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Abstract

In this note we characterize the abelian gro@which have two different proper subgroupsand M
such that the subgroup lattit€ G) = [0, M] U [N, G] is the union of these intervals.
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For every subgroupd of an arbitrary groups, theinterval [H, G] is a compactly
generated (algebraic) sublattice in the subgroup lattic®).
After 1989, when Tuma4] showed thaevery algebraic lattice is isomorphic to an
interval in the subgroup lattice of some gro(improving Whitman'’s theoremg]—
every lattice is isomorphic to a sublattice of the subgroup lattice of a greapfar as
possible), an increasing role of intervals, in subgroup lattices of groups, was noticed.
In [1], an arbitrary grougs was called @P-groupif it has a proper subgroupl
such that the subgroup lattide(G) is the union of the intervalgl, H] and[H, G]
(that is, any subgroup @ is either contained it or containsH). The subgrougH
was called areaking pointfor the latticeL (G). It was pointed out that the abelian
BP-groups are the nonsimple cocyclic groups (that is, up to isomorpiget with
k > 1 oroo).
Roland Schmidt suggested the study of finite groups which satisfy a weaker con-
dition: groupsG having two proper subgroups andM such that every subgroup
of G either containdN or is contained ifM. In this situation the subgroup lattit&G)
is again union of two intervals, namelg, M] and[N, G] (such groups appeared in
the study of affinities of groups—see for example 9.4.14]—but there are much
more examples of this kind).
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In this paper, instead of finite groups, we characterize the abelian groups which
share this property. Our result is the following:

THEOREM 1. An abelian groups has two proper subgroupd # M such that the
subgroup latticeL (G) = [0, MJU [N, G] if and only if G is a torsion group with a
primary componenG, = Z(p") & B, n € N* U {oo} such thatp'B = 0 holds for a
nonnegative integdr< n.

Additive notation is used and from now on, ‘group’ means ‘abelian grovple-
notes the set of all nonnegative integefsjenotes the set of all prime numbers and
standard interval notation is used. We denotéipgp) the p-height ofb.

We first mention the following simple necessary conditioN: must be cyclic
Indeed, takex € G\ M. Then(x) € [0, M] being not possible(x) € [N, G] or
N < (x).

Next, notice there are three distinct possibilities with respect to subgriups
andM

(A) N andM are not comparable;
(B) M < N;
(C) N < M (for example, the above mentioned examg@R.|

1. Abelian groups with (A)

In this section we suppodd and N are not comparable and(G) = [0, M]U
[N, G]. In this cas€l0, M]N [N, G] = @ (otherwiseN < M). We list a few
straightforward remarks:

(@) M N N is the largest element if0, N) andM + N is the smallest element in
(M, G].

(b) L(M 4+ N)=1[0, MJU[N, N + M], thatis,N + M has property4).

() L(G/(M N N)) =[0,M/(MN N)JU[N/(M N N),G/(M N N)], that is,
G/(M N N) has property4).

(d) (M + N)/(M N N) has property4).

Actually, more can be proved:

LEmmA 1.1, If L(G) = [0, MJU[N, G], there is a prime numbgp such that

(@) N isa(co)cyclic p-group andM N N = pN is maximal inN;
(b) G/M andG/(M + N) are p-groups.

PrROOF. (a) We have already noticed thit has to be cyclic. By the above re-
mark (a),N is a (co)cyclicp-group (for a suitable prime numbe). Moreover, since
M N N is its largest (proper) subgroupN = M N N.
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To prove (b), we observe th&/M is a cocyclic group since it has a smallest
subgroup, namelgM +N)/M. Moreover, sincéM+N)/M = N/(NNM) = Z(p),
G/M is a cocyclicp-group, and s@&/(M + N) has the same property. O

Therefore the subgroup lattice is represented by the diagram shown in Eigure

FIGURE 1.

If N ~ Z(p") it is readily seen that fok = 1, N is minimal and hence the sum
N + M is direct (otherwiseN N M = N andN, M are comparable). Actually this is
the only caseN N M = 0.

The following lemma will be used in the proofs of the main results of both this and
next sections.

