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Abstract

In this paper we describe the groups admitting a covering with Hall subgroups. We also determine the
groups with a³1-Hall subgroup, where³1 is the connected component of the prime graph, containing the
prime 2.

2000Mathematics subject classification: primary 20D20, 20D25.

1. Introduction

In this paper we study the Hall coverings, defined as follows. AHall coveringof a
finite groupG is a setH = {H1; H2; : : : ; Hr } of proper Hall subgroups ofG such
that:

(a)
⋃r

i =1 Hi = G and
(b) either|Hi | = |Hj | or .|Hi |; |Hj |/ = 1 for i; j = 1; : : : ; r .

If the elements ofH all have order a prime power, thenH is called aSylow cover-
ing ofG. The finite groupsG with a Sylow covering have been studied independently
by Higman [10] and Zacher [27, 28] in the case in whichG is soluble, by Suzuki [25]
in the case of a simple groupG and by Brandl [2] in the general situation. This last
paper has a missing case, which we consider here.

We want to study the groups which admit a Hall covering. It is clear that if a
groupG admits a Hall covering, then its prime graph is not connected. We shall also
see that ifG admits a Hall covering, thanG has a³1-Hall subgroup, where³1 is the
connected component of the prime graph ofG containing the prime 2.
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It is well known thatG is a soluble group if and only ifG has a³-Hall subgroup
for any set of primes³ . If G is not soluble, the existence of some Hall subgroups have
been proved in several papers (see, for example, [9, 23, 8]). We prove the following
theorem on the existence of a³1-Hall subgroup. We suppose that the groupG is not
soluble and thatG is not a Frobenius group. In fact ifG is a non-soluble Frobenius
group, the Frobenius complement is isomorphic to a direct product ofSL.2;5/ with a
{2;3;5}′-group with cyclic Sylow subgroups. The Frobenius complements are³1-Hall
subgroups and they are all conjugate (see [12, page 387]).

THEOREM A. Let G be a non-soluble group in which the prime graph is not con-
nected. Suppose further thatG is not a Frobenius group. ThenG has a³1-Hall
subgroup if and only ifG=Fit.G/ is one of the groups in Table1.

We also classify the groups which admit a³-Hall subgroup for any connected
subset³ of ³.G/ (see Corollary3.6).

We prove the following theorem, describing the finite groups admitting a Hall
covering.

THEOREM B. Let G be a group in which the prime graph is not connected. Then
G admits a Hall covering if and only if either

(i) G is a Frobenius or a2-Frobenius group or
(ii) G=Fit.G/ is isomorphic to one of the following groups: PSL.2;q/, PSL.3;4/,

PSL.3;q/ with .3;q − 1/ = 1, Sz.q/, A7, M22, M.q/.

Another class of groups related to groups admitting Hall coverings is the class of
groups with a partition(see [22, Section 3.5]) and theCN-groups, that is groups in
which the centralizer of any non trivial element is nilpotent (see [7, Chapter 10]). We
shall see how these groups are strictly related to nilpotent Hall coverings.

The results of this paper depend upon the classification.

2. Notation and preliminary results

All the groups considered in this paper are finite. IfG is a group we denote by³.G/
the set of prime divisors of|G|. If H is a Hall covering of the groupG, we define
³.H / = {³.Hi / | i = 1;2; : : : ; r }; then³.H / = {¦1; ¦2; : : : ; ¦s} with ¦i ∩ ¦ j = ∅
if i 6= j (and obviouslys < r ). We suppose that ifi < j , then min¦i < min¦ j (in
particular if 2∈ ³.G/ then 2∈ ¦1).

If G is a group, we define itsprime graph0.G/ = 0 as follows: the set of vertices
of 0 is³.G/ and two verticesp andq are connected (p ∼ q) if and only if there exists
in G an element of orderpq. Let ³1; ³2; : : : ; ³t be the connected components of0



[3] Finite group with Hall coverings 3

and lett .G/ = t be the number of such connected components; we suppose 2∈ ³1, if
2 ∈ ³.G/. Then³.G/ is the disjoint union of the³i , i = 1;2; : : : ; t . Moreover, ifG
admits a Hall coveringH , then any element of³.H / is a disjoint union of certain
connected components of0.G/, in particular, 2≤ s ≤ t .

If C1 andC2 are two classes of groups, a groupG is C1-by-C2 if G has a normal
subgroupN with N ∈ C1 andG=N ∈ C2.

We denote by Fit.G/ the Fitting subgroup ofG, that is, the maximal normal
nilpotent subgroup ofG.

A groupG is analmost simplegroup if there exists a simple non-abelian groupS
such thatS≤ G ≤ Aut.S/.

