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Abstract

We introduce sign-preserving charges on the system of all orthogonally closed subBp8gesf,an inner
product spac&, and we show that it is always bounded on all the finite-dimensional subspaces whenever
dimS = co. WhenSiis finite-dimensional this is not true. This fact is used for a new completeness
criterion showing thag is complete whenevef (S) admits at least one non-zero sign-preserving regular
charge. In particular, every such charge is always completely additive.
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1. Introduction

Gleason {]] characterised the set of all-additive states on the systeln(H) of

all closed subspaces of a real, complex or quaternion separable Hilbert $pace,
showing that there is a one-to-one correspondence ameadditive statess, on
L(H), 3 <dimH < R,, and positive trace operators with unit trade,on H given

by

(1.1) s(M) =tr(TRy), M e L(H),

wherePy, is the orthogonal projector frofd onto M.

In the paper4], there is an example (se2.{) below) showing that for any finite-
dimensional Hilbert spacél of dimension at least thred,(H) admits many un-
bounded charges (= sighed measures). The result of Dorofeev and Shetsthav [
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everyo-additive measure oh(H) with dimH = oo is bounded was therefore very
surprising.

In what follows, we show that an analogical result can be extended to sign-
preserving charges oR(S) with dimS = oo, that is, for chargesn satisfying
that if m(M,) is strictly positive (negative) for a sequence of mutually orthogonal
finite-dimensional subspacg¥; }, thenm(\/;, M;) is not negative (not positive).

We recall that ifS is an inner product space over real, complex or quaternion
numbers, we can define two families of closed salogs ofS.

Let us denote by (S) the set of albrthogonally closed subspacets, that is,

F(S9={McCS: M+ =M},

whereM* = {x € S: (x,y) = 0 forally € M}. ThenF(S) is a complete lattice
with respect to the set-theoretical inclusiah 2].
Let us denote b¥E(S) the set of allsplitting subspaces d5, that is,

E(9S={MCcS:M+M-=98).

Thus, E(S) is the collection of all subspaceéd of S where the projection theorem
holds. Observe that every complete subspace is splittingEasg < F(S). In fact,
Sis complete if and only iE(S) = F(S) (see P)).

The paper is organised as follows. A chargerai®) is a finitely additive mapping.
A charge is regular if the value afi(M) for M € F(S) can be approximated by values
on finite-dimensional subspacesMf. In Section2 we characteris®;(S)-bounded
charges orf- (S)—charges bounded on one-dimensional subspaces. In S8atien
introduce sign-preserving charges, and we show that these are always bounded on a
the finite-dimensional subspaces®Whenever dint = cc.

In Section4 we apply this result to obtain a new completeness criterion showing
that Sis complete if and only ifF (S) admits at least one non-zero sign-preserving
regular charge. In addition, every such charge is of the fdrr) for some Hermitian
trace operatof (not necessary positive and of trace one), and moreover, such a regular
charge is even bounded.

We recall that our completion criterion is not valid for sign-preserving charges
on E(S), because everlg (S) (also for incompletes) admits many regular charges.

2. Py(S)-bounded charges orF (S)

A chargeon F(S) is any mappingn : F(S) — R such that

() m(M v N) = m(M) + m(N)
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wheneveM, N € F(S)andM L N. A positive valued charge such thatn(S) = 1

is said to be &tate A chargem: F(S) — R is ac-additive measurer acompletely

additive measuref (x) holds for any sequendé,} or any systendM,} of mutually

orthogonal elements frof (S). In a similar manner we can define a chargedi%).
We denote byP(S) and P,(S) the set of all finite-dimensional and of all one-

dimensional subspaces 8frespectively. We say that a chameon F(S) is

(i) boundedf sup{im(M)|: M € F(S)} < oo;
(i) P(S)-boundedf sup{im(M)|: M € P(S)} < oo;
(i)  Py(S)-boundedf sup{{m(M)| : M € P (9} < cc.
For example, lep : R — R be a discontinuous additive functional &(see for
example ], or [2, Proposition 3.2.4]). Let us define the mapping; L(H) — R,

by
(2.1) m(M) := ¢ tr(TRy)), M e L(H),

whereO # T # kI is a Hermitian trace operator df, k # 0. Then, for anyH,
dimH > 3, mis an unbounded charge.

