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Abstract

In this paper we describe the groups admitting a covering with Hall subgroups. We also determine the
groups with ar;-Hall subgroup, where; is the connected component of the prime graph, containing the
prime 2.

2000Mathematics subject classificatioprimary 20D20, 20D25.

1. Introduction

In this paper we study the Hall coverings, defined as followsHa coveringof a
finite groupG is a set’# = {Hy, H,, ..., H;} of proper Hall subgroups d& such
that:

(@ U_,H =Gand

(b) either|H;| = [H;|or (|Hi[, |H;}) =1fori, j=1,...,r.

If the elements of# all have order a prime power, the#f is called aSylow cover-
ing of G. The finite group$ with a Sylow covering have been studied independently
by Higman [LO] and Zacher27, 28] in the case in whiclt is soluble, by Suzukig5]
in the case of a simple group and by Brandl 2] in the general situation. This last
paper has a missing case, which we consider here.

We want to study the groups which admit a Hall covering. It is clear that if a
groupG admits a Hall covering, then its prime graph is not connected. We shall also
see that ifG admits a Hall covering, thaG has ar;-Hall subgroup, where; is the
connected component of the prime graplGotontaining the prime 2.
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It is well known thatG is a soluble group if and only & has ar-Hall subgroup
for any setof primeg. If G is not soluble, the existence of some Hall subgroups have
been proved in several papers (see, for examp|&d, 8]). We prove the following
theorem on the existence ofra-Hall subgroup. We suppose that the grdbijis not
soluble and tha6 is not a Frobenius group. In fact@ is a non-soluble Frobenius
group, the Frobenius complement is isomorphic to a direct produgt. 2, 5) with a
{2, 3, 5}'-group with cyclic Sylow subgroups. The Frobenius complementsakall
subgroups and they are all conjugate (se& page 387]).

THEOREMA. LetG be a non-soluble group in which the prime graph is not con-
nected. Suppose further thé is not a Frobenius group. The® has ax;-Hall
subgroup if and only i3/ Fit(G) is one of the groups in Table

We also classify the groups which admitzaHall subgroup for any connected
subsetr of 7(G) (see Corollans.6).

We prove the following theorem, describing the finite groups admitting a Hall
covering.

THEOREMB. Let G be a group in which the prime graph is not connected. Then
G admits a Hall covering if and only if either

(i) G is a Frobenius or &-Frobenius group or
(i) G/ Fit(G) is isomorphic to one of the following groupBSL(2, q), PSL3, 4),
PSL3, q) with (3,q — 1) = 1, SZq), A, Map, M(Q).

Another class of groups related to groups admitting Hall coverings is the class of
groups with a partition(see P2, Section 3.5]) and th€N-groups that is groups in
which the centralizer of any non trivial element is nilpotent (se€hapter 10]). We
shall see how these groups are strictly related to nilpotent Hall coverings.

The results of this paper depend upon the classification.

2. Notation and preliminary results

All the groups considered in this paper are finiteGlis a group we denote by(G)
the set of prime divisors diG|. If .77 is a Hall covering of the groufs, we define
() ={n(H)|i=12,...,r}thenn () = {01,0,,..., 05} witho, Noj =0
if i # j (and obviouslys < r). We suppose that if < j, then mino; < mino; (in
particular if 2e 7(G) then 2¢ o).

If Gis agroup, we define itgrime graphl'(G) = I' as follows: the set of vertices
of I''is(G) and two verticep andg are connectedd ~ q) if and only if there exists
in G an element of ordepq. Letny, 7, ..., m; be the connected componentslof
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and lett (G) =t be the number of such connected components; we suppesg Af
2 € 7(G). Thenn(G) is the disjoint union of the;, i =1, 2, ..., t. Moreover, ifG
admits a Hall covering##’, then any element of (5¢) is a disjoint union of certain
connected components B{G), in particular, 2< s <'t.

If 41 and%, are two classes of groups, a gro@pis %;-by-%, if G has a normal
subgroupN with N € %; andG/N € %..

We denote by F{iG) the Fitting subgroup of5, that is, the maximal normal
nilpotent subgroup o6.

A group G is analmost simplegroup if there exists a simple non-abelian gr&ip
such thaiS < G < Aut(S).

