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Abstract

We develop several iterative methods for computing generalized inverses using both first and second
order optimization methods inC∗-algebras. Known steepest descent iterative methods are generalized in
C∗-algebras. We introduce second order methods based on the minimization of the norms‖Ax − b‖2

and‖x‖2 by means of the known second order unconstrained minimization methods. We give several
examples which illustrate our theory.
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1. Introduction

Let H andK be Hilbert spaces and letA be a bounded linear operator fromH into K .
In this paper we construct several iterative methods which are concerned in computing
the Moore-Penrose generalized inverse ofA. These iterative methods appear naturally
in minimization methods of the first and the second order. Moreover, we investigate
these methods inC∗-algebras.

Applications of the first order gradient minimization methods in computation of
the Moore-Penrose inverse ofA (when it exists) are well known. The steepest descent
method in minimization of the functionalQ.x/ = 1

2‖Ax − b‖2 (x ∈ H , b ∈ K )
was introduced in [7] and [14] (see also [2, 5]). The problem of approximating the
least squares solutions ofAx = b by means of the conjugate-gradient optimization
technique was considered in [2, 5, 7, 9]. A conjugate-gradient method for computing

The authors are supported by the Ministry of Science of Serbia, under Grants No. 1232 and 1227.
c© 2005 Australian Mathematical Society 1446-8107/05$A2:00+ 0:00

257

http://www.austms.org.au/Publ/JAustMS/V78P2/n62.html
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the Moore-Penrose generalized inverse was developed in [13]. A class of gradient
methods for minimizingQ.x/ = 1

2
‖Ax − b‖2, defined by the real-valued step-size

functions.x/ defined onH and by a fixed real number 0< Þ < 2:

xn+1 = xn − Þs.xn/A
∗.Axn − b/ = xn − Þs.xn/∇Q.xn/;(1.1)

was analyzed in [10]. The weak steepest descent method, which is defined by means
of the fixed step-sizeÞ in all iterations, as well as its applications in computation of
generalized inverses, were investigated in [1] and [14].

Let H be a Hilbert space andQ : H 7→ R be a twice differentiable functional. The
second order minimization method (Newton’s method) is defined by the following
iterative procedure [3]:

xn+1 = xn − [∇2Q.xn/
]−1 ∇Q.xn/;(1.2)

where∇Q.xn/ and∇2Q.xn/ denote the gradient and Hessian, respectively, of a given
objective functionQ, at the pointxn. A few quasi-Newton minimization methods for
operators acting fromRn into R are defined in [3]. We use the following adaptation
of a quasi-Newton minimization method:

xn+1 = xn − (
½nI + ∇2Q.xn/

)−1 ∇Q.xn/;(1.3)

whereQ : H → R is an arbitrary functional,½n > 0 is a chosen scalar and½nI +
∇2Q.xn/ is positive and invertible.

The paper is organized as follows. In Section2 we introduce and consider one
iterative method for computing the Moore-Penrose inverse of a relatively regular
element in aC∗-algebra. As a corollary we get that the Nashed steepest descent
method is convergent in operator norm. We also prove that the gradient methods (1.1)
are also convergent in operator norm. In Section3 we construct and investigate some
new methods related to the second order optimization. We also prove the convergence
of these methods inC∗-algebras. Numerical examples are presented in Section4.

Throughout this paper we always assumea 6= 0 in aC∗-algebra.

2. Methods based on the first order optimization

We useL .H; K / to denote the set of all bounded linear operators fromH into K .
For A ∈ L .H; K /, we useR.A/ andN .A/, respectively, to denote the range and
the kernel ofA. Also, by A∗ we denote the adjoint operator ofA. It is well known
that A has the Moore-Penrose inverseA† ∈ L .K ; H / if and only ifR.A/ is closed.

First we shall explain the steepest descent method, introduced in [11]. Suppose
that A ∈ L .H; K / has the Moore-Penrose inverse. For arbitraryb ∈ K , let rn =
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A∗ Axn − A∗b andÞn = ‖rn‖2=‖Arn‖2. In [11] it was proved that the iterative sequence
xn+1 = xn − Þnrn satisfies limxn = A†b if and only if b ∈ R.A∗/. Notice that every
change ofb ∈ K implies the construction of a new iterative method. The choice of
Þn in then-th step of the steepest descent method ensures the most rapid decrease of
‖Axn+1 − b‖.