In a similar way, now let 0# T # k| be a Hermitian trace operator on the
completionS of S, wherek is a non-zero real constant ahds the identity onS. The
mappingm : E(S) — R defined by

(2.2) m(M) = ¢tr(TRp), M e E(S),

is an unbounded charge &1(S).

A mappingf : (S :={x € S: ||x] = 1} — R is said to be drame functionf
there is a constaw (called theweightof f) such thaty_, f (x;) = W holds for any
maximal orthonormal system (MONS, for shofX)} in S.

The mappingf : .7 (S) — R is said to be drame type function Sif (i) for any
orthonormal system (ONS, for shof®;} in S, { f (x;)} is summable; and (ii) for any
finite-dimensional subspade of S, f|.%(K) is a frame function orK.

The following result was originally proved for states ié],[ where the firsto-
additive state completeness criterion was presented, and then generalised for charge
in [2, Lemma 4.2.1]. In order to be self-contained, we present the proof in details and
in a little bit more general form—foP,(S)-bounded charges.

LEmmA 2.1. (1) Forany Py (S)-bounded charge m oR(S) or E(S), dim S # 2,
there exists a unique Hermitian operafor= T,, : S— Ssuch that

(2.3) m(sp(x)) = (Tx, x), X e .#(S).

(2) Letwv be a unit vector in the completiddof S, dim S 2. Then for any > 0
and anyK > 0, there exists @ > 0 such that the following statement haldbw € S
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is a unit vector such thdftv — w|| < 8, then for anyP; (S)-bounded charge m such that
the norm ofT = T, is less tharK, and for each finite-dimension& C S satisfying
the propertyv 1. A, we have the next inequality

(2.4) | mM(A Vv sp(w)) — m(A) —m(sp(w)) | < e.

PrOOF. (1) Suppose thah is a P;(S)-bounded charge and define a functibn
Z(S) — Ryvia f(X) = m(sp(x)), [IX]| = 1. Thenf is bounded on(S).

Applying the Gleason theorem for finite-dimensional subspac8sa#e P, there
is a well-defined bounded bilinear fornsuch thatf (x) = t(x, x) foranyx € .#(S).
Hencet may be uniquely extended to a bounded, bilinear fouefined onS x S.
Therefore, there is a unique Hermitian operdtarS — Ssuch that2.2) holds. We
denote by||T|| the norm ofT.

(2) Lete > 0 andK > 0 be given. By the continuity of the functiom(t) =
(2 - 21— t»Y%)Y2 we can find &, > 0 such thap(t) < /2K for anyt € [0, §,].

The continuity of the projectioRsy,). : S— sp(v)*, allows ustofind @ € (0, 1)
such that the assumptidn — w|| < & implies || Psy,): (w)|| < 8;. Fix aw € Swith
lw] = 1, and suppose thak is any finite-dimensional subspace orthogonab to
Then||Pa(w)|l = || PaPsgwy: (W)l < | Psgwy: (w) || < 8;. Thus, we obtain

I(H =P @)/ I(1 = P )l —wl = p(IPaw)l) < €/2K.

