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Abstract

This paper presents two natural extensions of the topology of the space of scalar meromorphic functions
M (€2) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic fuliaions).

When E is locally complete and does not contain copiesvofve compare these topologies with the
topology induced by the representatibh(€2, E) >~ M(2)¢E recently obtained by Bonet, Maestre and

the author.

2000Mathematics subject classificatioprimary 46E40; secondary 46A03, 46E05, 30D30.

1. Introduction

Grosse-Erdmann gives id][a description of the locally convex topology defined by
Holdgrin in [7] on the spaceM (©2) of meromorphic functions on a connected open
subset2 of C as a projective limit of Fechet spaces. Grosse-Erdmann shows that
the locally convex spachkl (2) is a complete Montel space and that it contains the
space of holomorphic functiorts (©2) as a topological subspace. This locally convex
topology seems to be natural M (2). Moreover, the projective description allows
him to give nice applications of the description of the duaM(2) [4, Section 5].

In this paper, we consider the spab&2, E) of meromorphic functions with
values in a locally complete locally convex spaEeendowed with the topologies
which are the natural extensions of the projective and the injective limit description of
the topology inM (2). We see that the inductive Holdgrtopology is generally finer
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than the projective topology, and thd{(2, E) is a topological subspace M (2, E)
endowed with either of these two topologies. In case Ehista FEchet space the two
topologies coincide.

In [2], Bonet, Maestre and the author proved th& ifs a locally complete locally
convex space which does not contaias a subspace théh(2, E) can be canonically
identified with thee-product of SchwartM (Q2)¢E. We consider inM (2, E) the
topology which makes this representation a topological isomorphism. We prove that,
if E hasinfinite algebraic dimension, this topology is strictly weaker than the projective
topology. Connected with this. Let us point out that the characterization of the locally
convex spaces which are locally comple2eRroposition 2] stated in the next section
permits to conclude, by a classical argument (8@ heorem 16.7.4]), that iE is a
locally complete locally convex space thEI(2, E) ~ H ()¢ E holds topologically.

2. Notation and preliminaries

Throughout this pape® denotes a complex domain (a subseCofhich is open
and connected), arid denotes a complex locally convex space. Lbe an index set,
the product of locally convex spaces each one of them isomorplidsalenoted by
E', and their direct sum is denoted B". CN is denoted bys andC™ by ¢.

In the sequel we will use theettis integral Given a compact subsé& < C
and a functionf : K — E, f is called Pettis integrable if there exigis= E such
that for everyu € E', uo f € L*(K) andu(e) = [, uo f(2)dz Inthis caseeis
called integral off overK and we writee:= [, f(z)dz Itis well known that if f
is continuous and the closed absolutely convex @tk f(K) is compact, therf is
Pettis integrable. In this case, an easy application of the Hahn-Banach theorem show
that for every continuous seminormon E the following inequality holds

@) p(/ f(z)dz)g/ po f(zdz
K K

A function f : @ — E is called meromorphic if it satisfies that for eaghe
there existk € N and there exists a sequen@g(f));>_, C E suchthat

2 fz)=> al(f)z—a)"

n=—k

uniformly in the compact subsets of the punctured openB@i, r) \ {«} for some
r > 0. We denote b (2, E) the space oE-valued meromorphic functiond/{(€2)
if E = C). For a meromorphic functio, we call the minimunk € N satisfying @)
order of«a at f (0,(f)). « is called a pole off if o,(f) > 0. The principal
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part of f atw is h*(f) := Z‘j’jl”agj(f)(z — a)71. In caseo,(f) = 0, then, at
«, either f is holomorphic orf has a removable singularity. From the definition it
follows that a meromorphic function is holomorphic except on a discrete set. The
space ofE-valued holomorphic functions af2 is denoted byH (2, E). We refer to
[6, Théorme 2], [L, Section 3], L1, 7.4] and p, 4.3] for equivalent definitions of
vector-valued holomorphic and meromorphic functions (see &|g6Hapter Il, 2]).

In all the results presented we also assume Ehatlocally complete. Recall that
a locally convex space is called locally complete if every absolutely convex closed
bounded set spans a Banach space endowed with its Minkowski gau@e Phojpo-
sition 2], the locally convex sgceskE which are locally complete are characterized as
follows: E is locally complete if and only if for eac2 open inR", for each compact
subsetk of  and for each weakl?! function f : @ — E, the sefacx f (K)) is
compactinE. Then, forE locally complete and € M (R, E), a classical argument
(see B, Theorem 16.7.2] for vector-valued holomorphic functions) shows that, for
eache € Q we can get a circl& centered a& such that for everik € Z we can write

k _ i _\—k-1
3) a,(f)= o /r(z a) f(z2dz

3. The topologies of Holdgtinh and Mittag-Leffler

In this section we define the natural extensiond/t¢2, E) of the two topologies
in M () studied and shown to coincide id][ The proofs of some of the results are
only indicated because they are simple extensions of those statéffor gpaces
of scalar meromorphic functions. We refer & Captulo 3] for the details of these
proofs.

