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Abstract

This paper presents two natural extensions of the topology of the space of scalar meromorphic functions
M.�/ described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functionsM.�;E/.
When E is locally complete and does not contain copies of! we compare these topologies with the
topology induced by the representationM.�; E/ ' M.�/"E recently obtained by Bonet, Maestre and
the author.

2000Mathematics subject classification: primary 46E40; secondary 46A03, 46E05, 30D30.

1. Introduction

Grosse-Erdmann gives in [4] a description of the locally convex topology defined by
Holdgrün in [7] on the spaceM.�/ of meromorphic functions on a connected open
subset� of C as a projective limit of Fr´echet spaces. Grosse-Erdmann shows that
the locally convex spaceM.�/ is a complete Montel space and that it contains the
space of holomorphic functionsH .�/ as a topological subspace. This locally convex
topology seems to be natural inM.�/. Moreover, the projective description allows
him to give nice applications of the description of the dual ofM.�/ [4, Section 5].

In this paper, we consider the spaceM.�; E/ of meromorphic functions with
values in a locally complete locally convex spaceE endowed with the topologies
which are the natural extensions of the projective and the injective limit description of
the topology inM.�/. We see that the inductive Holdgr¨un topology is generally finer
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than the projective topology, and thatH .�; E/ is a topological subspace ofM.�; E/
endowed with either of these two topologies. In case thatE is a Fréchet space the two
topologies coincide.

In [2], Bonet, Maestre and the author proved that ifE is a locally complete locally
convex space which does not contain! as a subspace thenM.�; E/ can be canonically
identified with the"-product of SchwartzM.�/"E. We consider inM.�; E/ the
topology which makes this representation a topological isomorphism. We prove that,
if E has infinite algebraic dimension, this topology is strictly weaker than the projective
topology. Connected with this. Let us point out that the characterization of the locally
convex spaces which are locally complete [2, Proposition 2] stated in the next section
permits to conclude, by a classical argument (see [8, Theorem 16.7.4]), that ifE is a
locally complete locally convex space thenH .�; E/ ' H .�/"E holds topologically.

2. Notation and preliminaries

Throughout this paper� denotes a complex domain (a subset ofC which is open
and connected), andE denotes a complex locally convex space. LetI be an index set,
the product of locally convex spaces each one of them isomorphic toE is denoted by
EI , and their direct sum is denoted byE.I /. CN is denoted by! andC.N/ by '.

In the sequel we will use thePettis integral. Given a compact subsetK ⊆ C

and a functionf : K → E, f is called Pettis integrable if there existse ∈ E such
that for everyu ∈ E′, u ◦ f ∈ L1.K / andu.e/ = ∫

K u ◦ f .z/dz. In this casee is
called integral off over K and we writee := ∫

K f .z/dz. It is well known that if f
is continuous and the closed absolutely convex hullacx f.K / is compact, thenf is
Pettis integrable. In this case, an easy application of the Hahn-Banach theorem shows
that for every continuous seminormp on E the following inequality holds

p

(∫
K

f .z/dz

)
≤
∫

K

p ◦ f .z/dz:(1)

A function f : � → E is called meromorphic if it satisfies that for eachÞ ∈ �

there existsk ∈ N and there exists a sequence.an
Þ. f //∞n=−k ⊂ E such that

f .z/ =
∞∑

n=−k

an
Þ. f /.z − Þ/n(2)

uniformly in the compact subsets of the punctured open ballB.Þ; r / \ {Þ} for some
r > 0. We denote byM.�; E/ the space ofE-valued meromorphic functions (M.�/
if E = C). For a meromorphic functionf , we call the minimumk ∈ N satisfying (2)
order of Þ at f (oÞ. f /). Þ is called a pole off if oÞ. f / > 0. The principal
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part of f at Þ is hÞ. f / := ∑oÞ. f /
j =1 a− j

Þ . f /.z − Þ/− j : In caseoÞ. f / = 0, then, at
Þ, either f is holomorphic orf has a removable singularity. From the definition it
follows that a meromorphic function is holomorphic except on a discrete set. The
space ofE-valued holomorphic functions on� is denoted byH .�; E/. We refer to
[6, Théorème 2], [1, Section 3], [11, 7.4] and [5, 4.3] for equivalent definitions of
vector-valued holomorphic and meromorphic functions (see also [3, Chapter II, 2]).