Let p be an odd prime andq = p2 f . We denote byM.q/ the non split extension
of PSL.2;q/, with |M.q/ : PSL.2;q/| = 2.

A proper subgroupH of G is isolated(in G) if

(a) H ∩ H g = 1 for anyg 6∈ NG.H /;
(b) CG.h/ ≤ H for any 1 6= h ∈ H .

The notation for the simple groups follows the one of [5]. For the rest, the notation
will be standard (see, for example, [7] and [12]).

A group is called 2-Frobeniusif it has two normal subgroupsN; K , with N < K ,
such thatK andG=N are Frobenius groups.

The following results were proved in an unpublished paper of Gruenbergand Kegel,
but they can be found in [26]

PROPOSITION2.1 ([26]). If G is a group whose prime graph has more than one
connected component, thenG has one of the following structures:

(a) G is a Frobenius or a2-Frobenius group.
(b) G is simple.
(c) G is simple by³1.
(d) G is ³1 by simple by³1.

Moreover, ifG is not soluble and³i is a component of0.G/ with i > 1, thenG has
an isolated³i -Hall subgroup.

COROLLARY 2.2. If G is a soluble group with a Hall covering, then|³.H /| = 2 =
t .G/ andG is a Frobenius or a2-Frobenius group.

It is well known thatG is soluble if and only ifG has a³-Hall subgroup for any
³ ⊆ ³.G/; moreover any two of them are conjugate. If we want to consider the
general case, we first have to deal with the existence of³i .G/-Hall subgroups ofG.
We recall the following:

PROPOSITION2.3 ([8]). If G has a³-Hall subgroup with2 6∈ ³ , then the³-Hall
subgroups are all conjugate.
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Therefore by Proposition2.1and Proposition2.3, we know that ift .G/ ≥ 2, then
there exists a³i -Hall subgroup for anyi ≥ 2 and these are all conjugate.

We want to examine now the groups which admit a³1-Hall subgroup.

3. π1-Hall subgroups

By the preceding remarks, we can assume that

G is a non-soluble group in which the prime graph is not connected
andG is not a Frobenius group.

(∗)

The aim of this section is to prove the following:

PROPOSITION3.1. LetG be a group satisfying(∗). ThenG has a³1-Hall subgroup
if and only ifG=Fit.G/ is one of the groups of Table1.

We begin with some general remarks.

LEMMA 3.2. Let G be a group satisfying(∗).

(i) If R is the maximal normal soluble subgroup ofG, thenR = Fit.G/ = O³1.G/
and G=Fit.G/ is isomorphic to an almost simple group. Moreover ifS is the only
simple non-abelian section ofG, we have³i .G/ = ³i .S/, for i ≥ 2.

(ii) G has a³1-Hall subgroup if and only ifG=Fit.G/ has a³1-Hall subgroup.

PROOF. (i) It can be easily deduced by the results in the paper [26].
(ii) Let F = Fit.G/. If SG = G=F has a³1.SG/-Hall subgroupSH , then of courseH

is a³1.G/-Hall subgroup ofG, since³.H / ⊆ ³1.G/.
Let nowH be a³1.G/-Hall subgroup ofG, thenF ≤ H . OtherwiseF H > H and

F H is also a³1.G/-subgroup ofG, contradicting the maximality ofH . Therefore
H=F is a³1.G=F/-Hall subgroup ofG=F .

The aim of the following sections is therefore to prove:

PROPOSITION3.3. If G is an almost simple group, thenG has a³1-Hall subgroup
if and only ifG is one of the groups of Table1.

In Tables1 and2, we suppose thatr is an odd prime number,p is a prime number,
q = p f andP is a Sylowp-subgroup ofG. We use the notation of the Atlas [5].

We denote byH a ³1.G/-Hall subgroup ofG and we write in the third column
the structure of a representative of the conjugacy classes of the³1.G/-Hall subgroups
of G. In the last column we write some remarks concerningH . We also recall that
A5

∼= PSL.2;4/ ∼= PSL.2;5/ andA6
∼= PSL.2;9/.
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If G is PSL.n;q/, we denote byP1′, Pn′ the maximal parabolic subgroups of type
PJ, with J respectively5 \ {1} and5 \ {n}, as described in Remark1 in Section4.

We observe that the following groups admit also a³-Hall subgroup, with³ a set
of primes strictly containing³1.

3.1. Simple groups If G admits a Hall covering, then the numbert .G/ of connected
components of the prime graph0.G/ is greater than or equal to 2. We first suppose
t .G/ = 2, and therefore³i = ¦i for i = 1;2.

We recall that a group is said to befactorizableby two proper subgroupsA andB
if G = AB = B A.

LEMMA 3.4. LetG be a finite group witht .G/ = 2. If G has a³1-Hall subgroupA,
thenG is factorizable byA and another proper subgroupB such that.|A|; |B|/ = 1.

