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Abstract

We develop several iterative methods for computing generalized inverses using both first and seconc
order optimization methods i@*-algebras. Known steepest descent iterative methods are generalized in
C*-algebras. We introduce second order methods based on the minimization of the||Wormsb)||?

and | x||2 by means of the known second order unconstrained minimization methods. We give several
examples which illustrate our theory.
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1. Introduction

Let H andK be Hilbert spaces and létbe a bounded linear operator frdtinto K.

In this paper we construct several iterative methods which are concerned in computing
the Moore-Penrose generalized invers@ofl hese iterative methods appear naturally

in minimization methods of the first and the second order. Moreover, we investigate
these methods i@*-algebras.

Applications of the first order gradient minimization methods in computation of
the Moore-Penrose inverse Af(when it exists) are well known. The steepest descent
method in minimization of the functiondD(x) = %||Ax — b2 (x € H, b € K)
was introduced in7q] and [14] (see also2, 5]). The problem of approximating the
least squares solutions éfx = b by means of the conjugate-gradient optimization
technique was considered iB, b, 7, 9]. A conjugate-gradient method for computing
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the Moore-Penrose generalized inverse was developetB]n A class of gradient
methods for minimizingQ(x) = %||Ax — b||?, defined by the real-valued step-size
functions(x) defined onH and by a fixed real number@ o < 2:

(1.1) Xnt1 = Xn — aS(%) A" (A%, — b) = X, — as(X,) VQ(Xy),

was analyzed in][0]. The weak steepest descent method, which is defined by means
of the fixed step-size in all iterations, as well as its applications in computation of
generalized inverses, were investigatedlingnd [14].

LetH be a Hilbert space an@ : H — R be atwice differentiable functional. The
second order minimization method (Newton’s method) is defined by the following
iterative procedured:

(1.2) X1 = Xo — [V2Q()] " VQ(Xy),

whereV Q(x,) andV2Q(x,) denote the gradient and Hessian, respectively, of a given
objective functionQ, at the poinx,. A few quasi-Newton minimization methods for
operators acting frorR" into R are defined inJ]. We use the following adaptation

of a quasi-Newton minimization method:

(1.3) Xorr = X0 — (al + V2Q0)) " VQOX),

whereQ : H — R is an arbitrary functional}, > 0 is a chosen scalar angl +
V2Q(x,) is positive and invertible.

The paper is organized as follows. In Sectimwe introduce and consider one
iterative method for computing the Moore-Penrose inverse of a relatively regular
element in aC*-algebra. As a corollary we get that the Nashed steepest descent
method is convergent in operator norm. We also prove that the gradient metht)ds (
are also convergent in operator norm. In Sec8ame construct and investigate some
new methods related to the second order optimization. We also prove the convergenc
of these methods i@*-algebras. Numerical examples are presented in Setion

Throughout this paper we always assuang 0 in aC*-algebra.

2. Methods based on the first order optimization

We use? (H, K) to denote the set of all bounded linear operators ftbrimto K .
For A € Z(H, K), we useZ(A) and._4"(A), respectively, to denote the range and
the kernel ofA. Also, by A* we denote the adjoint operator &f It is well known
that A has the Moore-Penrose inverdé e (K, H) if and only if Z(A) is closed.

First we shall explain the steepest descent method, introduced]in fuppose
that A € .Z(H, K) has the Moore-Penrose inverse. For arbittary K, letr, =
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A* Ax, — A*banda, = ||r, %/ || Ar, |12, In[11] it was proved that the iterative sequence
Xni1 = Xn — anl, Satisfies linx, = ATb if and only if b € Z(A*). Notice that every
change ob € K implies the construction of a new iterative method. The choice of
a,, in the n-th step of the steepest descent method ensures the most rapid decrease «
| A1 — DII.

Therefore, takingX, € Z(K, H), the sequencéX,), which is defined in the
following way

(2.1) Xns1 = Xn — an A" (AX, — 1)

obeys the property lin,b = A'b.

We shall consider a more general metho€inalgebras.

