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Abstract

In this article we study some special problems of the additive number theory connected with an estimate
of cardinality of a sum of two sets, which can be convex as well asnon-convex sequences.
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1. Introduction

The problem of estimating cardinality of sumsets is one of the interesting and difficult
topics of the additive number theory. In this note we deal with a particular case of this
problem and discuss some special questions concerning cardinality of a sum of two
sets.

For a givenÞ, 0 < Þ ≤ 1, denoteAÞ = {1;2; : : : ; [nÞ]} wheren is a positive
integer parameter,n > 3. Letc denote a positive constant. The real valued function
f .x/ is required to be an increasing strictly convex function of a positive integer
variablex ∈ A1, that is, to satisfy

0< f .2/− f .1/ < f .3/ − f .2/ < · · · < f .n/− f .n − 1/:(1)

Hegyvári [6] proved that the set

f .A1/− f .A1/ = { f .a1/− f .a2/ : a1;a2 ∈ A1}
has at leastcn.logn=log logn/ elements, that is,

| f .A1/− f .A1/| > cn
logn

log logn
:(2)
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Using Jarnik’s result [7] on integral lattice points on a strictly convex line or a
method used to prove Lemma of [3] one is able to establish that for a givens the
number of solutions of the equations = f .x/ + f .y/ is at mostcn2=3. This remark
will allow us to note that (2) can be improved tocn4=3. As it was noticed by Elekes,
Nathanson and Ruzsa in [2], the third author, in his unpublished work, improved (2)
to cn4=3 and in [2] this result was further improved to

| f .A1/± f .A1/| > cn3=2;(3)

where ‘±’ here denotes any of the signs ‘+’ and ‘−’, that is, the corresponding
estimate takes place for the sumset and for the difference set as well. Applying the
methods of combinatorial geometry they obtained more general theorem from which
(3) follows together with many other significant results.

In this article, using entirely elementary method, we obtain a new result which
includes estimate (3) with c = 1=5.

THEOREM 1.1. Assume(1). Thenn3=2=5 < | f .A1=2/± f .A1/| < n3=2. Further if,
0 < Þ < 1=2 then| f .AÞ/ ± f .A1/| = [nÞ]n + O.n3Þ/, where the constant implicit
in the O symbol is absolute.

The upper bound estimate of the first statement is trivial. Further improvement of
the error termO.n3Þ/ in the second estimate would be of some interest, if such one
exists. We also note that our elementary argument allows us to prove that for any
ž > 0, n > n1.ž/ > 0 estimate (3) holds withc = .3=4/ − ž.

Let us now consider special non-convex sequences. Deshouillers [1] proved that
for 1 < 
 < 4=3 any sufficiently large positive integer is representable in a form
[x
 ] + [y
 ] with nonnegative integersx; y. Gritsenko [5] extended the range of

possessing this property to 1< 
 < 55=41. In our work [4] we proved that if
Þ ∈ .1;3=2], then there are� N numbersn ≤ N representable asn = [x
 ] + [y
 ].
Substantial improvement in this problem was made by Konyagin [8]. He established
that for any
 ∈ .1;3=2/ a sufficiently large positive integern is representable in a
form n = [x
 ] + [y
 ].

For a > 0, 1< 
 < 2, S= S.a; 
 ;n/ = {[ax
 ] : x = 1;2; : : : ;n}.
THEOREM 1.2. For 3=2< 
 < 2 we have

|S+ S| �
a;


min

{
n.2
+1/=.
+1/;

n


logn

}
:

COROLLARY 1.3. For 3=2< 
 ≤ .
√

5 + 1/=2 we have

n


logn
�
a;


|S+ S| �
a;


n
 :
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2. Proof of Theorem1.1

We may suppose thatn > 25.
Assuming 0< Þ ≤ 1=2 we denote byBÞ = {[nÞ] + 1; [nÞ] + 2; : : : ;n}. Let

J = J.Þ;n/ be the number of solutions of the equation

f .x/+ f .y/ = f .u/ + f .v/; x;u ∈ AÞ; y; v ∈ BÞ:

For anyl , 1 ≤ l < [nÞ], denote byJl = Jl .Þ;n/ the number of solutions of the
equation

f .x/+ f .y/ = f .x + l /+ f .z/; x; x + l ∈ AÞ; y; z ∈ BÞ:(4)

Obviously

J = [nÞ].n − [nÞ]/+ 2
∑

1≤l<[nÞ ]
Jl :(5)

Let us estimateJl . From (1) and (4) it follows thatx < x + l < z< y and that for any
d ≥ l we have f .y/− f .y − d/ > f .x + l / − f .x/. Furthermore, for fixedx ∈ AÞ
andy − z = c0 < l , (4) has at most one solution becausef .z + c0/− f .z/ increases
with z. HenceJl ≤ .l − 1/[nÞ].

It then follows from (5) that

J = [nÞ]n + �n3Þ; −1< � < 1:(6)

Now for a givens ∈ f .AÞ/ ± f .BÞ/ = T±, we denote byI±.s/ the number of
solutions of the equations = f .x/ ± f .v/, x ∈ AÞ, v ∈ BÞ. Then

∑
s∈T± I 2

±.s/ = J,∑
s∈T± I±.s/ = [nÞ].n − [nÞ]/. Therefore using (6) we have

[nÞ]n + �n3Þ = J =
∑
s∈T±

I 2
±.s/ ≥ |T±|−1

(∑
s∈T±

I±.s/

)2

= |T±|−1[nÞ]2.n − [nÞ]/2;

that is,|T±|([nÞ]n + �n3Þ
) ≥ [nÞ]2.n − [nÞ]/2. TakingÞ = 1=2 we obtain the first

estimate of our theorem. ForÞ < 1=2, it follows that |T±| > [nÞ]n − 3n3Þ and
therefore

[nÞ]n − 3n3Þ < |T±| ≤ | f .AÞ/± f .A1/| ≤ [nÞ]n:
Theorem1.1 is proved.