Let p be an odd prime and = p?’. We denote byM (q) the non split extension
of PSL(2, ), with [M(q) : PSL2, q)| = 2.

A proper subgroupd of G isisolated(in G) if

(@ HNHI=1foranyg & Ng(H);

(b) Cg(h) < Hforanyl#heH.

The notation for the simple groups follows the onefif [For the rest, the notation
will be standard (see, for exampl&] pnd [12)]).

A group is called 2Frobeniusif it has two normal subgroupd, K, with N < K,
such thatk andG/N are Frobenius groups.

The following results were proved in an unpublished paper of Gruenberg and Kegel,
but they can be found ir2p]

ProPOsSITION2.1 ([26]). If G is a group whose prime graph has more than one
connected component, thénhas one of the following structures

(a) G is a Frobenius or &-Frobenius group.

(b) Gissimple.

(c) G issimple by;.

(d) Gism by simple byr;.

Moreover, ifG is not soluble andr; is a component of (G) withi > 1, thenG has
an isolatedr;-Hall subgroup.

COROLLARY 2.2. If G is a soluble group with a Hall covering, them(27)| =2 =
t(G) andG is a Frobenius or &-Frobenius group.

It is well known thatG is soluble if and only ifG has ar-Hall subgroup for any
7 C 7(G); moreover any two of them are conjugate. If we want to consider the
general case, we first have to deal with the existence @)-Hall subgroups ofs.
We recall the following:

ProPOSITION2.3 ([8]). If G has ar-Hall subgroup with2 ¢ =, then ther-Hall
subgroups are all conjugate.
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Therefore by Propositio.1 and Propositior2.3, we know that ift (G) > 2, then
there exists a;-Hall subgroup for any > 2 and these are all conjugate.
We want to examine now the groups which admit;éHall subgroup.

3. my-Hall subgroups

By the preceding remarks, we can assume that

() G is a non-soluble group in which the prime graph is not connected
andG is not a Frobenius group.

The aim of this section is to prove the following:

PrOPOSITION3.1. LetG be a group satisfyin@«). ThenG has as;-Hall subgroup
if and only if G/ Fit(G) is one of the groups of Table

We begin with some general remarks.

LEMMA 3.2. Let G be a group satisfyingsx).

(i) If Risthe maximal normal soluble subgroup®fthenR = Fit(G) = O,,(G)
and G/ Fit(G) is isomorphic to an almost simple group. MoreoveSsifs the only
simple non-abelian section &, we haver, (G) = 7;(S), fori > 2.

(i) G has arm;-Hall subgroup if and only if5/ Fit(G) has ar;-Hall subgroup.

PrOOF. (i) It can be easily deduced by the results in the papél: [

(ii) Let F = Fit(G). If G = G/F has ar,(G)-Hall subgroupH, then of course
is am;(G)-Hall subgroup ofG, sincer (H) C m(G).

LetnowH be ar;(G)-Hall subgroup of5, thenF < H. OtherwiseFH > H and
FH is also ar;(G)-subgroup ofG, contradicting the maximality oH. Therefore
H/F is an;(G/F)-Hall subgroup ofG/F. O

The aim of the following sections is therefore to prove:

ProPOSITION3.3. If G is an almost simple group, théd has a;-Hall subgroup
if and only ifG is one of the groups of Table

In Tablesl and2, we suppose thatis an odd prime numbep is a prime number,
q = p' andP is a Sylowp-subgroup ofG. We use the notation of the Atlas][

We denote byH a m;(G)-Hall subgroup ofG and we write in the third column
the structure of a representative of the conjugacy classes af tf-Hall subgroups
of G. In the last column we write some remarks concerrihgWe also recall that
As = PSL(2,4) = PSL2,5) andAs = PSL(2, 9).
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If G is PSL(n, q), we denote byP,, P, the maximal parabolic subgroups of type
P;, with J respectivelyT \ {1} andIT \ {n}, as described in Remafkin Sectiord.

We observe that the following groups admit alsg-#dall subgroup, withr a set
of primes strictly containingr;.

3.1. Simple groups If G admits a Hall covering, then the numhé®) of connected
components of the prime graph(G) is greater than or equal to 2. We first suppose
t(G) = 2, and thereforg; = o; fori =1, 2.

