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Abstract

A two-bridge knot (or link) can be characterized by the so-called Schubert normalkggrwhere p

andq are positive coprime integers. Associatedtg, there are the Conway polynomisk , ,(2) and

the normalized Alexander polynomialk, ,(t). However, it has been open problem h&w, ,(2) and

Ak, () are expressed in terms pfandg. In this note, we will give explicit formulae for the Conway
polynomials and the normalized Alexander polynomials in the case of two-bridge knots and links. This
is done using elementary number theoretical functiorsamdg.

2000Mathematics subject classificatioprimary 57M25; secondary 11L03.
Keywords and phraseswo-bridge knot, Alexander polynomial, Conway polynomial.

1. Introduction and statement of results

LetK be a knot (or link) inR3, and letA (t) be the normalized Alexander polynomial
(reduced wherK is a link) for K. There is also the Conway polynomigk (z) of

K in the variablez. The Conway polynomial is related to the Alexander polynomial
A (t) by the equation:

(1.1) Vi (Y2 —tY2) = A (0).

A two-bridge knot (or link) can be characterized by the so-called Schubert normal
form K, , where p andq are positive coprime integers. (Figuteillustrates the
diagramKss.) The readeris referredto Burde-Zieschasj@f Kawauchi P] for more
detailed description oK, . Itis known thatk , , is a knot if p is odd, respectively, a
two-component link ifp is even. (Figure illustrates the two-component lirk, ;.)
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FIGURE 1. The knotKs 3.

Throughout this article, we use the notatikn, 4 for an oriented knot (or link)
which are represented by the diagrad€g,. Our main purpose of this note is to
express explicitly the Alexander polynomials and the Conway polynomiéets, gfin
terms ofp andq. Explicit descriptions of these polynomials have been sought after by
many knot theorists (se&,[8] for algorithms of calculating the Alexander polynomials
of K, 4). However, the problem has been rather intractable. One motivation stems
from the same problem for a torus knbj, of type (p, q). For T, 4, the Alexander
polynomial has a beautiful simple expression given as follows:

(t~Y2 — tY2)(t=Pu/2 — tPU2)
(t—P/2 — tP/2)(t-9/2 — ta/2) °

AT,)Aq (t) =

Unfortunately, in the case &€, , one cannot hope to obtain such a nice expression
for the Alexander polynomial.

One of the reasons is the fact thidt, ; is equivalent toK ..., while T, is
not equivalent tar, 4., in general (this means that ., (t) should coincide with
Ag,, () while Ay . (t) andAg (1) can be independent).

In order to obtain explicit expressions fay  (t), we should look for a function
f(p, q) in p andq satisfying the following equation:

(1.2) f(p,q) = f(p.q+2p).

It should be remarked that such a function is related to Dedekind symbols introduced
in [6]. This function should be of great interest from a number theoretical view point,
see, for example 1} 10].
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FIGURE 2. The two-component linKy ;.

Hence we introduce functions, © andyy as follows. First let us fix notation;
by [x], we denote the greatestinteger not exceediigR.

DerINITION 1.1. For integers andk, we defines; (p, q), «(p, q) andv(p, q) by

p-1 p-1

(P, Q) = (D", pu(p, )= & and w(p,q) =14 &
i=1

i= i=1

It can be checked easily that these functions sati$ff).( We also know that
vo(p. ) = (p, Q) + 1.

In what follows, we write simplys;, « and vy instead ofe; (p, ), u(p,q) and
vk(p, q) to ease the notation. Though the reader should keep in ming, thaandv,
do depend orp andq.

Furthermore, whenever we are dealing with a two-bridge Kngt, we may assume
without loss of generality thaf is odd(as any two-bridge knot can be reducedto such
acase).