Amaps : Q — N U {0} is called positive divisor o2 if there exists a discrete
subsetP; of Q such thats(z) = O for everyz € @\ D. Given a positive diviso8
on 2, we denote b\ (2, 8, E) the subspace dfl (2, E) of all the functionsf which
are holomorphic o2 \ P; and such thab, (f) < §(«) for everya € P;. In these
spaces we consider the topology inherited friditf2 \ Ps, E) (that is, the topology of
uniform convergence on the compact subsei® §fF;).

PrOPOSITION3.1. For every positive diviso$ on 2, the spaceH (2, E) and
M (L2, 8, E) are topologically isomorphic.

PrROOF. Given a positive divisos on 2, we assume, without loss of generality,
3(a) # 0if @ € P;. We can get a holomorphic functian: 2 — €, such that for
eachy € Py, g(@) =0, lim,_., g(2)/(z—a)’® # 0 andg(z) # Ofor eactz € Q\ Py
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(see [L4, Theorem 15.11]). We define the linear mapping
T:H(EQ,E)—> M(2,8,E), i é
We consider an arbitrary 0-neighbourhoodMi(2, 8, E) of the form
U .= {f e M(L2,48,E): squp(f(z)) < 1},

wherep is a continuous seminorm da andK is a compact subset 6 \ P;. Since
K is compact inQ2 andg(z) # 0 for eachz € K, we can gett > 0 such that
inf,cx 19(2)| > €. If we consider the 0-neighbourhood Ef(€2, E)

V = {f € H(Q, E) : supp(f(2) <e},
zeK

we have thaf (V) c U, obtaining the continuity of .
If we consider natural extensions By, then the inverse mapping dfis given by
T-1(f) = fgforeachf € M(Q, 8, E). We consider a 0-neighborhoodh($2, E)

V = {f € H(Q, E) : supp(f(2) < 1},
zeK

wherep is a continuous seminorm da andK is a non-empty compact subset<f
We can assume, without loss of generality, tkas non discrete and that every point
in K N Py is an interior point oK. We setK N Ps := {z : 1 <i < n} (notice that
the set is finite becaud® is discrete ir2 andK is compact), and we take> 0 such
that the closed dis®(z,r) c K andalsoD(z,r) NP, ={z}forl <i <n. We
consider the compact subset@f\ P;

n
Ki=K\[JB@.n.
i=1
K, is non-discrete K, contains at least the union of the circlgﬁ‘:1 S(z,r) if
K N Ps # #). Hence, the maximum valull of the modulus of g irK; is strictly
positive. We consider now the 0-neighbourhood/ii€, §, E)

U:= {f e M(2,8,E) : supp(f(2) < i}
zeKq M

If fisanE-valuedholomorphic function defined on an open set containing the closed
disc D(a, r), then, for every continuous seminormon E the maximum ofp o f
on D(a, r) is attained at the circl&(a,r). This is a consequence of the Maximum
Modulus Principle for holomorphic functions and the Hahn-Banach theorem. Thus,
if f e U, max p(TX(f)(2) = maxc, |9(2)|p(f(2)) < 1, which is equivalent
to T-%U) c V, andT !is continuous. O
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We denote byZ, the set of all positive divisors o® and we consider in it
the natural ordes; < &, if 8:(2) < 8,(z) for everyz € Q. Itis easy to check
that the inclusions : M(, 68, E) — M(Q, §,, E) are continuous foB; < §..
Moreover,M (L2, E) = UBE% M (2, 8, E). Therefore we can endoM (2, E) with
the topology given by the locally convex inductive limit jpg, M (€2, §, E), which
is called Holdguh topology (see4, 7]) and it is denoted by,. By Proposition3.1,
the spacéM (22, E), 144 is an inductive limit of copies oH (€2, E).

We denote byH.Z (2, E) the space of alE-valued functions defined af2 which
can be written as a sum of a holomorphic function and a rational function; more
precisely, f € HZ(Q, E) if there existsg € H(Q2, E) and (@) ycq.nen € EEN
such that

f(2 =92 + Z Z z i‘sa)n.

aeQ neN

The functionsf € H#Z(Q2, E) are the meromorphic functions defined @nand
with values inE which have only a finite number of poles. We consider, in the
spacesHZ(R2, E), the topology endowed by (22, E) x E®N, If we denote

by #% , the family of all the relatively compact subdomainsefthenM (22, E) =
ﬂoEﬂ% H# (0, E). Moreover, as in4, Section 3.2], ifO; € O, are two elements
of Z% , the linear mapl : HZ(0,, E) - HZ(O,, E), f > f|o, is easily seen
to be continuous. Thus, if we consider#% o, the order of the inclusion, we can
endowM (€2, E) with the topology provided by the locally convex projective limit

4) Projocszs, HZ(O, E).