In all the results presented we also assume thatE is locally complete. Recall that
a locally convex space is called locally complete if every absolutely convex closed
bounded set spans a Banach space endowed with its Minkowski gauge. In [2, Propo-
sition 2], the locally convex spacesE which are locally complete are characterized as
follows: E is locally complete if and only if for each� open inRn, for each compact
subsetK of � and for each weaklyC1 function f : � → E, the setacx. f .K // is
compact inE. Then, forE locally complete andf ∈ M.�; E/, a classical argument
(see [8, Theorem 16.7.2] for vector-valued holomorphic functions) shows that, for
eachÞ ∈ � we can get a circle0 centered atÞ such that for everyk ∈ Z we can write

ak
Þ. f / = 1

2³ i

∫
0

.z − Þ/−k−1 f .z/dz:(3)

3. The topologies of Holdgrün and Mittag-Leffler

In this section we define the natural extensions toM.�; E/ of the two topologies
in M.�/ studied and shown to coincide in [4]. The proofs of some of the results are
only indicated because they are simple extensions of those stated in [4] for spaces
of scalar meromorphic functions. We refer to [9, Capı́tulo 3] for the details of these
proofs.

A map Ž : � → N ∪ {0} is called positive divisor on� if there exists a discrete
subsetPŽ of � such thatŽ.z/ = 0 for everyz ∈ � \ D. Given a positive divisorŽ
on�, we denote byM.�; Ž; E/ the subspace ofM.�; E/ of all the functionsf which
are holomorphic on� \ PŽ and such thatoÞ. f / ≤ Ž.Þ/ for everyÞ ∈ PŽ. In these
spaces we consider the topology inherited fromH .� \ PŽ ; E/ (that is, the topology of
uniform convergence on the compact subsets of� \ PŽ).

PROPOSITION3.1. For every positive divisorŽ on �, the spacesH .�; E/ and
M.�; Ž; E/ are topologically isomorphic.

PROOF. Given a positive divisorŽ on�, we assume, without loss of generality,
Ž.Þ/ 6= 0 if Þ ∈ PŽ. We can get a holomorphic functiong : � → C, such that for
eachÞ ∈ PŽ, g.Þ/ = 0, limz→Þ g.z/=.z−Þ/Ž.Þ/ 6= 0 andg.z/ 6= 0 for eachz ∈ �\ PŽ
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(see [14, Theorem 15.11]). We define the linear mapping

T : H .�; E/ → M.�; Ž; E/; f 7→ f

g
:

We consider an arbitrary 0-neighbourhood inM.�; Ž; E/ of the form

U :=
{

f ∈ M.�; Ž; E/ : sup
z∈K

p. f .z// < 1
}
;

wherep is a continuous seminorm onE andK is a compact subset of� \ PŽ. Since
K is compact in� and g.z/ 6= 0 for eachz ∈ K , we can get" > 0 such that
inf z∈K |g.z/| > ". If we consider the 0-neighbourhood ofH .�; E/

V :=
{

f ∈ H .�; E/ : sup
z∈K

p. f .z// < "

}
;

we have thatT.V/ ⊂ U , obtaining the continuity ofT .
If we consider natural extensions toPŽ, then the inverse mapping ofT is given by

T−1. f / = f g for each f ∈ M.�; Ž; E/. We consider a 0-neighborhood inH .�; E/

V :=
{

f ∈ H .�; E/ : sup
z∈K

p. f .z// < 1
}
;

wherep is a continuous seminorm onE andK is a non-empty compact subset of�.
We can assume, without loss of generality, thatK is non discrete and that every point
in K ∩ PŽ is an interior point ofK . We setK ∩ PŽ := {zi : 1 ≤ i ≤ n} (notice that
the set is finite becausePŽ is discrete in� andK is compact), and we taker > 0 such
that the closed discD.zi ; r / ⊂ K and alsoD.zi ; r / ∩ PŽ = {zi } for 1 ≤ i ≤ n. We
consider the compact subset of� \ PŽ