We can now give an explicit formula for (reduced) normalized Alexander polyno-
mial Ag,,. The results are formulated as follows:

THEOREM 1.2. (1) For atwo-bridge knoK, 4,

1 1 iy
_ —n/2 /2 -1/2 1/2 k —w/2 /2
(1.3) Ak, (1) = (A7 +147) — —(t —t79) kE:l (=D (t — ).
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(2) For atwo-bridge linkK g,

p-1
(1_4) AKpAq(t) — %(t—u/z _tu/z) ('[ 1/2 tl/z) Z( 1) et Uk/2+tUk/2)

k=1

Next we will consider the Conway polynomial &f,,. Note that the Alexan-

der polynomial can be derived easily from the Conway polynomial by substituting
t=%2 — t¥2 for z. However, the other way around is not so easy. Thus, by the aid of
the Lucas polynomials, we will transform the Alexander polynomial to the Conway
polynomial (the definition of the Lucas polynomials will be given in Sec&pnOur
result is formulated as follows:

THEOREM 1.3. (1) For atwo-bridge knoK, 4,

1Bl w2+
15) V /oL ;
(1.5) Vi, (@ = 12; lnl/2+ <|M|/2— J)Z

(Ind—1)/2 ™ Wl /24 1/2+ ]\ 42
__Z(— D¥ex ) ' )7
— [wl/24+1/2+ ] \Iwl/2—1/2— ]

(2) For atwo-bridge linkK g,

q (r=Dr2 M [l /2+1/2+ j .
16 v 7) = = S ') 2+
(1.6) Kpa(2) =5 JX; |M|/2+1/2+J<IM|/2—1/2— )
vl /2

[Vl <|Vk|/2+j> 2j+1
_Z 1 )z
Z( ! kz wd/2+ j \Iwd/2—
Here we regard

L(lm/ﬁr J) =2 (respectivelyL(lvkl/zJr J) = 2)
lwl/2+ J \Iul/2—] il /24 ] \Iwl/2— ]

when|u| = j = 0 (respectiveljy| = j = 0).

Finally we present an alternative formula fék () by describing its coefficients
explicitly. For a knot (or link)K, leta; (K) denote thg th coefficient of the Conway
polynomial Vi (2), that is,

Vi (2) :Zaj(K)zJ'.

Thena; (Vk,,) is expressed as follows:
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THEOREM 1.4. (1) For atwo-bridge knoK, 4,

aO(Kp,q) =1 a2j+l(Kp,q) =0 (J > 0),

1 J
8y (K,)=+[ (1% — 4m?)
SR 2a2(2) 1 2)! ,ln_[)
p-1 j
—2j +2 Y (Do [ [ {vi - @m- 1)2}} (j = 0).
k=1 m=1

(2) For atwo-bridge linkK g,

azj(Kp,q) =0 (J > 0),
i

1
ay1(Koo) = Zac T [M [Tin?— @m-—17)
m=1

p-1 j—-1
~@j+D) (e Jwi- 4m2>} (j=0.

k=1 m=0
Here we regard

j—1

i i
]_[ {vi—@m-1?} = 1_[ {w?—@m—-1?} = H(sz —4m?) =1

m=1 m=1 m=0

2. Some properties of numbers;, p and vy

In order to prove the theorems we need several properties of numbgranduvy.

LEMMA 2.1. (1) ForisuchthaD <i < p, e, = &.
(2) Forisuchthal <i < p, gpyi = —¢i.
(3) ep=-—-1

ProOOF. We recall the assumption thgtis odd (hamely(—1) = —1). We also
note that identitie§—x] = —[x] — 1 and[n + x] = n + [x] hold forx € R\ Z and
n € Z. Then we have

(1) epi = (—=D)lP=a/pl = (—q)a+l=ia/pl — (—q)a-lia/pl-1 — (_7)lia/Pl — g
(2) epyi = (—=D)IPha/pl = (—q)a+lia/pl — _(_q)lia/pl — _g,-
(3) gp = (=DPA/Pl = (1) = —1. |
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The following identities can derived using Lemma4.