As Grosse-Erdmann does in the scalar case we call it the Mittag-Leffler topology
and we denote it by, . If E is complete then alsé1.# (O, E) is complete for
each relatively compact subdomaof . Thus, endowed with the Mittag-Leffler
topology, M (2, E) is complete wheneveE is. Moreover,E is easily seen to be
complemented iM (L2, E), ty.). Hence the completeness @ (2, E), ty.) is
equivalent to that oE. Again as itis done in the scalar case (s&d&emark 2 (ii) and
Theorem 1]), we can obtain an equivalent projective description: the Mittag-Leffler
topology is generated by the seminorfns||, « », Wherep is a continuous seminorm
onE, K € Qis compact and = (p])ack nen is @ family of continuous seminorms
on E. Each one of these seminorms acts on a funcfien M (22, E) as follows (see
[4, Theorem 1] for the scalar case):

(5) ||f||K,p.b=squp<<f—Zh“(f)) (z))+ > pi@"(h).

aeK aeK,neN
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REMARK. For (M(Q2, E), y.) to be Hausdorff one has to identify the meromor-
phic functions which coincide except on a discrete set. We do this throughout this
paper. Hence we can always assume that M (2, E) does not have removable
singularities. This identification is implicit ir2] and [4].

A proof analogous to the one of the first part 6f Theorem 2], but usinglj, (3)
and the claim, already used in the proof of Propositioh which asserts that if we
consider anE-valued holomorphic functiorf and a continuous seminormon E
then the maximum op o f on a closed dis® («, r) is attained on the circl&(a, ),
permits to show the next result.

PROPOSITION3.2. The topologyty, is coarser thancy, in M (2, E).

From the above proposition and the descriptighaf the Mittag-Leffler topology,
by using an analogous argument to the one used, ihHeorem 4 (b)], we obtaine the
next result.

PROPOSITION3.3. . andty, endow inM (L2, §, E) their topology inherited from
H(2\ P;, E). Inparticular, H (2, E) is a topological subspace ™ (2, E) endowed
with any of these two topologies.

The technique which we use to show that the two topologies have the same bounde
sets differs from the one used ] for the scalar case. We characterize the metrizable
spaces autitting a continuous embedding M (2, E), Ty, ), obtaining the desired
result as a consequence.

PROPOSITION3.4. Every metrizable spacE continuously embedded in the space
(M(R, E), twL) has its image contained iNM (2, 8, E) for some positive divisos
on Q.

PrOOF. First we show that every subspateof M (2, E) either is contained in
some M (£, 8, E) or there exists a surjective continuous linear mapping fitdm
ontog.

Suppose thaH is a subspace d¥1 (2, E) such that there is no positive divisér
on © for whichH € M(Q, §, E). We denote byP(H) the subset of2 formed by
all the poles of the functions dfl. The condition onH implies that eitheP(H)
is not discrete or there exists € P(H) such that for everym € N there exists a
function f € H such thato,(f) > n. First we suppose thé®(H) is not discrete
in Q. SinceQ can be written as a countable increasing union of relatively compact
subdomains, we can get a relatively compact subdor@aguch that the cardinality
of the set(P(H) N O) is infinite. SinceO is relatively compact, each € M (L2, E)
only has finitely many poles i®. Thus, the choice oD allows us to getinductively a
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sequencefy, z, n, U2, € H x (P(H)NO) x N x E’ such that (a; ™ (f)) = 1
anda, ™(f;) = 0ifk > | (actually we can geteachas a pointin which the functions
{f; : ] <k} are holomorphic).

Now we observe that, given a relatively compact subdoragf €2, the projective
description §) of (M (L2, E), ty.) yields the continuity of the projection

To : (M(2, E), ty.) = HZ(0, E) = H(O, E) x E©©V,

f (f - Zh“(f) ‘o’ (aan(f))aso,neN>'

ae0

Hence,Po : (M(Q,E),tm) — E©N, f > (@,"(f))sconen iS @ surjective
continuous linear mapping. The continuity of the projectinimplies the continuity
of the mappingp : (M (2, E), ) — E™ defined byp(f) = (a,"(f));>,. Hence
it is immediate that the linear mapping

T: HC(M(Q,E), tm) — 2
f = (U@, ™ (F))Re,

is also continuous. To see thatis surjective we observe that, if we denote @
the subspace @f formed by the sequences which have vanishing all the coordinates
greater thark, then this space is generated by sfaif;) : j < k}. A similar
argument shows that if we supposed that there exigtsP (H) such that there exists
a sequenceéf,), c F and an increasing sequengg), C N such thao,(f) = ng
thenH would be mapped continuously onpo