We recall that a group is said to fectorizableby two proper subgroup& and B
if G=AB=BA

LEMMA 3.4. LetG be afinite group with(G) = 2. If G has an;-Hall subgroupA,
thenG is factorizable byA and another proper subgrouP such that(|A|, |B]) = 1.

ProOF. If G has ar;-Hall subgroupA, then by Propositiof.1, G has also a,-Hall
subgroupB. Then(]Al, |B|]) = 1 and|G| = |A||B|, and thereforé& = AB. O

Let now G be a simple group. Then by Lemn3a4, G is factorizable by two
proper subgroup# and B and we can assuma to be ar;-Hall subgroup and a
m,-Hall subgroup. We can therefore conclude by Theorem 1.1] thaG is one of
the following:

(i) A, withr >5aprime anad — 2 not a prime, thelA = A, _;;

(i) PSWLr,q), with r an odd prime such that,q — 1) = 1 and eitherG =
PSL(5, 2) and|B| = 5-31 orAis a maximal parabolic subgroup such tR&t(r —1, q)
is involved inA.

We observe that in the caBSL(5, 2) with |B| = 5- 31, Ais not arr;-Hall subgroup
because & ;.

We now suppose th& is a simple non-abelian group witkG) > 3. We consider
separately the case in whi¢h is a sporadic or an alternating group and the case in
which G is a simple group of Lie type. In the following we look ferHall subgroups
of G, with = a set of primes i (G) containingr;. We use the results ir2f], without
further reference.

Alternating groups Since As >~ PSL(2,5) and As >~ PSL(2,9), it is enough to
considerA, withr > 7,r andr —2 primes. The maximal subgroups of the alternating
groups have been classified (see for exampld heorem 5.2A]). The only cases in
which A, (r > 2, r andr — 2 primes) admits gr — 2, r}’-Hall subgroupH is for
r = 7. Infact, by point (i) of b, Theorem 5.2A], we should have

H < (A_3 x A){x), with x of order 2

butifr > 7, then(A _3 x Az)(X) has index greater tharir — 2) in A,.
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TABLE 1.
G Conditions H Remarks
A; (A x Az).2 soluble
A r — 2 nota prime A1 simple
M1 3?: Qg2 soluble
M22 24 . A5
M PSL3,4): 2,
2 24 . A7
Jl 2 x A5
PSL(2, q) qg=2" P nilpotent
a=1(4),
PSL(2, q) q # 13, 25,61 Dg-1 soluble
= -1,
PSL(2, q) q # 11, 23, 59 Dg+1 soluble
_ D12 soluble
PSL(2, q) g=1113 As soluble
_ D24 soluble
PSL2 q=2325 S, 2 classes soluble
_ Deo soluble
PSL2, @) q =159 61 As, 2 classes simple
PSL(3, q) q=2° P nilpotent
Py
PSL(r. q) ra-1=1 B,
Sq) q=2", f odd P nilpotent
S S almost simple
S r — 2 nota prime S, almost simple
PSL(2, q)(a) | « field automorphism Ng(P) soluble
q=2" o] = 2"
M(q) Dag-1) soluble
PSL(r, g){«) | o field automorphism) Py (a)
rg-1=1 laf =r™ P {a)
TABLE 2.
G big sr-Hall subgroup Remarks
Az 1 U {5} As simple
M1, 1 U {5} Mg = M(9) almost simple
M23 m U {11} Moo simple
PSL@3,q),q=2? {2, 3} Ng(P) soluble
PSL2,q),q=2" | #(q(g— 1)) Ng(P) soluble
PSL(2, 7) 7(g®—1) S soluble
PSL(2, 11) 7> -1 As, 2 classes simple
S2q) 7(q(q—1) Ng(P) soluble
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Sporadic groups Let G be a sporadic group arnd= |G|/|G|,,. If G has ar-Hall
subgroup, withr; € 7 C 7(G), then it must have a maximal subgroup of order
dividing h. Then using the Tables ir2f] and the Atlas §], it is easy to check that the
following groups do not have maximal subgroups dividmgM,,, Js, Ji, HS Suz
O’'N, Ly, Co,, F»3, Th. For the other sporadic groups we use the following arguments.

Let x, be the non principal character of minimal degree=9f. Then degy,) =
8671. Since 1723- 29 = 11339 (and any other characterfeff, has greater degree),
thenF,, hasn’t subgroups whose index divides- 28 - 29.