PROOF. If G has a³1-Hall subgroupA, then by Proposition2.1, G has also a³2-Hall
subgroupB. Then.|A|; |B|/ = 1 and|G| = |A||B|, and thereforeG = AB.

Let now G be a simple group. Then by Lemma3.4, G is factorizable by two
proper subgroupsA andB and we can assumeA to be a³1-Hall subgroup andB a
³2-Hall subgroup. We can therefore conclude by [1, Theorem 1.1] thatG is one of
the following:

(i) Ar , with r ≥ 5 a prime andr − 2 not a prime, thenA ∼= Ar −1;
(ii) PSL.r;q/, with r an odd prime such that.r;q − 1/ = 1 and eitherG ∼=

PSL.5;2/and|B| = 5·31 orA is a maximal parabolic subgroup such thatPSL.r −1;q/
is involved in A.

We observe that in the casePSL.5;2/with |B| = 5·31, A is not a³1-Hall subgroup
because 5∈ ³1.

We now suppose thatG is a simple non-abelian group witht .G/ ≥ 3. We consider
separately the case in whichG is a sporadic or an alternating group and the case in
whichG is a simple group of Lie type. In the following we look for³-Hall subgroups
of G, with³ a set of primes in³.G/ containing³1. We use the results in [26], without
further reference.

Alternating groups Since A5 ' PSL.2;5/ and A6 ' PSL.2;9/, it is enough to
considerAr with r ≥ 7, r andr −2 primes. The maximal subgroups of the alternating
groups have been classified (see for example [6, Theorem 5.2A]). The only cases in
which Ar (r ≥ 2, r andr − 2 primes) admits a{r − 2; r }′-Hall subgroupH is for
r = 7. In fact, by point (i) of [6, Theorem 5.2A], we should have

H ≤ .Ar −3 × A3/〈x〉; with x of order 2

but if r > 7, then.Ar −3 × A3/〈x〉 has index greater thanr .r − 2/ in Ar .
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TABLE 1.

G Conditions H Remarks
A7 .A4 × A3/:2 soluble
Ar r − 2 not a prime Ar −1 simple

M11 32 : Q8:2 soluble
M22 24 : A6

M23
PSL.3; 4/ : 22

24 : A7

J1 2 × A5

PSL.2; q/ q = 2n P nilpotent

PSL.2; q/
q ≡ 1 .4/;

q 6= 13; 25; 61
Dq−1 soluble

PSL.2; q/
q ≡ −1 .4/;

q 6= 11; 23; 59
Dq+1 soluble

PSL.2; q/ q = 11; 13
D12

A4

soluble
soluble

PSL.2; q/ q = 23; 25
D24

S4; 2 classes
soluble
soluble

PSL.2; q/ q = 59; 61
D60

A5; 2 classes
soluble
simple

PSL.3; q/ q = 22 P nilpotent

PSL.r; q/ .r; q − 1/ = 1
P1′

Pr ′

Sz.q/ q = 2 f , f odd P nilpotent
S7 S6 almost simple
Sr r − 2 not a prime Sr −1 almost simple

PSL.2; q/〈Þ〉 Þ field automorphism NG.P/ soluble
q = 2n |Þ| = 2m

M.q/ D2.q−1/ soluble
PSL.r; q/〈Þ〉 Þ field automorphism P1′ 〈Þ〉
.r; q − 1/ = 1 |Þ| = r m Pr ′ 〈Þ〉

TABLE 2.

G ³ ³ -Hall subgroup Remarks
A7 ³1 ∪ {5} A6 simple

M11 ³1 ∪ {5} M10 = M.9/ almost simple
M23 ³1 ∪ {11} M22 simple

PSL.3; q/, q = 22 {2; 3} NG.P/ soluble
PSL.2; q/, q = 2

n
³.q.q − 1// NG.P/ soluble

PSL.2; 7/ ³.q2 − 1/ S4 soluble
PSL.2; 11/ ³.q2 − 1/ A5, 2 classes simple

Sz.q/ ³.q.q − 1// NG.P/ soluble
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Sporadic groups Let G be a sporadic group andh = |G|=|G|³1. If G has a³-Hall
subgroup, with³1 ⊆ ³ ⊂ ³.G/, then it must have a maximal subgroup of order
dividing h. Then using the Tables in [26] and the Atlas [5], it is easy to check that the
following groups do not have maximal subgroups dividingh: M24, J3, J4, HS, Suz,
O′ N, Ly, Co2, F23, Th. For the other sporadic groups we use the following arguments.