K1 := K \
n⋃

i =1

B.zi ; r /:

K1 is non-discrete (K1 contains at least the union of the circles
⋃n

i =1 S.zi ; r / if
K ∩ PŽ 6= ∅). Hence, the maximum valueM of the modulus of g inK1 is strictly
positive. We consider now the 0-neighbourhood inM.�; Ž; E/

U :=
{

f ∈ M.�; Ž; E/ : sup
z∈K1

p. f .z// <
1

M

}
:

If f is anE-valued holomorphic function defined on an open set containing the closed
disc D.a; r /, then, for every continuous seminormp on E the maximum ofp ◦ f
on D.a; r / is attained at the circleS.a; r /. This is a consequence of the Maximum
Modulus Principle for holomorphic functions and the Hahn-Banach theorem. Thus,
if f ∈ U , maxz∈K p.T−1. f /.z// = maxz∈K1 |g.z/|p. f .z// < 1, which is equivalent
to T−1.U / ⊂ V , andT−1 is continuous.
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We denote byD� the set of all positive divisors on� and we consider in it
the natural orderŽ1 ≤ Ž2 if Ž1.z/ ≤ Ž2.z/ for every z ∈ �. It is easy to check
that the inclusionsi : M.�; Ž1; E/ → M.�; Ž2; E/ are continuous forŽ1 ≤ Ž2.
Moreover,M.�; E/ = ⋃

Ž∈D�
M.�; Ž; E/. Therefore we can endowM.�; E/ with

the topology given by the locally convex inductive limit indŽ∈D�
M.�; Ž; E/, which

is called Holdgr¨un topology (see [4, 7]) and it is denoted by−Hol. By Proposition3.1,
the space.M.�; E/; −Hol/ is an inductive limit of copies ofH .�; E/.

We denote byHR.�; E/ the space of allE-valued functions defined on� which
can be written as a sum of a holomorphic function and a rational function; more
precisely, f ∈ HR.�; E/ if there existsg ∈ H .�; E/ and .an

Þ/Þ∈�;n∈N ∈ E.�×N/

such that

f .z/ = g.z/+
∑
Þ∈�

∑
n∈N

an
Þ

.z − Þ/n
:

The functions f ∈ HR.�; E/ are the meromorphic functions defined on� and
with values inE which have only a finite number of poles. We consider, in the
spacesHR.�; E/, the topology endowed byH .�; E/ × E.�×N/. If we denote
byRC � the family of all the relatively compact subdomains of�, thenM.�; E/ =⋂

O∈RC�
HR.O; E/. Moreover, as in [4, Section 3.2], ifO1 ⊆ O2 are two elements

of RC �, the linear mapT : HR.O2; E/ → HR.O1; E/, f 7→ f |O1 is easily seen
to be continuous. Thus, if we consider inRC � the order of the inclusion, we can
endowM.�; E/ with the topology provided by the locally convex projective limit

projO∈RC�
HR.O; E/:(4)

As Grosse-Erdmann does in the scalar case we call it the Mittag-Leffler topology
and we denote it by−M L . If E is complete then alsoHR.O; E/ is complete for
each relatively compact subdomainO of �. Thus, endowed with the Mittag-Leffler
topology, M.�; E/ is complete wheneverE is. Moreover,E is easily seen to be
complemented in.M.�; E/; −M L/. Hence the completeness of.M.�; E/; −M L/ is
equivalent to that ofE. Again as it is done in the scalar case (see [4, Remark 2 (ii) and
Theorem 1]), we can obtain an equivalent projective description: the Mittag-Leffler
topology is generated by the seminorms‖ · ‖p;K;b, wherep is a continuous seminorm
on E, K ⊆ � is compact andb = .pn

Þ/Þ∈K;n∈N is a family of continuous seminorms
on E. Each one of these seminorms acts on a functionf ∈ M.�; E/ as follows (see
[4, Theorem 1] for the scalar case):

‖ f ‖K;p;b = sup
z∈K

p

((
f −

∑
Þ∈K

hÞ. f /

)
.z/

)
+

∑
Þ∈K;n∈N

pn
Þ.a

−n
Þ . f //:(5)
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REMARK. For .M.�; E/; −M L / to be Hausdorff one has to identify the meromor-
phic functions which coincide except on a discrete set. We do this throughout this
paper. Hence we can always assume thatf ∈ M.�; E/ does not have removable
singularities. This identification is implicit in [2] and [4].