LEMMA 2.2. (1) Forksuchthal0 <k < p, Y\ e =pu— Y s,
(2) ForksuchthaO <k < p,

nw - 8 v 1
k_ k
2 ; 2 2
PrROOF. (1) ByLemma2.1(1), we have
k—1 p—1 k—1 p—1 p—k p—k
Za =M—ZS| +Zsi =M—Za =M_Z‘9p—| =M—ZS|
i=1 i=1 i=1 i=k i=1 i=1

(2) Nextapplying (2) and (3) of Lemm& 1, we obtain

k—
,u Sk—l
_E E:

1
12 - 1 22 18 1
=—52 +3 et —5,2“528“5
i=1 i=1 i=k+1 i=1
p— k
Z Z Epyi — —€p— 1 (by Lemma2.1(2)—(3))
=k i=1
12 e 1
= —= Ekti —E — E O

3. The Wirtinger presentation for the knot (or link) group of K,

In the next section we will obtain the Alexander polynomigl,, applying Fox
calculus. To do so we first study the Wirtinger presentation for the knot (or link) group

of Kpq. Let
Ll = 3132 Cen ip’qu’l and L2 = 3132 L. qp—Zip—l

be words in§, andS,. PutR; := SL;S'L;* andR; := SL,S'L,*. From the
diagramK, 4 like Figure 1 or Figure2, the reader can easily read off the following
Wirtinger presentation (also refer t8, [page 208] and note that our relatétsand R,
are conjugate elements of their relators).

Whenpis odd, the knot group ok, 4 is presented b, := (S, S; | R;). Whenp
is even, the link group oK, 4 is presented b, := (S, S, | Ry).
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4. The Alexander polynomial of a two-bridge knotK, ,

In this section we will obtain the normalized Alexander polynomial of a two-bridge
knot K, 4 from the Wirtinger presentation, applying Fox calculus. From here to
Sectiorb, we assume is oddso thatk, , is a knot. We use the following notation: let
a:ZF(S, S) — Z[t,t7!] be an abelianization map such thds) =t, «(S) =t.

We also use the symbal)® instead ofx (u).

SinceG; = (S, S | Ry) is the Wirtinger presentation df,, ,, we know both
(0Ry/0S)* and(0 Ry /0 S,)* are Alexander polynomials. This follows from the theory
of Fox calculus (the reader can referdd¢r [3, Chapter 9] for Alexander polynomials
and Fox calculus).

We introduce symbol®, (t) andD,(t):

(2R’ (2R’
Di(t) := <881> and Ds(t) := (aS)

to emphasize that they are (Laurent) polynomials ithen bothD, (t) andD,(t) are
Alexander polynomials foK , 4 (not normalized!). In the following lemma we obtain
explicit formulae forD,(t) and D,(t).

p-1
LEMMA 4.1, (1) Di) =1+ (t—1) » edZiatebz
k=1, k even
p—-1
(2) Do) = —t' + (=1 Y gtZmiete
k=1, k odd

PrROOF. By the definition of the free derivative/d S;, we have

(Fe) - (=)

p-1 ¢ p-1
— ( Z Skgl gz . Si&l)/z) _ Z gktzik;llgﬁ»(sk—l)/Z'

k=1, k even k=1, k even

Similarly we have
a p-1
(a_|‘1> — Z Skth;llaJr(srl)/Z'
3 Sz k=1, k odd
Next we calculatd,(t) = (AR;/3S)” as follows:

aSL; S\ oL\ oL\
o= (B4 -1 (52 - (sus i)
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Ls\" — o1,
— _ - — _ Zizl sit(ex—1)/2
— 1+t 1)(a ) —1+t-D Y &t .

k=1, k even

Similarly, we have

o= (S - (28] - suo - (su)

p-1
— X L(t—1 (_) — —th 4 (t— 1) Z SktZik;llé‘i‘l‘(Sk*l)/Z'
Sz k=1, k odd
This completes the proof. O

Lemma4.1 gives a description for the non-normalized Alexander polynomials
for K, 4. To find the normalized Alexander polynomials fir, ,, we need the
following two lemmas.