Let x, be the non principal character of minimal degreeMdf Then degy,) >
41-59. 71 and therefor® hasn’t subgroups whose index divides-&B- 71.

Let x» be the non principal character of minimal degreeBdfl. Then degy,) >
31- 47 and therefor8 M hasn’t subgroups whose index divides-3IT/.

Simple groups of Lie typeWe now consider a finite simple group of Lie type
defined over a field witlgg = p’ elements. We recall that@inger cyclef PSL(n, q)
is an element of ordeiq” — 1)/(q — 1)(n,q — 1).

If G is a simple group of Lie type with(G) > 3, thenG is one of the following
(see [L3, 14, 26]): PSL2,q), PSL3, 4), E;(2), E«(3), Es(q), F4(q) with g even,
G,(q) with g = 0 (3), PSUB, 2), SZq), 2Dp(3) with p = 2" + 1, n > 2, 2E¢(2),
’F4(q), Redq).

We first observe that is is PSL(2, 2"), PSL(3, 4) or SZq), thenm(G) = {2}.
Therefore ar;-Hall subgroup is in fact a Sylow 2-subgroup. Also 8L(2, q), q
odd, it is easy to see thatm-Hall subgroup exists and they are all conjugate.

We begin with an easy remark, which allows us to understand the structure of the
maximal parabolic subgroups of a finite group of Lie type.

REMARK 1. Let J be a subset of the s&t of fundamental roots of the finite group
of Lie type G and®; be the set of roots which are integral combinations of roots in
J. LetL; be the subgroup d& generated byH and the root subgroupx,, for all
r € ®;. ThenP; = U;L;, LyNnU; = 1 andU; is an unipotent subgroup, by,[
Theorem 8.5.2]. IfP; is a maximal parabolic subgroup, thédn= T1 \ {i}, for some
fundamental root. SinceH normalises anyX;, we haveL; = (X; : r € ®;)H,,
whereH; is the subgroup o& generated by; (1), » € K* (see }, page 98]). We call
My = (X :r e dy).

We begin with a case by case analysis.

Let G be one of the groups listed in Talble We suppose that there exidtsa
sr-Hall subgroup ofG, with 7; € 7. We want to prove thak cannot be contained in
any maximal subgroup db, and therefor&s does not admit any;-Hall subgroup.
We use the Theorem ot f], observing thatK | > g“©, whereg“® is as defined in
[17, Table 1], and also in our Tabk If M is a maximal subgroup @ containingK,
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TABLE 3.

G | g““ | h@©)
Ex@ | 9™ | g’'+1
Es(@) | g% | (9" —1)?
Fa@) | o* | (°—1)7?
Gx@ | 9° | (@ —17?
’Es(q) | 0* | (° =1

then
(1) M contains ap-Sylow subgroup o5 (q = p'),
(2) IM|=q“®,

(3) |M]is divisible byh(G), whereh(G) is an integer, as listed in Tabke

By [17, Theorem]M is either a parabolic subgroupbfisasin [L7, Table 1]. The
groups listed in17, Table 1] do not contain @-Sylow subgroup of5. Moreover, if
we consider the maximal parabolic subgroup&ofve can easily check that no one
of them has order divisible blg(G). We conclude thaG does not admit a-Hall
subgroup.

PSU®, 2) It can be checked in the Atla§][that there is nor-Hall subgroup, for
T, S,

2D, (3) It can be proved that iK is a maximal subgroup containing a 3-Sylow
subgroup, thei is a parabolic subgroup (bytf] and some easy calculations). If we
denote hyi theith node in the Dynkin diagram, then the isomorphism classes of the
maximal parabolic subgroups are

J=T11\{i} = M; = A_1(q) x °Dai(@), for 1<i <n-—4,
J=TI\{n=3} = M;=A_4q) x Ay,

J=T\{n—-2 = M;=A_30Q x A,

J=T\{n-1 = M;=A_0Q.

Since thep'-part of the order of the maximal parabolic subgrdpis (q — 1)|M;],
it can be easily seen thgt~—* — 1 does not divide the order of any maximal parabolic
subgroup ofG, while q"~* — 1 should divide the order of a-Hall subgroup ofG,
w7, S,

2F,(q) We know from [L9], that the only maximal subgroups containing-&ylow
subgroup ofG are the maximal parabolic subgroups, and no one of these is divisible
by g® + 1, which should divide the order ofra-Hall subgroup ofG, 7, C 7.