Therefore, takingX0 ∈ L .K ; H /, the sequence.Xn/n which is defined in the
following way

Xn+1 = Xn − Þn A∗.AXn − I /(2.1)

obeys the property limXnb = A†b.
We shall consider a more general method inC∗-algebras.
LetA be a complexC∗-algebra with the unit 1. We say thata ∈ A is relatively

regular, provided that there exists someb ∈ A satisfyingaba = b. In this caseb is
calledan inner generalized inverse ofa. It is well known thata is relatively regular
if and only if there exists the Moore-Penrose inverse ofa, denoted bya† ([6]). The
elementa† is the unique element ofA satisfying

aa†a = a; a†aa† = a†; .aa†/∗ = aa†; .a†a/∗ = a†a:

If a ∈ A is relatively regular anda− denotes an arbitrary inner generalized inverse
of a, then for anyb; c ∈ A we have.1− aa−/.ab− c/ = .aa−c− c/. Consequently,
‖aa−c− c‖ ≤ ‖1− aa−‖‖ab− c‖. Taking.aa−/∗ = aa−, ora− = a†, we obtain the
following minimization result:

min
b∈A

‖ab− c‖ = ‖aa†c − c‖:

We begin with two auxiliary results. The first one can be found in [12, Theo-
rem 5.7.8]. We use¦A .a/ to denote the spectrum ofa in the algebraA .

LEMMA 2.1. If p ∈ A is a nontrivial idempotent anda ∈ pA p, then

¦A .a/ = ¦pA p.a/ ∪ {0}:
The second result is a consequence of elementary calculations. For some facts we

need properties of the group inverse inC∗-algebras. If 0 is not the accumulation point
of the spectrum ofa and p is the spectral idempotent ofa corresponding to{0}, then
a is invertible in the algebra.1 − p/A .1 − p/ and its inverse in this algebra is the
generalized Drazin inverse ofa (see [8]). It is well known that the generalized Drazin
inverse ofa commutes with everyb satisfyingab = ba. If ½ = 0 is a pole of order
k of the resolvent½ 7→ .½ − a/−1, then the generalized Drazin inverse becomes the
(ordinary) Drazin inverse; in this case the Drazin index ofa is equal tok. In particular,
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if k ≤ 1, then the Drazin inverse ofa is known as the group inverse ofa, denoted by
a#. Naturally,a is invertible if and only ifk = 0 and in this casea−1 = a#. In the
case when it exists,a# is the unique element ofA satisfyingaa#a = a, a#aa# = a#

andaa# = a#a.

LEMMA 2.2. Leta ∈ A be relatively regular. Then the following holds:

(1) .a∗/† = .a†/∗;
(2) .a∗a/† = a†.a∗/† = .a∗a/#;
(3) a† = .a∗a/†a∗;
(4) .a∗a/† commutes with every element ofA which commutes witha∗a;
(5) a∗a is invertible in the algebraa†aA a†a = B and.a∗a/† = .a∗a/−1

B
;

(6) a†aa∗ = a∗ = a∗aa†.

It is important to notice that ifa is relatively regular, then.a∗a/# exists. Hence, 0
is not the accumulation point of the spectrum¦A .a∗a/.

For a selfadjoint elementd ∈ A , we useMA .d/ and mA .d/, respectively, to
denote the upper and the lower bound of the spectrum ofd in the algebraA .

Now we formulate the result inspired by the Nashed steepest descent method.

THEOREM 2.3. Leta ∈ A be relatively regular,B = a†aA a†a and letc; x0 ∈ A
be arbitrary. Let.½/n be a sequence of positive numbers such that

0< ž ≤ ½n ≤ 2 max
{[MB.a

∗a/]−1; [mB.a∗a/]−1
}− Ž

holds for somež; Ž > 0 and for all n. Then the sequence.xn/n generated by the
iterative methodxn+1 = xn − ½na∗.axn − c/, n ≥ 0, converges toa†c + .1 − a†a/x0.
Consequently,lim xn = a†c if and only ifa†ax0 = x0.

PROOF. Let a†ax0 = x0. Using Lemma2.2 (6) and the induction onn it follows
thata†axn = xn for all n. We compute

a∗axn+1 − a∗c = a∗axn − a∗c − ½na∗a.a∗axn − a∗c/

= .1 − ½na∗a/.a∗axn − a∗c/:

Multiplying previous equality by.a∗a/† from the left side and using Lemma2.2 (3)
and (4), we get

xn+1 − a†c = .1 − ½na∗a/.xn − a†c/

and

xn+1 − a†c = a†a.xn+1 − a†c/ = a†a.1 − ½na∗a/a†a.xn − a†c/:
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The norm estimate follows:‖xn+1 − a†c‖ ≤ ‖a†a.1 − ½na∗a/a†a‖‖xn − a†c‖. To
ensure the convergence, we must have‖a†a.1 − ½na∗a/a†a‖ ≤ q < 1. We know the
following

‖a†a.1 − ½na∗a/a†a‖
= max

{|MB[a†a.1 − ½na∗a/a†a]|; |mB[a†a.1 − ½na∗a/a†a]|} :
Notice thatMB[a†a.1−½na∗a/a†a] = 1−½nmB.a∗a/andmB[a†a.1−½na∗a/a†a] =
1−½nMB.a∗a/. Sincea∗a is invertible inB, we conclude that‖a†a.1−½na∗a/a†a‖ ≤
q < 1 holds for alln if and only if