Let �2 be the non principal character of minimal degree ofF ′
24. Then deg.�2/ =

8671. Since 17· 23 · 29 = 11339 (and any other character ofF ′
24 has greater degree),

thenF ′
24 hasn’t subgroups whose index divides 17· 23 · 29.

Let �2 be the non principal character of minimal degree ofM . Then deg.�2/ >

41 · 59 · 71 and thereforeM hasn’t subgroups whose index divides 41· 59 · 71.
Let �2 be the non principal character of minimal degree ofB M. Then deg.�2/ >

31 · 47 and thereforeB M hasn’t subgroups whose index divides 31· 47.

Simple groups of Lie typeWe now consider a finite simple group of Lie type
defined over a field withq = p f elements. We recall that aSinger cycleof PSL.n;q/
is an element of order.qn − 1/=.q − 1/.n;q − 1/.

If G is a simple group of Lie type witht .G/ ≥ 3, thenG is one of the following
(see [13, 14, 26]): PSL.2;q/, PSL.3;4/, E7.2/, E7.3/, E8.q/, F4.q/ with q even,
G2.q/ with q ≡ 0 .3/, PSU.6;2/, Sz.q/, 2Dp.3/ with p = 2n + 1, n ≥ 2, 2E6.2/,
2F4.q/, Ree.q/.

We first observe that ifG is PSL.2;2n/, PSL.3;4/ or Sz.q/, then³1.G/ = {2}.
Therefore a³1-Hall subgroup is in fact a Sylow 2-subgroup. Also forPSL.2;q/, q
odd, it is easy to see that a³1-Hall subgroup exists and they are all conjugate.

We begin with an easy remark, which allows us to understand the structure of the
maximal parabolic subgroups of a finite group of Lie type.

REMARK 1. Let J be a subset of the set5 of fundamental roots of the finite group
of Lie typeG and8J be the set of roots which are integral combinations of roots in
J. Let L J be the subgroup ofG generated byH and the root subgroupsXr , for all
r ∈ 8J . Then PJ = UJ L J , L J ∩ UJ = 1 andUJ is an unipotent subgroup, by [4,
Theorem 8.5.2]. IfPJ is a maximal parabolic subgroup, thenJ = 5 \ {i }, for some
fundamental rooti . SinceH normalises anyXr , we haveL J = 〈Xr : r ∈ 8J〉Hi ,
whereHi is the subgroup ofG generated byhi .½/, ½ ∈ K ∗ (see [4, page 98]). We call
MJ = 〈Xr : r ∈ 8J〉.

We begin with a case by case analysis.
Let G be one of the groups listed in Table3. We suppose that there existsK a

³-Hall subgroup ofG, with ³1 ⊆ ³ . We want to prove thatK cannot be contained in
any maximal subgroup ofG, and thereforeG does not admit any³1-Hall subgroup.
We use the Theorem of [17], observing that|K | ≥ qk.G/, whereqk.G/ is as defined in
[17, Table 1], and also in our Table2. If M is a maximal subgroup ofG containingK ,
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TABLE 3.

G qk.G/ h.G/
E7.q/ q64 q7 + 1
E8.q/ q110 .q12 − 1/2

F4.q/ q24 .q6 − 1/2

G2.q/ q6 .q2 − 1/2
2E6.q/ q37 .q6 − 1/2

then

(1) M contains ap-Sylow subgroup ofG (q = pf ),
(2) |M | ≥ qk.G/,
(3) |M | is divisible byh.G/, whereh.G/ is an integer, as listed in Table2.

By [17, Theorem],M is either a parabolic subgroup orM is as in [17, Table 1]. The
groups listed in [17, Table 1] do not contain ap-Sylow subgroup ofG. Moreover, if
we consider the maximal parabolic subgroups ofG, we can easily check that no one
of them has order divisible byh.G/. We conclude thatG does not admit a³-Hall
subgroup.

PSU.6;2/ It can be checked in the Atlas [5] that there is no³-Hall subgroup, for
³1 ⊆ ³ .

2Dn.3/ It can be proved that ifK is a maximal subgroup containing a 3-Sylow
subgroup, thenK is a parabolic subgroup (by [16] and some easy calculations). If we
denote byi the i th node in the Dynkin diagram, then the isomorphism classes of the
maximal parabolic subgroups are

J = 5 \ {i } ⇒ MJ
∼= Ai −1.q/ × 2Dn−i .q/; for 1 ≤ i ≤ n − 4;

J = 5 \ {n − 3} ⇒ MJ
∼= An−4.q/ × 2 A3.q/;

J = 5 \ {n − 2} ⇒ MJ
∼= An−3.q/ × A1.q

2/;

J = 5 \ {n − 1} ⇒ MJ
∼= An−2.q/:

Since thep′-part of the order of the maximal parabolic subgroupPJ is .q − 1/|MJ|,
it can be easily seen thatqn−1 − 1 does not divide the order of any maximal parabolic
subgroup ofG, while qn−1 − 1 should divide the order of a³-Hall subgroup ofG,
³1 ⊆ ³ .