Putw’ = (I =Py (w)/|I(I —Py)(w)]l. Thenwe havgiw —w'|| < €/2K, Avsp(w) =
AV splw’) andw’ L A. Calculate

IM(A Vv spw)) — m(A) — m(sp(w))]
= [M(A) + m(sp(w’)) — M(A) — m(sp(w))|
= [m(sp(w)) —m(sp(w))| = [(Tw, w') — (Tw, w)]
<|(Tw,w) —(Tw,w)| +[(Tw, w) — (Tw, w)|
< 2T lw —w'|l <e. [

3. P(S)-boundedness of sign-preserving charges

In the present section we introduce a new kind of charges, sign-preserving charges
and we show that these are alway&S)-bounded. We recall that, in general, charges
can be unbounded dA(S), as an example below shows. This notion will be applied
in the next section to obtain a new completeness criterion for inner product spaces.

We say that a chargen on F(S) is sign-preserving(or we say also tham
satisfies thesign-preserving propenyif, for any sequence of mutually orthogonal
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finite-dimensional subspacé¢M;} of S such that ifm(M;) > 0 for anyi, we have
m('\/; Mi) = 0, orm(M;) < 0 for anyi thenm('\/; M) < 0.
It is easy to verify that im(M;) > O for anyi, then

(3.1) m (\/ Mi> >y m(M) >0,

and ifm(M;) < 0 for anyi, we have the opposite inequalities.

For example, every-additive measuren on F(S) or every positive (negative)
chargeis sign-preserving. LEtbe a separable infinite-dimensional Hilbert space and
let m; andm, be two different states oin(H) vanishing on all the finite-dimensional
subspaces ofl. Thenm = m; — m, is a sign-preserving charge ar(H), andm is
neither positive (negative) ner-additive.

On the other hand, leH be a separable Hilbert space with an ONWB}o2 ;.
Define the staten, (M) = >, 1/2"m, (M), M € L(H), and letm, be any finitely
additive state o (H) vanishing on all the finite-dimensional subspaceslofThen
m =: m; — M, is a bounded charge dn(H) which is not sign-preserving. Indeed, let
M = \/2,sp(X,). Thenm(sp(x,)) = 1/2" for anyn, butm(M) = 1/2 - 1= —-1/2.
More general, iim; is a state defined byL(1) andm, as above, them =m; — m, is
a bounded charge which is not sign-preserving.

Let nows be a state o (H) vanishing on all the finite-dimensional subspaces of
H. According to B], the range ofs is the whole interval0O, 1]. Take an arbitrary
discontinuous additive functional on R. Then the mappingn on L(H) defined
by m(M) = ¢(s(M)), M € L(H), is a sign-preserving charge vanishing on all the
finite-dimensional subspaces dfwhich is unbounded oh (H).

We recall that according t&/[ Lemma 33.3],

(1) F(S) is an atomic, complete lattice with orthocomplementation satisfying the
exchange axiom (thatis, M is an atom ofF(S), N € F(S), M £ N, thenM v N
coversN (thatis, ifN € C € M v N for someC € F(S), thenC € {N, N v M});

(2) if M € F(S) andx € Sis a non-zero vector, theM v sp(x) = M + sp(x) €
F(S);

(3) A M =) M, forany systen{M;} from F(S).

LEmMMA 3.1. Let S be an inner product space and I& be a subspace 08,
dimN =n> 1. Then

FINY) ={Ac F(S): ACNY}, E(NY) ={AcE(S):ACN).

PrOOF. If X C S, thenX*n* := {x € N* : x L X}. LetdimN = 1 and suppose
A e F(S) andA € Nt. ThenAlwtv = (AL A NL)Le = (AL A NDHLANL =
(At vN)NNL = (A+N)NNL. SinceN isanatomofF (S)andA < N4, N € A,
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we have thatA + N) N N+ coversA, while A € (A+ N) NNt € A+ N. Hence,
(A+ N)N Nt = A thatis,A e F(N4).

Conversely, ifA € F(N*), thenAtvtint = (A + N)N N+ = A. The exchange
axiom impliesA*t = (A** + N) N N+ = A thatis,A € F(S).

The general case of did = n > 1 can be obtained by-times repeating the case
dimN = 1.

