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Abstract

We introduce sign-preserving charges on the system of all orthogonally closed subspaces,F.S/, of an inner
product spaceS, and we show that it is always bounded on all the finite-dimensional subspaces whenever
dim S = ∞. When S is finite-dimensional this is not true. This fact is used for a new completeness
criterion showing thatS is complete wheneverF.S/ admits at least one non-zero sign-preserving regular
charge. In particular, every such charge is always completely additive.
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1. Introduction

Gleason [4] characterised the set of all¦ -additive states on the systemL.H / of
all closed subspaces of a real, complex or quaternion separable Hilbert space,H ,
showing that there is a one-to-one correspondence among¦ -additive states,s, on
L.H /, 3 ≤ dim H ≤ ℵ0, and positive trace operators with unit trace,T , on H given
by

s.M/ = tr.T PM/; M ∈ L.H /;(1.1)

wherePM is the orthogonal projector fromH onto M .
In the paper [4], there is an example (see (2.1) below) showing that for any finite-

dimensional Hilbert spaceH of dimension at least three,L.H / admits many un-
bounded charges (= signed measures). The result of Dorofeev and Sherstnev [1] that
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every¦ -additive measure onL.H / with dim H = ∞ is bounded was therefore very
surprising.

In what follows, we show that an analogical result can be extended to sign-
preserving charges onF.S/ with dim S = ∞, that is, for chargesm satisfying
that if m.Mi / is strictly positive (negative) for a sequence of mutually orthogonal
finite-dimensional subspaces{Mi }, thenm.

∨
i Mi / is not negative (not positive).

We recall that ifS is an inner product space over real, complex or quaternion
numbers, we can define two families of closed subspaces ofS.

Let us denote byF.S/ the set of allorthogonally closed subspacesof S, that is,

F.S/ = {M ⊆ S : M⊥⊥ = M};

whereM⊥ = {x ∈ S : .x; y/ = 0 for all y ∈ M}. ThenF.S/ is a complete lattice
with respect to the set-theoretical inclusion [7, 2].

Let us denote byE.S/ the set of allsplitting subspaces ofS, that is,

E.S/ = {M ⊆ S : M + M ⊥ = S}:
Thus, E.S/ is the collection of all subspacesM of S where the projection theorem
holds. Observe that every complete subspace is splitting, andE.S/ ⊆ F.S/. In fact,
S is complete if and only ifE.S/ = F.S/ (see [2]).

The paper is organised as follows. A charge onF.S/ is a finitely additive mapping.
A charge is regular if the value ofm.M/ for M ∈ F.S/ can be approximated by values
on finite-dimensional subspaces ofM . In Section2 we characteriseP1.S/-bounded
charges onF.S/—charges bounded on one-dimensional subspaces. In Section3 we
introduce sign-preserving charges, and we show that these are always bounded on all
the finite-dimensional subspaces ofSwhenever dimS = ∞.

In Section4 we apply this result to obtain a new completeness criterion showing
that S is complete if and only ifF.S/ admits at least one non-zero sign-preserving
regular charge. In addition, every such charge is of the form (1.1) for some Hermitian
trace operatorT (not necessarypositive and of trace one), and moreover, such a regular
charge is even bounded.

We recall that our completion criterion is not valid for sign-preserving charges
on E.S/, because everyE.S/ (also for incompleteS) admits many regular charges.

2. P1(S)-bounded charges onF(S)

A chargeon F.S/ is any mappingm : F.S/ → R such that

m.M ∨ N/ = m.M/ + m.N/(∗)
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wheneverM; N ∈ F.S/ andM ⊥ N. A positive valued chargem such thatm.S/ = 1
is said to be astate. A chargem : F.S/ → R is a¦ -additive measureor acompletely
additive measureif (∗) holds for any sequence{Mn} or any system{Mt} of mutually
orthogonal elements fromF.S/. In a similar manner we can define a charge onE.S/.