Let &/ be a complexC*-algebra with the unit 1. We say thate «/ is relatively
regular, provided that there exists sorhe= ./ satisfyingaba = b. In this casé is
calledan inner generalized inverse af It is well known thata is relatively regular
if and only if there exists the Moore-Penrose inverse,oflenoted bya' ([6]). The
elemenia’ is the unique element of’ satisfying

aa'la=a, aaa'=a', (aa)*=aa', (a'a) =a'a.

If a € &/ is relatively regular and~ denotes an arbitrary inner generalized inverse
of a, then for anyb, c € & we have(l —aa )(ab— c) = (aa ¢ — c). Consequently,
laa_c—c| < ||1—aa|/|lab—c||. Taking(aa™)* = aa~, ora~ = a', we obtain the
following minimization result:

min|ab— c|| = ||laa’c — c|.
bea?

We begin with two auxiliary results. The first one can be foundlig, [Theo-
rem 5.7.8]. We use,, (a) to denote the spectrum afin the algebrav'.

LEmmA 2.1. If p € & is a nontrivial idempotent and € p« p, then

oy(@) = O'pﬂp(a) U {0}.

The second result is a consequence of elementary calculations. For some facts w
need properties of the group invers&ditralgebras. If 0 is not the accumulation point
of the spectrum o& and p is the spectral idempotent efcorresponding t¢0}, then
a is invertible in the algebrél — p)</ (1 — p) and its inverse in this algebra is the
generalized Drazin inverse af(see B]). Itis well known that the generalized Drazin
inverse ofa commutes with everp satisfyingab = ba. If » = 0 is a pole of order
k of the resolvent. — (A — a)~?, then the generalized Drazin inverse becomes the
(ordinary) Drazin inverse; in this case the Drazin inde& &f equal tak. In particular,
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if k < 1, then the Drazin inverse afis known as the group inverse af denoted by
a*. Naturally,a is invertible if and only ifk = 0 and in this casa™* = a*. In the

case when it existg” is the unique element of/ satisfyingaa’a = a, a*aa” = a*

andaa® = a*a.

LEMMA 2.2. Leta € & be relatively regular. Then the following holds
(1) @)'=@hy
2) @a'=a'@)" = (@a
(3) a' = (a*a)Ta*;
(4) (a*a)" commutes with every element@fwhich commutes with*a;
(5) a*aisinvertible in the algebra’a«’a’a = % and(a*a)’ = (a*a);";
(6) a'aa* = a* = a*aa’.
It is important to notice that i1 is relatively regular, thefa*a)” exists. Hence, 0
is not the accumulation point of the spectram(a*a).
For a selfadjoint elemerdt € <, we use.#.(d) andm, (d), respectively, to

denote the upper and the lower bound of the spectrudhiothe algebraz .
Now we formulate the result inspired by the Nashed steepest descent method.

THEOREM2.3. Leta € & be relatively regularZ = a'a«/a’a and letc, Xy € &
be arbitrary. Let(1), be a sequence of positive numbers such that

0<e < <2max{[Zz@a)] " [mz@a)l’'}—4

holds for some:, § > 0 and for all n. Then the sequends,), generated by the
iterative methodk,,; = X, — A,a*(ax, — ¢), n > 0, converges ta'c + (1 — a'a)x,.
Consequenthim x, = a'cif and only ifa’ax, = xo.

PROOF. Leta'ax, = Xo. Using Lemma2.2 (6) and the induction on it follows
thata'ax, = x, for all n. We compute

a‘ax,,; —a‘c = a‘ax, —a‘c— A a‘a(@*ax, — a‘c)
= (1 - ra*a)(@ax, — a‘c).

Multiplying previous equality by@a*a)" from the left side and using Lemn#a2 (3)
and (4), we get

Xnp1 —a'c= (1—r,a*a)(x, —a'c)
and
ta _ ot tay — ata(l — 3 aravatacx. — at
Xni1 —a'c = a'a(x,;, —a'c) = a'a(l — ra*a)a’a(x, — a'c).
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The norm estimate follows||x,,, — a'c| < ||aa(1 — r,a*a)a’al|||x, — a'c||. To
ensure the convergence, we must hpaka(1 — r,a*a)a’al < g < 1. We know the
following

la'a(l — ra*a)a’al
= max{|.Zz[a'a(l — r,a*a)a’all, Imz[a’a(l — r,a*a)a’all} .