2F4.q/We know from [19], that the only maximal subgroups containing ap-Sylow
subgroup ofG are the maximal parabolic subgroups, and no one of these is divisible
by q6 + 1, which should divide the order of a³-Hall subgroup ofG, ³1 ⊆ ³ .

2G2.q/We know from [15], that the only maximal subgroups containing ap-Sylow
subgroup ofG are the maximal parabolic subgroups, and no one of these is divisible
by q2 + 1, which should divide the order of a³-Hall subgroup ofG, ³1 ⊆ ³ .
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3.2. Almost simple groups The connectedcomponents of the prime graph of almost
simple groups have been calculated in [18]. We therefore refer to [18], without further
reference.

For the sporadic groups we refer again to [5]. For the alternating groups, it is easy
to observe that ifG = Sr is the symmetric group overr elements, withr an odd
prime,r ≥ 7, then the stabiliser of an element is isomorphic toSr −1 and it is a³1-Hall
subgroup. Moreover the³1-Hall subgroups are all conjugate.

If S∼= PSL.2;q/andG contains a diagonal automorphism, then³.q2−1/ ⊆ ³1.G/
andPGL.2;q/ does not contain subgroups of order (divisible by)q2 − 1.

If G contains a field automorphismÞ of order not a power of 2 andq 6= 2 or 3, then
0.G/ is connected. If|Þ| = 2 andG = S〈Þ〉, then³1.G/ = ³.q.q −1//. If q is odd,
then there is no³1.G/-Hall subgroup inG, since there isn’t a³1.G/-Hall subgroup
in S. If q is even, letB be the subgroup ofS of the upper triangular matrices. We
observe thatB is fixed byÞ and thereforẽB = B〈Þ〉 is a ³1-Hall subgroup ofG.
Moreover the³1-Hall subgroups ofG are all conjugate.

If f is an odd prime andq = 2 f orq = 3 f , then³1.G/ = ³. f q.q+1/=.2;q−1//.
If K is a ³1.G/-Hall subgroup ofG, then K ∩ S is a subgroup ofS of order
q.q + 1/=.2;q + 1/, which does not exist.

If q is odd and a square, that isq = q2
0, for someq0 = pn, then there exists a

non-split extensionM.q/ of PSL.2;q/ of order 2, with0.M.q// = 0.S/. We observe
that the order of a³1-Hall subgroup ofG should be 2.q − 1/ and therefore a³1-Hall
subgroup ofS is NS.H / = N the normaliser of the diagonal groupH . We also
observe thatH , and thereforeN, is fixed by any automorphism ofS. ThenG has a
³1-Hall subgroup.

If S = Sz.q/ with q = 2 f , and G is a subgroup of its automorphism group,
then0.G/ is always connected, except whenf is a prime andG = S〈Þ〉, with Þ
a field automorphism of orderf . In this case³1.G/ = ³.2 f .q + √

2q + 1// or
³1.G/ = ³.2 f .q − √

2q + 1// depending if f ≡ 1;7 .8/ or f ≡ 3;5 .8/. In both
cases there should exists a³.2.q ± √

2q + 1/-Hall subgroup ofS and this is not
possible in any of the two cases (see [12] or [25]).

If S ∼= PSL.3;4/, it is easy to check (see [5]) that there is no³1-Hall subgroup for
any of the extensions.

If S ∼= PSL.r;q/ with .r;q − 1/ = 1 andq = pf , p a prime, then Aut.S/ =
S.〈'; − 〉/, where' is a field automorphism of orderf , and− is the graph automorphism
of order 2 ofS.

If G contains a graph automorphism andt .G/ = 2, then there is no³1.G/-Hall
subgroup inG. In fact, no³1.S/-Hall subgroup ofG is fixed byÞ, which interchanges
the two conjugacy classes of parabolic subgroups.

If G contains a field automorphism of order a prime different fromr , then0.G/ is
connected. IfG = S〈Þ〉 with Þ a field automorphism of orderr , then³1.G/ = ³1.S/
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andCS.Þ/ ∼= PGL.3;q0/ if q3
0 = q. We observe that there exists a³1-Hall subgroup

P̃1 of G, which is an extension ofP1, a³1-Hall subgroup ofS.
By the proof of Proposition3.1 and Proposition3.3, we also get the following

corollaries.

COROLLARY 3.5. Let G be a group and³ be a set of primes such that³1 ⊆ ³ ⊂
³.G/. Then

(i) G has a³-Hall subgroup if and only ifG has a³1-Hall subgroup;
(ii) if ³1 ⊂ ³ and G satisfies(∗), then G=Fit.G/ is isomorphic to one of the

groups in Table2.