LEMMA 1.2. For a groupG andg € G, let p be a prime such thak = G/(g)
is cocyclicp-group. Ifh,(g) # 0 and G is not infinite cyclic, therG = H, @ H;
for cocyclic p-group H; and finite cyclic grougH, of coprime order withp such that
H, < (g) (H, = Ois not excludejl

PrOOF. Since for cocyclic grous the decomposition is trivial, suppo&eis not
cocyclic (and s@ # 0). Asr(G) < r(K) +r({g)) = 2, we have (G) = 2 and by
ro(G) = ro({(g)) + ro(K) < 1, we obtainG = H; & H, with r (Hy) =r(Hy) = 1,
that is, eactH; is cocyclic or infinite cyclic (ifro(G) = 1, the torsion subgroup @
is cocyclic, henc& splits). If g = h; + h, with hy € H;, sinceh,(g) > 1, there exist
X; € Hy andx, € H, such thatpx, = h; and px, = h,. Moreover,L(G/(g)) is a
chain and we can suppose+ (g) € ((X1) + (9))/(9).
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Thusx, € (x;)+(g) andx, = sx+tgor px = spx+tpgforsuitable integers, t.
Henceh, = sh, + tp(h; 4+ h,) and, the sunH; & H, being direct(tp — 1)h, = 0.

If h, = 0 theng € H; andK is cocyclic if and only if(g) = H; or H, = 0. In
the first casé,(g) = 0, henceH, = 0 andG = H;, is a cocyclicp-group (since, by
hypothesisG is not infinite cyclic).

If h, # 0, the order oh, (sayl) is finite and coprime wittp. ThereforeH, is a
cocyclicqg-group (ifl is a power of the primeg) and this implieH, < (g) (otherwise
G/(g) is notp-group). Hence there exists a nonzero intédgarch thah, = kh;+khs,
and sokh; = 0. ThenHj is also cocyclic and necessarilypagroup. O

Here is the structure theorem for casg:(

THEOREM1.1. A group G satisfies(A) if and only if G is torsion with a cocyclic
primary component and(G) > 1.

ProOOF. According to Lemmadl.], let p be a prime such thall = (a) is cyclic of
orderpX. If me M\ N thenm+a ¢ M (sincea ¢ M) andN < (m+ a). Since
N # 0is torsionm + a and thereforen are of finite order. Henc®l and, together
with G/M, G are torsion.

Further, we show thatl, € N. Indeed, ifm € M, again,N < (a+ m) so that
a=s(@+m)and(l—-s)a=sme NN M = pN for a suitable nonzero integsr
Thuss = 1 (mod p) and lett be an inverse of modulo the order om € M,. Thus
m=tsm=t(1l—-s)ae N.

Now, N andM being not comparablé/l, C N and hence

PN=MNN=M,NN =M,

SinceM, = pN < G, Lemmal.2shows thaGG, is a cocyclic group.

Conversely, supposé = G, & K with G, ~ Z(p'), K # 0, K, = 0 and take
N = G,[p] = (a) andM = K. If H is a subgroup 06 such thatH £ K we show
N < H.

Indeed, sincél £ K, thereisanelemehte H\K. Ifthis elementdecomposes as
h = gp,+k(g, € Gp, k € K),theng, # 0and for a suitable multiplp*h = p°(g,+k)
we have 0# p°g, € N respectivelyp’k € K. SinceK is torsion andk, = 0,
denoting byu the order ofp°k, u and p are coprime andip’g, € H. Finally,
p°gp € H and thusN = (p°g,) < H. O

ReEMARKS. (1) The referee pointed out that a proof in Casé ¢an be reduced
to the proof of CaseR) using Lemmal.1l Our proof uses Lemm&.2in both cases.
(2) With above notationsz/M = P,_(Gq/M) is a p-group. Hencesq = M,

for all primesq # pandM = pN& (@ Gq).

q#p.qel
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2. Abelian groups with (B)

Now we deal with subgroup lattices of the type shown in FigtireHere again
[0, M]IN[N, G] =4a.

Although the following result was already stated if],[we supply a specific
‘abelian’ proof.

LEmMA 2.1. G is an abelian BP-group if and only if there is a pringe and
k € N* U {oo}, k > 2 such thatG ~ Z(p").

ProOF. If L(G) = [0, H]U [H, G], then (as noticed in the introductio) is a
cyclic subgroup. Ifp is a prime such thapH # H, thenH/pH is simple, and
using agairL (G) = [0, H] U [H, G], it is the smallest nonzero subgroup®f pH.
HenceG/pH is cocyclic and, having elements of orde(in H/pH), must be ap-
group. Since an infinite cyclic group is not a BP-group, using LerirBawe obtain
G = H; & H, with cocyclic p-groupHjs, cyclic g-groupH,, g and p are coprime and
H, < pH < H. Obviously, H; f H (otherwiseG = H) so thatH, < H < H;.
This impliesH, = 0, and soG is cocyclic. SinceZ(p) is not satisfying B), G has
the requested form.

