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Abstract

In this article we study some special problems of the additive number theory connected with an estimate
of cardinality of a sum of two sets, which can bengex as well asion-cawex squences.

2000Mathematics subject classificatioprimary 11P99.
Keywords and phrasegardinality, a sum of sets, ngex £quences, non-cgex quences.

1. Introduction

The problem of estimating cardinality of sumsets is one of the interesting and difficult
topics of the additive number theory. In this note we deal with a particular case of this
problem and discuss some special questions concerning cardinality of a sum of two
sets.

For a givene, 0 < « < 1, denoteA, = {1,2,...,[n*]} wheren is a positive
integer parameten > 3. Letc denote a positive constant. The real valued function
f(x) is required to be an increasing strictly convex function of a positive integer
variablex € Ay, that is, to satisfy

(1) 0<f@Q-fM<f@-f@ <---<f)—fn-1.
Hegy\ari [6] proved that the set
f(A) — F(A) ={f(a) — f(a) :a,a € A}
has at leastn(logn/log logn) elements, that is,

logn

(2 [f(A) — f(A)| >cn loglogn’
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Using Jarnik’s resultq] on integral lattice points on a strictly convex line or a
method used to prove Lemma d] [one is able to establish that for a giverthe
number of solutions of the equatien= f(x) + f(y) is at mostcn?3. This remark
will allow us to note that?) can be improved tan*3. As it was noticed by Elekes,
Nathanson and Ruzsa ig][ the third author, in his unpublished work, improved) (
to cn®2 and in [] this result was further improved to

3 |f(A) £ f(A)] > cn®?,

where ‘t' here denotes any of the signg-" and ‘—’, that is, the corresponding
estimate takes place for the sumset and for the difference set as well. Applying the
methods of combinatorial geometry they obtained more general theorem from which
(3) follows together with many other significant results.

In this article, using entirely elementary method, we obtain a new result which
includes estimate3j with ¢ = 1/5.

THEOREM 1.1. Assumél). Thenn¥?/5 < | f (A1) £ f(A))| < n¥2. Further if,
0 <a < 1/2then|f(A,) £ f(A)| = [n*In + O(n*), where the constant implicit
in the O symbol is absolute.

The upper bound estimate of the first statement is trivial. Further improvement of
the error termO(n®) in the second estimate would be of some interest, if such one
exists. We also note that our elementary argument allows us to prove that for any
€ > 0,n > ny(e) > 0 estimated) holds withc = (3/4) — e.

Let us now consider special non-convex sequences. Deshouillgpsojved that
for 1 < y < 4/3 any sufficiently large positive integer is representable in a form
[x*] + [y”] with nonnegative integers, y. Gritsenko p] extended the range of
possessing this property to &€ y < 55/41. In our work §] we proved that if
a € (1, 3/2], then there arg> N numbersn < N representable as= [x”] + [y"].
Substantial improvement in this problem was made by Kony&jinHe established
that for anyy € (1, 3/2) a sufficiently large positive integer is representable in a
formn = [x"] + [y”].

Fora>0,1<y <2,S=S5@a,y,n)={ax"]:x=12,...,n}

THEOREM1.2. For 3/2 < y < 2we have

S+ S>> min{n@+vosy L
&y "logn

COROLLARY 1.3. For 3/2 < y < (v/5+ 1)/2 we have

nl/
L[S+ S« n.
Iogn ay a,y
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2. Proof of Theorem1.1

We may suppose that> 25.
Assuming O< « < 1/2 we denote byB, = {[n*] + 1,[n*] + 2,...,n}. Let
J = J(a, n) be the number of solutions of the equation

fX)+ f(y)y=fw+ f(v), x,ueA, VY,veBb,.

For anyl, 1 <1 < [n?], denote byJ, = J(«, n) the number of solutions of the
equation

4 fXOO+fyy=Ffx+hHh+ 2, x,x+leA, VY, zeB,.
Obviously
(5) J=[In-ID+2 Y I

1<l <[n*]

Letus estimatg,. From (1) and @) it follows thatx < x+1 < z < y and that for any
d > 1 we havef(y) — f(y —d) > f(x+1) — f(x). Furthermore, for fixeck € A,
andy — z= ¢y < |, (4) has at most one solution becausa + c¢,) — f (2) increases
with z. HenceJ, < (I — 1)[n“].

It then follows from §) that

(6) J=[n*In+6n*, —-1<6<1.