LetnowA € E(S)andA € N*. If x € N+, thenx = X5+ Xa., Wherex, € Aand
Xar € At sothatx — X, = Xa. € At which givesA + AtY = N+ andA € E(N).

Conversely, leA € E(N+). ThenA+ A = NtandA+A*"+N = N++N = S
If ae Aandu € A", v € N, then(a,u + v) = 0, that is,A*™ + N C A*. If now
X € At, thenx = Xa + Xain + Xy Which givesx, = 0, thatis, At € A*v + N. O

Therefore, if dimN = n > 1, N C S, then any chargen on F(S) (E(S)) can be
restricted by PropositioB.1to a chargeny:. onF(N+) (E(N*)) bymy: (M) = m(M)
if M e F(NY).

If dim S < oo, then it can happen that is unbounded. In what follows, we show
that if dimS = oo, then every sign-preserving charge BoS) is P;(S)-bounded as
well as P(S)-bounded. We will follow the basic ideas of Dorofeev-Sherstrigv |
(see alsoZ, Theorem 3.2.20]), who proved an analogical result for the frame-type
functions.

Let us recall that ifH is a Hilbert space, then by a self-adjoint operatortbrve
mean always an operatérdefined on a subspacs,of H which is dense irH.

Inspiring that, let us denote by SP&) the set of allP,(S)-unbounded sign-
preserving charges defined 611S), whereSis an arbitrary dense subspacetof

Our aim is to show that SREl) = @.

LEMMA 3.2. LetSPGQH) # ¢, dimH = oco. There exist a dense subsp&ef H
and a chargem € SPQH) on F(S) such that, for any one-dimensional subspate
of Swith Im(N)| > 1, we haveany. ¢ SPGN-*+).

ProoF. If dim N < oo, thenN+* is dense irfN++, where'* denotes the orthocom-
plementation inH, and a sign-preserving charge &i{S) is also a sign-preserving
charge orF (N%).

Suppose that the assertion does not hold. Then, for any dense suBsgaddefor
any chargen € SPQH) on F(S), there exists a one-dimensional subspic®f S
with [m(Ny)| > 1 such thamy: € SPQN; ™).

SinceH is an infinite-dimensional Hilbert space, it is isomorphic with its subspace
N;™. Consequently, any charge from SPC*) also does not fulfil the hypothesis.

In particular, formy, and we can find a one-dimensional subsphigeof Ni- with
IM(N)| > 1 such thatny,,n,: € SPA(N; v Np)*+).
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Continuing this process by induction, we find a sequence of mutually orthogonal
subspacefN, } of Ssuchthatm(N,)| > 1 andm,..n,): € SPQ(Ny V- - -V Ny)*H)
foranyn > 1.

There are infinitely many’s such thaim(N,) > 1 orm(N,) < —1. Without loss
of generality, we can assume thatraliN,) have the same sign.

Denote byA =\/, N,. In the first case, for any integar> 1, we have

m(S) = M(A) +m(A) = m(A") + ) m(N) +m ( \/ Ni)

i=1 i=n+1

> m(AY) + Y m(N) = m(A") +n,

i=1

when we have used the sign preserving property,oivhich gives a contradiction.
In a similar way we deal with the second case. O

LEMMA 3.3. Let SPQH) # #, dimH = oo There existsn € SPGH) and a
one-dimensional subspaeg of S, Sdense inH, such that

(3.2) max{|m(Xo)|, sugim(Y)| : Y € Py(Xp)}} = 1.

ProOOF. Takem from Lemma3.2and multiplyingm by some non-zero constant, if
necessary, we obtai3.Q). O

Since the proofs of the following two lemmas are identical with those2in [
Lemma 3.2.18] and?, Lemma 3.2.19], they are omitted.

LEMMA 3.4. Letm € SPAQH), dimH = oo, satisfy the condition of Lemn®a3.
Then there exist orthonormal vect@se,, e; € S, Sbeing the dense subspacetbf
such thatm(sp(g))| > 1foranyi =1, 2, 3.

