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Abstract

In this paper, we present some new metrization theorems in terms of Heathg-functions.
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1. Introduction

In this short note we characterize metrizability in terms of Heathg-functions.
Heath in [3] introduced a method of describing a generalized metric property of a

topological space.X; − / by means of a functiong : N × X → − . Hodel, Fletcher,
Lindgren and Nagata have modified this method to obtain important new classes of
spaces.

A Heathg-function[COC-map (= countable open covering map)] for a topological
spaceX is a functiong fromN× X into the topology ofX such that for everyx ∈ X
andn ∈ N; x ∈ g.n; x/ andg.n + 1; x/ ⊆ g.n; x/.

It is well known that many important classes of generalized metrizable spaces can
be characterized in terms of a Heathg-function. In particular,X is developable [3]
(w1-space) if and only ifX has a Heathg-functiong such that if{p; xn} ⊆ g.n; yn/

for all n, thenp is a cluster point of the sequence〈xn〉 (then〈xn〉 has a cluster point).
A spaceX is called awM-space[4] if and only if X has a Heathg-functiong such

that if x ∈ g.n; zn/; g.n; zn/∩ g.n; yn/ 6= ∅ andxn ∈ g.n; yn/ for all n then〈xn〉 has a
cluster point. LetG be a collection of sets. We definest.x;G / = ⋃{G ∈ G : x ∈ G}
andst2.x;G / = ⋃

y∈st.x;G / st.y;G /.
In this paper all spaces will beT0, unless we state otherwise.
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2. Main results

First we consider what additional conditions need to be attached to a space already
known to bestratifiable (conditions (1)–(3) in the next theorem are the axioms of
stratifiability [2, Theorem 5.8]) to make it metrizable. To do this, the function
g : ! × X → T can be strengthened to give it some sort of symmetry as shown by
the next theorem.

THEOREM 2.1. A spaceX is metrizable if and only if there exists a function
g : ! × X → T such that

(1) {x} = ⋂
n∈! g.n; x/;

(2) if y ∈ g.n; xn/ for all n thenxn → y;
(3) for any y =∈ H closed,y =∈ ⋃{g.x;n/ : x ∈ H } for somen ∈ !;
(4) if y ∈ g.n; x/ thenx ∈ g.n; y/.

PROOF. For any metric space we can defineg to satisfy the axioms of stratifiability
as given in [2, Theorem 5.8]. The fourth condition of the theorem holds because of
the symmetry of a metric.

To prove the converse, we assume that without loss of generality,

g.n; x/ ⊆ g.n + 1; x/ for any x ∈ X:

If this was not the case,we define the functiong′.n; x/ = ⋂
k6n g.k; x/. Certainly each

g′.n; x/ is open as the finite intersection of open sets and the axioms for stratifiability
still hold sinceg′.n; x/ ⊆ g.n; x/ for eachn ∈ ! and x ∈ X. Notice also that
condition (4) remains true when considering these new open sets.

X can be shown to be aT1 space by showing{x} is closed for eachx ∈ X. Suppose
y =∈ {x}; that is, y 6= x. Then we must have somen ∈ ! such thatx =∈ g.n; y/,
otherwisex ∈ ⋂

n∈! g.n; y/ = {y} and so the points are not distinct. Hence there is
an open neighbourhood ofy which does not meet{x} and so{x} is closed.

For eachn ∈ !, we define an open coverGn = {g.n; x/ : x ∈ X}. Suppose
that x is in some open setU . If we can show that there exists somen ∈ ! such
that st2.x;Gn/ ⊆ U then sinceX is T0, the space will be metrizable by the Moore
Metrization theorem [1].