We denote byP.S/ and P1.S/ the set of all finite-dimensional and of all one-
dimensional subspaces ofS, respectively. We say that a chargem on F.S/ is

(i) boundedif sup{|m.M/| : M ∈ F.S/} < ∞;
(ii) P.S/-boundedif sup{|m.M/| : M ∈ P.S/} < ∞;

(iii) P1.S/-boundedif sup{|m.M/| : M ∈ P1.S/} < ∞.

For example, let� : R → R be a discontinuous additive functional onR (see for
example [5], or [2, Proposition 3.2.4]). Let us define the mapping,m : L.H / → R,
by

m.M/ := �.tr.T PM//; M ∈ L.H /;(2.1)

whereO 6= T 6= k I is a Hermitian trace operator onH , k 6= 0. Then, for anyH ,
dim H ≥ 3, m is an unbounded charge.

In a similar way, now let 06= T 6= k I be a Hermitian trace operator on the
completionSSof S, wherek is a non-zero real constant andI is the identity onSS. The
mappingm : E.S/ → R defined by

m.M/ = �.tr.T PSM//; M ∈ E.S/;(2.2)

is an unbounded charge onE.S/.
A mapping f : S .S/ := {x ∈ S : ‖x‖ = 1} → R is said to be aframe functionif

there is a constantW (called theweightof f ) such that
∑

i f .xi / = W holds for any
maximal orthonormal system (MONS, for short){xi } in S.

The mappingf : S .S/ → R is said to be aframe type functionon S if (i) for any
orthonormal system (ONS, for short){xi } in S, { f .xi /} is summable; and (ii) for any
finite-dimensional subspaceK of S, f |S .K / is a frame function onK .

The following result was originally proved for states in [6], where the first¦ -
additive state completeness criterion was presented, and then generalised for charges
in [2, Lemma 4.2.1]. In order to be self-contained, we present the proof in details and
in a little bit more general form—forP1.S/-bounded charges.

LEMMA 2.1. (1) For any P1.S/-bounded charge m onF.S/ or E.S/, dim S 6= 2,
there exists a unique Hermitian operatorT = Tm : SS→ SSsuch that

m.sp.x// = .T x; x/; x ∈ S .S/:(2.3)

(2) Let v be a unit vector in the completionSSof S, dim S 6= 2. Then for anyž > 0
and anyK > 0, there exists aŽ > 0 such that the following statement holds: If w ∈ S
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is a unit vector such that‖v−w‖ < Ž, then for anyP1.S/-bounded charge m such that
the norm ofT = Tm is less thanK , and for each finite-dimensionalA ⊆ S satisfying
the propertyv ⊥ A, we have the next inequality

| m.A ∨ sp.w// − m.A/ − m.sp.w// | < ž:(2.4)

PROOF. (1) Suppose thatm is a P1.S/-bounded charge and define a functionf :
S .S/ → R via f .x/ = m.sp.x//; ‖x‖ = 1. Then f is bounded onS .S/.

Applying the Gleason theorem for finite-dimensional subspaces ofS, see [2], there
is a well-defined bounded bilinear formt such thatf .x/ = t .x; x/ for anyx ∈ S .S/.
Hence,t may be uniquely extended to a bounded, bilinear formt̄ defined onSS× SS .
Therefore, there is a unique Hermitian operatorT : SS → SSsuch that (2.2) holds. We
denote by‖T‖ the norm ofT .

(2) Let ž > 0 and K > 0 be given. By the continuity of the function².t/ =
.2 − 2.1 − t2/1=2/1=2 we can find aŽ1 > 0 such that².t/ < ž=2K for anyt ∈ [0; Ž1].