LEmMMA 3.5. Let H be a real four-dimensional Hilbert space. L&t e, e;,€e €
#(H) such thate,, e,, e; are mutually orthogonal, and ¢ {e;}* U {&;}* U {e;}*, be
given. Then there exist two non-zero vectoedy in H such that

(1) e=x+y;
(2) x,e)=(y.& =Xy =(y—lyl*e.e5) =0,y —|lyl|’e #O.

We recall that a closed subgRf a complex or quaternion Hilbert spaklewhich
is a manifold with respect to the real fieRlis said to becompletely realf the inner
product(-, -) from H takes real values oR x R. Equivalently, if and only if there is
an orthonormal sefie; } in R such thatR is the closure of the real linear combinations
of theeg;.



206 Emmanuel Chetcuti and Anatolij Dvidenskij [8]

PrROPOSITION3.6. Any sign-preserving charge oR(S), dimS = oo, is P(S)-
bounded.

PrROOF. Suppose the converse, that is, let SFG # @, and letm € SPGQH)
satisfy 3.2). Let us setf (x) := m(sp(x)), X € #(S). Select orthonormal vectors
e, &, e; from Lemma3.4with | f(e)| > 1, i = 1, 2, 3, and define the constant

C= {gag{l f(e)l, supl f ()] : x € L{e})}} .

From the unboundedness o6fit follows that there is a vectdn € .&(S) such that
| f(h)] > 3C. Itis clearthah ¢ | J® ,{g}* and puty, = (h,&)/|(h,e)|,i = 1,2 3.
Then (h, 2;e) is real fori = 1,2,3. Let M be a completely real subspace of
dimension 4 containing and alli;g’s.

Applying Lemma3.5to vectorsi;g’s andh, we find two non-zero vectors and
y in M such that

(X, 226) = (Y, A383) = (X, Y) = (Z,1€) =0, h=Xx+Yy,

wherez = y — |ly||*h is a non-zero vector. Sincelgph} = sp(x, y} = sply, h}, we
havef (h)+ f(z/llzl) = fx/IIxI)+ f(y/llyll). From the construction we conclude
thatz e {e)}", so that| f(z/|/z|l)|] < C. Similarly, | f (x/[IXIDI[, [ f(y/llyID| < C.
Since| f(h)| < [f(h) + f(z/lIzIDI + [ f(z/l1zIDI, then

[f(h) + f(z/llzDl = [ f(h)| — [ f(z/llz])] > 3C — C = 2C,
we finally obtain from the last equality
2C = [f(x/IxID + fy/lyhl = [f(h) + f(z/lzID| > 2C,
which is a desired contradiction. O

THEOREM 3.7. Any sign-preserving charge df(S), dim S= oo, is P(S)-bounded.
Moreover, there is a unique Hermitian trace operaioion H such that

m(sp(x)) = (Tx, X), x e .Z(S).

PrOOF. In view of Proposition3.6, f(x) := m(sp(x)), X € .7(S), is bounded.
Therefore, by (1) of Lemma&.1, there is a Hermitian operatdr on S such that
f(X) = (Tx, X), X € Z(S).

We now show thafl € Tr(H). If T = 0, the statement is evident. Let now
T # 0 and suppos& ¢ Tr(H). Then there is an ONS§f,, ..., f,} in H such that
S (T, f)l > 1. Choose am > 0 such thad ", (T f,, f)| > 1+ €. Itis
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easy to see that faorf,, ..., f,,} we can find an ONS$h, ... , h, } in Ssuch that
lhy — fell < €/2ng||T]),k=1,...,ns. Then

[ f(h) — (T, f)l < [(T(he = T, fOl + [(The, hie = £
< 2Tl = fill < €/nq,
so that

Ny

DIl = D T IT e, fol = D 1T, f) — fhol > L.
k=1 k=1 k=1
PutH; = {hy,... ,h,}*, thenS = H; is a dense subspace h, so that,
m|F(S) is a sign-preserving charge df(S;). Therefore, as in the beginning of
the present proof, there is a Hermitian operalp(= Py, T Py,) on H; such that
f(xX) = (Tux, x) = (Tx, X), X € .¥(S). HereT; is not any trace operator since
T ¢ Tr(H).