0< ž < ½n < 2 max
{[MB.a

∗a/]−1; [mB.a∗a/]−1
}− Ž

holds for somež; Ž > 0 and for alln. Obviously, limxn = a†c.
Now, suppose thata†ax0 6= x0. For any x ∈ A we denotex′ = a†ax and

x′′ = .1 − a†a/x. Now we havex′′
0 6= 0. From Lemma2.2(6) we conclude that

x′
1 = x′

0 − ½0a∗.ax0 − c/ = x′
0 − ½0a∗.ax′

0 − c/

andx′′
1 = x′′

0. By induction onn we conclude thatx′
n+1 = x′

n − ½na∗.ax′
n − c/ and

x′′
n+1 = x′′

0 . From the first part of the proof we get limxn = a†c + .1 − a†a/x0.

REMARK 2.1. In the casec = 1, the limit d = a† + .1 − a†a/x0 is an inner
generalized inverse ofa and ad = aa† is selfadjoint. Moreover, the condition
a†ax0 = x0 can be ensured takingx0 = a∗e for an arbitrarye ∈ A .

REMARK 2.2. In the case whenA ∈ L .H; K / is relatively regular, the same
method as in Theorem2.3 can be applied, takingC ∈ L .K /, X0 ∈ L .K ; H /.
Now the conditionA† AX0 = X0 can be replaced withR.X0/ ⊂ R.A∗/. We use
B = A† AL .H /A† A = L .R.A∗// instead ofB = a†aA a†a. It is useful to
consider operator matrices. For example,

A =
[

A1 0
0 0

]
:
[
R.A∗/
N .A/

]
→

[
R.A/
N .A∗/

]
;

whereA1 is invertible. We also have

A∗ =
[

A∗
1 0

0 0

]
:
[
R.A/
N .A∗/

]
→
[
R.A∗/
N .A/

]
and

A† =
[

A−1
1 0
0 0

]
:
[
R.A/
N .A∗/

]
→
[
R.A∗/
N .A/

]
:

The critical point – usemB.a∗a/ andMB.a∗a/ – is now changing: we have to use
mB.A∗

1 A1/ = mB.A∗ A|R.A∗// andMB.A∗
1 A1/ =MB.A∗ A|R.A∗//.
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COROLLARY 2.4. The sequence.Xn/n, constructed in the steepest descent method
explained in(2.1), converges toA† + .I − A† A/X0 in the operator norm.

PROOF. Using Theorem2.3, we can prove that the steepest descent method produces
the sequence.Xn/n converging toA†+.I −A† A/X0 in the operator norm ofL .K ; H /,
if we can prove that

0< ž < Þn < 2 max
{[MB.A

∗ A|R.A∗//]−1; [mB.A∗ A|R.A∗//]−1
}− Ž

holds for somež; Ž > 0 and alln.
The restrictionA|R.A∗/ = A1 (see the notation in Remark2.2) is invertible. Hence,

we get

0< j .A1/
2 = inf

‖x‖=1
‖A1x‖2 = inf

‖x‖=1
.A1x; A1x/

= inf
‖x‖=1

.A∗
1 A1x; x/ = mB.A

∗
1 A1/ = mB.A

∗ A|R.A∗//;

whereB = L .R.A∗//. Sincern ∈ R.A∗/ for all n, we have‖Arn‖ ≥ j .A/‖rn‖
implying

Þn = ‖rn‖2

‖Arn‖2
≤ j .A/−2 = [mB.A∗ A|R.A∗//]−1:

On the other hand, since‖Arn‖ ≤ ‖A‖‖rn‖, we get

1

‖A‖2
≤ ‖rn‖2

‖Arn‖2
= Þn:

Finally, using Lemma2.1, we get the following

‖A‖2 = ‖A∗ A‖ =ML .H /.A
∗ A/ =MB.A

∗
1 A1/

=MB.A
∗ A|R.A∗// ≥ mB.A

∗ A|R.A∗//:

Hence, the interval
[‖A‖−2; [mB.A∗ A|R.A∗//]−1

]
is non-empty and it is contained

in the interval
[
ž;2 max

{[MB.A∗ A|R.A∗//]−1; [mB.A∗ A|R.A∗//]−1
} − Ž

]
for some

ž; Ž > 0. Hence, the steepest descent method introduced by Nashed in [11] is based
on the construction of a certain sequence of operators converging (in the operator
norm) to the Moore-Penrose inverse of a given operator.