Let G be a group and³ be a set of primes in³.G/. We say that³ is connectedif
and only if there existsi = 1; : : : ; t .G/ such that³ ⊆ ³i .

COROLLARY 3.6. Let G be a group satisfying(∗). ThenG has a³-Hall subgroup,
for any connected subset³ of ³.G/ if and only if G=Fit.G/ is isomorphic to one of
the following groups: PSL.2;q/, Sz.q/, PSL.3;3/, PSL.3;4/, A7, M11, PSL.2;2n/〈Þ〉
with |Þ| = 2m, M.q/.

PROOF. It is enough to examine the non-soluble groupsH in Table1. If G is a
sporadic, alternating or symmetric group, then, for example, there does not exist a
{2;5}-Hall subgroup ofG (for the symmetric groups see [9]). If G = PSL.r;q/,
with q = p f , then there does not exist a{p; t}-Hall subgroup for any primet such
that .t;q.q − 1// = 1, except forPSL.3;2/ ∼= PSL.2;7/, PSL.5;2/ for which the
statement holds witht = 7, andPSL.3;3/, where a³1-Hall subgroup is in fact a
{2;3}-Hall subgroup (see [23, Theorem 2.3.2]).

4. Hall coverings

In this section we want to prove the following:

THEOREM 4.1. Let G be a group satisfying(∗). ThenG admits a Hall covering
if and only if G=Fit.G/ is isomorphic to one of the following groups: PSL.2;q/,
PSL.3;4/, PSL.3;q/ with .3;q − 1/ = 1, Sz.q/, A7, M22, M.q/.

We begin with a lemma which allows us to reduce to the case of an almost simple
group.

LEMMA 4.2. Let G be a group satisfying(∗). ThenG has a Hall covering if and
only if G=Fit.G/ has a Hall covering.
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PROOF. This is Lemma3.5(ii).

We have proved in the preceding sections that if a groupG has a Hall cover, then
G has a³1-Hall subgroup (see Corollary3.5). It is therefore enough to examine the
almost simple groupsG belonging to Table1.

Alternating groups SinceA5 ' PSL.2;5/, we supposer ≥ 7. Then the element
.12/.34/.5 · · · r / of order 2.r − 4/ fixes no point and therefore it cannot be contained
in a subgroup ofAr isomorphic toAr −1. ThereforeAr (r ≥ 7 a prime) does not admit
Hall coverings withs = 2.

It is easy to see thatA7 admits a Hall covering witht = s = 3.

Sporadic groups M11 contains elements of order 6 but no subgroups of index 55
or 5 or 11 contains such elements.

M22 does not contain subgroups of index 5· 7, 5· 11 or 5· 7 · 11 (see [5]). It can be
easily seen that the{5;7}′-Hall subgroups, together with the 5-Sylow and the 7-Sylow
subgroups are a Hall covering ofM22 with t = s = 3.

M23 contains elements of order 15, while none of its{2;3;5;7}-subgroups contain
elements of order 15. ThereforeM23 does not admit Hall coverings.

J1 contains elements of order 15 but the only³-Hall subgroups with{3;5} ⊆ ³ ,
are isomorphic toA5 × C with C a cyclic group of order 2.

PSL.2;q/ It is well known thatPSL.2;q/ is a group with a partition and it admits a
covering with³i -Hall subgroups, fori = 1;2;3 (see [12]). Moreover if 3< q 6≡ 1.4/,
then the Borel subgroup of orderq.q −1/=.2;q −1/ is a³.q.q −1//-Hall subgroup.
Then, in this case, it also admits a partition with³..q + 1/=.2;q − 1//-Hall and
³.q.q − 1//-Hall subgroups. A subgroup containing ap-Sylow subgroup ofG must
be contained in a Borel subgroup, then the only other possibility is to have a³.q2−1/-
Hall subgroup. We are then in the case ofG factorizable again and the only case we
have to consider isPSL.2;11/, with A ∼= A5 as a{2;3;5}-Hall subgroup. But there
is an element of order 6 inPSL.2;11/, which is not contained in any{2;3;5}-Hall
subgroup.