2G,(q) We know from [L5], that the only maximal subgroups containing-8ylow
subgroup ofG are the maximal parabolic subgroups, and no one of these is divisible
by g% + 1, which should divide the order ofra-Hall subgroup ofG, 7, C 7.
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3.2. Aimost simple groups The connected components of the prime graph of almost
simple groups have been calculatedif]][ We therefore refer tol[g], without further
reference.

For the sporadic groups we refer againh [For the alternating groups, it is easy
to observe that ilG = S is the symmetric group over elements, withr an odd
prime,r > 7, then the stabiliser of an element is isomorphi&tg and it is ar;-Hall
subgroup. Moreover the;-Hall subgroups are all conjugate.

If S= PSL(2, g) andG contains a diagonal automorphism, theig®—1) C m,(G)
andP GL(2, g) does not contain subgroups of order (divisible §¥)- 1.

If G contains a field automorphisaof order not a power of 2 argl # 2 or 3, then
['(G) is connected. Ifa| = 2 andG = S{«), thenn;(G) = #(q(q — 1)). If g is odd,
then there is nar;(G)-Hall subgroup inG, since there isn't a(G)-Hall subgroup
in S. If qis even, letB be the subgroup of of the upper triangular matrices. We
observe thaB is fixed by« and thereforeB = B(a) is am;-Hall subgroup ofG.
Moreover ther,-Hall subgroups ofs are all conjugate.

If fisanoddprimeand=2orq = 3, thent,(G) =7 (fqq+1)/2,gqg-1)).

If K is am;(G)-Hall subgroup ofG, then K N Sis a subgroup ofS of order
a(q+1/(2,q+ 1), which does not exist.

If g is odd and a square, thatis= g3, for someq, = p", then there exists a
non-split extensioM (q) of PSL(2, q) of order 2, with[' (M (q)) = I'(S). We observe
that the order of ar,-Hall subgroup ofG should be 2q — 1) and therefore a;-Hall
subgroup ofSis Ns(H) = N the normaliser of the diagonal grotph. We also
observe thaH, and thereforé\, is fixed by any automorphism &. ThenG has a
7,-Hall subgroup.

If S = Saq) with g = 27, andG is a subgroup of its automorphism group,

thenT'(G) is always connected, except whénis a prime ands = S{«), with «
a field automorphism of ordef. In this caser,(G) = 7 (2f(q + /29 + 1)) or
71(G) = 7(2f(q — /29 + 1)) depending iff = 1,7 (8) or f = 3,5 (8). In both
cases there should existst@2(q + /2q + 1)-Hall subgroup ofS and this is not
possible in any of the two cases (sé&&][or [25]).

If S= PSL(3, 4), itis easy to check (seé]) that there is nor;-Hall subgroup for
any of the extensions.

If S= PSUr,q) with (r,q — 1) = 1 andq = p', p a prime, then AutS) =
S({g, t)), wherepis a field automorphism of orddr, andz is the graph automorphism
of order 2 ofS.

If G contains a graph automorphism ar@) = 2, then there is na,(G)-Hall
subgroup irs. In fact, nor, (S)-Hall subgroup ofG is fixed bya, which interchanges
the two conjugacy classes of parabolic subgroups.

If G contains a field automorphism of order a prime different froienI" (G) is
connected. I = S(a) with « a field automorphism of order thenz(G) = m1(S)
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andCs(a) = PGL(3, qo) if g3 = g. We observe that there existsrgHall subgroup
I5‘l of G, which is an extension d?;, ar;-Hall subgroup ofS.

By the proof of Propositior8.1 and Propositior3.3, we also get the following
corollaries.

COROLLARY 3.5. Let G be a group andr be a set of primes such that C = C
7(G). Then

(i) G has ar-Hall subgroup if and only i has ar;-Hall subgroup
(i) if -y ¢ & and G satisfies(x), then G/ Fit(G) is isomorphic to one of the
groups in Table2.

Let G be a group ane be a set of primes in(G). We say thatr is connectedf
and only if there exists = 1, ..., t(G) such thatr C ;.