The continuity of the projectionPsp.v/⊥ : S → sp.v/⊥, allows us to find aŽ ∈ .0; 1/
such that the assumption‖v − w‖ < Ž implies‖Psp.v/⊥.w/‖ < Ž1. Fix aw ∈ S with
‖w‖ = 1, and suppose thatA is any finite-dimensional subspace orthogonal tov.
Then‖PA.w/‖ = ‖PA Psp.v/⊥.w/‖ ≤ ‖Psp.v/⊥ .w/‖ ≤ Ž1. Thus, we obtain

‖.I − PA/.w/= ‖.I − PA/.w/‖ −w‖ = ².‖PA.w/‖/ < ž=2K :

Putw′ = .I − PA/.w/=‖.I − PA/.w/‖. Then we have‖w−w′‖ < ž=2K , A∨sp.w/ =
A ∨ sp.w′/ andw′ ⊥ A. Calculate

|m.A ∨ sp.w// − m.A/ − m.sp.w//|
= |m.A/ + m.sp.w′// − m.A/ − m.sp.w//|
= |m.sp.w′// − m.sp.w//| = |.Tw′;w′/− .Tw;w/|
≤ |.Tw′;w′/ − .Tw′;w/| + |.Tw′;w/ − .Tw;w/|
≤ 2‖T‖ ‖w −w′‖ < ž:

3. P(S)-boundedness of sign-preserving charges

In the present section we introduce a new kind of charges, sign-preserving charges,
and we show that these are alwaysP.S/-bounded. We recall that, in general, charges
can be unbounded onF.S/, as an example below shows. This notion will be applied
in the next section to obtain a new completeness criterion for inner product spaces.

We say that a chargem on F.S/ is sign-preserving(or we say also thatm
satisfies thesign-preserving property) if, for any sequence of mutually orthogonal
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finite-dimensional subspaces{Mi } of S such that ifm.Mi / > 0 for any i , we have
m
(∨

i Mi

) ≥ 0, orm.Mi / < 0 for anyi thenm
(∨

i Mi

) ≤ 0.
It is easy to verify that ifm.Mi / > 0 for anyi , then

m

(∨
i

Mi

)
≥
∑

i

m.Mi / > 0;(3.1)

and if m.Mi / < 0 for anyi , we have the opposite inequalities.
For example, every¦ -additive measurem on F.S/ or every positive (negative)

charge is sign-preserving. LetH be a separable infinite-dimensional Hilbert space and
let m1 andm2 be two different states onL.H / vanishing on all the finite-dimensional
subspaces ofH . Thenm = m1 − m2 is a sign-preserving charge onL.H /, andm is
neither positive (negative) nor¦ -additive.

On the other hand, letH be a separable Hilbert space with an ONB{xn}∞
n=1.

Define the statem1.M/ = ∑∞
n=1 1=2nmxn

.M/, M ∈ L.H /, and letm2 be any finitely
additive state onL.H / vanishing on all the finite-dimensional subspaces ofH . Then
m =: m1 − m2 is a bounded charge onL.H / which is not sign-preserving. Indeed, let
M = ∨∞

n=2 sp.xn/. Thenm.sp.xn// = 1=2n for anyn, butm.M/ = 1=2− 1 = −1=2.
More general, ifm1 is a state defined by (1.1) andm2 as above, thenm = m1 − m2 is
a bounded charge which is not sign-preserving.

Let nows be a state onL.H / vanishing on all the finite-dimensional subspaces of
H . According to [3], the range ofs is the whole interval[0;1]. Take an arbitrary
discontinuous additive functional� on R. Then the mappingm on L.H / defined
by m.M/ = �.s.M//, M ∈ L.H /, is a sign-preserving charge vanishing on all the
finite-dimensional subspaces ofH which is unbounded onL.H /.

We recall that according to [7, Lemma 33.3],

(1) F.S/ is an atomic, complete lattice with orthocomplementation satisfying the
exchange axiom (that is, ifM is an atom ofF.S/, N ∈ F.S/, M 6⊆ N, thenM ∨ N
coversN (that is, if N ⊆ C ⊆ M ∨ N for someC ∈ F.S/, thenC ∈ {N; N ∨ M});
(2) if M ∈ F.S/ andx ∈ S is a non-zero vector, thenM ∨ sp.x/ = M + sp.x/ ∈

F.S/;
(3)

∧
Mi = ⋂

i Mi for any system{Mi } from F.S/.