PrOOF. From the fundamental formula for free calculug, (Proposition 3.4]), we
have

Ry

E(S.l_ D+ E(Sz—l)— Ry — 1.
Sending it by the abelianization map, we have

IR IR\ B
(4.2) (E) (t_l)+<882> t—-1=0,

where we used(R;) = 1.
SinceZ[t, t~1] is an integral domain, we can cantet 1 in (4.1). Hence we have
proved the lemma. O

We study another relation betwe®n(t) and D,(t).
LEMMA 4.3. Di(t) = —t*Dy(t™1).

PrOOF. By Lemma2.1and Lemma&.2, we have

k-1 p—k
dat@—D/2=p—) &+ —1/2 (byLemma2.2(1))
i=1 i=1

p—k

=pu—Y &+ (epa—1)/2 (by Lemma2.1(1)).

i=1
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Using these identities, we obtain

p-1

Dit) =14+ (-1 Z 8kt2ik;115i+($k*1)/2
k=1, k even
p-1
=1+t -1 Z €p7kt“*2ip;1k8i+(sp,k71)/2
k=1, k even
p-1
=14+t-1 Z gktM*ZLlsw(sk—l)/z (by Lemma2.1 (1))
k=1, k odd
p-1
=t {t“ +@-th Z 8ktzrfa<sk1>/z}
k=1, k odd

=t" {-Dp(t™H} = —t“ Dot ™).

This completes the proof. O

Now we are ready to get the normalized Alexander polynomiaKfpg. Set
(4.2) D(t) := t7#/2Dy(t).

LEMMA 4.4. D(t) is the normalized Alexander polynomial. Naméyt) satisfies
D(t™1) = D(t) andD(1) = 1.

PrROOF. We know thatD; (t) = —t*D,(t~) (Lemma4.3). This impliesD;(t™1) =
—t7*D,(t). We also knowD,(t) = —D,(t) by Lemma4.2 Using these identities,

we have
Dt =t"2Dy(t™) = t"2{—t Do)} = t7/?Dy(t) = D(1).
Furthermore, we hav® (1) = D;(1) = 1 which completes the proof. O

Lemma4.4 shows thatD(t) coincides withAg_ .. This is a nice result, but short
of our final goal. We wish to have an expression fog , with more symmetry
in t andt=1. We will proceed with calculation to find a more symmetric expression

of Ax, -

LEMMA 4.5.

p—-1
(4.3) 2D(t) = t 2 4 tH2 4 (t — 1) Z(_l)kgkru/HZf;lla+(sk71)/2'
k=1
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ProOOE We have

2D(t) = t7"/2Dy(t) — t7/2D,(t) (sinceD,(t) = —Dy(t))

p-1
=t 24 (t—1) 8kt7u/2+Zf;118i+(8k*1)/2
k—l,Xk:even
p-1
Pt =1 Y et A2 by | emmad.d)
k=1, k odd
p-1
=t g2 t—1 Z(_l)kgkru/ﬂﬂifﬁ+(8k*1)/2' 0
k=1

Before reaching the final form af , we need further modification of(3).

LEMMA 4.6.
1 1 e
(4.4) D() = S(U/2+ 1% = SAV2 - tV2) } (—Dfet ™%,
k=1
PrOOF. Applying (2) of Lemma2.2, we have
p-1
2D(t) = Pt (1 — 1) Y (—D)gt /AR AT/
k=1
p-1
=ttt —1)) (—Df et A2
k=1
p-1
=t 4t — (72— 7)Y (DRt
k=1
This implies the lemma. O

Now we are ready to prove (1) of Theoren?
PROOF OF(1) OF THEOREM 1.2 From (4.4) and the fact thaD(t) = D(t™1), we
have

p-1
(4.5) AD(t) = 202+ 14/7) — (72 —t12) Y (—Dkg (2 — 1),

k=1

This gives us a more symmetric forr.) of Ay, completing the proof. O
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5. Lucas polynomials

In this section we study Lucas polynomials. These polynomials are used to trans-
form the normalized Alexander polynomials to the Conway polynomials.