REMARK 2.3. Consider the class of gradient methods from [10]. These methods
are related to the operator equationAu = b, whereA ∈ L .H; K / is relatively regular.
The set of all least square solutions of this equation is denoted byS. Herex ∈ S if and
only if ‖Ax − b‖ = minu ‖Au − b‖. Such anx exists, sinceA is relatively regular. It
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is well known thatx ∈ S if and only if x = Gb for someG ∈ L .K ; H /, whereG
is an inner generalized inverse ofA andAG is selfadjoint (compare this fact with the
one in Remark2.1). For an arbitraryx ∈ H , PS.x/ is defined asPS.x/ = y, where

‖x − y‖ = min{‖x − v‖ : v ∈ S}:

Such any exists, sinceS is closed and convex set. Moreover, there exists the unique
elementx∗ ∈ Sof minimal norm. It is also well known thatx∗ = A†bholds. Let1x =
x − PS.x/. The following is known:1x ∈ R.A∗/ andPS.x/ = A†b + .I − A† A/b.
Let 0< Þ < 2 and letx 7→ s.x/ be a real function defined onH \ S, satisfying

‖A‖−2 ≤ s.x/ ≤ ‖A1x‖2

‖A∗ A1x‖2
; x ∈ H \ S:

The gradient method for minimizing‖Ax − b‖ is defined in the following way
(see [10]):

xn+1 =
{

xn − Þs.xn/A∗.Axn − b/; xn ∈ H \ S

xn; xn ∈ S:
(2.2)

Finally, it is proved that limxn = PS.x0/ = A†b + .I − A† A/x0 holds.
This method can be considered as a construction of certain sequence of operators

.Xn/n, where limXnb = A†b + .I − A† A/X0b. Notice that any change ofb implies
the change of the iterative method.

COROLLARY 2.5. If A ∈ L .H; K / is relatively regular, then the sequence.Xn/n
constructed in(2.2) converges toA† + .I − A† A/X0 in operator norm.

PROOF. Since1x ∈ R.A∗/, it is easy to prove (as in Corollary2.4) that the
sequenceÞs.xn/ is contained in the interval

[
ž;2 max

{[MB.A
∗ A|R.A∗//]−1; [mB.A∗ A|R.A∗//]−1

}− Ž
]

for somež; Ž > 0.

3. Methods based on the second order optimization

We minimize the functionalQ.x/ = 1
2
‖Ax − b‖2. The gradient and Hessian

of Q.x/ are equal to∇Q.xn/ = A∗.Axn − b/ and∇2Q.xn/ = A∗ A, respectively. In
view of the constant Hessian∇2Q.x/ = A∗ A, the Newton’soptimization method (1.2)
is not applicable in the minimization ofQ.x/ in the case whenA∗ A is singular. But,
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it is possible to use the quasi-Newton method (1.3). This idea gives us the following
iterative method of the type (1.3):

Xn+1 = Xn − .½n I + A∗ A/−1 A∗.AXn − C/:

This method, obviously, can be applied inC∗-algebras. We prove that this method
converges to a certain generalized inverse ofA. Taking some natural assumptions, we
obtain that the method converges to the Moore-Penrose inverse ofA.

We begin with the following result, in which we construct the method and prove
the convergence.

THEOREM 3.1. Suppose thata ∈ A is relatively regular,x0; c ∈ A are arbitrary,
and.½n/n is a bounded sequence of positive numbers. Then the iterative method

xn+1 = xn − .½n + a∗a/−1a∗.axn − c/(3.1)

converges toa†c+ .1−a†a/x0. Consequently,lim xn = a†c if and only ifa†ax0 = x0.

PROOF. Let a†ax0 = x0. By induction onn we obtaina†axn = xn for everyn.
Now we compute

a∗axn+1 − a∗c = a∗axn − a∗c − a∗a.½n + a∗a/−1.a∗axn − a∗c/

= ½n.½n + a∗a/−1.a∗axn − a∗c/:

Multiplying the previous equality by.a∗a/† from the left side, we get

xn+1 − a†c = ½n.½n + a∗a/−1.xn − a†c/:

Now we have the following:

xn+1 − a†c = a†a.xn+1 − a†c/

= ½na†a.½n + a∗a/−1a†a.xn − a†c/:

LetB = a†aA a†a. Sincea∗a is invertible inB, we know thatmB.a∗a/ > 0. Now
the following holds

‖xn+1 − a†c‖ ≤ ½nMB[a†a.½n + a∗a/−1a†a]‖xn − a†c‖
= ½n

½n + mB.a∗a/
‖xn − a†c‖:

Since the functiont 7→ t[.t + mB.a∗a/]−1 is increasing and the sequence.½n/n is
bounded, we conclude that there exists someq, 0< q < 1, such that for everyn

‖xn+1 − a†c‖ ≤ q‖xn − a†c‖:
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Hence, limxn = a†c.
Suppose thata†ax0 6= x0. Denotex′ = a†ax andx′′ = .1 − a†a/x for all x ∈ A .