Now, for a metrizable locally convex spad¢e we suppose that there exists a
continuous embedding : F — M () suchthatA(F) is notcontained itM (€2, 8, E)
for anyé € Z,. Then, by extending to the completion, we can find a continuous and
surjective linear mappin® : F — ¢. Thus, by the De Wilde’s open mapping
theorem [L2, Theorem 24.30]F is a FEchet space with a quotient isomorphic to an
infinite direct sum of copies df, a contradiction. O

CoroLLARY 3.5. The Mittag-Leffler topology and the Holdgr topology have the
same bounded sets M (2, E). They are those which are contained and bounded in
M (L2, 8, E) for some positive divisat on Q2.

PrOOF. As a consequence of Propositiéh2, every tyo-bounded set isy -
bounded. Conversely, B is a ty_-bounded set, we apply Propositi@ to ob-
tain that (the linear span of the closed absolutely convex hulBo contained in
M (L2, 8, E) for somes positive divisor one2, and in this subspace both topologies
coincide. O
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REMARK. Proposition3.4together with PropositioB.1implies that the subspaces
of M(R2, E) endowed with any of the two topologies that we have seen in this section
which are Fechet for the induced topology are isomorphic tedfét subspaces of
H(Q, E).

THEOREM 3.6. If E is a Fréchet space, thefy, = Ty in M(2, E). In this case
M (2, E) is a Hausdorff locally convex space which is complete and ultrabornological.

PrOOF. Let E be a Fechet space. To show the coincidence between the two
topologies, in view of Corollary.5, we only have to show thatM (2, E), ty) is
bornological. This is obtained using the same method to the one used in the proof of
[4, Lemma 2 (b)] forM (£2). We only include a brief sketch of the proof. We fix an
absolutely convex subskt which absorbsy, -bounded sets and we show that there
exists a relatively compact subdomanof 2 , a compact subsét of O, ¢ > 0 and
a continuous seminorrp on E such that iff € M (2, E) does not have poles i®
and satisfies syp, p(f(2)) < ¢, thenf € U. To obtainp one has to use that the
topology onE is generated by a countable set of seminorms. Once this is proved, we
observe that the subspa@& O, E) of (M (€2, E), ty) of all the functionsf that can
be written in the form

°° j
(@=Y3 o0

ae0 j=1

all the vectors) = 0 but finitely many, is isomorphic t&‘©*N). Then it is bornolog-
ical. These facts are used to show that if we denot¥ lige set

fe M, E): f(z2) — he(f , ho(f UnZ(O,E
{ € <,)§5Kpp<<z> > (><z>><ez (f) e U Nz )}

ae0 ae0

thenV is a 0-neighbourhood ify,_ such thaty C 2U.

The topological vector spadd (2, E) is complete since it is a projective limit of
complete spaces and it is bornological since it is an indutitivie of Frechet spaces.
Consequently it is ultra-bornological. O

A question which arises naturally is whether the equality between Mittag-Leffler
and Holdgtin topologies inM (€2, E) holds for (DF)-spacek. We have not solved
this problem. However, we show below that the sp&t&?, ¢) endowed with the
Holdgnin topology is not bornological. From the projective description of the Mittag-
Leffler topology inM (L2, E) for a locally complete spade, we know that, fon € N,
the projection oveE given byP,"(f) = a,"(f) is continuous irM (2, E) endowed
with its Mittag-Leffler topology, and hence also if we consider the Halddopology.
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PROPOSITION3.7. For ag € €2, the linear mapping defined av (2, E) and with
values inE, f — a) (f) is continuous for the topologs,. in the space of vector-
valued meromorphic functions.

PrOOF. For each relatively compact subdoma&nof 2, we denote byP, andTo
the projections defined oM (2, E), 7y, ) and with values ire©©*™ andH (O, E)
defined byPo(f) = (@,"(f))sconen andTo(f) = f =" o h*(f) respectively.
Both of them are continuous as a consequence of the descrig)ianf the Mittag-
Leffler topology.