A proof analogous to the one of the first part of [4, Theorem 2], but using (1), (3)
and the claim, already used in the proof of Proposition3.1, which asserts that if we
consider anE-valued holomorphic functionf and a continuous seminormp on E
then the maximum ofp ◦ f on a closed discD.Þ; r / is attained on the circleS.Þ; r /,
permits to show the next result.

PROPOSITION3.2. The topology−M L is coarser than−Hol in M.�; E/.

From the above proposition and the description (5) of the Mittag-Leffler topology,
by using an analogous argument to the one used in [4, Theorem 4 (b)], we obtaine the
next result.

PROPOSITION3.3. −M L and−Hol endow inM.�; Ž; E/ their topology inherited from
H .�\ PŽ ; E/. In particular, H .�; E/ is a topological subspace ofM.�; E/ endowed
with any of these two topologies.

The technique which we use to show that the two topologies have the same bounded
sets differs from the one used in [4] for the scalar case. We characterize the metrizable
spaces admitting a continuous embedding in.M.�; E/; −M L /, obtaining the desired
result as a consequence.

PROPOSITION3.4. Every metrizable spaceF continuously embedded in the space
.M.�; E/; −M L / has its image contained inM.�; Ž; E/ for some positive divisorŽ
on�.

PROOF. First we show that every subspaceH of M.�; E/ either is contained in
some M.�; Ž; E/ or there exists a surjective continuous linear mapping fromH
onto'.

Suppose thatH is a subspace ofM.�; E/ such that there is no positive divisorŽ
on� for which H ⊆ M.�; Ž; E/. We denote byP.H / the subset of� formed by
all the poles of the functions ofH . The condition onH implies that eitherP.H /
is not discrete or there existsÞ ∈ P.H / such that for everyn ∈ N there exists a
function f ∈ H such thatoÞ. f / > n. First we suppose thatP.H / is not discrete
in �. Since� can be written as a countable increasing union of relatively compact
subdomains, we can get a relatively compact subdomainO such that the cardinality
of the set.P.H / ∩ O/ is infinite. SinceO is relatively compact, eachf ∈ M.�; E/
only has finitely many poles inO. Thus, the choice ofO allows us to get inductively a
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sequence. fk; zk;nk;uk/
∞
k=1 ⊂ H × .P.H /∩ O/×N× E′ such thatuk.a−nk

zk
. fk// = 1

anda−nk
zk
. f j / = 0 if k > j (actually we can get eachzk as a point in which the functions

{ f j : j < k} are holomorphic).
Now we observe that, given a relatively compact subdomainO of�, the projective

description (4) of .M.�; E/; −M L / yields the continuity of the projection

TO : .M.�; E/; −M L / → HR.O; E/ = H .O; E/× E.O×N/;

f 7→
(

f −
∑
Þ∈O

hÞ. f /
∣∣∣

O
; .a−n

Þ . f //Þ∈O;n∈N

)
:

Hence, PO : .M.�; E/; −M L / → E.O×N/, f 7→ .a−n
Þ . f //Þ∈O;n∈N is a surjective

continuous linear mapping. The continuity of the projectionPO implies the continuity
of the mappingp : .M.�; E/; −M L/ → E.N/ defined byp. f / = .a−nk

zk
. f //∞k=1. Hence

it is immediate that the linear mapping

T : H ⊆ .M.�; E/; −M L/ → '

f 7→ .uk.a−nk
zk
. f //∞k=1

is also continuous. To see thatT is surjective we observe that, if we denote byCk