Letz = tY2 —tY2 andV, = V)" + (-t¥Y?)". ThenV, is expressed as a
polynomial inz, sayV,(2), as follows:

[n/2] .
(5.1) V,(2) = Z . n_ (n ]_ J)z“j (n>1).

Rl
These polynomials are called Lucas polynomials and are characterized by
V(@) =z2M1(2) + Vo 2(2)  (M(2) = 2, Va(2) = 2).

The reader can refer to, for examplé] for basic properties of Lucas polynomials.
From (.1) we obtain the following lemma.

LEMMA 5.1. Suppose that = t~%/2—t%2, Then the following identities hald
k

2k+1 /k+1+ J
—1/2y2k+1 il 2kl Z21+1 )
(1) @ VAHX 4 (172 § EITIT( k_J) k>0
k .
2k K+ ] .
1/2y2k 1/2 2k __ 2j
(2 CH™+ (-t E k+1<k j>z (k= 0).

Here we regard2k/(k + J))(Ef}) = 2whenk = j = 0.

The following identities are obtained easily from LemBa These formulae are
not used in this paper; however, they are of interest on their own right.

COROLLARY 5.2. Let Ay (t) = Y p_, a(t™ + t*) be the Alexander polynomial of
a knotK. Then the Conway polynomi#k (z) of K is

k
2k (k+ |
V(@) = Zmzk ( )z
Now we obtain Conway polynomial of a two-bridge knot.

PROOF OF(1) oF THEOREM 1.3. Suppose that = t=Y? — t¥/2, Seeing thaj is
even andy is odd (sincep is odd), we have

1 1
D(t) — E('t*I»L/Z + tM/Z) - Z(t71/2 o tl/Z) Z(_l)ksk(tfuk/Z o tuk/Z)
k=1
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p-1

= %(t*ﬂ/z_ktﬂ/z) (t 1/2 tl/Z) Z( 1) €ksgr(1)k)(t [k l/2 t|uk|/2)
k=1
_% |l <|u|/2+j)ZZJ
lwl/24j \Ipl/2 =]
(vl -1)/2 )
o wd |Uk|/2+l/2+j> -~
- = 1 S V) 2+
ZZ( VoA Z ol /24+1/2+ <|uk|/2—1/2—1
(by Lemmab5.1)
_% | <|u|/2+j)ZZJ
lwl/24j \Ipl/2 =]
1 (Iwl-1)/2 " |Uk|/2+ l/2+ J |
-7 2 U . o e
4;:( S JX_; |Vk|/2+l/2+J<|l)k|/2—l/2— )
This implies (.5 completing the proof. n

To describe the coefficients of the Conway polynomials, we need the following two
lemmas. These lemmas can be shown by direct computation, and proofs are left tc

the reader.
LEmMMA 5.3. Let and j be integers such thgt > 0. Then

j—1

|l lwl/2+3\ 1 , i
m(“ﬂ/z— j) B 22i-1(2j)! rlﬂ:[O{'U“ (2m) }

LEMMA 5.4. Letv and | be integers such thgt > 0. Then

v [v]/2+1/2 + | I
m<|u|/2—1/2—j) mn v —(2m—1?%}.

=1

Finally, we obtain the coefficients of the Conway polynomial of a two-bridge knot.