Notice that#z[a'a(1-1,a*a)a’a]l = 1—i,mx(a*a) andmg[a’a(l—r,a*a)a’al =
1-Ar,.#»(a*a). Sincea*aisinvertible inZ, we conclude thafa'a(l—r,a*a)a’al| <
g < 1 holds for alln if and only if

0<e < <2max{[.Zz@a)] ™, [me@a) ™"} -5

holds for some:, § > 0 and for alln. Obviously, limx, = a'c.
Now, suppose thad'ax, # X,. For anyx € « we denotex’ = a'ax and
X" = (1 —a'a)x. Now we havex; # 0. From Lemm&.2(6) we conclude that

X; = Xy — Ao@"(@% — C) = X{ — Ao@"(aX) — C)

andx; = xg. By induction onn we conclude thax, , = X, — A,a*(ax, — ¢) and
X!., = X;. From the first part of the proof we get lijg = a'c + (1 —a'a)x,. O

REMARK 2.1.In the casec = 1, the limitd = a' + (1 — a'a)x, is an inner
generalized inverse i andad = aa' is selfadjoint. Moreover, the condition
a'ax, = X, can be ensured taking = a*efor an arbitrarye € /.

REMARK 2.2. In the case wherA € Z(H, K) is relatively regular, the same
method as in Theorer®.3 can be applied, takin€ € Z(K), Xq € Z(K, H).
Now the conditionATAX, = X, can be replaced witt?(X,) C Z(A*). We use
B = ATAZ(H)ATA = ZL(Z(A)) instead of Z = a'aw/a’a. It is useful to
consider operator matrices. For example,

A, 0] 'QZ(A*)} N |:92(A) 1

A=lo o [ N (AY) ]

whereA; is invertible. We also have

A (A 0] [ 2(A) B (AT
Lo 0] (A N (A ]
and
+ [A? 0] [ 2A K (A*)
A= e o} : L/V(A*)} - LV(A)]

The critical point — useng(a*a) and.#z(a*a) — is now changing: we have to use
Mg (A} A1) = Mg (A" Algay) andZz (AL Ar) = Mg (A Alga)-
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COROLLARY 2.4. The sequenceX,),, constructed in the steepest descent method
explained in(2.1), converges tAA" + (I — ATA) X, in the operator norm.

PrOOF. Using Theoren2.3 we can prove that the steepest descent method produces
the sequenceX,), converging toAT+ (I — AT A) X, in the operator norm o (K, H),
if we can prove that

O<e<a < Zmax{[//fga(A*AW(A*))]fl, [mga(A*A|ﬂ(A*))]7l} -0

holds for some, § > 0 and alln.
The restrictionAlz A = A; (see the notation in Remapk?) is invertible. Hence,
we get
0< j(A)*= inf [Ax|?= inf (A, Ax)
= Inf (ALAX, X) = Mg (A A = Mg (A" Alga).
where# = £ (#(A")). Sincer, € Z(A*) for all n, we have| Ar,|| > j(A)|Irll
implying

n

Iz . B
=1 A:nnz < (A2 = [Mg(A*Algza)] ™

On the other hand, sindeAr, || < |Allllr.]l, we get

2
L _nl® _
IAIZ = AR

ne

Finally, using Lemm&.1, we get the following

[AlI? = |AAll = M pm) (A A) = Mz(A;A)
= Mz (A" Alziny) = Mz (A" Alzna)).

Hence, the intervaf || Al|=2, [Mz (A" Alza)]1] is non-empty and it is contained

in the interval[e, 2max{[.# (A" Alza)]™% [Ma (A Az} — 8] for some

€,8 > 0. Hence, the steepest descent method introduced by NashEf ia based

on the construction of a certain sequence of operators converging (in the operatol
norm) to the Moore-Penrose inverse of a given operator. O

REMARK 2.3. Consider the class of gradient methods frafi]| These methods
are related to the operator equatihn = b, whereA € .2 (H, K) is relatively regular.
The set of all least square solutions of this equation is denot&d Hgrex € Sif and
only if || Ax — b|| = miny || Au— b]|. Such arx exists, sincéA is relatively regular. It
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is well known thatx € Sif and only if x = Gb for someG € £ (K, H), whereG
is an inner generalized inverse Afand AG is selfadjoint (compare this fact with the
one in Remark.1). For an arbitrarik € H, Ps(x) is defined as(x) = y, where

X =yl = min{lx —v]| : v € S}.