We conclude that

x′
1 = x′

0 − .½n + a∗a/−1a∗.ax0 − c/ = x′
0 − .½n + a∗a/−1a∗.ax′

0 − c/

andx1 = x′
1 + x′′

0 . By induction onn we getxn = x′
n + x′′

0 for everyn. From the first
part we get limx′

n = a†c and consequently limxn = a†c + .1 − a†a/x0.

To get the idea for the next method, consider a relatively regular operatorA on
Hilbert spaces. Let us consider the functional

QÞn
.x/ = ‖Ax − b‖2=2 + Þn‖x‖2=2

whereÞn is a real quantity. IfxÞn
is the minimizer ofQÞn

.x/, then limÞn→0+ xÞn
= A†b.

It is not difficult to verify the following:

∇QÞn
.xn/ = A∗.Axn − b/+ Þnxn; ∇2QÞn

.xn/ = A∗ A + ÞnI :

Similarly, according to the quasi-Newton method (1.3), we give the iterative method
which produces the following approximationsxn of the minimizerxÞn

xn+1 = xn − ..½n + Þn/I + A∗ A/−1 [ A∗.Axn − b/ + Þnxn] ; n = 0;1; : : :

For fixed values½n = ½, n = 0;1; : : : , the approximationsxn are of the form

xn+1 = xn − ..½+ Þn/I + A∗ A/−1 [ A∗.Axn − b/+ Þxn] ; n = 0;1; : : :

This idea suggests to define the following iterative method inC∗-algebras

xn+1 = xn − .þn + a∗a/−1[a∗.axn − 1/+ Þnxn] .n ≥ 0/;

where.Þn/n strongly decreases to 0 andþn > Þn for sufficiently largen.
In order to prove the convergence of the proposed method,we formulate an auxiliary

result from [4, Theorem 3.3 (c)].

LEMMA 3.2. If 0 is not the point of accumulation of¦A .a∗a/, then

lim
½→0
.½ + a∗a/−1a∗ = lim

½→0
a∗.½+ aa∗/−1 = a†:

Actually, the result in [4, Theorem 3.3 (c)] is proved in the case whena∗ =
a∗a.a∗a/#a∗ = a†aa∗, which always holds according to our Lemma2.2(6).

The convergence result follows.
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THEOREM 3.3. Let a ∈ A be relatively regular, let.Þn/n be a sequence strongly
decreasing to0 and let.þn/n be a bounded sequence of positive numbers such that
þn − Þn > 0 for all n. Consider the iterative method

xn+1 = xn − .þn + a∗a/−1.a∗axn − a∗ + Þnxn/:(3.2)

There are two possible cases.

(a) If a†ax0 = x0, thenlim xn = a†.
(b) If a†ax0 6= x0, then lim xn = a† + e

∑∞
n=0 ln.1−Þnþ

−1
n /.1 − a†a/x0. In this case

lim xn = a† if and only if the series
∑
.Þn=þn/ is divergent.

PROOF. Let yn = .Þn + a∗a/−1a∗. From Lemma3.2 we get that limyn = a†.
Notice that

xn+1 = xn − .þn + a∗a/−1.Þn + a∗a/[xn − .Þn + a∗a/−1a∗]
= xn − .þn + a∗a/−1.Þn + a∗a/.xn − yn/:

Now we compute

xn+1 − yn = xn − yn − .þn + a∗a/−1.Þn + a∗a/.xn − yn/

= .þn + a∗a/−1[þn + a∗a − .Þn + a∗a/].xn − yn/

= .þn − Þn/.þn + a∗a/−1.xn − yn/:

Consequently, we get

xn+1 − yn =
(

þn

þn − Þn
+ a∗a

þn − Þn

)−1

.xn − yn/:

(a) Suppose thata†ax0 = x0. Notice thata†ayn = yn holds for alln. By induction
on n we get thata†axn = xn is satisfied for alln. Hence we have

xn+1 − yn = a†a.xn+1 − yn/ = a†a

(
þn

þn − Þn
+ a∗a

þn − Þn

)−1

a†a.xn − yn/:

Again, letB = a†aA a†a; whencea∗a is invertible inB andmB.a∗a/ > 0. Notice
that∥∥∥∥∥a†a

(
þn

þn − Þn
+ a∗a
þn − Þn

)−1

a†a

∥∥∥∥∥ =MB

(
a†a

(
þn

þn − Þn
+ a∗a
þn − Þn

)−1

a†a

)

= þn − Þn

þn + mB.a∗a/
≤ þn

þn + mB.a∗a/
:

The functiont 7→ t[t + mB.a∗a/]−1 is increasing and the sequence.þn/n is bounded.
Hence, ∥∥∥∥∥a†a

