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Abstract

In this note we characterize the abelian groupsG which have two different proper subgroupsN andM
such that the subgroup latticeL.G/ = [0;M] ∪ [N;G] is the union of these intervals.
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For every subgroupH of an arbitrary groupG, the interval [H;G] is a compactly
generated (algebraic) sublattice in the subgroup latticeL.G/.

After 1989, when Tuma [4] showed thatevery algebraic lattice is isomorphic to an
interval in the subgroup lattice of some group(improving Whitman’s theorem [5]—
every lattice is isomorphic to a sublattice of the subgroup lattice of a group—as far as
possible), an increasing role of intervals, in subgroup lattices of groups, was noticed.

In [1], an arbitrary groupG was called aBP-groupif it has a proper subgroupH
such that the subgroup latticeL.G/ is the union of the intervals[1; H ] and[H;G]
(that is, any subgroup ofG is either contained inH or containsH ). The subgroupH
was called abreaking pointfor the latticeL.G/. It was pointed out that the abelian
BP-groups are the nonsimple cocyclic groups (that is, up to isomorphism,Z.pk/ with
k > 1 or∞).

Roland Schmidt suggested the study of finite groups which satisfy a weaker con-
dition: groupsG having two proper subgroupsN andM such that every subgroupH
of G either containsN or is contained inM . In this situation the subgroup latticeL.G/
is again union of two intervals, namely[1;M] and[N;G] (such groups appeared in
the study of affinities of groups—see for example [3, 9.4.14]—but there are much
more examples of this kind).
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In this paper, instead of finite groups, we characterize the abelian groups which
share this property. Our result is the following:

THEOREM 1. An abelian groupG has two proper subgroupsN 6= M such that the
subgroup latticeL.G/ = [0;M] ∪ [N;G] if and only if G is a torsion group with a
primary componentGp

∼= Z.pn/⊕ B, n ∈ N
∗ ∪ {∞} such thatpl B = 0 holds for a

nonnegative integerl < n.

Additive notation is used and from now on, ‘group’ means ‘abelian group’,N de-
notes the set of all nonnegative integers,P denotes the set of all prime numbers and
standard interval notation is used. We denote byhp.b/ the p-height ofb.

We first mention the following simple necessary condition:N must be cyclic.
Indeed, takex ∈ G \ M . Then〈x〉 ∈ [0;M] being not possible,〈x〉 ∈ [N;G] or
N ≤ 〈x〉.

Next, notice there are three distinct possibilities with respect to subgroupsN
andM

(A) N andM are not comparable;
(B) M < N;
(C) N < M (for example, the above mentioned example [3]).

1. Abelian groups with (A)

In this section we supposeM and N are not comparable andL.G/ = [0;M] ∪
[N;G]. In this case[0;M] ∩ [N;G] = ∅ (otherwiseN ≤ M). We list a few
straightforward remarks:

(a) M ∩ N is the largest element in[0; N/ and M + N is the smallest element in
.M;G].
(b) L.M + N/ = [0;M] ∪ [N; N + M], that is,N + M has property (A).
(c) L.G=.M ∩ N// = [0;M=.M ∩ N/] ∪ [N=.M ∩ N/;G=.M ∩ N/], that is,

G=.M ∩ N/ has property (A).
(d) .M + N/=.M ∩ N/ has property (A).

Actually, more can be proved:

LEMMA 1.1. If L.G/ = [0;M] ∪ [N;G], there is a prime numberp such that

(a) N is a (co)cyclic p-group andM ∩ N = pN is maximal inN;
(b) G=M andG=.M + N/ are p-groups.

PROOF. (a) We have already noticed thatN has to be cyclic. By the above re-
mark (a),N is a (co)cyclicp-group (for a suitable prime numberp). Moreover, since
M ∩ N is its largest (proper) subgroup,pN = M ∩ N.
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To prove (b), we observe thatG=M is a cocyclic group since it has a smallest
subgroup, namely.M +N/=M . Moreover, since.M +N/=M ∼= N=.N∩M/ ∼= Z.p/,
G=M is a cocyclicp-group, and soG=.M + N/ has the same property.

Therefore the subgroup lattice is represented by the diagram shown in Figure1.
G

M

N

N + M

N ∩ M = pN

p2N

pk−1N

0

..