REMARK. As an upper bound forJl we could use.l − 1/.[nÞ] − l /. It would
yield estimate (3) with anyc < 3=4 and sufficiently largen > n1.c/ > 0 which we
mentioned in Section1.
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3. Proof of Theorem1.2

All constants in this section may depend ona and
 . Under the assumption that
n > n1.a; 
 / > 0 we put

A = {[nÞ] + 1; [nÞ] + 2; : : : ;2[nÞ]}; B = {[n=2] + 1; [n=2] + 2; : : : ;n
}
;

whereÞ = 
=.
 + 1/. In particular, the largest number in the setA is less than the
smallest number in the setB.

In analogy with Section2 let J be the number of solutions of the equation

[ax
 ] + [ay
 ] = [au
 ] + [av
 ]; x;u ∈ A; y; v ∈ B:

Then

J < nÞ+1 + 2
∑

1≤l<[nÞ ]
Jl ;(7)

whereJl denotes the number of solutions of the equation

[ax
 ] + [ay
 ] = [a.x + l /
 ] + [az
 ]; x; x + l ∈ A; y; z ∈ B:(8)

Let us estimateJl . Suppose thatx = x0 ∈ A is such a value of variablex for which (8)
has the largest number of solutions in terms of the variablesy; z but fixedx. Then
Jl ≤ nÞ J ′

l , whereJ ′
l denotes the number of solutions in terms of the variablesy; z of

the equation

[ax
0 ] + [ay
 ] = [a.x0 + l /
 ] + [az
 ]; y; z ∈ B:(9)

From (9) it follows thatay
 − az
 < a.x0 + l /
 − ax
0 + 2, that is,

a.y − z/y
−1
1 < 2alx
−1

1 ;

wherex1, y1 are some real numbers withx0 < x1 < x0 + l , z < y1 < y. Since
x0 + l ∈ A, z ∈ B then 0< y − z< c1ln.Þ−1/.
−1/. Therefore,

Jl ≤ nÞ
∑

m<c1ln.Þ−1/.
−1/

J ′
l .m/;(10)

whereJ ′
l .m/ denotes the number of solution in one variablez of the equation

[a.z+ m/
 ] − [az
 ] = d; z; z + m ∈ B;(11)

whered = d.a; 
 ;n/ is some fixed integer.
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Suppose thatz0 is the smallest solution of (11). Then

a.z + m/
 − az
 < a.z0 + m/
 − az
0 + 4:

This inequality can be written as


 .
 − 1/
∫ z

z0

∫ m

o

a.� +  /
−2 d� d < 4:

Hence 0≤ c2.z − z0/mn
−2 < 4, that is,J ′
l .m/ ≤ c3.1 + n2−
m−1/. In view of (10)

we obtain thus

Jl �
a;


nÞ.ln.Þ−1/.
−1/ + n2−
 logn/:

Taking (7) into account andÞ = 
=.
 + 1/ we obtain

J �
a;


n.2
+1/=.
+1/ + n.2+3
−
 2/=.
+1/ logn:

In analogy with Section2 setT = {[ax
 ] + [ay
 ] : x ∈ A; y ∈ B
}
. Obviously

|T | ≤ |S + S|. For a givens ∈ T , let I .s/ be the number of solutions of the
representations = [ax
 ] + [ay
 ], x ∈ A, y ∈ B. Then∑

s∈T

I 2.s/ = J �
a;


n.2
+1/=.
+1/ + n.2+3
−
 2/=.
+1/ logn;

∑
s∈T

I .s/ = [nÞ].n − [n=2]/�
a;


n.2
+1/=.
+1/:

Hence

|S+ S| ≥ |T| ≥
(∑

s∈T I .s/
)2∑

s∈T I 2.s/
�
a;


min

{
n1+
=.
+1/;

n


logn

}
:

Theorem1.2 is proved.

Let us state two conjectures, the second of which is stronger than the first one.

CONJECTURE3.1. For anyž > 0, .
√

5 + 1/=2< 
 < 2, we have|S+ S| �
ž;a;


n
−ž .

CONJECTURE3.2. For 3=2< 
 < 2 |S+ S| �
a;


n
 .

It should be pointed out that if
 = 2, then

n2

√
logn

�
a

|S+ S| �
a

n2

√
logn

:
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Indeed, Landau [9] showed that the number of integers not exceedingN which can
be expressed as a sum of two squares is asymptotic tocN=

√
log N. Let! = |S+ S|

andt1 < t2 < · · · < t! be all different numbers of the setS+ S. Then

[ax2
j ] + [ay2

j ] = t j ; j = 1; : : : ; !; 1 ≤ x j ≤ n; 1 ≤ yj ≤ n:

By taking jm = .[a] + 2/m;1 ≤ m ≤ [!=.[a] + 2/] we obtain

x2
jk+1

+ y2
jk+1
> x2

jk
+ y2

jk
+ t jk+1 − t jk − 2

a
> x2

jk
+ y2

jk
:

Therefore,[!=.[a] + 2/] � n2=
√

logn from which the upper bound for|S + S|
follows. The lower bound is proved similarly.
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