Firstly we notice that there must exist somen0 ∈ ! such thatg.n0; x/ ⊆ U ,
otherwise we can define a sequence of pointsxn such thatxn ∈ g.n; x/ \ U for each
n ∈ !. Then by our new symmetry condition,x ∈ g.n; xn/ for eachn ∈ !, hence
xn → x, contradicting the fact thatx ∈ U since the pointsxn all lie in the closed set
X \ U and so their limit must also lie inX \ U . DefineU1 = g.n0; x/ and notice that

x =∈ X \ U1 ⇒ x =∈
⋃

{g.n1; y/ : y ∈ X \ U1} = X \ U2; some n1 ∈ !;
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x =∈ X \ U2 ⇒ x =∈
⋃

{g.n2; y/ : y ∈ X \ U2} = X \ U3; some n2 ∈ !;
x =∈ X \ U3 ⇒ x =∈

⋃
{g.n3; y/ : y ∈ X \ U3} = X \ U4; some n3 ∈ !;

x =∈ X \ U4 ⇒ x =∈
⋃

{g.n4; y/ : y ∈ X \ U4} = X \ U5; some n4 ∈ !:

Let n = max{n0;n1;n2;n3;n4}. We now show thatst.x;Gn/ ⊆ U3. If x2 is any point
in st.x;Gn/ then there is somex1 such thatx ∈ g.n; x1/ and x2 ∈ g.n; x1/, hence
x1 ∈ g.n; x2/ and x1 ∈ g.n3; x2/. If we assume thatx2 =∈ U3, then x2 ∈ X \ U3,
so x1 ∈ ⋃{g.n3; y/ : y ∈ X \ U3} = X \ U4. Similarly, since we havex1 =∈ U4 and
x ∈ g.n; x1/ (hencex ∈ g.n4; x1/), thenx ∈ ⋃{g.n4; y/ : y ∈ X \ U4} = X \ U5

which contradicts the fact thatx ∈ U5. This means thatx2 ∈ U3 and sost.x;Gn/ ⊆ U3.
The final stage of the proof is to show thatst2.x;Gn/ ⊆ U by showing that

st2.x;Gn/ ⊆ U1. Considerx4 ∈ st2.x;Gn/. This means we have some pointx3 such
that x2 ∈ g.n; x3/ andx4 ∈ g.n; x3/ (for somex2 ∈ st.x;Gn/), hencex3 ∈ g.n; x4/

andx3 ∈ g.n1; x4/. If we assume thatx4 =∈ U1, thenx3 ∈ ⋃{g.n1; y/ : y ∈ X \ U1} =
X \ U2. Similarly, since we havex3 =∈ U2 andx2 ∈ g.n; x3/ (hencex2 ∈ g.n2; x3/),
thenx2 ∈ ⋃{g.n2; y/ : y ∈ X \ U2} = X \U3 which contradicts the fact thatx2 ∈ U3.
This means thatx4 ∈ U1 and sost2.x;Gn/ ⊆ U1 ⊆ U .

We now consider some similar results where, instead of requiring convergence of
sequences, we only require clustering.

THEOREM 2.2. A spaceX is metrizable if and only if there is a Heathg-functiong
such that

(1) if x ∈ g.n; y/ theny ∈ g.n; x/;
(2) if {x; xn} ⊂ g.n; yn/ for all n thenx is a cluster point of the sequence〈xn〉.

PROOF. Necessity is clear. For sufficiency: since the condition.2/ gives devel-
opability to the spaceX, we need only to prove thatX is a regular andwM-space
(every regular, developable,wM-space is metrizable [5]). We first proveX is reg-
ular. Let x ∈ U be open inX. Supposexn ∈ g.n; x/ − U for all n ∈ N. Then
yn ∈ g.n; x/ ∩ g.n; xn/ for eachn. Sox ∈ g.n; yn/ andxn ∈ g.n; yn/. Therefore, we
have{x; xn} ⊂ g.n; yn/, sox is a cluster point of the sequence〈xn〉. But x ∈ U is open
andxn =∈ U for eachn, which contradicts thatx is a cluster point of the sequence〈xn〉.
Therefore,g.n; x/ ⊂ U for somen andX is regular.