The converse is immediate (the subgroup lattic&@") withn € NU{oco}, n > 2
is a chain with at least 3 elements). O

Using this we obtain at once
THEOREM 2.1. A group satisfie$B) if and only ifG >~ Z(p") withn > 3.

PrOOF. If L(G) = [0, MJU[N,G] andM < N thenL(G) = [0, N]U [N, G]
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FIGURE 3.

and saG is a BP-group. Hencé is cocyclic. Since the conditions® M £ N # G
require at least 4 elementslinG), G ~ Z(p") withn > 3.
The converse is obvious. O

3. Abelian groups with (C)

In this section we consider two proper subgrolyps< M such thatL (G) =
[0, M]JU [N, G]. Thus the subgroup lattice looks as shown in Figdire

Now L (G) = [0, MJU[N, G]and[0, M]N[N, G] = [M, N]. Moreover]0, N] C
[0, M]and[M, G] C [N, G].

THEOREM 3.1. If a groupG satisfiegC) thenG is a torsion group and there exists a
prime p such thaiG,, is a BP-group or satisfieC). Conversely, iG is a torsion group,
G, # G for a primep andG, is a BP-group or satisfie€C), thenG satisfieqC).

PROOF. Let0O< N < M < G be such that. (G) = [0, M]U [N, G].

If G is not a torsion group, there exists an infinite order elemeatG such that
x ¢ M (otherwise, since the infinite order elements generate any gMug, G).
ThenO0< N < MN({x) < (x). If L < (x)thenL < MorN < L, hencd. < MN(x)
or N < L. Therefore(x) is a BP-group or satisfie€], but it is easy to see that no
infinite cyclic group satisfies these properties (as @, f 0 < nZ < mZ < Z and
p is a prime not dividingn, thenpZ ¢ [0, mZ] U [nZ, Z]). This contradiction shows
thatG is a torsion group.
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Suppose no compone@t, is a BP-group or satisfie€f. SinceM # G, there exists
a primep such thatM, # G,. If N, = 0, thenG, € M (N € G, is not possible,
N being a proper subgroup), henbg, = G,. Therefore 0< N, < M, < G, and
L(Gp) # [0, Mp] U [Ny, G,]. Then we can findH, < G, such thatH, \ M, # ¢
andN, \ H, # @. Itfollows H, \ M # JandN \ H, # @, a contradiction.

Conversely, supposB is torsion andG, is a BP-group or satisfie€}. Then we
can find subgroups & N, < M, < G, such that. (G,) = [0, My] U[N,, G,]. Set
M= M, ® (P,.,Gq) andN = N,. Thus0< N < M < G. If H < G, then
H=H,® (D, Hy) with H, < G, andP, ., Hy < P,.., Gq- If N, < Hy, then
H e [N, GlandifH, < M, thenH < M,&(B,., Hy) < Mp® (B, Cq) = M.

Actually, G, # G is needed only for a BP-group, not satisfying C). O

THEOREM 3.2. A p-group G satisfiegC) if and only ifG = Z(p") @& B such that
(i) B # 0,n € N*U{oo} and p' B = 0 holds for a positive integdr< n, or (i) B =0
andn > 2.

PrOOF. If G satisfies C), we can suppos& = (a) = Z(p). Letl > 0 be
the smallest positive integer such that there exists G \ M with p'x = a. Let
b € G[p] \ (a) and supposé,(b) > |. Thenb = p'y for somey € M (if y ¢ M
we havea € (y), hence the rank ofy)[p] is at least 2, a contradiction). Thus
X +y ¢ M, and there exists a positive intedesuch thakx + ky =a. If k = p'm
with gcdm; p) = 1 thenp'(mx+ my) = a, hencd < r. Moreover,| < r implies
ky € (a) anda € (y) follows, a contradiction. Theh,(b) < | forallb e G[p] \ (a)
and sop'G[ p] = (a). Hencep' G is a cocyclic group.

If p'G is a cyclic group thels is bounded and (usin@[27.2])G = H @ B where
H = 27Z(p") withn >1+1,aec H andp B = 0 (otherwise there ib € B[ p] with
h,(b) > 1). If PG is a quasicyclic group, the@ = pPG @ B andp' B = 0.

Moreover, if B = 0 thenG = Z(p") and conditionM # N impliesn > 2.