PROOF OF(1) oF THEOREM 1.4. From (1.5 and Lemma$.3and5.4, we have

o 1% |l <|u|/2+ j)ZzJ
Kpg = 5 /oL i
T2 /24§ \Iul/2 - |
(wl=1)/2 Vi <|uk|/2 +1/2+ j)zzj+2

13
_Z;(_l) oD /24 1/2+ j \Iwl/2—1/2 -

j=0




[13] Explicit formulae for two-bridge knot polynomials 161
1 Inl/2 1 j-1

_ = - 2 _ 21 52

) Z 22j71(2j)y l_[ {'U“ (2m) }Z

j=0 " m=0

(Iwl-1)/2 j

1 — k 2 2j+2
—Z;(—l) £ JZ; 221(21 1)‘]_[ — (2m — 1)?} 22+2,

=1

Taking the(2j +2)th coefficientin the last expression, we obtain Theotef(l). O

6. Polynomials of a two-bridge link K,

In this section we assume thatis even in which caseK, 4 is not a knot but a
two-componentlink. We will describe the Alexander and Conway polynomials. More
precisely, we give proofs of (2) of Theoreh®?, Theoreml.3and Theoreni.4 We

set
_ (3R ’ _ (3R ’
Ei(t) := (a ) and E,() := (a&) .

Then bothE,(t) andE,(t) are reduced Alexander polynomials for the two-bridge link
K,.q- They are calculated as:

p-1
LEMMA 6.1, (1) Ex() =1—t'+(t—1) Y gtiaatene
k=1, k even
p-1
2 B2 =(t—1 Y gdZmatenz
k=1, k odd

ProOOF. We take the free derivativé/d S, of L, and then abelianize it:

<2—:>“=<W;§“§1>“

( pXé 8k$ Sz . (Sk 1)/2)a

k=1, k even

p-1

— Z €ktzik;118i+(8k*1)/2'

Similarly, we have

ALy \" iy o
P E Yoiieit(e—1)/2
( S ) ad '

k=1, k odd
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Next we calculatde; (1) = (0R,/9S)” as follows:

— 1y —1\ @
E.(t) = (M)

S
aL, ¢ 1\« —1 18L2>a
=1 —) - L - L Lo-—=
+<81881> (Sl 251) (Sl 25 L, 7S,
-1 8L2 ¢
zl_tZip:M”‘i t—1 R
ra-1(3g)
p—-1
=1—tr (-1 Y ptEeeteebR
k=1, k even

Similarly, we have

—1) —1\ ¢ o o
Ea(t) = <—881L251 L. ) = (slaL2> - (lezsllLla_LZ>

05, S 2 95,
=({t-21 a—Lz ’ =(t-1 pXé gktzf;fsw(srl)/z
1S :
k=1, k odd
This completes the proof. O

Now we need two lemmas which show fundamental propertié€s @ andEx(t).

PrOOF. The proof is the same as that of Lemrha. O

Next we study another property &b(t).
LEMMA 6.3. Ex(t) = —tHE,(t71).

ProoF Recall that

p-1

Ex)=(t-1 Z g t o aHED/2,
k=1, k odd
Then we have
p-1
k—1
EZ(t) = (t — l) Z 8ktzi:1 gi+(ek—1)/2
k=1, k odd
p-1

=(t-1 ) atrHerecbZ byl emma2.2(1))
k=1, k odd



[15] Explicit formulae for two-bridge knot polynomials 163

p-1
=(t-1 Y eput DR D2 by | emma2.1(1))
k=1, k odd
p-1
=(@t-1 Z gt T tED/2 (note thatp is even)
k=1, k odd
p-1
— {(t — 1) Z 8kt2ik18i+8k/21/2}
k=1, k odd
p-1
=t~ {(1 -t > skthf&(SkD/Z}
k=1, k odd

=t {-E(t ™} = —t"Ex(t ™).
This completes the proof. O

Now we are ready to get the normalized Alexander polynomiaKigg. We put
E(t) = —t #2E,(t).

LEMMA 6.4. E(t) is the normalized Alexander polynomial. Namélyt) satisfies

. E(t)
1 _
Et™)=—-E() and !Lml—rl/z_tl/z

=1k(Kpq),
wherelk (K, 4) is the linking number of the oriented two-component kok;.