Such any exists, sinceSis closed and convex set. Moreover, there exists the unique
elemenk* € Sof minimal norm. Itis also well known that* = A'bholds. LetAx =

X — Ps(x). The following is known:Ax € Z(A*) andPs(x) = A'Tb + (I — ATA)b.
Let0 < o < 2 and letx — s(x) be a real function defined ad \ S, satisfying

> | AAX|?
A7 <s(x) < ” eH\S

A AAX|2’

The gradient method for minimizing Ax — b|| is defined in the following way
(see [LO)):

Xn — aS(X) A* (A%, — b); X, e H\' S
Xns Xy € S.

(2.2) Xnp1 = {

Finally, it is proved that linx, = Ps(X) = A'b + (I — ATA)x, holds.

This method can be considered as a construction of certain sequence of operator
(Xn)n, Where limX,b = A'b + (I — ATA)X,b. Notice that any change dfimplies
the change of the iterative method.

CoROLLARY 2.5. If A € Z(H, K) is relatively regular, then the sequencX,),
constructed in2.2) converges tA" + (I — ATA)X, in operator norm.

PROOF. Since Ax € Z(A"), it is easy to prove (as in Corollarg.4) that the
sequences(x,) is contained in the interval

[e, 2max{[.Zz(A Alza)] ™ Mz (A" Alga)] ) — 8]

for somee, § > 0. O

3. Methods based on the second order optimization

We minimize the functionaQ(x) = %||Ax — b|j2. The gradient and Hessian
of Q(x) are equal tov Q(x,) = A*(Ax, — b) andV?Q(x,) = A*A, respectively. In
view of the constant Hessiaff Q(x) = A* A, the Newton’s optimization method Q)
is not applicable in the minimization @(x) in the case whe®\* A is singular. But,
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it is possible to use the quasi-Newton metha). This idea gives us the following
iterative method of the typel (3):

Xn+1 = Xp— ()\nI + A*A)ilA*(AXn - C)

This method, obviously, can be applied@i-algebras. We prove that this method
converges to a certain generalized invers@offaking some natural assumptions, we
obtain that the method converges to the Moore-Penrose inverse of

We begin with the following result, in which we construct the method and prove
the convergence.

THEOREM 3.1. Suppose thad € < is relatively regularx,, ¢ € < are arbitrary,
and (1,), is a bounded sequence of positive numbers. Then the iterative method

(3.1) Xnp1 = Xn — (A + @*@)'a*(ax, — ©)
convergesta'c+ (1—a'a)x,. Consequentlyim x, = a'cif and only ifa’ax, = Xo.

PROOF. Leta'ax, = Xo. By induction onn we obtaina'ax, = x, for everyn.
Now we compute

a*ax,,; — a‘c = a*ax, — a‘c — a*a(x, + a‘a) }(a*ax, — a*c)
= A(Ay + a'a) Y(@*ax, — ac).

Multiplying the previous equality bya*a)™ from the left side, we get
Xnp1 —a'C = An(A, + a*a) (x, — a'c).
Now we have the following:

Xpi1 — @'C = a'a(Xy1 — a'c)
= r,a'a(r, + a*a)ta'a(x, — a'c).
Let# = a'a«/a'a. Sincea*a is invertible in4, we know thatmz(a*a) > 0. Now
the following holds
[Xns1 — @'cll < An#Zz[a’a(r, + a*a) 'a’al|x, — a'c||

An

= ————|x, —ac|.
An + mgg(a a)

Since the functiont — t[(t + mg(a*a)]~! is increasing and the sequengg), is
bounded, we conclude that there exists samn@ < q < 1, such that for everg