the subspace of' formed by the sequences which have vanishing all the coordinates
greater thank, then this space is generated by span{T. f j / : j ≤ k}. A similar
argument shows that if we supposed that there existsÞ ∈ P.H / such that there exists
a sequence. fn/n ⊂ F and an increasing sequence.nk/k ⊂ N such thatoÞ. fk/ = nk

thenH would be mapped continuously onto'.
Now, for a metrizable locally convex spaceF , we suppose that there exists a

continuous embeddingA : F → M.�/ such thatA.F/ is not contained inM.�; Ž; E/
for anyŽ ∈ D�. Then, by extending to the completion, we can find a continuous and
surjective linear mappingB : F̂ → '. Thus, by the De Wilde’s open mapping
theorem [12, Theorem 24.30],̂F is a Fréchet space with a quotient isomorphic to an
infinite direct sum of copies ofC, a contradiction.

COROLLARY 3.5. The Mittag-Leffler topology and the Holdgrün topology have the
same bounded sets inM.�; E/. They are those which are contained and bounded in
M.�; Ž; E/ for some positive divisorŽ on�.

PROOF. As a consequence of Proposition3.2, every −Hol-bounded set is−M L -
bounded. Conversely, ifB is a −M L-bounded set, we apply Proposition3.4 to ob-
tain that (the linear span of the closed absolutely convex hull of)B is contained in
M.�; Ž; E/ for someŽ positive divisor on�, and in this subspace both topologies
coincide.
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REMARK. Proposition3.4together with Proposition3.1 implies that the subspaces
of M.�; E/ endowed with any of the two topologies that we have seen in this section
which are Fréchet for the induced topology are isomorphic to Fr´echet subspaces of
H .�; E/.

THEOREM 3.6. If E is a Fréchet space, then−Hol = −M L in M.�; E/. In this case
M.�; E/ is a Hausdorff locally convex space which is complete and ultrabornological.

PROOF. Let E be a Fréchet space. To show the coincidence between the two
topologies, in view of Corollary3.5, we only have to show that.M.�; E/; −M L / is
bornological. This is obtained using the same method to the one used in the proof of
[4, Lemma 2 (b)] forM.�/. We only include a brief sketch of the proof. We fix an
absolutely convex subsetU which absorbs−M L-bounded sets and we show that there
exists a relatively compact subdomainO of � , a compact subsetK of O, " > 0 and
a continuous seminormp on E such that if f ∈ M.�; E/ does not have poles inO
and satisfies supz∈K p. f .z// < ", then f ∈ U . To obtainp one has to use that the
topology onE is generated by a countable set of seminorms. Once this is proved, we
observe that the subspaceR.O; E/ of .M.�; E/; −M L / of all the functionsf that can
be written in the form

f .z/ =
∑
Þ∈O

∞∑
j =1

aj
Þ

.z − Þ/ j
;

all the vectorsaj
Þ = 0 but finitely many, is isomorphic toE.O×N/. Then it is bornolog-

ical. These facts are used to show that if we denote byV the set{
f ∈ M.�; E/ : sup

z∈K
p

(
f .z/ −

∑
Þ∈O

hÞ. f /.z/

)
< ";

∑
Þ∈O

hÞ. f / ∈ U ∩R.O; E/

}

thenV is a 0-neighbourhood in−M L such thatV ⊆ 2U .
The topological vector spaceM.�; E/ is complete since it is a projective limit of

complete spaces and it is bornological since it is an inductivelimit of Fréchet spaces.
Consequently it is ultra-bornological.

A question which arises naturally is whether the equality between Mittag-Leffler
and Holdgrün topologies inM.�; E/ holds for (DF)-spacesE. We have not solved
this problem. However, we show below that the spaceM.�; '/ endowed with the
Holdgrün topology is not bornological. From the projective description of the Mittag-
Leffler topology inM.�; E/ for a locally complete spaceE, we know that, forn ∈ N,
the projection overE given byP−n

Þ . f / = a−n
Þ . f / is continuous inM.�; E/ endowed

with its Mittag-Leffler topology, and hence also if we consider the Holdgr¨un topology.
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PROPOSITION3.7. For Þ0 ∈ �, the linear mapping defined onM.�; E/ and with
values inE, f 7→ a0

Þ0
. f / is continuous for the topology−M L in the space of vector-

valued meromorphic functions.