PSL.3;4/ In this case every³i contains only a prime, and therefore there is a
covering with the Sylow subgroups. We recall that|G| = 26 · 32 · 5 · 7. Moreover a
2-Sylow subgroup must be contained in a parabolic subgroup. By the remark at the
beginning of the proof, there exists three conjugacy classes of parabolic subgroups:
one of order 26 · 3, which is not a{2;3}-Hall, and two of order 26 · 3 · 5. Moreover
the only subgroups containing a Singer cycle are those of order 21. Therefore the
only possibility is a Hall covering with¦1 = ³1 = {2} and¦2 = ³4 = {7}. If H is
a {3;5}-Hall subgroup, thenH should be contained in a maximal subgroupM with
M ∼= A6 (see [5]). But A6 hasn’t a{3;5}-Hall subgroup.
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PSL.r;q/ If G = PSL.r;q/, thenM = P1′ or M = Pr ′ is a maximal parabolic
subgroup, and also a³1-Hall subgroup ofG. Then|M | = qr −1.q − 1/|SL.r − 1;q/|,
since.r;q − 1/ = 1. ThenM is a¦1-Hall subgroup andB = 〈xr 〉 is a¦2 = ³2-Hall
subgroup ofG, wherexr is a Singer cycle of order.qr − 1/=.q − 1/. Moreover any
¦1-Hall subgroup is contained in a maximal subgroup and the only maximal subgroups
with order divisible by|G|³1 are those isomorphic toM (see [20]). It can be proved
(see [3, Proposition 3.3]) that ifr ≥ 5, there exists an elementx in PSL.r;q/ of order

b = qt − 1

q − 1

qr −t − 1

q − 1
:

Moreoverb does not divide the following products

∏
i =1;:::;s

.q ji − 1/ for 1 ≤ ji ≤ r − 1;
∑

i =1;:::;s

ji = r − 1;

andb does not divideqr −1. But thenx does not belong neither to a³1-Hall subgroup
nor to a³2-Hall subgroup. Therefore, also in this case,G cannot have a Hall covering.

If r = 3, then there are two coverings: with the conjugates of a Singer cycle and
with one of the two classes of maximal parabolic subgroups ofG:

H1 = {Pg
1′ ; 〈x3〉g | g ∈ G}; H2 = {Pg

r ′ ; 〈x3〉g | g ∈ G}:

This is proved in [3, Proposition 4.1 and Corollary 4.2].

Sz.q/ By [12, Theorem3.10, capXI], the Suzuki groups admits a partition with³i -
Hall subgroups. Moreover,G admits a³1 ∪ ³2-Hall subgroup, which is a Frobenius
group of orderq2.q − 1/. Therefore, there are two kinds of coverings with Hall
subgroups:

(i) ³1, ³2, ³3, ³4;
(ii) ³1 ∪ ³2, ³3, ³4.

Almost simple groups Let G be an almost simple group which admits a Hall
covering.

We recall that³.G=S/ ⊆ ³.G/, by [26, Theorem A (d)]. Therefore ifH =
{H1; H2; : : : ; Hr } is a Hall covering ofG, thenHS = {H1 ∩ S; H2 ∩ S; : : : ; Hr ∩ S} is
a Hall covering ofS. We only have to consider the almost simple non simple groups,
that is groupsG such thatS < G ≤ Aut.S/, with S a simple non-abelian group
admitting a Hall covering.

If G = S7, then³1.G/ = {2;3;5} and the only subgroup of index 7 ofS7 is
isomorphic toS6. But S6 does not contain elements of order 10, as a{2;3;5}-Hall
subgroup ofS7 should.
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PSL.2;q/ ≤ G ≤ Aut.PSL.2;q// We first consider the case in whichG =
PSL.2;2n/〈Þ〉 andÞ is a field automorphism of order 2. We recall thatCS.Þ/ =
PSL.2;q0/, whereq2

0 = q, while CB.Þ/ = B0 of orderq0.q0 − 1/. Therefore there
exists an elementx ∈ CS.Þ/ of order.q0 +1/ such thatx ·Þ has order 2.q0 +1/ and is
not contained inS. This element is not contained in any of the conjugate ofB̃, since
there is no element of such order iñB, with B̃ the³1-Hall subgroup ofG previously
described.

If G = M.q/, then by the preceding Proposition, we haveÑ, a³1-Hall subgroup
of G. We observe that any element ofG is contained in one of the³i -Hall subgroups,
and therefore we have the following covering:

.∪g Ñg/ ∪ .∪g P̃g/ ∪ .∪gT̃ g/;

P is a p-Sylow subgroup ofG, andT is a (Singer) cycle of order.q + 1/=2.

PSL.3;q/〈Þ〉 By Proposition3.1, there exists a³1-Hall subgroupP̃1′ . But there
exists an element of order 3.q − 1/ which is not contained iñP1′. The same is true if
we consider the other classP3′ of ³1-Hall subgroups ofS.

5. Further remarks

As already mentioned, the class ofC N-groups is related to the groups admitting
a Hall covering. It is not difficult to verify that if a groupG admits a nilpotent
Hall covering (that is a Hall covering in which all the subgroups of the covering are
nilpotent) thenG is aC N-group. It is also true that ifG is aC N-group, thenG admits
a nilpotent Hall covering, using, for example, [7, Theorem 14.1.7].