LEMMA 3.1. Let S be an inner product space and letN be a subspace ofS,
dim N = n ≥ 1. Then

F.N⊥/ = {A ∈ F.S/ : A ⊆ N⊥}; E.N⊥/ = {A ∈ E.S/ : A ⊆ N⊥}:

PROOF. If X ⊆ S, thenX⊥N⊥ := {x ∈ N⊥ : x ⊥ X}. Let dimN = 1 and suppose
A ∈ F.S/ and A ⊆ N⊥. Then A⊥N⊥⊥N⊥ = .A⊥ ∩ N⊥/⊥N⊥ = .A⊥ ∩ N⊥/⊥ ∩ N⊥ =
.A⊥⊥ ∨ N/∩ N⊥ = .A+ N/∩ N⊥ . SinceN is an atom ofF.S/ andA ⊆ N⊥, N 6⊆ A,
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we have that.A + N/ ∩ N⊥ coversA, while A ⊆ .A + N/ ∩ N⊥ ⊆ A + N. Hence,
.A + N/ ∩ N⊥ = A, that is,A ∈ F.N⊥/.

Conversely, ifA ∈ F.N⊥/, thenA⊥N⊥ ⊥N⊥ = .A⊥⊥ + N/∩ N⊥ = A. The exchange
axiom impliesA⊥⊥ = .A⊥⊥ + N/ ∩ N⊥ = A, that is,A ∈ F.S/.

The general case of dimN = n > 1 can be obtained byn-times repeating the case
dim N = 1.

Let now A ∈ E.S/ andA ⊆ N⊥. If x ∈ N⊥, thenx = xA + xA⊥ , wherexA ∈ A and
xA⊥ ∈ A⊥ so thatx − xA = xA⊥ ∈ A⊥N which givesA + A⊥N = N⊥ andA ∈ E.N⊥/.

Conversely, letA ∈ E.N⊥/. ThenA+A⊥N = N⊥ andA+A⊥N +N = N⊥+N = S.
If a ∈ A andu ∈ A⊥N ; v ∈ N, then.a;u + v/ = 0, that is,A⊥N + N ⊆ A⊥. If now
x ∈ A⊥, thenx = xA + xA⊥N + xN which givesxA = 0, that is,A⊥ ⊆ A⊥N + N.

Therefore, if dimN = n ≥ 1, N ⊆ S, then any chargem on F.S/ (E.S/) can be
restricted by Proposition3.1to a chargemN⊥ onF.N⊥/ (E.N⊥/) bymN⊥.M/ = m.M/
if M ∈ F.N⊥/.

If dim S< ∞, then it can happen thatm is unbounded. In what follows, we show
that if dimS = ∞, then every sign-preserving charge onF.S/ is P1.S/-bounded as
well as P.S/-bounded. We will follow the basic ideas of Dorofeev-Sherstnev [1]
(see also [2, Theorem 3.2.20]), who proved an analogical result for the frame-type
functions.

Let us recall that ifH is a Hilbert space, then by a self-adjoint operator onH we
mean always an operatorA defined on a subspace,S, of H which is dense inH .

Inspiring that, let us denote by SPC.H / the set of allP1.S/-unbounded sign-
preserving charges defined onF.S/, whereS is an arbitrary dense subspace ofH .

Our aim is to show that SPC.H / = ∅.

LEMMA 3.2. LetSPC.H / 6= ∅, dim H = ∞. There exist a dense subspaceS of H
and a chargem ∈ SPC.H / on F.S/ such that, for any one-dimensional subspaceN
of Swith |m.N/| > 1, we havemN⊥ =∈ SPC.N⊥H /.

PROOF. If dim N < ∞, thenN⊥ is dense inN⊥H , where⊥H denotes the orthocom-
plementation inH , and a sign-preserving charge onF.S/ is also a sign-preserving
charge onF.N⊥/.