PROOF. For each relatively compact subdomainO of �, we denote byPO andTO

the projections defined on.M.�; E/; −M L / and with values inE.O×N/ andH .O; E/
defined byPO. f / = .a−n

Þ . f //Þ∈O;n∈N andTO. f / = f − ∑
Þ∈O hÞ. f / respectively.

Both of them are continuous as a consequence of the description (4) of the Mittag-
Leffler topology.

We fix a relatively compact subdomainO of � containingÞ0 and we fixn ∈ N.
For eachf ∈ M.�; E/, we can assume without loss of generality that the function
f − hÞ0. f / is holomorphic in a certain neighbourhood ofÞ0 contained inO. This
function can be developed by

. f − hÞ0. f //.z/ =
∞∑

n=0

an
Þ0
. f /.z − Þ0/

n:(6)

In the locally convex spaceH .O; E/, the evaluation map at a fixed point is continuous.
Therefore, the continuity ofTO implies that the mappingT : .M.�; E/; −M L/ → E,
f 7→ (

f −∑
Þ∈O hÞ. f /

)
.Þ0/ is also continuous. Moreover, by (6), we have

a0
Þ0
. f / = . f − hÞ0. f //.Þ0/ = T. f /+

( ∑
Þ∈O;Þ 6=Þ0

hÞ. f /

)
.Þ0/:

Thus, we have only to show the continuity of the second part of the sum above. To do
this we observe that this element is the composition ofPO with the continuous linear
mapping which maps every.an

Þ/Þ∈O;n∈N ∈ E.O×N/ to∑
Þ∈O;Þ 6=Þ0

∑
n∈N

1

.Þ − Þ0/n
an
Þ ∈ E.

REMARK. On account of the fact that in the locally convex spaceH .O; E/, the
linear mapping which maps each function to itsn-th derivative evaluated at a fixed point
is continuous, a slight modification of the previous proof shows that the projections
over the positive terms in the Laurent developmentPn

Þ . f / = an
Þ. f / are continuous on

.M.�; E/; −M L /.

To study the spaceM.�; '/, we first note that this space is algebraically isomorphic
to M.�/.N/. Actually, if f ∈ M.�; '/ we can write f = . fn/n, and the fact that the
set of zeros and poles of a non-zero meromorphic function is countable implies that
fn = 0 except for finitely manyn. We denote by−s the (bornological) topology which
makesM.�; '/ isomorphic toM.�/.N/.
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PROPOSITION3.8. In M.�; '/ the −M L-bounded sets(and consequently the−Hol-
bounded sets) coincide with the−s-bounded sets.

PROOF. We identifyCn with the subspace of' formed by the sequences which
have vanishing coordinates greater thann. If B is bounded inM.�/.N/, then there
existsn ∈ N such thatB ⊂ M.�;Cn/ and we can get a positive divisorŽ on� such
that for each compact subsetK of � \ PŽ there existsM.K / > 0 such that for every
f = . fk/

n
k=1 ∈ B we have fk ∈ M.�; Ž/ and supz∈K | fk.z/| < M.K /. That is, we

can chooseŽ such that then projections overM.�/ which are not identically zero
are contained and bounded inM.�; Ž/. Therefore, for eachf ∈ B, we have that
f ∈ M.�; Ž; '/ and for each compact subsetK of�\ PŽ and for eachb = .bk/k ∈ !,

sup
z∈K

∞∑
k=1

|bk fk.z/| = sup
z∈K

n∑
k=1

|bk fk.z/| < ∞:

Hence we conclude thatB is bounded inM.�; Ž; '/ and thereby it is−M L -bounded.
Conversely, letB be a−M L -bounded subset ofM.�; '/. We suppose that there is no

n ∈ N such thatB is contained inM.�;Cn/. We choose a sequence. f n/n ⊂ B, with
f n = . f n

k /
∞
k=1 and an increasing sequence.kn/n ⊂ N such thatkn > n and f n

kn
6= 0.