COROLLARY 3.6. Let G be a group satisfying«). ThenG has ar-Hall subgroup,
for any connected subsetof 7 (G) if and only if G/ Fit(G) is isomorphic to one of
the following groupsPSL(2, ), SZq), PSL3, 3), PSS, 4), A;, My1, PSL(2, 2") ()
with |a| = 2™, M(Q).

PrROOF. It is enough to examine the non-soluble growpsn Tablel. If G is a
sporadic, alternating or symmetric group, then, for example, there does not exist a
{2, 5}-Hall subgroup ofG (for the symmetric groups seé]}. If G = PSULr, q),
with g = pf, then there does not exist{@, t}-Hall subgroup for any primé such
that (t,q(q — 1)) = 1, except forPSL(3,2) = PSL2, 7), PSL(5, 2) for which the
statement holds with = 7, andPSL(3, 3), where ar;-Hall subgroup is in fact a
{2, 3}-Hall subgroup (se€3, Theorem 2.3.2]). O

4. Hall coverings

In this section we want to prove the following:

THEOREM4.1. Let G be a group satisfyingx). ThenG admits a Hall covering
if and only if G/ Fit(G) is isomorphic to one of the following groups: R8LQ),
PSL(3, 4), PSL3, q) with (3,9 — 1) = 1, SZq), A7, M, M(Q).

We begin with a lemma which allows us to reduce to the case of an almost simple
group.

LEMMA 4.2. Let G be a group satisfying«). ThenG has a Hall covering if and
only if G/ Fit(G) has a Hall covering.
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PrROOF. This is LemmaB.5 (ii). O

We have proved in the preceding sections that if a gi@umas a Hall cover, then
G has ar;-Hall subgroup (see Corollarg.5). Itis therefore enough to examine the
almost simple group& belonging to Tabléd.

Alternating groups SinceAs >~ PSL(2, 5), we suppose > 7. Then the element
(1234 (5---r) of order 2r — 4) fixes no point and therefore it cannot be contained
in a subgroup ofA, isomorphic toA,_;. ThereforeA, (r > 7 a prime) does not admit
Hall coverings withs = 2.

It is easy to see thak; admits a Hall covering withh = s = 3.

Sporadic groups M;; contains elements of order 6 but no subgroups of index 55
or 5 or 11 contains such elements.

My, does not contain subgroups of index’A 5- 11 or 5- 7- 11 (see p]). It can be
easily seen that thi®, 7}'-Hall subgroups, together with the 5-Sylow and the 7-Sylow
subgroups are a Hall covering bf,, witht = s = 3.

My3 contains elements of order 15, while none offs3, 5, 7}-subgroups contain
elements of order 15. Therefoké,; does not admit Hall coverings.

J; contains elements of order 15 but the onhlHall subgroups with{3, 5} C =,
are isomorphic tAs x C with C a cyclic group of order 2.

PSL(2,q) ItiswellknownthatPSL(2, q) is a group with a partition and it admits a
covering withr; -Hall subgroups, for = 1, 2, 3 (see [L2]). Moreoverif 3< q # 1(4),
then the Borel subgroup of ordg¢q — 1)/(2, q — 1) is an (q(q — 1))-Hall subgroup.
Then, in this case, it also admits a partition witli(q + 1)/(2, q — 1))-Hall and
(q(q — 1))-Hall subgroups. A subgroup containingpeSylow subgroup ofs must
be contained in a Borel subgroup, then the only other possibility is to have’a- 1)-
Hall subgroup. We are then in the case®factorizable again and the only case we
have to consider iPSL(2, 11), with A = A5 as a{2, 3, 5}-Hall subgroup. But there
is an element of order 6 iRSL(2, 11), which is not contained in an§2, 3, 5}-Hall
subgroup.