(
þn

þn − Þn

+ a∗a
þn − Þn

)−1

a†a

∥∥∥∥∥ ≤ q < 1
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is satisfied for alln. For an arbitraryž > 0, there exists somen0 such that‖yn−a†‖ < ž

holds for alln ≥ n0. This implies

‖xn+1 − a†‖ ≤ ‖xn+1 − yn‖ + ‖yn − a†‖
≤ q‖xn − yn‖ + ‖yn − a†‖ ≤ q‖xn − a†‖ + .1 + q/‖yn − a†‖
≤ q‖xn − a†‖ + .1 + q/ž ≤ qn−n0+1‖xn0 − a†‖ + ž.1 + q/=.1 − q/:

We see that limxn = a†.
(b) Now suppose thata†ax0 6= x0. Definex′ = a†ax andx′′ = .1 − a†a/x for

all x ∈ A . Now for all n, we havex′
n+1 = x′

n − .þn + a∗a/−1.Þn + a∗a/.x′
n − yn/.

According to the first part we know that limx′
n = a†. Notice that

x′′
n+1 = .þn − Þn/.þn + a∗a/−1x′′

n :

From

þn + a∗a = .þn + a∗a/a†a + .þn + a∗a/.1 − a†a/

= .þn + a∗a/a†a + þn.1 − a†a/;

it is easy to verify.þn+a∗a/−1 = [.þn+a∗a/a†a]−1
B

+.1−a†a/=þn. Here[.þn+a∗a/]−1
B

is the ordinary inverse of.þn + a∗a/a†a in the algebraB. Finally, we get

x′′
n+1 = þn − Þn

þn
x′′

n =
(

n∏
k=0

(
1 − Þk

þk

))
x′′

0 :

The product
∏∞

k=0.1−Þk=þk/ is convergent if and only if the series
∑∞

k=0 ln.1−Þk=þk/

is convergent, that is, if and only if the series
∑∞

k=0.Þk=þk/ is convergent.
If the series

∑∞
k=0 ln.1 − Þk=þk/ is divergent, then its sum is equal to−∞. In this

case
∏∞

k=0.1 − Þk=þk/ = 0 and the statement (b) follows.

REMARK 3.1. Notice that the limitd = a† + e
∑∞

n=0 ln.1−Þn=þn/.1 − a†a/x0 satisfies
(again)ada = a andad = aa† is selfadjoint.

REMARK 3.2. If Þn0 = þn0 for somen0, thenxn0+1 = yn0. In this case

∞∏
n=0

.1− Þn=þn/ = 0 and limxn = a†:

If Þn = þn for all n, thenxn = yn for all n and limxn = a†.

We can obtain the following norm estimate.
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THEOREM 3.4. If the conditions from Theorem3.3are satisfied, then the following
holds:

‖xn − a†‖ < þn−1

∥∥.þn−1 + a∗a/−1
∥∥ [‖a†‖ + ‖xn−1‖

]
:

PROOF. Using Lemma2.2(6) we get

xn − a† = xn−1 − .þn−1 + a∗a/−1
.a∗axn−1 − a∗ + Þn−1xn−1/− a†

= .þn−1 + a∗a/−1 [
.þn−1 + a∗a/.xn−1 − a†/+ a∗ − a∗axn−1 − Þn−1xn−1

]
= .þk−1 + a∗a/−1 [

.þn−1 − Þn−1/xn−1 − þn−1a
†
]
:

This implies

‖xn − a†‖ ≤ ∥∥.þk−1 + a∗a/−1
∥∥ [.þn−1 − Þn−1/‖xn−1‖ + þn−1‖a†‖] :

SinceÞn is a decreasing sequence converging to 0, we have

‖xn − a†‖ < þn−1

∥∥.þn−1 + a∗a/−1
∥∥ [‖a†‖ + ‖xn−1‖

]
which completes the proof.

4. Numerical results

All numerical examples are derived using the stopping criterion‖X1 − X0‖ ≤ ž,
wherež is a given small real number andX0, X1 are two successive approximations.

EXAMPLE 1. Consider the matrix

A =




3 1 4 9
1 2 3 4
0 −2 −2 0

−1 0 −1 −4


 :

We use the starting approximationXS1 = AT which satisfiesA† AX0 = X0 and the
starting approximation

XS2 =




3 1 4 9
1 2 3 4
3 1 4 9
1 2 3 4




which does not satisfyA† AX0 = X0.
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(A) Let us choose starting value½0 = 0:01 and the rule½n = ½n−1=2. Using
X0 = XS1 after 7 iterations determined by (3.1) we get the following approximation of
the Moore-Penrose inverseA†with the precision‖X1−X0‖ = 0:7784079078267431×
10−12:


0:888888888888325−0:870370370370752−0:259259259259112 1:12962962962986
−0:444444444445008 0:518518518518137−0:0370370370368896−0:481481481481247

0:444444444445008 −0:35185185185147 −0:296296296296444 0:648148148147914
−0:333333333333333 0:388888888888889 0:222222222222222−0:611111111111111


.