.

.

..

..

..

FIGURE 1.

If N ' Z.pk/ it is readily seen that fork = 1, N is minimal and hence the sum
N + M is direct (otherwiseN ∩ M = N andN, M are comparable). Actually this is
the only caseN ∩ M = 0.

The following lemma will be used in the proofs of the main results of both this and
next sections.

LEMMA 1.2. For a groupG and g ∈ G, let p be a prime such thatK = G=〈g〉
is cocyclicp-group. If hp.g/ 6= 0 and G is not infinite cyclic, thenG = H1 ⊕ H2

for cocyclicp-group H1 and finite cyclic groupH2 of coprime order withp such that
H2 ≤ 〈g〉 (H2 = 0 is not excluded).

PROOF. Since for cocyclic groupG the decomposition is trivial, supposeG is not
cocyclic (and sog 6= 0). As r .G/ ≤ r .K /+ r .〈g〉/ = 2, we haver .G/ = 2 and by
r0.G/ = r0.〈g〉/ + r0.K / ≤ 1, we obtainG = H1 ⊕ H2 with r .H1/ = r .H2/ = 1,
that is, eachHi is cocyclic or infinite cyclic (ifr0.G/ = 1, the torsion subgroup ofG
is cocyclic, henceG splits). If g = h1 + h2 with hi ∈ Hi , sincehp.g/ ≥ 1, there exist
x1 ∈ H1 andx2 ∈ H2 such thatpx1 = h1 and px2 = h2. Moreover,L.G=〈g〉/ is a
chain and we can supposex2 + 〈g〉 ∈ .〈x1〉 + 〈g〉/=〈g〉.
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Thusx2 ∈ 〈x1〉+〈g〉 andx2 = sx1+tg or px2 = spx1+tpg for suitable integerss; t .
Henceh2 = sh1 + tp.h1 + h2/ and, the sumH1 ⊕ H2 being direct,.tp − 1/h2 = 0.

If h2 = 0 theng ∈ H1 and K is cocyclic if and only if〈g〉 = H1 or H2 = 0. In
the first casehp.g/ = 0, henceH2 = 0 andG = H1 is a cocyclicp-group (since, by
hypothesis,G is not infinite cyclic).

If h2 6= 0, the order ofh2 (sayl ) is finite and coprime withp. Therefore,H2 is a
cocyclicq-group (if l is a power of the primeq) and this impliesH2 ≤ 〈g〉 (otherwise
G=〈g〉 is notp-group). Hence there exists a nonzero integerksuch thath2 = kh1+kh2,
and sokh1 = 0. ThenH1 is also cocyclic and necessarily ap-group.

Here is the structure theorem for case (A):

THEOREM 1.1. A groupG satisfies(A) if and only if G is torsion with a cocyclic
primary component andr .G/ > 1.

PROOF. According to Lemma1.1, let p be a prime such thatN = 〈a〉 is cyclic of
order pk. If m ∈ M \ N thenm + a =∈ M (sincea =∈ M) andN ≤ 〈m + a〉. Since
N 6= 0 is torsion,m + a and thereforem are of finite order. HenceM and, together
with G=M , G are torsion.

Further, we show thatMp ⊆ N. Indeed, ifm ∈ Mp, again,N ⊆ 〈a + m〉 so that
a = s.a + m/ and.1 − s/a = sm ∈ N ∩ M = pN for a suitable nonzero integers.
Thuss ≡ 1 (mod p) and lett be an inverse ofs modulo the order ofm ∈ Mp. Thus
m = tsm= t .1 − s/a ∈ N.

Now, N andM being not comparable,Mp ⊂ N and hence

pN = M ∩ N = Mp ∩ N = Mp:

SinceMp = pN ≤ Gp, Lemma1.2shows thatGp is a cocyclic group.
Conversely, supposeG = Gp ⊕ K with Gp ' Z.pl /, K 6= 0, K p = 0 and take

N = Gp[p] = 〈a〉 andM = K . If H is a subgroup ofG such thatH � K we show
N ≤ H .