PSL(3,4) In this case everyr; contains only a prime, and therefore there is a
covering with the Sylow subgroups. We recall th@t = 2°- 3. 5. 7. Moreover a
2-Sylow subgroup must be contained in a parabolic subgroup. By the remark at the
beginning of the proof, there exists three conjugacy classes of parabolic subgroups
one of order 2- 3, which is not &2, 3}-Hall, and two of order 2- 3- 5. Moreover
the only subgroups containing a Singer cycle are those of order 21. Therefore the
only possibility is a Hall covering witlr;, = 7; = {2} andoy, = 7, = {7}. If H is
a {3, 5}-Hall subgroup, therH should be contained in a maximal subgradpwith
M = Ag (see p]). But Ag hasn't a{3, 5}-Hall subgroup.
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PSLr,q) If G = PSlr,q), thenM = P, or M = P, is a maximal parabolic
subgroup, and alsosa-Hall subgroup ofc. Then|M| =q" ~*(q — 1)|SLr — 1, )],
since(r,q — 1) = 1. ThenM is ao;-Hall subgroup and = (x) is ao, = m»-Hall
subgroup ofG, wherex; is a Singer cycle of ordeiq” — 1)/(q — 1). Moreover any
o1-Hall subgroup is contained in a maximal subgroup and the only maximal subgroups
with order divisible by|G|,, are those isomorphic t™ (see RQ]). It can be proved
(see B, Proposition 3.3]) that if > 5, there exists an elemexin PSL(r, q) of order

qt -1 qrft -1

qg-1 g-1

Moreoverb does not divide the following products

[[@-D fori<ji<r—1, Y ji=r—1

i=1,..s i=1,..s

andb does not divide" — 1. But thenx does not belong neither tam-Hall subgroup
nor to ar,-Hall subgroup. Therefore, also in this caGegannot have a Hall covering.

If r = 3, then there are two coverings: with the conjugates of a Singer cycle and
with one of the two classes of maximal parabolic subgrougs:of

A ={P,(x3)° | ge G}, H=(P (xs)9]geG).
This is proved in 8, Proposition 4.1 and Corollary 4.2].

SZq) By[12 Theorem3.10, cap XI], the Suzuki groups admits a partition wih
Hall subgroups. Moreove6 admits arr; U m,-Hall subgroup, which is a Frobenius
group of orderg?(q — 1). Therefore, there are two kinds of coverings with Hall
subgroups:

(i) 71, 72, 73, T4,
(||) TTq U T, T3, TT4.

Almost simple groups Let G be an almost simple group which admits a Hall
covering.

We recall thatr (G/S) € n(G), by [26, Theorem A (d)]. Therefore if# =
{Hy, Ho, ..., H,}is a Hall covering ofG, thens#s = {H;NS, H,NS, ..., H NS}is
a Hall covering ofS. We only have to consider the almost simple non simple groups,
that is groupsG such thatS < G < Aut(S), with S a simple non-abelian group
admitting a Hall covering.

If G = S, thenny(G) = {2,3,5} and the only subgroup of index 7 & is
isomorphic t0S. But § does not contain elements of order 10, &&,&8, 5}-Hall
subgroup ofS; should.
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PSL2,q) < G < Aut(PSL2,q)) We first consider the case in which =
PSL(2, 2")(a) and« is a field automorphism of order 2. We recall th@d(«) =
PSL(2, qo), whereg3 = q, while Cg(r) = By of orderqy(go — 1). Therefore there
exists an element € Cs(«) of order(gy+ 1) such thak -« has order &3, + 1) and is
not contained irS. This element is not contained in any of the conjugat&p$ince
there is no element of such orderf with B the 7;-Hall subgroup ofG previously
described.

If G = M(q), then by the preceding Propitisn, we haveN, ar;-Hall subgroup
of G. We observe that any element®fis contained in one of the -Hall subgroups,
and therefore we have the following covering:

(UgN9) U (UgP9) U (U TY),
P is a p-Sylow subgroup o5, andT is a (Singer) cycle of ordgig + 1)/2.

PSL(3,q){a) By Proposition3.1, there exists ar;-Hall subgroupls}. But there
exists an element of orde(@— 1) which is not contained if?;,. The same is true if
we consider the other clagy of 7;-Hall subgroups of.

5. Further remarks

As already mentioned, the class©N-groups is related to the groups admitting
a Hall covering. It is not difficult to verify that if a grou admits a nilpotent
Hall covering (that is a Hall covering in which all the subgroups of the covering are
nilpotent) therG is aC N-group. Itis also true that i is aC N-group, therG admits
a nilpotent Hall covering, using, for exampl&, Theorem 14.1.7].