Repeating the same reasonings as above, we find an ONS, ..., f.,} in
H; such that)"2 . [(Tfi, f)l > 1, and we find an ON$h,,.1, ..., hy,} in §
with ZE;M | f(hy)| > 1. Continuing this process, we find a countable family of

orthonormal vectorghy, h,, ...} € Sand a sequence of integefs;}°,, no = 0,
suchthad ., ., If(ho| > 1,foranyi > 1, which givesy .=, | f (hy)| = co.

Without loss of generality, we can assume thatfgh,) > 0 or f(h,) < 0. Set
A =\/,sphy). Inthe first case, for anly > 1,

i>nk

k nj

m(S) =m(AH) + > Y m(sph))) +m (\/ sp(hy )) > m(A") +k,

i=1 j=n_1+1

which is a contradiction. In a similar way we deal with the second case. Therefore,
T € Tr(H), and this proves thath is P(S)-bounded. O

4. Sign-preserving regular charges and completeness criterion

In this section, we present a new completeness criterion showin§ ihabmplete
if and only if F(S) admits at least one non-zero sign-preserving regular charge.
This result extends measure-type completeness criteria given, for examplg, in [
Section 4.3.2].

We say that a chargaon F(S) (E(S)) isregularif, givenM € F(S) (M € E(9))
and giverc > 0, there is a finite-dimensional subspatef M such that

Im(M N NY)| < e.

THEOREM4.1. An inner product spac8 is complete if and only iF (S) admits at
least one non-zero sign-preserving regular charge.
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PrROOF. The necessity is evident. Suppose, therefore, $iatan infinite-dimen-
sional inner product space, and tatbe a non-zero sign-preserving regular charge.
According to Theoren8.7, m is P(S)-bounded. LefT be a Hermitian operator
from (2.3.

Let B be an arbitrary orthogonally closed subspac&ahd let{e } be any MONS
in B and defineB, = {g }*+. ThenB, € B. We claim thatB, = B.

We see that

(*)  mM(Boy) =m(Bo) +m(B N By) =m(By) +1—m(B" v By) =m(B)

(which is true for any charge on F(9)).

If we had B, # B, thenB, # B, and we can find a unit vecter € B which is
orthogonal toB,. There exists a unit vectar € S such tham(sp(e)) # 0. Indeed,
there existsM € F(S) such that, sayn(M) > 0. GivenM, we find a sequence
{M,} in P(S) of non-decreasing subspacesMf such thatm(M) = lim,m(M,).
Without loss of generality we can assume thsp(e)) > 0. Applying Lemma2.1
to e = m(sp(e))/3 > 0 and tov € B, we can find & > 0 such that, for any unit
vectorw € Bwith |lw—v]| < §andanyA L v, dim A < oo, we have?2.4) for every
P;(S)-bounded chargson F(S) for which | T|| = || T|l.

Define a unitary operatdd : S — Ssuch thatUe = w andUf = f for any
f L e,w. Thenmy defined viamy (M) = mU-Y(M)), M € F(9), is a P, (S)-
bounded, regular charge &n(S) for which || T, | = [ Tl

Hence, forB there exists a sequen¢B,} of finite-dimensional subspaces Bf
B, € B,.; forn > 1, such thamy (B) = lim, my (B,).

We assert thain, (B) = lim, my (B, Vv sp(w)).

Calculate,

Imy (Bn v sp(w)) —my (B)| < Imy (B, Vv sp(w)) —my (Bn) |+ My (Bn) —my (B).