We fix a relatively compact subdomad of @ containinge, and we fixn € N.
For eachf € M(Q, E), we can assume without loss of generality that the function
f — h*(f) is holomorphic in a certain neighbourhoodaf contained inO. This
function can be developed by

(6) (f —h*(f) @) =Y al(f)z—a)".

n=0

In the locally convex spadd (O, E), the evaluation map at a fixed pointis continuous.
Therefore, the continuity of implies that the mapping : (M (2, E), ty.) — E,
f—~ (f — Y weo h“(f))(ao) is also continuous. Moreover, b§)( we have

al (f)=(f —h*(f))(a)=T(f) + ( > h“(f)) ().

a€0,a#wag

Thus, we have only to show the continuity of the second part of the sum above. To do
this we observe that this element is the compositioRgfvith the continuous linear
mapping which maps evel®?),conn € E©*Y to

1 n
Z ZmaaEE. O

a€O,a#ay NneN

REMARK. On account of the fact that in the locally convex sp&t€O, E), the
linear mapping which maps each function tamtth derivative evaluated at a fixed point
is continuous, a slight modification of the previous proof shows that the projections
over the positive terms in the Laurent developmptf) = a7 ( f) are continuous on
(M(2, E), tmp)-

To study the spach! (22, ¢), we first note that this space is algebraically isomorphic
to M(Q)™. Actually, if f € M(L, ¢) we can writef = (f,),, and the fact that the
set of zeros and poles of a non-zero meromorphic function is countable implies that
f, = 0 except for finitely many. We denote by, the (bornological) topology which
makesM (€2, ) isomorphic toM ().
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PrROPOSITION3.8. In M (L2, ¢) the 7y -bounded setg¢and consequently the,y-
bounded sejxoincide with thers-bounded sets.

PrOOF. We identify C" with the subspace ap formed by the sequences which
have vanishing coordinates greater timanif B is bounded inM ()™, then there
existsn € N such thatB ¢ M (€2, C") and we can get a positive divisdon 2 such
that for each compact subgétof Q \ Ps there existdvl (K) > 0 such that for every
f = (fp_, € B we havef, € M(€2,4) and sup., | fk(z2)] < M(K). That is, we
can choose such that then projections oveiM (©2) which are not identically zero
are contained and bounded W(2, §). Therefore, for eacH € B, we have that
f € M(R, 8, ¢) and for each compact subdetof 2\ Ps and for eacth = (by)x € o,

supy b fi(2)| = sup) _ Ib fi(2)| < oo.
cK k=1 eK k=1

Hence we conclude th& is bounded ilM (R, 8, ¢) and thereby it iy -bounded.
Conversely, leB be ary -bounded subset &fl (2, ). We suppose that there is no

n € N such thaB is contained irM (2, C"). We choose a sequencg™),, ¢ B, with

f" = (f)g2; and an increasing sequen@®), C N such thak, > nand f;! # 0.

The subset of2 formed by the poles and zeros of the functidifswith n, k € N is

countable. This allows us to selegte 2 in which every functionf,! is holomorphic

and different from zero. The linear mapping

Pz(g : (M(Q’ (0)’ TML) - @
fo— ayf)

is continuous according to Lemn®a7. It follows that(PZ(;(f")) = (f)(z))x and
fe(z0) # 0. Hence, for each € N, thek,-th coordinate of the sequen(:@zg(f”))
of ¢ is different from zero and therefore there is moe N for which PZ(;(B) is
containedC™, and therPZ(g(B) is not bounded ip, a contradiction with the continuity
of PZ(;. Thus we can get a natural numbesuch thatB ¢ M(2, C"). As, by the
hypothesis and Corollar$.5, B is contained and bounded M (€2, §, ¢) for some
positive divisors on 2, we have that tha projections ofB over M (2) which are not
identically zero are bounded M (2, §), and we conclude tha& is zs-bounded. O

PrROPOSITION3.9. The spacéM (2, ¢), t1o) IS NOt bornological.

PROOF. Sincer is bornological, the above proposition impligg, < 5. We have
to show thatrs is strictly finer. We observe that if we assume the continuity of the
identity | : (M(L2, ¢), tho)) = (M(R2, @), 1), then the restriction of to H (R, ¢) is
also continuous. Hence Propositidr8implies that

(7 H(Q, ¢) = HE@Q®W
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holds topologically. Since is completeH (2, ) is isomorphic to the completion of
the projective tensorial produet(Q)®, ¢ (see B, page 366]), and thei( contradicts
[13, Proposition 11.6.11]. O

ReEMARK. For a locally complete spadeg, it is not difficult to show thatM () is
a (complemented) subspaceMf(2, E) endowed with either of the two topologies
view. Thus, i, Theorem 3 (b)] implies thatl (2, E) is not metrisable nor nuclear
or Schwartz. Moreover, a similar argument to the prooffffheorem 3 (b)] works
to show that M (2, E), Ty, ) is not separable. Then Propositidr2 implies that the
space M (2, E), 14¢) is not separable.