Suppose that the assertion does not hold. Then, for any dense subspaceSof H , for
any chargem ∈ SPC.H / on F.S/, there exists a one-dimensional subspaceN1 of S
with |m.N1/| > 1 such thatmN⊥

1
∈ SPC.N1

⊥H /.
SinceH is an infinite-dimensional Hilbert space, it is isomorphic with its subspace

N⊥H
1 . Consequently, any charge from SPC.N⊥H

1 / also does not fulfil the hypothesis.
In particular, formN1 and we can find a one-dimensional subspaceN2 of N⊥

1 with
|m.N2/| > 1 such thatm.N1∨N2/⊥ ∈ SPC..N1 ∨ N2/

⊥H /.



[7] Boundedness of sign-preserving charges 205

Continuing this process by induction, we find a sequence of mutually orthogonal
subspaces{Nn} of Ssuch that|m.Nn/| > 1 andm.N1∨···∨Nn/⊥ =∈ SPC..N1∨· · ·∨ Nn/

⊥H /

for anyn ≥ 1.
There are infinitely manyn’s such thatm.Nn/ > 1 or m.Nn/ < −1. Without loss

of generality, we can assume that allm.Nn/ have the same sign.
Denote byA = ∨

n Nn. In the first case, for any integern ≥ 1, we have

m.S/ = m.A⊥/ + m.A/ = m.A⊥/ +
n∑

i =1

m.Ni /+ m

( ∞∨
i =n+1

Ni

)

≥ m.A⊥/ +
n∑

i =1

m.Ni / ≥ m.A⊥/+ n;

when we have used the sign preserving property ofm, which gives a contradiction.
In a similar way we deal with the second case.

LEMMA 3.3. Let SPC.H / 6= ∅, dim H = ∞ There existsm ∈ SPC.H / and a
one-dimensional subspaceX0 of S, Sdense inH , such that

max
{|m.X0/|; sup{|m.Y/| : Y ∈ P1.X

⊥
0 /}
} = 1:(3.2)

PROOF. Takem from Lemma3.2and multiplyingm by some non-zero constant, if
necessary, we obtain (3.2).

Since the proofs of the following two lemmas are identical with those in [2,
Lemma 3.2.18] and [2, Lemma 3.2.19], they are omitted.

LEMMA 3.4. Let m ∈ SPC.H /, dim H = ∞, satisfy the condition of Lemma3.3.
Then there exist orthonormal vectorse1;e2;e3 ∈ S, Sbeing the dense subspace ofH ,
such that|m.sp.ei //| > 1 for any i = 1;2;3.

LEMMA 3.5. Let H be a real four-dimensional Hilbert space. Lete1;e2;e3;e ∈
S .H / such thate1;e2;e3 are mutually orthogonal, ande 6∈ {e1}⊥ ∪ {e2}⊥ ∪ {e3}⊥, be
given. Then there exist two non-zero vectorsx and y in H such that

(1) e = x + y;
(2) .x;e1/ = .y;e2/ = .x; y/ = .y − ‖y‖2e;e3/ = 0, y − ‖y‖2e 6= 0.

We recall that a closed subsetR of a complex or quaternion Hilbert spaceH which
is a manifold with respect to the real fieldR is said to becompletely realif the inner
product.·; ·/ from H takes real values onR × R. Equivalently, if and only if there is
an orthonormal set{ej } in R such thatR is the closure of the real linear combinations
of theej .



206 Emmanuel Chetcuti and Anatolij Dvurečenskij [8]

PROPOSITION3.6. Any sign-preserving charge onF.S/, dim S = ∞, is P1.S/-
bounded.

PROOF. Suppose the converse, that is, let SPC.H / 6= ∅, and letm ∈ SPC.H /
satisfy (3.2). Let us setf .x/ := m.sp.x//, x ∈ S .S/. Select orthonormal vectors
e1;e2;e3 from Lemma3.4with | f .ei /| > 1; i = 1;2;3, and define the constant

C = max
1≤i ≤3

{| f .ei /|; sup{| f .x/| : x ∈ S .{ei }⊥/}} :
From the unboundedness off it follows that there is a vectorh ∈ S .S/ such that
| f .h/| > 3C. It is clear thath 6∈ ⋃3

i =1{ei }⊥ and put½i = .h;ei /=|.h;ei /|, i = 1;2;3.
Then .h; ½i ei / is real for i = 1;2;3. Let M be a completely real subspace of
dimension 4 containingh and all½i ei ’s.