Finally, we proveX is a wM-space. Letx ∈ g.n; zn/; g.n; zn/ ∩ g.n; yn/ 6=
∅ and xn ∈ g.n; yn/. Now we want to show that〈xn〉 has a cluster point. Let
pn ∈ g.n; zn/ ∩ g.n; yn/. Sincepn ∈ g.n; zn/ andx ∈ g.n; zn/, {x; pn} ⊂ g.n; zn/.
Therefore,x is a cluster point of the sequence〈pn〉. There is a subsequence〈m.n/〉
of the sequence〈n〉 such thatpm.n/ ∈ g.n; x/, which implies thatx ∈ g.n; pm.n//. We



106 Abdul M. Mohamad [4]

have pm.n/ ∈ g.n; ym.n//, so ym.n/ ∈ g.m.n/; pm.n// ⊂ g.n; pm.n//. Now {x; ym.n/} ⊂
g.n; pm.n//, so x is a cluster point of the sequence〈ym.n/〉. Therefore, there is a
subsequence〈m.n/.k/〉 of the sequence〈m.n/〉 such thatym.n/.k/ ∈ g.k; x/ for all k
and hencex ∈ g.k; ym.n/.k// for all k. Since

xm.n/.k/ ∈ g.m.n/.k/; ym.n/.k/ / ⊂ g.k; ym.n/.k//;

{x; xm.n/.k/} ⊂ g.n; ym.n/.k// for all k and hencex is the cluster point of the sequence
〈xm.n/.k/〉. Therefore,x is the cluster point of the sequence〈xn〉.

We defineg1.n; x/ = g.n; x/, andgk+1.n; x/ = ⋃{g.n; y/ : y ∈ gk.n; x/} for
k ≥ 1.

THEOREM 2.3. A spaceX is metrizable if and only if there is a Heathg-functiong
such that

(1) if x ∈ g.n; y/ theny ∈ g.n; x/;
(2) if x ∈ g2.n; xn/ for all n thenx is a cluster point of the sequence〈xn〉.

PROOF. Let X be metrizable space with a sequence{Gn}n∈N of open covers ofX
satisfying that{st2.x;Gn/} is a local base atx for all x ∈ X. Putg.n; x/ = st.x;Gn/

for eachx ∈ X and for eachn. Theng is a COC-map which satisfies.1/ and.2/,
becauseg2.n; xn/ = st2.x;Gn/.

For the converse, we can prove by induction onk that if 〈xn〉 is a sequence inX
andx ∈ X with xn ∈ gk.n; x/ for all n thenx is a cluster point of〈xn〉. From this
it follows that if U open withx ∈ U then there is somen with g4.n; x/ ⊂ U . Put
Gn = {g.n; x/ : x ∈ X} for n ∈ N. Then{st2.x;Gn/} = g4.n; x/, so {Gn}n∈N is a
sequence of open covers such that{st2.x;Gn/ : n ∈ N} is a local base atx for all
x ∈ X. Hence, by By the Moore Metrization theorem [1], X is metrizable. This
completes the proof.

COROLLARY 2.4. A spaceX is metrizable if and only if there is a Heathg-function
g such that

(1) if x ∈ g.n; y/ theny ∈ g.n; x/;
(2) {g2.n; xn/ : n ∈ N} is a local basis atx for all x ∈ X.

THEOREM 2.5. A spaceX is metrizable if and only if there is a Heathg-functiong
such that

(1) if x ∈ g.n; y/ theny ∈ g.n; x/;
(2)

⋂
n∈N g2.n; x/ = {x};

(3) if {x; xn} ⊂ g.n; yn/ then the sequence〈xn〉 has a cluster point.
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PROOF. It is easy to prove necessity. To prove sufficiency, we need to prove that
x is a cluster point of the sequence〈xn〉. Let q be a cluster point of〈xn〉. Suppose
that q 6= x. Then there are infinitely many integerm ≥ n such thatxm ∈ g.n;q/.
Now we have{x; xm} ⊂ g.n; ym/. By conditions (1) and (2) we getx ∈ g.n; ym/ and
ym ∈ g.n; xm/. Therefore,{xm : m ≥ n} ⊂ g2.n; x/, soq ∈ {xm : m ≥ n} ⊂ g2.n; x/.
Thusq ∈ ⋂

n∈Ng2.n; x/ = {x}. Henceq = x, as required.
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