4. The injective topology

If F is a locally convex space, as usual, we denotd-hythe topological dual of
F endowed with the compact open topology. Forand F locally convex spaces,
Le(F/,, E) denotes the space of continuous linear maps fignmto E endowed with
the topology of the uniform convergence on the equicontinuous subséts dhis
space is called-product of Schwartz and itis denoted By F. In [2] it is proved that
if E does not contain a subspace ismorphiewtdhen for eachl € L(E,, M(2))
there existsf € M(L, E) such thatT(u) = uo f, this correspondence being an
algebraic isomorphism. This representation has been uséd]ito[obtain results of
meromorphic extension assuming only weak meromorphic extension. In this section
we study, for locally complete spacEsvhich do not contain copies af, the topology
on M (€2, E) which makes it isomorphic ttM ()¢ E. This topology is called the-
topology and it is denoted by,. We need some notation. Given a continuous
seminormp on E, we denote by, ; the 0-neighbourhood d formed by the vectors
esuchthatp(e) < 1. The polar set); , is the subset oE’ formed by the functionals
u such thatu(e)| < p(e) for everye € E. Thet.-topology inM (2, E) is generated

by the seminorms

®) lfllpko= sup <SUD

ueUp, \ zeK

u<f —Zh“(f)) (2)

aeK

+ ) 0 |u<au“(f>)|> ,
aeK,neN
whereK is a compact subset &2, p is a continuous seminorm o andb :=
(B))eek nen € R¥XN. Moreover, B, Theorem 1] yields that this system of seminorms
is directed; that is, givel C K, two compact subsets &t andb € R *M there
existsc € RX*™ such that| f ||, kb < |l fllp.x,.c for eachp continuous seminorm on
E and for eachf € M(Q, E).
First we see that the-topology is weaker than the Mittag-Leffler topology and
after this we check that it is actually strictly weakeHfis infinite dimensional.
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ProPOSITION4.1. If E does not contaiw as a subspace then the topologyis
coarser thanry, in M(2, E).

PrOOF. To establish the claim we have to show the continuity of the algebraic
isomorphismT : (M(R2, E), y.) > M(Q)eE, f — T;, whereT;(u) = uo f for
eachu € E’. We identify f andT; for eachf € M(Q, E). We fix a continuous
seminormp on E, a compact subsé€ of @ andb = (b})yck.nen € RSN and we
consider the continuous seminoim ||, k , for 7. as in @). But the seminorm - |
defined onM (22, E) by

| f|:=supp (f - Zh“(f)) (2 + Z by p(@,"(f))
zeK zeK aeK,neN
is continuous for the Mittag-Leffler topologgccording to §). We observe that
a,"(uo f) =u(a"(f)) holds for eachf € M(2, E), for eachn € N and for each
u e E’. Hence| fllx pp < |f]|foreachf e M(Q, E). O

To see that the Mittag-Leffler topology is strictly stronger thatdftepology we
need to use a characterization of the locally convex spaces (not necessarily locally
complete) which are nuclear. For a locally convex spigén [8, 15.7 and 16.5]
are defined the spadg E] of unconditionallyo (E, E’)-Cauchy sequences and the
spacel;{E} of absolutely Cauchy sequences. By Theorem 21.2.1], the locally
convex spaces spacé&swhich are nuclear are those for whitHE} = |,[E] holds
algebraically and topologically. This characterization can be written as follows.

LEmmMA 4.2. E is nuclear if and only if for each continuous seminopron E there
exists a continuous seminorqion E and§ > 0 such that, for each finite subset
{X{, ..., %} of E,

(9) sgp2|u<xi>| <6 = > px) <Ll
uelds 121 i=1

ProPOSITION4.3. Let E be a locally complete locally convex space which is not
nuclear and does not containas a subspace. Then the topolagy is strictly finer
than the topology, in M (L2, E).

PrOOF. Let E be a locally complete space wich does not confaiand such that
7, = v, ON M(R2, E). We fix a continuous seminormp on E and an uncountable
compact subse, of 2. We define the following seminorm oMl (2, E) which,
according to ), is continuous fory,_

||f||K0,p:=supp<<f—Zh“(f))(z)>+ > p@E,"(f)).

2eKo aeKo aeKo,neN
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By the hypothesi§ - ||, is also continuous for.. Therefore we can find a seminorm
Il llk,.0.q @S in @) for a compact subsét; O K, of €2, a continuous seminormon E
and a vectob = (b)) € RN suchthat| f ||, , < || f lx,0q fOr eachf € M(Q, E).
We define the setB; = {(a,n) € Ko x N : [b]| < j}. We have thak, x N can
be written as the countable union of these sets and therefore we canegét such
that By, is infinite. We define = (") € RT" by

o

o= Jo df (@) € By
bl otherwise.

If we consider ther,-continuous seminorri - ||k, c 4 then we have

(10) Il fllkop < Il Fllkibg < Il Tllkicq

for eachf € M(Q2, E). We take a sequenae;, n;), of different points ofB;,.
For an arbitrary finite subseik; )™, of E, we consider the meromorphic function
f(z) =Y ",(z—a)™"x;, and apply 10) to f to get

m 1 m
sup Y Jux)l <= = Y pe) <1
0

uelgs 1 J i=1

Therefore Lemmad.2yields thatE is nuclear. O

Now we introduce a concept closely related to the well-knaeuantable neigh-
bourhood property(see [L3, Definition 8.3.4]) satisfied by all the (DF)-apes.