We recall that the simple groups with a partition have been classified by Suzuki
(see, for example, [22, Section 3.5]): they arePSL.2; pn/, pn > 3 andSz.22n+1/.
They all admit a Hall covering, while the only simpleCN-group without a partition is
PSL.3;4/.

The solubleC N-groups are known (see [7, Theorem 14.1.5]), while Suzuki proved
that a simpleCN-group is isomorphic to one of the following list (see [12, Re-
mark XI.3.12.a]):

(i) PSL.2;2n/ with n > 1;
(ii) PSL.2; p/ with p Mersenne or Fermat prime;

(iii) PSL.2;9/;
(iv) PSL.3;4/;
(v) Sz.22n+1/ with n > 1.

In the same paper [24, Theorem 4], Suzuki proved that a non-solubleCN-group is
aCIT-group, that is a group of even order in which the centralizer of any involution is
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a 2-group. From the results of Higman [11], Suzuki [24] and Martineau [21], we also
get:

THEOREM 5.1. Let G be a non-solubleC N-group, then either

(1) G is isomorphic to simple groups on Suzuki’s list or
(2) G is isomorphic toM.9/ or
(3) G has a non trivial normal2-subgroupN andG=N is isomorphic to PSL.2;2n/

or to Sz.22n+1/. Moreover,N is an elementary abelian group.

REMARK 2. The groupM.9/ is aC N-group and it also admits a Sylow covering.
This case was missing in the paper [2] on the non-soluble groups in which any element
has order a power of a prime.

We note that we do not use character theory to prove Theorem5.1, as it is done in
[2]. We use a more elementary fact, which can be found in [11].

LEMMA 5.2 ([11, Theorem 8.1]).Let H be a group with a normal2-subgroupT
such thatH=T is dihedral of order6. Leth be an element ofH of order3 acting fixed
point free onT, and letR be a Sylow2-subgroup ofH. Then

(i) T is of class at most2;
(ii) if |T | > 4, the class ofT is less than the class of any other subgroup ofR of

index2.

PROOF OFTHEOREM 5.1. Let G be a non-solubleCN-group, thenG has a nilpotent
Hall covering. IfG is simple, thenG is in the Suzuki list. IfG is almost simple, then
applying Theorem4.1we get thatG is isomorphic toM.9/ (see also [24, Theorem 3]).

By the above mentioned results of Suzuki, it is sufficient to prove the theorem for
CIT-groups.

Let now N be the maximal normal soluble subgroup ofG; then, if SG = G=N we
haveZ.SG/ = 1 andO2′.SG/ = 1. We supposeN 6= 1 and, by Lemma3.2(i), we know
that N = Fit.G/. We first prove thatN is a 2-group. In factN is nilpotent and we
can therefore assume that it is anr -group. Ifr 6= 2 then any Sylow 2-subgroupSS of
SG = G=N acts fixed point free overN. ThenSS is a cyclic or a generalized quaternion
group (see [7, 10.3.1]). In the first caseSG has a normal 2-complement; in the second
case by the Brauer-Suzuki Theorem (see [7, Chapter 12] and recall thatO2′.SG/ = 1)
we getZ.SG/ 6= 1. In both cases we get a contradiction. ThereforeN is a 2-group.

SinceG is a CIT-group, any Sylow 2′-subgroup ofG acts fixed point free over
N, and it is therefore cyclic. This implies thatSG is isomorphic toPSL.2;2n/, Sz.q/
or PSL.2; p/ with p a Fermat or Mersenne prime andp > 5. If SG is isomorphic
to PSL.2; p/ with p Fermat or Mersenne prime andp > 5, a Sylow 2-subgroupSS
of SG is dihedral of order at least 8. IfST is an elementary abelian 2-subgroup ofSG,
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then|T | = 4 and SH = NSG.ST/ is isomorphic toS4. We can apply lemma5.2 to the
preimagesH andT of SH andST in G andR a Sylow 2-subgroup ofH . In particular
T has class 2, otherwiseT ≤ CG.N/ ≤ N.

Let ST∗ be an elementary abelian subgroup of order 4 ofSH , distinct fromST . If T ∗

is the preimage ofST ∗ in G, thenT andT∗ are isomorphic. ButT∗ is a subgroup of
index 2 ofR and therefore, by Lemma5.2, T∗ has class strictly less than the one ofT .

The actions ofH = PSL.2;2n/ = SL.2;2n/ or H = Sz.22n+1/ over an elementary
abelian groupN are described respectively in [11, Theorem 8.2], and in the main
theorem of [21]. The semidirect productG = N H obtained by these actions is a
CIT-group.
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