%41 — a'cll < qllx, — a'c].
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Hence, limx, = a'c.
Suppose thad'ax, # X,. Denotex’ = a’ax andx” = (1 — a'a)x forall x € .
We conclude that

X; =Xy — (A +@%a) 'a*(@x — ) = x, — (A, + a*a) 'a*(@ax;, — ¢

andx; = X; + X§. By induction onn we getx, = x;, + x{ for everyn. From the first
part we get limk/, = a'c and consequently lim, = a'c + (1 — a'a)x,. O

To get the idea for the next method, consider a relatively regular opefator
Hilbert spaces. Let us consider the functional

Qu (X) = IIAX = b]1?/2 + a4 [1X]|?/2

wherex, is areal quantity. Ik, is the minimizer ofQ,, (x), thenlim, _o, X,, = A'b.
Itis not difficult to verify the following:

VQq, (%) = A“(A% — b) + Xy,  V2Q,, (%) = A"A+apl.

Similarly, according to the quasi-Newton methdd3d), we give the iterative method
which produces the following approximatiors of the minimizerx,,

Xni1 = Xn — (O + o)l + AA) A (A%, —b) + %], n=0,1,...
For fixed values., = A4,n =0, 1, ..., the approximationg, are of the form
Xni1 = Xn — (A 4+ ap)l + A*A) T [A* (A%, —b) +ax)], n=0,1,...
This idea suggests to define the following iterative metha@iralgebras
Xni1 = Xo — (B + @A) A @% — 1) +anXa] (0= 0),

where(a,), strongly decreasesto 0 agid > «, for sufficiently largen.
In order to prove the convergence of the proposed method, we formulate an auxiliary
result from @, Theorem 3.3 (c)].

LEMMA 3.2. If Ois not the point of accumulation of, (a*a), then

lim(x +a*a)ta* =lima*(xr +aa)t=a'.
r—0 r—0
Actually, the result in 4, Theorem 3.3 (c)] is proved in the case whan =
a*a(a*a)’a* = a'aa*, which always holds according to our Lem2 (6).
The convergence result follows.
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THEOREM3.3. Leta € & be relatively regular, le{«,), be a sequence strongly
decreasing td and let(8,), be a bounded sequence of positive numbers such that
Bn — o, > Ofor all n. Consider the iterative method
(3.2) Xns1 = Xn — (Bn + @%@) 1 (@*ax, — a* + anXn).

There are two possible cases.

(a) If a'axy = Xo, thenlim x, = a'.

(b) If ataxy # Xo, thenlimx, = a' + eXno@-fh (1 — afa)x,. In this case
lim x, = a' if and only if the serie§ " («,/B,) is divergent.

PROOF. Let y, = (a, + a*a)~'a*. From Lemma3.2 we get that limy, = a.
Notice that
Xnt1 = Xo — (Bn 4+ &8) (o + @*3)[ Xy — (0 + @*0) 1A%]
=X — (B + @) H(an + %) (X — Yn)-
Now we compute
Xn1 = Yn = %o — Yo — (Bn + @"@) (et + @) (X0 — Yh)
= (Bo+aa) '[Bnt+aa— (an+ad)](X — Yn)
= (Bn — o) (B + @A) (X0 — Yn).
Consequently, we get
(b aa \7'
nt1 =~ Yn = (ﬂn o + B an) (X0 — Yn)-

(a) Suppose that'ax, = X,. Notice thata’ay, = y, holds for alln. By induction
onn we get tha@'ax, = x, is satisfied for alh. Hence we have

t t Bn aa \7'
Xpr1 — Yn=24a a(Xn+1 - Yn) =aa + a a(Xn - yn)
Bn — an Bn — an

Again, let# = a'aw/a'a; whencea*a is invertible in% andm(a*a) > 0. Notice

that
* -1 * -1
aa aa
aTa< P + ) a'al|l = #5 aTa< P + ) a'a
n Bn — o Bn — o
Bn — o - Bn

ﬂn — Oy ﬂn —
T Bt mz@a) B+ Mmz@a)

The functiont — t[t +ms(a*a)] ! is increasing and the sequengk), is bounded.

