds. Finally,M is dense inI Q.E / = EQ, henceM must be infinite-dimensional.

To finish, we would like to say something in the case of the weaker condition
1min.Q/ > 0 for the subsetQ ⊂ N0. In such a case, Luh, Martirosian and M¨uller
were able to prove (see [26, Theorem 1]) that for a given sequence.an/ ⊂ C tending
to ∞ (again, the statement is equivalent to ‘.an/ is unbounded’) there exists a function
f ∈ EQ such that the sequence of translates{ f .z + an/ : n ∈ N} is dense inA.K /
for all K ∈ M .C/. In our next (and final) theorem we obtain a strong improvement
with a different proof. We remark that by Mergelyan’s theorem density inE implies
density in everyA.K / with K ∈M .C/.

THEOREM 6.6. Let be given a subsetQ ⊂ N0 with 1min.Q/ > 0 and a sequence
.'n/ ∈ !.C/. Then there exists an infinite-dimensional linear manifoldM ⊂ EQ such
that for everyF ∈ M \ {0} the sequence{F ◦ 'n : n ∈ N} is dense in the spaceE .

PROOF. We have that'n.z/ = an + bnz (n ∈ N) for some complex sequences.an/,
.bn/ with bn 6= 0 for all n andan → ∞, an=bn → ∞ asn → ∞. For given" > 0,
r > 0, R > 0 and polynomialsg;h we can select as in the proof of Theorem6.5 a
positive integern with SB.0; r / ∩ 'n.SB.0; R// = ∅. Consider also the corresponding
function F defined onL := SB.0; r / ∪ 'n.SB.0; R// given by

F.z/ =
{
.IQh/.z/ if z ∈ SB.0; r /;
g.'−1

n .z// if z ∈ 'n.SB.0; R//:
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Now, n can be chosen in such a way that there exists a Jordan arc connecting∞
with the boundary ofSB.0; r / such that

³.1−Ž/ ∩ L = ∅;(18)

where Ž := 1min.Q/ (this will be shown at the end of the proof). Therefore
Lemma6.3(b) applies, yielding a polynomialP ∈ EQ such that‖P − F‖L < ". Then
as in the proof of Theorem6.5 we obtain a functionf ∈ E with ‖ f − h‖SB.0;r / < "

and‖.IQ f / ◦ 'n − g‖SB.0;R/ < ". Let us define

G.g; R; "/ := {
f ∈ E : ‖.C'n

I Q/ f − g‖SB.0;R/ < " for some n ∈ N}
:

Then we have just proved that eachG.g; R; "/ is a dense subset ofE . On the other
hand, it is not difficult to realize that everyG.g; R; "/ is open and that

U ..C'n
I Q// =

⋂
j ;k;l∈N

G.gj ; k;1= l /;

where.gj / is an enumeration of polynomials whose coefficients have rational real
and imaginary parts. By Baire’s theorem,U ..C'n

I Q// is dense. In other words, the
sequenceC'n

I Q : E → E (n ∈ N) is densely hypercyclic. But the same holds for
every subsequence.C'n j

I Q/ (n1 < n2 < · · · ) because, trivially,.'nj
/ also belongs

to !.C/. From Lemma5.1 as applied onX := E =: Yk for all k (or from [5,
Theorem 2]), there is a dense linear manifoldM̃ ⊂ E with M̃ \ {0} ⊂ U ..C'n

I Q//. If
now we defineM := I Q.M̃/ then we can conclude as in the proof of Theorem6.5(b).

Thus, we would be done if (18) is obtained for some suitable Jordan arc . Recall
that L = SB.0; r / ∪ 'n.SB.0; R// wheren is such that the union is disjoint. Observe
that'n.SB.0; R// = SB.an; R|bn|/. If an = |an|ei �n, consider the angle

S.n/ = {z ∈ C \ {0} : �n − ³Ž < argz< �n + ³Ž}:
Since limn→∞ bn=an = 0, we can choose our integern in such a way that|bn=an| <
sin.³Ž/, soSB.an; R|bn|/ ⊂ S.n/. Let us define the Jordan arc := {−tei �n : t > r }.
Then  connects∞ with the point−r of the boundary ofSB.0; r /. In addition,
³.1−Ž/ ∩ SB.0; r / = ∅ and³.1−Ž/ ⊂ C \ S.n/, whence (18) holds.
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