DEFINITION 4.4. Let « be a cardinal number. A locally convex spages said
to satisfy thew-neighbourhood property if for each index dewith cardinality not
greater tharr and for each setp, )i, of continuous seminorms o there exists a
set(G)ie Of positive numbers and a continuous semingrion E such thatp, < ¢ p
for everyi € |. Equivalently, if given a setU;);., of 0-neighbourhoods iikE there
area(i) > O suchthat) :=(",_, a(i)U; is a 0-neighbourhood ii.

The @-neighbourhood property is easily checked to be inherited by subspaces. It
is also clear that every normed space satisfiestheighbourhood property for every
cardinal numbes. We are interested in the case wheis the continuum cardinal2
There exist non-normed spadésvhich satisfy the ®-neighbourhood property. For
instance, ifl is an index set whose cardinality is strictly greater thdnahd we
defineE as the spade, (1) endowed with the topology of uniform convergence on the
subsets of with cardinality no greater thari*@ then we have thdE is a non-normed
space which satisfies thé&zheighbourhood property.
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LEMMA 4.5. Let E be a nuclear locally convex space. Thénsatisfies the
2%-neighbourhood property if and only i is finite dimensional.

PrOOF. Every space of finite dimension is a hormed space and then satisfies the
a-neighbourhood property for every cardinal number

If we suppose that there exists an infinite dimensional nuclear $paatsfying the
2%-neighbourhood property, then we could obtain a subspagkE with countable
algebraic dimension. Thusis nuclear and it satisfies th&2neighbourhood property
as a subspace d&&. The spacd- endowed with its finest locally convex topology
is isomorphic to the separable spaceThenF is also separable with its topology
inherited fromE. We select a subsdd of F which is countable and dense. Let
(Uiie) be a basis of pairwise different closed 0-neighbourhoods siich that each
U; is the closure of its interior. We consider the map defined @md with values
in P(D) (the set formed by all the subsets B) which maps each € | to the set
U N D. We observe that for eaeh € U; and for each open s&t containinge, by
the hypothesisy meets the interior of);. Consequently, the intersection \éfwith
the interior ofU; is a non-empty open set and thém U; N D # @. Thus we have
thatU; N D = U;, and from this it follows that the mapping— U; N D is injective.
Then we have thatl | < 2%. Now we apply thaf satisfies the 2-neighbourhood
property to obtain thaf is normed. As- is also nuclear, then it is finite dimensional
by the Dvoretzky-Rogers theorem, a contradiction. O

THEOREM4.6. Let E be a locally complete locally convex space which does not
contain w as a subspace. The locally convex topologiesnd ty, coincide in
M (L2, E) if and only if E is finite dimensional.

PrOOF. By Proposition4.3 if both topologies coincide irM (€2, E) then E is
nuclear. Suppose th& is nuclear. We show that the equality between the topologies
is equivalent to the®2-neighbourhood property, obtaining then the desired claim by
applying Lemmad.5. Let E be a space as in the hypothesis satisfying= ty.
and let(p)ic; be a set of continuous seminorms Bnsuch thatjl| < 2%. Let K
be a compact subset 6f with |K| = 2%. We define a mapping: K x N — 1,

(o, n) — i(a, N), such that is surjective. If we defing) := pi.n, then we have
{Pl}henoex = {Pilici. Let p be any continuous seminorm da. We define the
0-neighbourhood in the Mittag-Leffler topology

=1feM(@, E): of f — he ) (f @ "(f 1.
U {e <,)§Equp< > )()(z)+2 pa(aa(>)<}

aeK aeK,neN

By the hypothesis there exists> 0, a compact subs&t; of Q (which we can assume
to containK), a continuous seminorrg on E and a set(b]),ck, nen Of positive
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numbers such that, if we denote by the 0-neighbourhood in, formed by the
functionsf € M (2, E) which satisfy

Uo <f - Zh“(f)) (2)

aeKq

sup

zeKq

+ > bBlu@E"(f)l <8

aeKiq,neN

for eachu € Uy, then it holdsV € U. Looking at functions of the fornf (z) =

(z—a)"x with x € E and(«, n) € K x N, we get that, for eack € E it holds
blax) <8 = pi(x) <1

Hence we conclude th& satisfies the 2-neighbourhood property.