UsingX0=XS2 after 20 iterations, (3.1) gives the following approximation of the{1;3}
inverse forA after 8 iterative steps and with the precision 0:2151594247836613×
10−14:


1:22222222222194−0:203703703703917 0:740740740740222 2:46296296296203
−0:111111111111389 1:18518518518497 0:962962962962444 0:851851851850917

0:111111111111389 −1:0185185185183−1:29629629629578 −0:68518518518425
−0:333333333333333 0:388888888888889 0:222222222222222−0:611111111111111


.

(B) We apply iterative method (3.2) with Þ0 = 0:5, þ0 = 1:5, Þ1 = 0:5, þ1 =
1:5 andÞn = 1=2n, þn = n2 ∗ Þn, n > 1. In the caseX0 = XS1 we get the
following approximation forA† with the precision 0:8145858162803369× 10−10

after 38 iterations:



0:8888888888574836 −0:8703703703390785 −0:2592592592486855 1:1296296295877641
−0:44444444442951403 0:5185185185035897 −0:0370370370419484 −0:481481481461641

0:444444444427987−0:35185185183547824−0:29629629629063636 0:6481481481261144
−0:33333333331825743 0:38888888887388284 0:22222222221706717−0:6111111110909501


.

In the caseX0 = XS2 the method produces the following approximation forA.1;3/ with
the precision 0:9201250315032129× 10−10 after 87 iterative steps:




1:002140322865836−0:6438675024175026 0:0804950426702385 1:5826353655360357
−0:33119301046752425 0:7450213864713654 0:3027172648924681−0:028475745575009752

0:33119301046757604−0:5783547198046588−0:6360505982258156 0:19514241224155002
−0:33333333333333337 0:3888888888888889 0:2222222222222222 −0:6111111111111112


.

(C) We now consider the caseÞ0 = 1, þ0 = 2, Þ1 = 0:5, þ1 = 1:5, Þ2 = 0:25,
þ2 = 1:25, Þn = 1=2n, þn = 1=n2, n > 2. In the caseX0 = XS1, itera-
tive method (3.2) produces the following approximation forA† with the precision
0:8179146910995648× 10−10 after 38 iterations:




0:8888888888573743 −0:87037037033896 −0:2592592592486474 1:1296296295876076
−0:4444444444294535 0:5185185185035387−0:037037037041967674−0:48148148146157094
0:44444444442792064−0:3518518518354216 −0:2962962962906151 0:6481481481260366

−0:33333333331820203 0:38888888887382767 0:22222222221704846 −0:6111111110908761


.

In the caseX0 = XS2 the method produces the following approximation forA.1;3/ with
the precision 0:667309429022048× 10−8 after 38 iterations:




0:8885296579803937 −0:8710888320929212−0:26033695187958905 1:1281927060796855
−0:444803675306434 0:5178000567495776−0:03811472967290933−0:4829184049694931
0:44480367530490117−0:35113339008146044 −0:2952186036596735 0:6495850716339587

−0:33333333331820203 0:38888888887382767 0:22222222221704846−0:6111111110908761


.
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(D) Let us assumeÞ0 = Þ1 = 1=5, þ0 = þ1 = 1=2, Þn = 1=5n, þn = 1=2n, n > 1.
In the caseX0 = XS1, iterative method (3.2) produces the following approximation
for A† with the precision 0:5871735621397724× 10−10 after 18 iterations:




0:8888888888832127−0:8703703703647123−0:25925925925735943 1:1296296296220825
−0:44444444444177217 0:5185185185158488−0:03703703703792724−0:4814814814779111

0:44444444444149706−0:3518518518489219 −0:2962962962952712 0:6481481481441825
−0:33333333333061704 0:3888888888861852 0:22222222222129343−0:6111111111074786


.

In the caseX0 = XS2 the method produces the following approximation forA.1;3/ with
the precision 0:6435232820789964× 10−10 after 27 iterations:




1:039509072508886−0:5691300031303874 0:19260129160073503 1:732110364109587
−0:29382426082444757 0:8197588857585015 0:4148235138229573 0:1209992529984758

0:29382426082444757−0:6530922190918348−0:7481568471562906 0:04566741366819088
−0:33333333333333337 0:3888888888888889 0:22222222222222224−0:6111111111111112


.