We recall that the simple groups with a paon have been classified by Suzuki
(see, for example,22, Section 3.5]): they ar®SL(2, p"), p" > 3 andSz2*"*1).
They all admit a Hall covering, while the only simpBN-group without a partition is
PSL@, 4).

The solubleC N-groups are known (se&,[Theorem 14.1.5]), while Suzuki proved
that a simpleCN-group is isomorphic to one of the following list (se&2] Re-
mark XI1.3.12.a]):

() PSL2,2") withn > 1;

(i) PSL2, p) with p Mersenne or Fermat prime;

(i) PSL2,9);

(iv) PSLS, 4);

(v) Sz22+1y withn > 1.

In the same papelfl, Theorem 4], Suzuki proved that a non-soluBls-group is
aCIT-group, that is a group of even order in which the centralizer of any involution is
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a 2-group. From the results of Higmahi], Suzuki [24] and Martineau?1], we also
get:

THEOREMS5.1. Let G be a non-solubl€ N-group, then either

(1) Gisisomorphic to simple groups on Suzuki’s list or

(2) G isisomorphic toM (9) or

(3) G has anon trivial normaR-subgroupN andG/N is isomorphic to PSE2, 2")
or to S22>"*1). Moreover,N is an elementary abelian group.

REMARK 2. The groupM (9) is aC N-group and it also admits a Sylow covering.
This case was missing in the pap&frgn the non-soluble groups in which any element
has order a power of a prime.

We note that we do not use character theory to prove Thebr&rms it is done in
[2]. We use a more elementary fact, which can be found iih. [

LEMMA 5.2 ([11, Theorem 8.1])Let H be a group with a norma2-subgroupT
such thatH /T is dihedral of ordei6. Leth be an element dfl of order3 acting fixed
point free onT, and letR be a Sylow2-subgroup ofH. Then

(i) T isof class at mosg;
(iiy if |T| > 4, the class ofl is less than the class of any other subgroupgrajf
index2.

PROOF OFTHEOREM 5.1 Let G be a non-solubl€N-group, thers has a nilpotent
Hall covering. IfG is simple, therG is in the Suzuki list. IfG is almost simple, then
applying Theorem.1we get that is isomorphic toM (9) (see alsoZ4, Theorem 3]).

By the above mentioned results of Suzuki, it is sufficient to prove the theorem for
CIT-groups.

Let now N be the maximal normal soluble subgroup®fthen, ifG = G/N we
haveZ(G) = 1 andO, (G) = 1. We supposél # 1 and, by Lemma.2(i), we know
thatN = Fit(G). We first prove thalN is a 2-group. In faciN is nilpotent and we
can therefore assume that it is agroup. Ifr # 2 then any Sylow 2-subgroup of
G = G/N acts fixed point free ove. ThenSis a cyclic or a generalized quaternion
group (see, 10.3.1]). In the first cas€ has a normal 2-complement; in the second
case by the Brauer-Suzuki Theorem (sgeJhapter 12] and recall th&@, (G) = 1)
we getZ(G) # 1. In both cases we get a contradiction. Therefdris a 2-group.

SinceG is aCIT-group, any Sylow 2subgroup ofG acts fixed point free over
N, and it is therefore cyclic. This implies th@ is isomorphic toPSL(2, 2"), Sq)
or PSL(2, p) with p a Fermat or Mersenne prime aqd> 5. If G is isomorphic
to PSL(2, p) with p Fermat or Mersenne prime aql> 5, a Sylow 2-subgrou
of G is dihedral of order at least 8. T is an elementary abelian 2-subgroupGf
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then|T| = 4 andH = Ng(T) is isomorphic toS,. We can apply lemma&.2to the
preimagesH andT of H andT in G andR a Sylow 2-subgroup off. In particular
T has class 2, otherwise < C¢g(N) < N.
Let T* be an elementary abelian subgroup of order #Hofistinct fromT. If T*
is the preimage of * in G, thenT andT* are isomorphic. BuT* is a subgroup of
index 2 of R and therefore, by Lemnta2, T* has class strictly less than the onéTof
The actions oH = PSL(2,2") = SL(2, 2") or H = SZ2°"*1) over an elementary
abelian groupN are described respectively id], Theorem 8.2], and in the main
theorem of P1]. The semidirect produdd = NH obtained by these actions is a
CIT-group. O
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