Hence,
-1
a*a
aTa< b + ) a'a
Bn — an Bn — o

<g<l1
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is satisfied for alh. For an arbitrary > 0, there exists somg suchthatly,—a'|| < ¢
holds for alln > ng. This implies

X2 — &l < [Xnra = Yol + 1Yo — &7l
<qlX, = Yl + Iy — @'l < qlix, — @'l + A+ )y, — &'l
<qlx, —a'll + @+ qe < g xy, —a'[ + €1+ )/ (1 - ).

We see that linx, = a'.

(b) Now suppose thad'ax, # X,. Definex’ = a'ax andx” = (1 — a'a)x for
all x € «/. Now for all n, we havex/,, = x, — (B, + a*a) *(ay + a*a)(xX, — yn).
According to the first part we know that lirj = a’. Notice that

Xr1 = (Bn — an)(Bn +@"3) X/
From
Bn+a‘a= (B, +aaa'a+ (b, +aa)(l—a'a)
= (B +a'a)a'a+ B(1—a'a),

itis easy to verify g, +a*a)~* = [(B,+-a*a)a’al+(1—a'a)/B,. Here[(B,+a*a)],
is the ordinary inverse af, + a*a)a'a in the algebra?. Finally, we get

" ﬂ — o " i ak "
X, = "ﬂn xr=(]1 1_E X}
k=0

The producf ], ,(1—ax/Bx) is convergent if and only if the serigs;” ; In(1—ax/x)
is convergent, that is, if and only if the serigg (o« /Bx) is convergent.

If the seriesy -, In(1 — ax/By) is divergent, then its sum is equaltex. In this
case] [,—o(1 — o /By) = 0 and the statement (b) follows. O

REMARK 3.1. Notice that the limitd = a' 4 eXnoM-en/fn) (1 — a'a)x, satisfies
(again)ada= a andad = aa' is selfadjoint.

REMARK 3.2. If oy, = By, fOr someny, thenx,, .1 = ¥y, In this case

[[@-en/B) =0 and limx,=a'".
n=0

If o, = B, forall n, thenx, =y, for all n and limx, = a.

We can obtain the following norm estimate.
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THEOREM 3.4. If the conditions from Theore® 3 are satisfied, then the following
holds

1% —a'll < Ba-s | (Booa + @ @) [T + I1Xa-1ll] -
PrOOF. Using Lemma2.2(6) we get

Xo — @' = Xo1— (Bro1 +@'8) (@ A% — "+ dy1Xe1) — &'
= (Bortaa) [(Brr+ AA)(Xe1 —aD) + A — @AX1 — Un-1Xn-1]
= (Bicr + @A) T [(Boot — 1) X1 — Brad'].

This implies
1% —a'll < | (Bs +@a) | [(Br-1 = an ) X1l + Baall@"ll] -
Sincew, is a decreasing sequence converging to 0, we have

1% —a'll < Baoa | (Boos + @ @) [I@"] + [1Xn-1ll]

which completes the proof. O

4. Numerical results

All numerical examples are derived using the stopping critelfildn — X,| < ¢,
wheree is a given small real number anth, X; are two successive approximations.

ExavPLE 1. Consider the matrix

3 1 4 9
1 2 3 4
A= 0 -2 -2 0

-1 0 -1 -4

We use the starting approximatioty; = AT which satisfiesATAX, = X, and the
starting approximation

X52=

P Wk W
NP NP
w s~ wps
M~ O b~ O

which does not satistATAX, = Xo.
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(A) Let us choose starting value, = 0.01 and the rulex, = A,_1/2. Using
Xo = Xg after 7 iterations determined bg.(Q) we get the following approximation of
the Moore-Penrose inver#é with the precision| X;— X,|| = 0.7784079078267434
10°1%
0.888888888888325-0.870370370370752 —0.259259259259112  .1296296296298
—0.444444444445008 .518518518518137-0.0370370370368896-0.48148148148124

0.444444444445008 —0.35185185185147 —0.296296296296444 .648148148147914"
—0.333333333333333 .888888888888889  .P22222222222222-0.61111111111111