(E) Now consider the choiceÞ0 = 1=2, þ0 = 1=2 + 1=5, Þn = 1=5n, þn =
1=2n + 1=5n, n ≥ 1. In the caseX0 = XS1, iterative method (3.2) produces the
following approximation forA† with the precision 0:8145866914197384× 10−10

after 38 iterations:



0:8888888888574894−0:8703703703390749 −0:2592592592486863 1:1296296295877613
−0:44444444442950826 0:5185185185035932−0:03703703704194922−0:48148148146164393

0:44444444442798114−0:3518518518354818−0:29629629629063553 0:6481481481261173
−0:33333333331825743 0:3888888888738829 0:22222222221706717 −0:6111111110909501


.

Since the seriesÞn=þn is convergent, in the caseX0 = XS2 we again get an approxi-
mation for A†. Numerical precision 0:8145866914197384× 10−10 is achieved after
38 iterations, and the result is




0:8888888888574894−0:8703703703390749 −0:2592592592486863 1:1296296295877613
−0:44444444442950826 0:5185185185035932−0:03703703704194922−0:48148148146164393

0:44444444442798114−0:3518518518354818−0:29629629629063553 0:6481481481261173
−0:33333333331825743 0:3888888888738829 0:22222222221706717 −0:6111111110909501


.

(F) For the choiceÞ0 = 1=2n andþn = 5, n ≥ 0, in the caseX0 = XS1 method (3.2)
gives the approximation forA† with the precision 0:975862514147117× 10−8 after
406 iterations:


0:888888794783812−0:870370276596845−0:259259227496198 1:12962950409304
−0:444444399761835 0:518518473993339−0:0370370521186507−0:481481421874688

0:444444395021972−0:351851802603508−0:296296279614848 0:648148082218357
−0:333333288084808 0:388888843799784 0:222222206949596 −0:61111105074938


.

The seriesÞn=þn is convergent, so that in the caseX0 = XS2 we also get an approx-
imation for A†. Numerical precision 0:9736262652199987× 10−8 is achieved after
402 iterations, and the result is



0:913523867929914−0:821100111622034−0:185353982552945 1:22816982525257
−0:419809325997662 0:56778861265089 0:03686815706372−0:382941140385912

0:41980932123669−0:401121940362275−0:370201487575917 0:549607802084412
−0:3333332878833 0:388888835219648 0:222222195290585−0:611111063683115


.
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REMARK 4.1. (i) In (3.2) the convergence is ensured for arbitrary positive and
bounded values of the parametersþn > Þn → 0, n = 0;1; : : : . For larger values of
the parameterþn, iterations (3.2) behave like the first order gradient method, because
of .þnI + A∗ A/−1 ≈ .1=þn/∇Q.xn/. In the caseþn → 0+ we haveþnI + A∗ A ≈ A∗ A,
so these iterative processes converge according to the Newton’s method. In view of
the global convergence of the steepest descent and the fast local convergence of the
Newton’s method, we suggest successive decreasing values forþn, n = 0;1; : : : ,
during the iterations.

(ii) Since‖xn+1−xn‖ = ‖.þnI +A∗ A/−1 A∗.Axn−b/‖, the condition‖xn+1−xn‖ ≤
ž, wherež is a small real number, can be used as the stopping criterion for the iterative
process (3.2).

(iii) Using the known result about the convergence of the quasi-Newton method
from [3], we conclude the following: As long as{½n} converge to zero, iterations (3.2)
are superlinearly convergent. Moreover, if½n ≤ ¼‖∇Q.xn/‖ for some constant¼ for
all sufficiently largen, then (3.2) converge quadratically.

REMARK 4.2. Effectiveness of methods based on the second order optimization
with respect to the steepest descent method (2.1) is evident. For the chosen matrix
A, in case whenX0 = XS1 we get the following approximation of the Moore-Penrose
inverse after 2850 iterative steps with the precision 0:9984792937219064× 10−8:




0:88888887107898−0:870370352568972−0:259259253239727 1:1296296058087
−0:444444435950256 0:518518510085312−0:0370370398993667−0:481481470185946

0:444444435128724−0:351851842483659−0:296296293139094 0:648148135622755
−0:333333324635957 0:388888880397453 0:222222219313109−0:611111099710559


.

Using X0 = XS2 we get the following approximation of{1;3}-inverse after 5650
iterative steps with the precision 0:9985799594416307× 10−8:




1:22222222979886−0:203703699773892 0:74074075406113 2:46296299115256
−0:111111114702461 1:18518518332474 0:962962956650109 0:851851838488027

0:111111115096401 −1:01851851644915−1:29629628928876−0:685185170359436
−0:333333336954566 0:388888887018803 0:222222215859508−0:611111124590927


.

References

[1] A. Ben-Israel and D. Cohen, ‘On iterative computation of generalized inverses and associated
projections’,SIAM J. Numer. Anal.3 (1966), 410–419.

[2] S. R. Caradus,Generalized inverses and operator theory, Queen’s Papers in Pure and Appl. Math.
(Queen’s University, Kingston, ON, 1978).
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