Applying Lemma3.5 to vectors½i ei ’s andh, we find two non-zero vectorsx and
y in M such that

.x; ½2e2/ = .y; ½3e3/ = .x; y/ = .z; ½1e1/ = 0; h = x + y;

wherez = y − ‖y‖2h is a non-zero vector. Since sp{z;h} = sp{x; y} = sp{y;h}, we
have f .h/+ f .z=‖z‖/ = f .x=‖x‖/+ f .y=‖y‖/. From the construction we conclude
that z ∈ {e1}⊥, so that| f .z=‖z‖/| ≤ C. Similarly, | f .x=‖x‖/|; | f .y=‖y‖/| ≤ C.
Since| f .h/| ≤ | f .h/+ f .z=‖z‖/| + | f .z=‖z‖/|, then

| f .h/+ f .z=‖z‖/| ≥ | f .h/| − | f .z=‖z‖/| > 3C − C = 2C;

we finally obtain from the last equality

2C ≥ | f .x=‖x‖/+ f .y=‖y‖/| = | f .h/ + f .z=‖z‖/| > 2C;

which is a desired contradiction.

THEOREM 3.7. Any sign-preserving charge onF.S/, dim S=∞, is P.S/-bounded.
Moreover, there is a unique Hermitian trace operatorT on H such that

m.sp.x// = .T x; x/; x ∈ S .S/:

PROOF. In view of Proposition3.6, f .x/ := m.sp.x//, x ∈ S .S/, is bounded.
Therefore, by (1) of Lemma2.1, there is a Hermitian operatorT on SS such that
f .x/ = .T x; x/, x ∈S .S/.

We now show thatT ∈ Tr.H /. If T = 0, the statement is evident. Let now
T 6= 0 and supposeT =∈ Tr.H /. Then there is an ONS{ f1; : : : ; fn1} in H such that∑n1

k=1 |.T fk; fk/| > 1. Choose anž > 0 such that
∑n1

k=1 |.T fk; fk/| > 1 + ž. It is
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easy to see that for{ f1; : : : ; fn1} we can find an ONS{h1; : : : ;hn1} in S such that
‖hk − fk‖ < ž=.2n1‖T‖/, k = 1; : : : ;n1. Then

| f .hk/− .T fk; fk/| ≤ |.T.hk − fk/; fk/| + |.T hk;hk − fk/|
≤ 2‖T‖‖hk − fk‖ < ž=n1;

so that
n1∑

k=1

| f .hk/| ≥
n1∑

k=1

|.T fk; fk/| −
n1∑

k=1

|.T fk; fk/− f .hk/| > 1:

Put H1 = {h1; : : : ;hn1}⊥H , then S1 = H1 is a dense subspace inH1, so that,
m|F.S1/ is a sign-preserving charge onF.S1/. Therefore, as in the beginning of
the present proof, there is a Hermitian operatorT1 .= PH1T PH1/ on H1 such that
f .x/ = .T1x; x/ = .T x; x/, x ∈ S .S1/. HereT1 is not any trace operator since
T 6∈ Tr.H /.

Repeating the same reasonings as above, we find an ONS{ fn1+1; : : : ; fn2} in
H1 such that

∑n2

k=n1+1 |.T fk; fk/| > 1, and we find an ONS{hn1+1; : : : ;hn2} in S1

with
∑n2

k=n1+1 | f .hk/| > 1. Continuing this process, we find a countable family of
orthonormal vectors{h1;h2; : : : } ⊂ S and a sequence of integers,{ni }∞

i =0, n0 = 0,
such that

∑ni

k=ni−1+1 | f .hk/| > 1, for anyi ≥ 1, which gives
∑∞

k=1 | f .hk/| = ∞.
Without loss of generality, we can assume that allf .hn/ > 0 or f .hn/ < 0. Set

A = ∨
n sp.hn/. In the first case, for anyk ≥ 1,

m.S/ = m.A⊥/+
k∑

i =1

ni∑
j =ni−1+1

m.sp.hj //+ m

(∨
i>nk

sp.hi /

)
≥ m.A⊥/+ k;

which is a contradiction. In a similar way we deal with the second case. Therefore,
T ∈ Tr.H /, and this proves thatm is P.S/-bounded.