Indeed, sinceH � K , there is an elementh ∈ H \K . If this element decomposes as
h = gp+k (gp ∈ Gp, k ∈ K ), thengp 6= 0 and for a suitable multiplepsh = ps.gp+k/
we have 06= psgp ∈ N respectivelypsk ∈ K . SinceK is torsion andK p = 0,
denoting byu the order of psk, u and p are coprime andupsgp ∈ H . Finally,
psgp ∈ H and thusN = 〈psgp〉 ≤ H .

REMARKS. (1) The referee pointed out that a proof in Case (A) can be reduced
to the proof of Case (B) using Lemma1.1. Our proof uses Lemma1.2 in both cases.
(2) With above notations,G=M = ⊕

q∈P.Gq=Mq/ is a p-group. HenceGq = Mq

for all primesq 6= p andM = pN ⊕ (⊕
q 6=p;q∈P Gq

)
.
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2. Abelian groups with (B)

Now we deal with subgroup lattices of the type shown in Figure2. Here again
[0;M] ∩ [N;G] = ∅.

Although the following result was already stated in [1], we supply a specific
‘abelian’ proof.

LEMMA 2.1. G is an abelian BP-group if and only if there is a primep and
k ∈ N∗ ∪ {∞}, k ≥ 2 such thatG ' Z.pk/.

PROOF. If L.G/ = [0; H ] ∪ [H;G], then (as noticed in the introduction)H is a
cyclic subgroup. Ifp is a prime such thatpH 6= H , then H=pH is simple, and
using againL.G/ = [0; H ] ∪ [H;G], it is the smallest nonzero subgroup ofG=pH.
HenceG=pH is cocyclic and, having elements of orderp (in H=pH), must be ap-
group. Since an infinite cyclic group is not a BP-group, using Lemma1.2, we obtain
G = H1 ⊕ H2 with cocyclic p-groupH1, cyclic q-groupH2, q andp are coprime and
H2 ≤ pH ≤ H . Obviously, H1 � H (otherwiseG = H ) so thatH2 ≤ H ≤ H1.
This impliesH2 = 0, and soG is cocyclic. SinceZ.p/ is not satisfying (B), G has
the requested form.

The converse is immediate (the subgroup lattice ofZ.pn/ with n ∈ N∪{∞}, n ≥ 2
is a chain with at least 3 elements).

Using this we obtain at once

THEOREM 2.1. A group satisfies(B) if and only ifG ' Z.pn/ with n ≥ 3.

PROOF. If L.G/ = [0;M] ∪ [N;G] and M ≤ N then L.G/ = [0; N] ∪ [N;G]
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FIGURE 3.

and soG is a BP-group. HenceG is cocyclic. Since the conditions 06= M 6= N 6= G
require at least 4 elements inL.G/, G ' Z.pn/ with n ≥ 3.

The converse is obvious.

3. Abelian groups with (C)

In this section we consider two proper subgroupsN < M such thatL.G/ =
[0;M] ∪ [N;G]. Thus the subgroup lattice looks as shown in Figure3.

Now L.G/ = [0;M]∪[N;G] and[0;M]∩[N;G] = [M; N]. Moreover,[0; N] ⊆
[0;M] and[M;G] ⊆ [N;G].

THEOREM 3.1. If a groupG satisfies(C) thenG is a torsion group and there exists a
primep such thatGp is a BP-group or satisfies(C). Conversely, ifG is a torsion group,
Gp 6= G for a primep andGp is a BP-group or satisfies(C), thenG satisfies(C).

PROOF. Let 0< N < M < G be such thatL.G/ = [0;M] ∪ [N;G].
If G is not a torsion group, there exists an infinite order elementx ∈ G such that

x =∈ M (otherwise, since the infinite order elements generate any group,M = G).
Then 0< N ≤ M ∩〈x〉 < 〈x〉. If L ≤ 〈x〉 thenL ≤ M or N ≤ L, henceL ≤ M ∩〈x〉
or N ≤ L. Therefore〈x〉 is a BP-group or satisfies (C), but it is easy to see that no
infinite cyclic group satisfies these properties (as for (C), if 0 < nZ < mZ < Z and
p is a prime not dividingn, thenpZ =∈ [0;mZ] ∪ [nZ;Z]). This contradiction shows
thatG is a torsion group.
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Suppose no componentGp is a BP-group or satisfies (C). SinceM 6= G, there exists
a primep such thatMp 6= Gp. If Np = 0, thenGp ⊆ M (N ⊆ Gp is not possible,
N being a proper subgroup), henceMp = Gp. Therefore 0< Np ≤ Mp < Gp and
L.Gp/ 6= [0;Mp] ∪ [Np;Gp]. Then we can findHp ≤ Gp such thatHp \ Mp 6= ∅
andNp \ Hp 6= ∅. It follows Hp \ M 6= ∅ andN \ Hp 6= ∅, a contradiction.