Conversely, ifB = 0 thenG satisfies condition®) for N = p"~'G andM = pG.
If B % 0 we chooséG = H @ B with H ~ Z(p"), 0 < | < nsuch thatpB = 0,
N = H[p] = (a) = Z(p) andM = A+ B where A is the subgroup oH of
order p' (obviously containingN - the subgroup lattice oH being a chain with a
smallest element). 1K is a subgroup ofs such thatX ¢ [0, M], then there exists
X =h+be X\ Mwith h € H andb € B such thatp" = ord(h) > p' (otherwise
h € Aandx € M). By p'B = 0 hypothesis, 04 p"*x = p"~th € H[p] = N,
hence(p'~th) = N is included inX. O

The only BP-groups which do not satisfi); nor (C) areZ(p?) for any prime
numberp. Hence
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FIGURE 4.
CoroLLARY 3.1. A group G satisfies(C) if and only if it is a torsion group with

a primary componenz(p") forn > 3, or G, = Z(p") @ B withn > 1 or co and
p' B = 0 holds for a nonnegative integér< n.

4. Comments

1. There are groups satisfying both conditioA$ &nd (C). As an example take
G =712 =(a,b|3a=4b=0).

Denoting byN = (a) andM = (b) the subgroup lattice looks as shown in Figd(@).
ThusL(G) = [0, MJU[N, G]for (A), andL(G) = [0, N +2M]U[2M, G] for (C).

2. If a groupG satisfies, say, the conditio) the pairM, N of subgroups is not
necessarily unique. As an example, take the group

G=Z(2 ®7Z@B) =(a,b|2a=8b=0).

If we denote byN = (a), M = (b), S=(a+2b), T = (a+ b), U = (a+ 4b), the
subgroup lattice is now as shown in Figyréb) and

L(G) =[0,N +2M]JU[2M, G] = [0, N + 2M] U [4M, G].

3. Our results generalize to lattices with 0 and 1, more or less arbitrary. In what
follows we state some of these lattice versions.
e If alattice L satisfies conditionX), that is,L = [0, m] U [n, 1] with incom-
parable element®, n then



[9] Two intervals union subgroup lattice 35
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(@ [0,mvn]=[0,m]Ul[n, mvn]thatis,[0, mV n] satisfies conditionX);
(b) [ImAN,1]=[mAn,mlUI[n,1]thatis,[m A n, 1] satisfies conditionX);
(c) [m A n, mv n] satisfies conditionX).
e Everydirect product of two lattices, the first being a finite chain and the second
having 0 and 1, satisfies conditioA)

PrOOF. One uses the diagram shown in FigGrgor the sake of simplicity we have
considered a chain with only two elements).

Denoting the chain bya, b} and using elements in the Cartesian prodach} x L,
decomposition in the required intervalqig, 0), (a, 1)] U [(b, 0), (b, 1)]. O

A family of torsion groups is said to beoprimeif the orders of elements in any
two members are coprime. Using an early Theorem of Suzuki @gethe groups
with decomposable subgroup lattices are exactly the direct sums of coprime groups
we have an alternative proof for sufficiency of Theorerin the special case = 1.

PROOF FOR SUFFICIENCY OAHEOREM 1.1 (k = 1). Let G be a torsion group of
rankr (G) > 1 with a simplep-component, that i& = N & M with [N| = p and
M, = 0. ThusN andM are coprimeL (G) ~ L(N) x L(M) andL(N) is a chain
with two elements. Applying the previous result,G) satisfies conditionX). O

e Complemented lattices are not satisfying conditiGh (

e Let{L;,i € I} be an arbitrary set of bounded (that is, witreid 1) lattices,
at least one of these satisfying conditia®).( Then the direct produdt = [T, L;
satisfies condition). Conversely, ifL satisfies condition(), that is,L = [0, o] U
[8,1]and foranindeX € I, 0; < B; < «; < 1j, thenL; satisfies conditionG).
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e Ifalattice satisfies conditiord), thatis,L = [0, m]U[n, 1], thenmis essential
andn is superfluous ir.. Moreover, every element disjoint withbelongs tq0, m].

Finally we mention the lattice version of our initial proof of cage:(

e Let L be a modular latticen an atom andm a dual atom inL such that
1=nvmandnAm=0. ThenL = [0, m]U[n, 1] if and only if for every element
in [0, m], n has a unique (relative) complement (namglyn the sublatticg0, n v v].

Using this, one can show that, excepting the case b v m andn A m = 0,
(C) follows from (A).
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