Conversely, if we suppose thEthas the 2-neighbourhood property, by Proposi-
tion4.1we have only to show that,. < z.. We consider an arbitrary 0-neighbourhood
of the basis in the Mittag-Leffler topology

={feM(E,E): f — h(f "a "(f 1;,
U { € u)iquq( > ())(z)+ an(aa(>)<}

aeK aeK,neN

whereq andq] are continuous seminorms dhandK is a compact subset @.
By applying the 2°-neighbourhood property to the seminorg),cx nev We get a
continuous seminorrp on E and positive numbels] such that] < p, andq] < b’ p,
for eache € K and eacm € N. Thereby, if we consider the 0-neighbourhood in

W = { f e M(Q, E) : supp <f — Zh“(f)) (2) + Z blp(a,"(f)) < 1}
zeK aeK aeK,neN
then we have thatv ¢ U. SinceE is nuclear, we can apply Lemmnda2to obtain that
there exists a continuous seminarmn E such that, for eachfinite subdget, ... , X,}
of E, there exist$ > 0 such that

n n 1
11 su ux)| <é — Xi) < —.
(11) ueug@ 0 ;p( ) <5
From the fact that for every € M (2, E) and for each compact subd€tof Q2 the
subset ofK x N formed by the(e, n) for whicha "(f) # 0 is finite and (1), it
follows that if we denote by the 0-neighbourhood im, formed by the functions
f € M(2, E) which satisfy

u<f —Zh“(f)) (2)

aeK

+ Y b2|u(aa”(f))|><8

aeK,neN

sup <sup

uelp; \ zeK

thenV c W c U, concluding the proof. O
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LEMmMA 4.7. (a) Forevery positive divisos on <2, the topologyt, onM (€2, 8, E)
coincides with its natural topology inherited from the sp&te? \ P, E).
(b) The projectionsP, " : (M(2, E), z.) — E, f — a,"(f), are continuous for
everya € @ and for everyn € N.

ProOOF. The description&) of ¢, implies (b) and, together with Propositi@2and
Propositiord. 1, also implies (a) as ind, Theorem 4 (b)]. O

THEOREM4.8.If F is a Baire space continuously embedded in the space
(M(R, E), 7.), then there is some positive divisdron Q such that the image of
F under the embedding is containedM2, §, E).

PrOOF. We denote byA the continuous embedding. L&D,), be a sequence of
relatively compact subdomains ©fsuch that the closure @, is contained inO,,;
for everyn € NandQ = |, O,. We fixn € N and, form € N we defineO,,, as
the subset of formed by the vectors such thatA(e) is a meromorphic function
which has inO, at mostm poles. Itis clear thaF = [ J,,_,, Onm. We show thatO,,
is closed inF. Lete € F \ O, There exist distinct point&y,, ... on.1} in O, and
natural numberk, ... , Kn1 suchthaﬂDaj'Q(A(e)) # 0foreveryl<i <m+1. By
Lemma4.7 (b), the subset

m+1
H = (R, *)"(C\ (0}

i=1
is open in(M (2, E), 7). The continuity ofA implies thatA-*(H) is an open subset
of F containinge which does not mee®,,.. Thus, sinceF is a Baire space we
conclude that there exisis, € N such thatO, ,, has non-empty interior. We observe
that it holdsO,,, + Onm C Onom andA O, = O,y for eachi € €\ {0} to conclude
that there exists a 0-neighbourhood@p ;. This yields thatF = O, om,. Itis not
difficult to show that, for each subspaGeof M(Q2, E), if f € G, o € O, isnot a
pole of f and there existg € G such thatx is a pole ofg, then there exists > 0
such thatifg € C satisfies O< |8| < ¢ then each pole of in O, and alsax are poles
of f + Bg € G. Thus, the equalitfr = O, ,y, Yields that the subset @, formed
by the points which are poles of the meromorphic functions which belodg k9 is
finite. Hence, if we denote bl (F) the subset of2 formed by the points which are
poles of meromorphic functions which can be writtenfdg) with e € F, we have
that P(F) is discrete irc2.

Now we fixa € P(F). We define

F = )(P, 0 A)(0).

k=n
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EachF is a closed vector subspacef®f Moreover, we havé = ( J>°, F". Since
F is a Baire space, we can geir) € N such thatF = F®. Then we can define
5:Q — NU{0} byd(e) =n(a) if « € P(F) ands(x) = 0 otherwise. We have that
3 is a positive divisor o2 andF c M(Q, §, E). O

CoROLLARY 4.9. If E is a locally complete locally convex space which does not
contain a subspace isomorphic t@ then the subsets ¥l (22, E) which aret,-
bounded are the same ones that the-boundedor tyy-bounded sets.

PrOOF. (M(2, E), 7.) is the locally complete spadd (2)¢E (since M (2) and
E are locally complete). Therefore the conclusion follows as in Coroltafyby
applying Lemmat.7 (a) and Theorem.8. O

COROLLARY 4.10. If E is an infinite dimensional locally complete locally convex
space which does not contain copiesuiahen(M (2, E), 7.) is not bornological.
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