4. Sign-preserving regular charges and completeness criterion

In this section, we present a new completeness criterion showing thatS is complete
if and only if F.S/ admits at least one non-zero sign-preserving regular charge.
This result extends measure-type completeness criteria given, for example, in [2,
Section 4.3.2].

We say that a chargem on F.S/ .E.S// is regular if, given M ∈ F.S/ .M ∈ E.S//
and givenž > 0, there is a finite-dimensional subspaceN of M such that

|m.M ∩ N⊥/| < ž:

THEOREM 4.1. An inner product spaceS is complete if and only ifF.S/ admits at
least one non-zero sign-preserving regular charge.
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PROOF. The necessity is evident. Suppose, therefore, thatS is an infinite-dimen-
sional inner product space, and letm be a non-zero sign-preserving regular charge.
According to Theorem3.7, m is P.S/-bounded. LetT be a Hermitian operator
from (2.3).

Let B be an arbitrary orthogonally closed subspace ofSand let{ei } be any MONS
in B and defineB0 = {ei }⊥⊥. ThenB0 ⊆ B. We claim thatB0 = B.

We see that

m.B0/ = m.B0/+ m.B ∩ B⊥
0 / = m.B0/+ 1 − m.B⊥ ∨ B0/ = m.B/(?)

(which is true for any chargem on F.S/).
If we had B0 6= B, thenSB0 6= SB, and we can find a unit vectorv ∈ SB which is

orthogonal toSB0. There exists a unit vectore ∈ S such thatm.sp.e// 6= 0. Indeed,
there existsM ∈ F.S/ such that, say,m.M/ > 0. Given M , we find a sequence
{Mn} in P.S/ of non-decreasing subspaces ofM such thatm.M/ = limn m.Mn/.
Without loss of generality we can assume thatm.sp.e// > 0. Applying Lemma2.1
to ž = m.sp.e//=3 > 0 and tov ∈ SB, we can find aŽ > 0 such that, for any unit
vectorw ∈ B with ‖w−v‖ < Ž and anyA ⊥ v; dim A < ∞, we have (2.4) for every
P1.S/-bounded charges on F.S/ for which‖Ts‖ = ‖T‖.

Define a unitary operatorU : S → S such thatUe = w andU f = f for any
f ⊥ e;w. ThenmU defined viamU .M/ = m.U−1.M//, M ∈ F.S/, is a P1.S/-
bounded, regular charge onF.S/ for which‖TmU

‖ = ‖T‖.
Hence, forB there exists a sequence{Bn} of finite-dimensional subspaces ofB,

Bn ⊆ Bn+1 for n ≥ 1, such thatmU .B/ = limn mU .Bn/.
We assert thatmU .B/ = limn mU .Bn ∨ sp.w//.
Calculate,

|mU .Bn ∨ sp.w//−mU .B/|≤ |mU .Bn ∨ sp.w//−mU .Bn/|+|mU .Bn/−mU .B/|:
We now follow the ideas and symbols from the proof of (2) of Lemma2.1 with
norm‖T‖ less than a constantK > 0. Letž > 0 be given. Set

w′
n = .I − PBn

.w//=‖.I − PBn
.w/‖:

Then‖w −w′
n‖ < ž=2K , Bn ∨ sp.w/ = Bn ∨ sp.w′

n/, andw′
n ⊥ Bn. Hence,

|mU.Bn ∨ sp.w// − mU .Bn/|
= |mU .sp.w′

n//| = |.TmU
w′

n;w
′
n/|

≤ |.TmU
w′

n;w
′
n/ − .TmU

w′
n;w/| + |.TmU

w′
n;w/ − .TmU

w;w/|
≤ ‖TmU

‖‖w′
n‖‖w′

n −w‖ + ‖TmU
‖‖w′

n −w‖‖w‖ ≤ ž:

Consequently,mU .B/ = limn mU .Bn ∨sp.w//, and by (?), mU .B/ = mU .B0∨sp.w//.
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Therefore, givenž > 0 there is an integern0 such that for anyn > n0

mU .Bn ∨ sp.w// − ž < mU .B0 ∨ sp.w// < mU .Bn ∨ sp.w// + ž

and

mU .B0/− ž < mU .Bn/ < mU .B0/+ ž:

Using these inequalities and (2.4), we get

mU .B0/ = mU .B0 ∨ sp.w// > mU .Bn ∨ sp.w// − ž

> mU .Bn/+ mU .sp.w// − 2ž > mU .B0/+ m.sp.e// − 3ž = mU .B0/;

which contradicts the beginning and the end of former inequalities, and this proves
B0 = B.

Due to the arbitrariness ofB ∈ F.S/, we conclude thatF.S/ is orthomodular.
The criterion of Amemiya and Araki [2, Theorem 4.1.2], yields thatS is complete, as
claimed.

THEOREM 4.2. Any sign-preserving regular charge onF.S/ of an inner product
spaceS, dim S = ∞, is completely additive, and there is a trace operatorT on SS
such thatm.M/ = tr.T PM/, M ∈ F.S/. In addition, the regular charge is always
bounded.

PROOF. If m is a zero function, the statement is trivially satisfied. Suppose thatm
is a non-zero sign-preserving regular charge.

According to Theorem4.1, S is a Hilbert space, and due to (i) of Lemma3.2, there
is a Hermitian operatorT on S such that.T x; x/ = m.sp.x// for any unit vector
x ∈ S. Moreover, by Theorem3.7, T is a trace operator onS.

ExpressT = T + − T−, whereT+ andT− are positive and negative parts ofT .
Let S+, S− and S0 be the subspaces ofS generated{xi : ½i > 0}, {xi : ½i < 0},
and {xi : ½i = 0}, respectively, whereT = ∑

i ½i .·; xi /xi . Then, for any unit
vector x ∈ S+, m.sp.x// > 0 and, for any unit vectory ∈ S−, m.sp.y// < 0.
Therefore,m.S+/ = limn m.Sn/, whereSn ⊆ Sn+1 are finite-dimensional subspaces
of S+. Hence,m.S+/ ≥ ∑

i m.sp.xi // for any ONB {xi } in S+ which implies
m.S+/ = tr.T+/. In a similar way, we havem.S−/ = − tr.T−/. Sincem.S0/ = 0,
we havem.S/ = tr.T/.

If now M is an arbitrary subspace ofF.S/, thenTM is the restriction ofPM T PM

onto M , wherePM is the orthogonal projector ofS onto M , is a trace operator. We
repeat the above reasoning forTM . Hence,m.M/ = tr.TM/ = tr.T PM/, M ∈ F.S/.

It is easy to show that the mappingM 7→ tr.T PM/, M ∈ F.S/, is a completely
additive function onF.S/ and bounded.
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We recall that Theorem4.1 does not hold for the case ofE.S/. Indeed, letx be a
unit vector inS. The mappingmx.M/ = ‖xM‖2, M ∈ E.S/, wherex = xM +xM⊥ and
xM ∈ M , xM⊥ ∈ M⊥, is a regular charge onE.S/ for any complete or incompleteS.

We conclude the article with some comments.

(1) We recall that we do not know whether any regular charge onF.S/ is sign-
preserving.
(2) If a regular charge isP1.S/-bounded, then Theorem4.1 holds for anyP1.S/-

bounded regular charge.
(3) We do not know whether every regular charge onF.S/ with dim S = ∞ is

P1.S/-bounded. This is unknown even ifS is a Hilbert space.
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