Conversely, supposeG is torsion andGp is a BP-group or satisfies (C). Then we
can find subgroups 0< Np ≤ Mp < Gp such thatL.Gp/ = [0;Mp] ∪ [Np;Gp]. Set
M = Mp ⊕ (⊕

q 6=p Gq

)
and N = Np. Thus 0< N < M < G. If H ≤ G, then

H = Hp ⊕ (⊕
q 6=p Hq

)
with Hp ≤ Gp and

⊕
q 6=p Hq ≤ ⊕

q 6=p Gq. If Np ≤ Hp, then
H ∈ [N;G] and if Hp ≤ Mp, thenH ≤ Mp⊕

(⊕
q 6=p Hq

) ≤ Mp⊕
(⊕

q 6=p Gq

) = M .
Actually, Gp 6= G is needed only for a BP-groupGp not satisfying (C).

THEOREM 3.2. A p-group G satisfies(C) if and only ifG ∼= Z.pn/ ⊕ B such that
(i) B 6= 0, n ∈ N∗ ∪{∞} and pl B = 0 holds for a positive integerl < n, or (ii) B = 0
andn > 2.

PROOF. If G satisfies (C), we can supposeN = 〈a〉 ∼= Z.p/. Let l > 0 be
the smallest positive integer such that there existsx ∈ G \ M with pl x = a. Let
b ∈ G[p] \ 〈a〉 and supposehp.b/ ≥ l . Thenb = pl y for somey ∈ M (if y =∈ M
we havea ∈ 〈y〉, hence the rank of〈y〉[p] is at least 2, a contradiction). Thus
x + y =∈ M , and there exists a positive integerk such thatkx + ky = a. If k = pr m
with gcd.m; p/ = 1 thenpr .mx + my/ = a, hencel ≤ r . Moreover,l ≤ r implies
ky ∈ 〈a〉 anda ∈ 〈y〉 follows, a contradiction. Thenhp.b/ < l for all b ∈ G[p] \ 〈a〉
and sopl G[p] = 〈a〉. Hencepl G is a cocyclic group.

If pl G is a cyclic group thenG is bounded and (using [2, 27.2])G = H ⊕ B where
H ∼= Z.pn/ with n ≥ l + 1, a ∈ H and pl B = 0 (otherwise there isb ∈ B[p] with
hp.b/ ≥ l ). If pl G is a quasicyclic group, thenG = pl G ⊕ B and pl B = 0.

Moreover, if B = 0 thenG ∼= Z.pn/ and conditionM 6= N impliesn > 2.
Conversely, ifB = 0 thenG satisfies condition (C) for N = pn−1G andM = pG.

If B 6= 0 we chooseG = H ⊕ B with H ' Z.pn/, 0 < l < n such thatpl B = 0,
N = H [p] = 〈a〉 ∼= Z.p/ and M = A + B where A is the subgroup ofH of
order pl (obviously containingN - the subgroup lattice ofH being a chain with a
smallest element). IfX is a subgroup ofG such thatX =∈ [0;M], then there exists
x = h + b ∈ X \ M with h ∈ H andb ∈ B such thatpr = ord.h/ > pl (otherwise
h ∈ A andx ∈ M). By pl B = 0 hypothesis, 06= pr −1x = pr −1h ∈ H [p] = N,
hence〈pr −1h〉 = N is included inX.

The only BP-groups which do not satisfy (B), nor (C) areZ.p2/ for any prime
numberp. Hence
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N

M

2M

N + 2M

G

0

N

M

2M

4M

N + 2M

N + 4M

G

0

T

S

U

(a) (b)

FIGURE 4.