Now for a givens € f(A,) £ f(B,) = T., we denote byl.(s) the number of
solutions of the equatiosi= f(x) = f(v),x € A,,v € B,. Then} . 12(s) = J,
Y ser, 1£(8) = [n*](n — [n*]). Therefore usingq) we have

2
[N“In+0n* =3 = "12(s) = |T|™ (Z IAS)) = [Te|Hn*1*(n — [n*])?,

seTs seTy

that is,|Ti|([n“]n + 6n3“) > [n“]%(n — [n*])?. Takinga = 1/2 we obtain the first
estimate of our theorem. Far < 1/2, it follows that|T.| > [n“]n — 3n* and
therefore

[n“In — 3n* < |T.| < [f(A) = f(A)| < [n“In.
Theoreml.1is proved. O

REMARK. As an upper bound fod, we could use(l — 1)([n*] — I). It would
yield estimate ) with anyc < 3/4 and sufficiently large > n;(c) > 0 which we
mentioned in Sectiof.
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3. Proof of Theorem1.2

All constants in this section may depend@m@ndy. Under the assumption that
n > ny@, y) > 0we put

A={n1+1[n"]+2....2[n"]}, B={[n/2]+1,[n/2]+2,....,n},

wherea = y/(y + 1). In particular, the largest number in the gets less than the
smallest number in the s&
In analogy with Sectio2 let J be the number of solutions of the equation

[ax’] + [ay’] = [au"] + [av”], X,ue A, VYy,veB.
Then

7) J<ntp2 3 g,

1<l<[n*]

whereJ, denotes the number of solutions of the equation
(8) [aX' 1+ [ay'] =[ax+ D]+ [aZ], x,x+|l €A, vy,ze B.

Let us estimatd,. Suppose that = x, € Ais such a value of variabbefor which (8)
has the largest number of solutions in terms of the variaplesout fixedx. Then
J < n*J/, whereJ’ denotes the number of solutions in terms of the variaplesof
the equation

(9) [ax)] +[ay] = [a(Xo+ D"]1+ [aZ'], y,ze B.
From () it follows thatay” —az’ < a(X, +1)” —ax§ + 2, that s,
aly — 2y, ' < 2alx]

wherex,, y; are some real numbers with < x; < X+ 1,z < y1 < y. Since
Xo+1 € A ze Bthen0< y— z < ¢In@ V=1 Therefore,

(10) J=nt o Y Jam),

m<cyln@=-D-1)

whereJ/(m) denotes the number of solution in one variabte the equation
(12) [az+m)]—[aZ]=d, zz+meB,

whered = d(a, y, n) is some fixed integer.



[5] On cardinality of sumsets 225

Suppose that, is the smallest solution ofL(). Then
a(z+my —az' <a(z+m)y —az +4.

This inequality can be written as
v =0 [ [Ca@+yyidsdy <a
20 Jo

Hence 0< ¢,(z — zp)mn' 2 < 4, thatis,J'(m) < cz(1 + n**m™). In view of (10)
we obtain thus

J <« n(In@ Y=Y 4 n27 |ogn).
ay

Taking (7) into accountand = y/(y + 1) we obtain

2
J« n(2y+l)/(y+l) + n(2+3yfy )/(y+1) Iog n.
ay

In analogy with Sectior® setT = {[ax’] + [ay”] : x € A,y € B}. Obviously
IT| < |S+ S|. For a givens € T, let | (s) be the number of solutions of the
representatios = [ax’] + [ay’],x € A,y € B. Then

2
Z 12(s) = J « n&D/0+D 4 n@Hr=r)/0+D |ogn,
ay

seT

Z I (S) = [n*“](n — [n/2]) > n@ /D,
ay

seT
Hence

2
|S+ S| > |T| > M > min{nl+7//(}/+1) n_y} .

Yot 12(9) ay "logn
Theoreml.2is proved. O

Let us state two conjectures, the second of which is stronger than the first one.

CONJECTURE3.1. Foranye > 0, (v/5+1)/2 < y < 2, we haveS+ S| > n’—.

€,a,y

CONJECTURE3.2. For3/2 <y < 2|S+ S > n".

a,y

It should be pointed out that jf = 2, then
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Indeed, Landaud] showed that the number of integers not exceedingshich can
be expressed as a sum of two squares is asymptatidtq/logN. Letw = |S+ S|
andt; < t, < --- < t, be all different numbers of the s€t+ S. Then

[ax]+[ay’l=t, j=1..,0, 1<x,<n 1<y <n

By taking j, = ([al + 2)m, 1 < m < [w/([a] + 2)] we obtain

., —t, —2
2 2 2 2 Jk+1 Jk 2 2
Xjk+1 + yjk+1 = Xjk + yjk + a = Xjk + yjk'

Therefore,[w/([a] + 2)] « n?/./logn from which the upper bound fgiS + S|
follows. The lower bound is proved similarly.
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