ProOOF. We have
Et™ = —t"?Ep(t™) = —t"? [t Ex(t)} =t ?Ex(t) = —E(®).

Furthermore, we have

_t—m20t _ Pt
E(t) — lim t (t l) €ktzik;i‘gi+(gk71)/2
t>1t-1/2 —tY2 (o1 t-12 — t12 Z
k=1, k odd
p—-1 p-1

k—1

= lim t=#/2 gtz ete2 — Ex-

im0 >

k=1, k odd k=1, k odd

Then we can easily identify the last ey, , oqq &k first with 303 ex 1, and then
with k(K ) (referto B, page 185]). These imply th&i(t) is normalized. O

The following form of E(t) is also useful.
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LEMMA 6.5.
1 1 e
(6.1) E(t) = E(»[fu/z _ a2y E(,[71/2 — 1112 Z(_l)kgktfw/z'
k=1
PROOF.
(6.2) 2E(t) = —t2E,(t) + tT*2E (1)
p-1
— 2t — 1) Z 8kt2!‘;118i+(srl)/2 + (L —th)
k=1, k odd
p-1
+ t—u/Z(t . l) Z 8ktzik;118i+(8k*1)/2
k=1, k even
p—-1
=2t A — 1) Y (— DR e D2
k=1
p-1
— {2 _gm2 4 (t— 1) Z(_l)kgkr”k/zfl/z (by Lemma2.2(2))
(6.3) k=1
p—-1
— tpr/Z o tpL/Z o (t71/2 o tl/Z) Z(_l)kgkt7Uk/2' O
k=1

Now we are ready to prove (2) of Theoren?

PROOF OF(2) oOF THEOREM 1.2 From (6.1) and the factthaE(t) = —E(t™1), we
have

1 e
ZE('[) — (t*ﬂ/z _ tH/Z) o _(tfl/z o tl/Z) Z(_l)kgk(tfuk/Z + tuk/Z)‘
2 k=1
This implies (.4). O

Next we obtain the Conway polynomial of a two-bridge link.

PROOF OF(2) oF THEOREM 1.3, Suppose that = t~/2 — t¥/2, Observing that is
odd andyy is even (since is even), we have

1 1 —
E(t) = St —t72) — 272 —t"2) Y (=Dt /2 +1%/2)
2 4 k=1
1 1 —
_Zg tlel/2 _gln/i2y _ Z (=12 _ 41/2 —DKg, (1772 4 tlwd/2
> Si)( )= 5 )é( et 4 1%
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(Inl-1)/2 :
2+41/2 .
S W (AR
lul/2+1/2+ J\Inl/2=1/2— ]
[vkl/2

[V |Uk|/2+j> 5
_ = 1 1) 2
ZZ( ye kz| k|/2+1<|vk|/2—1 g

1 i <|,u|/2+l/2+1:)22j+1
2 = |M|/2+1/2+J |nl/2—1/2— |

I5S Ll 2+
- = —1)*e ) 2+
4k§ g kz /2 + | <|vk|/2—1>
This implies (L.6). 0

Finally, we prove (2) of Theorerh.4.

PROOF OF(2) OF THEOREM 1.4. Suppose that = t=%/?2 — t¥2, Then we have,

(Inl-1)/2 .
S R (S P
M2 J.:O lul/2+1/24 j\Iul/2=1/2—]
1 p— [vkl/2 2 H )
_Z -1 €kz [ (lvkl/ +J.>221+1
4~ Il /24§ \lwdl /2= ]
1(\/tlfl)/2 j
=z S —(2m — 1)?} A+
2 221(21 1)vl_[l e e
1 p-1 [vl/2 j-1
- - — 2m Z2i+1
4k2 kZZZJ 1(21),]"[0 — (2m)?}

by Lemmass.3and5.4. Taking the(2j + 1)th coefficient in the last expression, we
obtain (2) of Theoren.4. O
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