COROLLARY 3.1. A groupG satisfies(C) if and only if it is a torsion group with
a primary componentZ.pn/ for n ≥ 3, or Gp

∼= Z.pn/ ⊕ B with n > 1 or ∞ and
pl B = 0 holds for a nonnegative integerl < n.

4. Comments

1. There are groups satisfying both conditions (A) and (C). As an example take

G = Z.12/ = 〈a;b | 3a = 4b = 0〉:
Denoting byN = 〈a〉 andM = 〈b〉 the subgroup lattice looks as shown in Figure4(a).
ThusL.G/ = [0;M] ∪ [N;G] for (A), andL.G/ = [0; N + 2M] ∪ [2M;G] for (C).

2. If a groupG satisfies, say, the condition (C) the pairM; N of subgroups is not
necessarily unique. As an example, take the group

G = Z.2/ ⊕ Z.8/ = 〈a;b | 2a = 8b = 0〉:
If we denote byN = 〈a〉, M = 〈b〉, S = 〈a + 2b〉, T = 〈a + b〉, U = 〈a + 4b〉, the
subgroup lattice is now as shown in Figure4 (b) and

L.G/ = [0; N + 2M] ∪ [2M;G] = [0; N + 2M] ∪ [4M;G]:
3. Our results generalize to lattices with 0 and 1, more or less arbitrary. In what

follows we state some of these lattice versions.

• If a lattice L satisfies condition (A), that is,L = [0;m] ∪ [n;1] with incom-
parable elementsm;n then



[9] Two intervals union subgroup lattice 35

. .

. .

b

a × L

b × L.a; 1/

.a; 0/

.b; 1/

.b; 0/

a

FIGURE 5.

(a) [0;m ∨ n] = [0;m] ∪ [n;m ∨ n] that is,[0;m ∨ n] satisfies condition (A);
(b) [m ∧ n;1] = [m ∧ n;m] ∪ [n;1] that is,[m ∧ n;1] satisfies condition (A);
(c) [m ∧ n;m ∨ n] satisfies condition (A).

• Every direct product of two lattices, the first being a finite chain and the second
having 0 and 1, satisfies condition (A).

PROOF. One uses the diagram shown in Figure5 (for the sake of simplicity we have
considered a chain with only two elements).

Denoting the chain by{a;b} and using elements in the Cartesian product{a;b}×L,
decomposition in the required intervals is[.a;0/; .a;1/] ∪ [.b;0/; .b;1/].

A family of torsion groups is said to becoprimeif the orders of elements in any
two members are coprime. Using an early Theorem of Suzuki (see [3]): the groups
with decomposable subgroup lattices are exactly the direct sums of coprime groups,
we have an alternative proof for sufficiency of Theorem1.1 in the special casek = 1.

PROOF FOR SUFFICIENCY OFTHEOREM 1.1(k = 1). Let G be a torsion group of
rank r .G/ > 1 with a simplep-component, that isG = N ⊕ M with |N| = p and
Mp = 0. ThusN and M are coprime,L.G/ ' L.N/ × L.M/ andL.N/ is a chain
with two elements. Applying the previous result,L.G/ satisfies condition (A).

• Complemented lattices are not satisfying condition (C).
• Let {Li ; i ∈ I } be an arbitrary set of bounded (that is, with 0i and 1i ) lattices,

at least one of these satisfying condition (C). Then the direct productL = ∏
i ∈ I Li

satisfies condition (C). Conversely, ifL satisfies condition (C), that is,L = [0; Þ] ∪
[þ;1] and for an indexj ∈ I , 0j < þ j < Þ j < 1j , thenL j satisfies condition (C).
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• If a lattice satisfies condition (C), that is,L = [0;m]∪[n;1], thenm is essential
andn is superfluous inL. Moreover, every element disjoint withn belongs to[0;m].

Finally we mention the lattice version of our initial proof of case (A):

• Let L be a modular lattice,n an atom andm a dual atom inL such that
1 = n ∨ m andn ∧ m = 0. ThenL = [0;m] ∪ [n;1] if and only if for every elementv
in [0;m], n has a unique (relative) complement (namelyv) in the sublattice[0;n ∨ v].

Using this, one can show that, excepting the case 1= n ∨ m and n ∧ m = 0,
(C) follows from (A).
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