We now follow the ideas and symbols from the proof of (2) of Lem&nhawith
norm| T| less than a constait > 0. Lete > 0 be given. Set

wy = (I — Pg (w))/[I(I — Pg, (w)]l.
Then|w —w/ || < €/2K, B, Vv sp(w) = B, v sp(w},), andw;, L B,. Hence,

Imy (Bn v spw)) — my (By)|
= [My (SPw )| = [(Tmy wy,, wy)|
=< (T wh, wp) = (T wh, W A+ [ (T wyy, w) = (T w, W)

= 1T HHwp Hlwy = wlil + 1T Hwy, — wllllwll < €.

Consequentlyny (B) = lim, my (B, Vvsp(w)), and by ¢), my (B) = my (ByVvsp(w)).
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Therefore, giverr > 0 there is an integet, such that for any > ng

My (Bn vV spw)) —e < my(By vV sp(w)) < my (B, Vv spw)) + €
and

My (Bo) — € < my(By) < my(By) + €.

Using these inequalities and.§), we get

My (Bo) = My (Bo v sp(w)) > my (B, v sp(w)) — €
> my (Bn) + My (sp(w)) — 2¢ > my (Bo) + m(sp(€)) — 3¢ = my (By),

which contradicts the beginning and the end of former inequalities, and this proves
B, = B.

Due to the arbitrariness @& < F(S), we conclude thaf (S) is orthomodular.
The criterion of Amemiya and ArakP] Theorem 4.1.2], yields th&is complete, as
claimed. O

THEOREM4.2. Any sign-preserving regular charge da(S) of an inner product
spaceS, dimS = oo, is completely additive, and there is a trace operafoon S
such thatm(M) = tr(T By), M € F(S). In addition, the regular charge is always
bounded.

PrOOF. If mis a zero function, the statement is trivially satisfied. Supposenthat
is a non-zero sign-preserving regular charge.

According to Theorem.1, Sis a Hilbert space, and due to (i) of Lem®2, there
is a Hermitian operatof on S such that(T x, X) = m(sp(x)) for any unit vector
x € S. Moreover, by Theorer.7, T is a trace operator 08.

ExpressT = TT — T—, whereT* and T~ are positive and negative parts of
Let St, S and & be the subspaces & generatedx, : A > 0}, {X : A; < O},
and {x, : A, = 0}, respectively, wherd = Y. A4(-,X)x. Then, for any unit
vectorx € S*, m(sp(x)) > 0 and, for any unit vectoy € S, m(sp(y)) < O.
Thereforem(S") = lim, m(S,), whereS, C S, are finite-dimensional subspaces
of S*. Hence,m(S*) > > . m(sp(x)) for any ONB {x} in S* which implies
m(St) = tr(T*). In a similar way, we haven(S") = —tr(T ). Sincem(S§) = 0,
we havem(S) = tr(T).

If now M is an arbitrary subspace &f(S), thenTy, is the restriction ofPy T Py,
onto M, wherePy, is the orthogonal projector & onto M, is a trace operator. We
repeat the above reasoning . Hencem(M) = tr(Ty) = tr(T Py), M € F(S).

It is easy to show that the mappit — tr(T Py), M € F(S), is a completely
additive function orF (S) and bounded. O
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We recall that Theorem.1 does not hold for the case &(S). Indeed, leix be a
unit vector inS. The mappingn, (M) = ||xy||>, M € E(S), wherex = xy + Xy and
Xw € M, xy: € M+, is aregular charge oB(S) for any complete or incomplets.

We conclude the article with some comments.

(1) We recall that we do not know whether any regular chargd-¢8) is sign-
preserving.

(2) If a regular charge i$;(S)-bounded, then Theorerh1 holds for anyP;(S)-
bounded regular charge.

(3) We do not know whether every regular chargef(s) with dimS = oo is
P:(S)-bounded. This is unknown evengfis a Hilbert space.
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