Using Xo=Xs, after 20 iterations,3.1) gives the following approximation of tH&, 3}
inverse forA after 8 iterative steps and with the precisio2151594247836613
10714
1.22222222222194-0.203703703703917 .040740740740222 2629629629620
-0.111111111111389 .18518518518497 .062962962962444 .85185185185091

0.111111111111389 —1.0185185185183-1.29629629629578 —0.68518518518425"
—0.333333333333333 .888888888888889 .P22222222222222-0.61111111111111

(B) We apply iterative method3(2) with «p = 0.5, B = 1.5, ¢y = 0.5, B; =
15 anda, = 1/2", B, = n® xa,, N > 1. In the caseX, = Xg we get the
following approximation forA™ with the precision 814585816280336% 10-°
after 38 iterations:

0.8888888888574836 —0.8703703703390785 —0.2592592592486855 .129629629587764!
—0.44444444442951403  .§185185185035897 —0.0370370370419484 —0.48148148146164

0.444444444427987—-0.35185185183547824-0.29629629629063636 .6481481481261144"
—0.33333333331825743 .38888888887388284 .BR222222221706717-0.611111111090950

In the caseX, = X, the method produces the following approximationA6t® with
the precision ®201250315032129 10'° after 87 iterative steps:

1.002140322865836-0.6438675024175026 .0804950426702385 .882635365536035
—0.33119301046752425 .1450213864713654 .B027172648924681-0.02847574557500975
0.33119301046757604-0.5783547198046588-0.6360505982258156  .109514241224155003"
—0.33333333333333337 .3888888888888889 .B222222222222222 —0.611111111111111

a

(C) We now consider the casg = 1, o = 2,21 = 0.5, 81 = 1.5, o, = 0.25,
B, = 125, o, = 1/2", B, = 1/n?>, n > 2. In the caseX, = Xg, itera-
tive method 8.2) produces the following approximation fak" with the precision
0.8179146910995648 10-° after 38 iterations:

0.8888888888573743 —0.87037037033896 —0.2592592592486474 .129629629587607
—0.4444444444294535 .9185185185035387-0.037037037041967674-0.4814814814615709
0.44444444442792064-0.3518518518354216 —0.2962962962906151  .6481481481260364 "
—0.33333333331820203 .B8888888887382767 .BR222222221704846 —0.611111111090876

In the caseX, = Xs, the method produces the following approximation£é¥® with
the precision 66730942902204& 108 after 38 iterations:

0.8885296579803937 —0.8710888320929212-0.26033695187958905 .128192706079685
—0.444803675306434  .B178000567495776-0.03811472967290933-0.482918404969493
0.44480367530490117-0.35113339008146044 —0.2952186036596735 .6495850716339587"
—0.33333333331820203 .¥8888888887382767 .BR222222221704846-0.611111111090876
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(D) Letusassumey = a3 =1/5,80=p1=1/2,ay, =1/5", B =1/2", n > 1.
In the caseX, = Xg, iterative method3.2) produces the following approximation
for AT with the precision (871735621397724 10-1° after 18 iterations:

—0.44444444444177217 .9185185185158488-0.03703703703792724-0.481481481477911
0.44444444444149706-0.3518518518489219 —0.2962962962952712 .648148148144182

0.8888888888832127-0.8703703703647123-0.25925925925735943 . 129629629622082
—0.33333333333061704 .¥888888888861852 .P2222222222129343-0.611111111107478

In the caseX, = X, the method produces the following approximationA6t2 with
the precision 6435232820789964 101° after 27 iterations:

—0.29382426082444757 .8197588857585015 .4148235138229573 .020999252998475
0.29382426082444757-0.6530922190918348-0.7481568471562906 .04566741366819088"
—0.33333333333333337 .¥B88888888888889 .P2222222222222224-0.611111111111111

a

|: 1.039509072508886-0.5691300031303874 .09260129160073503 ,13211036410958%

(E) Now consider the choicey = 1/2, Bo = 1/2 + 1/5, ay = 1/5", B =
1/2" + 1/5", n > 1. In the caseXq, = Xg, iterative method 3.2) produces the
following approximation forA™ with the precision 8145866914197384 10-1°
after 38 iterations:

—0.44444444442950826 .$185185185035932-0.03703703704194922-0.4814814814616439
0.44444444442798114-0.3518518518354818-0.29629629629063553  .@48148148126117

0.8888888888574894-0.8703703703390749 —0.2592592592486863  .129629629587761
—0.33333333331825743 .3888888888738829 .B2222222221706717 —0.611111111090950

Since the series, /f, is convergent, in the cas&, = X, we again get an approxi-
mation for AT. Numerical precision 8145866914197384 10 is achieved after
38 iterations, and the result is

—0.44444444442950826 .$185185185035932-0.03703703704194922-0.4814814814616439
0.44444444442798114-0.3518518518354818-0.29629629629063553  .@48148148126117

0.8888888888574894-0.8703703703390749 —0.2592592592486863  .129629629587761
—0.33333333331825743 .3888888888738829 .B2222222221706717 —0.611111111090950

(F) For the choicey = 1/2" andB, = 5,n > 0, in the case&{, = X method 8.2)
gives the approximation foA" with the precision ®7586251414711% 1078 after
406 iterations:

0.888888794783812-0.870370276596845 —0.259259227496198  .1296295040930
—0.444444399761835 .918518473993339-0.0370370521186507-0.48148142187468
0.444444395021972-0.351851802603508 —0.296296279614848 .648148082218357"
—0.333333288084808 .888888843799784 .P22222206949596 —0.6111110507493

The seriesx,/B, is convergent, so that in the ca¥g = X<, we also get an approx-
imation for AT. Numerical precision @73626265219998% 108 is achieved after
402 iterations, and the result is

0.913523867929914-0.821100111622034-0.185353982552945  .2281698252525
—0.419809325997662 .B6778861265089 .03686815706372-0.38294114038591
0.41980932123669-0.401121940362275-0.370201487575917 .B49607802084412"
—0.3333332878833 .388888835219648 .P22222195290585-0.61111106368311
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ReEmMARK 4.1. (i) In(3.2) the convergence is ensured for arbitrary positive and
bounded values of the paramet@rs> «, — 0,n =0, 1, .... For larger values of
the parametes,, iterations 8.2) behave like the first order gradient method, because
of (Bl + A* A1~ (1/B8,)VQ(X,). Inthe cased, — 0, we haves,l + A*A~ A*A,
so these iterative processes converge according to the Newton’s method. In view of
the global convergence of the steepest descent and the fast local convergence of tr
Newton’s method, we suggest successive decreasing valugg,for= 0,1, ...,
during the iterations.

(ii) Since|[Xni1—Xnll = [I(Bal +A*A) LA (AX, —b) ||, the condition|X,.1 —Xq || <
€, wheree is a small real number, can be used as the stopping criterion for the iterative
processg.2).

(iii) Using the known result about the convergence of the quasi-Newton method
from [3], we conclude the following: As long d&,} converge to zero, iteration3.Q)
are superlinearly convergent. Moreovenif< u||VQ(X,)| for some constant for
all sufficiently largen, then @3.2) converge quadratically.

ReEMARK 4.2. Effectiveness of methods based on the second order optimization
with respect to the steepest descent mettiod) {s evident. For the chosen matrix
A, in case wherX, = Xg we get the following approximation of the Moore-Penrose
inverse after 2850 iterative steps with the precisi®984792937219064 10-8:

0.88888887107898-0.870370352568972 —0.259259253239727 129629605808
—0.444444435950256 .918518510085312-0.03703703989936670.48148147018594
|_ 0.444444435128724-0.351851842483659 —0.296296293139094 .648148135622755"

—0.333333324635957 .888888880397453  .P22222219313109-0.61111109971055

Using Xo = Xs, we get the following approximation dfi, 3}-inverse after 5650
iterative steps with the precisiond®8579959441630% 10°8:

1.22222222979886-0.203703699773892 .04074075406113 2629629911525
—0.111111114702461 .18518518332474 .062962956650109 .85185183848802
0.111111115096401 —1.01851851644915-1.29629628928876-0.68518517035943§"
—0.333333336954566 .888888887018803 .P22222215859508-0.61111112459092
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