The subset of� formed by the poles and zeros of the functionsf n
k with n; k ∈ N is

countable. This allows us to selectz0 ∈ � in which every functionf n
k is holomorphic

and different from zero. The linear mapping

P0
z0

: .M.�; '/; −M L/ → '

f 7→ a0
z. f /

is continuous according to Lemma3.7. It follows that .P0
z0
. f n// = . f n

k .z0//k and
f n

kn
.z0/ 6= 0. Hence, for eachn ∈ N, thekn-th coordinate of the sequence.P0

z0
. f n//

of ' is different from zero and therefore there is nom ∈ N for which P0
z0
.B/ is

containedCm, and thenP0
z0
.B/ is not bounded in', a contradiction with the continuity

of P0
z0

. Thus we can get a natural numbern such thatB ⊂ M.�;Cn/. As, by the
hypothesis and Corollary3.5, B is contained and bounded inM.�; Ž; '/ for some
positive divisorŽ on�, we have that then projections ofB over M.�/ which are not
identically zero are bounded inM.�; Ž/, and we conclude thatB is −s-bounded.

PROPOSITION3.9. The space.M.�; '/; −Hol/ is not bornological.

PROOF. Since−s is bornological, the above proposition implies−Hol ≤ −s. We have
to show that−s is strictly finer. We observe that if we assume the continuity of the
identity I : .M.�; '/; −Hol/ → .M.�; '/; −s/; then the restriction ofI to H .�; '/ is
also continuous. Hence Proposition3.3 implies that

H .�; '/ ' H .�/.N/(7)
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holds topologically. Since' is complete,H .�; '/ is isomorphic to the completion of
the projective tensorial productH .�/⊗̂³ ' (see [8, page 366]), and then (7) contradicts
[13, Proposition 11.6.11].

REMARK. For a locally complete spaceE, it is not difficult to show thatM.�/ is
a (complemented) subspace ofM.�; E/ endowed with either of the two topologies
view. Thus, [4, Theorem 3 (b)] implies thatM.�; E/ is not metrisable nor nuclear
or Schwartz. Moreover, a similar argument to the proof of [4, Theorem 3 (b)] works
to show that.M.�; E/; −M L / is not separable. Then Proposition3.2 implies that the
space.M.�; E/; −Hol/ is not separable.

4. The injective topology

If F is a locally convex space, as usual, we denote byF ′
co the topological dual of

F endowed with the compact open topology. ForE and F locally convex spaces,
Le.F ′

co; E/ denotes the space of continuous linear maps fromF ′
co into E endowed with

the topology of the uniform convergence on the equicontinuous subsets ofF ′. This
space is called"-product of Schwartz and it is denoted byE"F . In [2] it is proved that
if E does not contain a subspace ismorphic to!, then for eachT ∈ L.E′

co;M.�//
there existsf ∈ M.�; E/ such thatT.u/ = u ◦ f , this correspondence being an
algebraic isomorphism. This representation has been used in [10] to obtain results of
meromorphic extension assuming only weak meromorphic extension. In this section
we study, for locally complete spacesE which do not contain copies of!, the topology
on M.�; E/ which makes it isomorphic toM.�/"E. This topology is called the"-
topology and it is denoted by−". We need some notation. Given a continuous
seminormp on E, we denote byUp;1 the 0-neighbourhood ofE formed by the vectors
e such thatp.e/ ≤ 1. The polar setU ◦

p;1 is the subset ofE′ formed by the functionals
u such that|u.e/| ≤ p.e/ for everye ∈ E. The−"-topology inM.�; E/ is generated
by the seminorms

‖ f ‖p;K;b = sup
u∈U◦

p;1

(
sup
z∈K

∣∣∣∣∣u
(

f −
∑
Þ∈K

hÞ. f /

)
.z/

∣∣∣∣∣ + ∑
Þ∈K;n∈N

bn
Þ

∣∣u.a−n
Þ . f //

∣∣) ;(8)

where K is a compact subset of�, p is a continuous seminorm onE and b :=
.bn
Þ/Þ∈K;n∈N ∈ RK×N

+ . Moreover, [4, Theorem 1] yields that this system of seminorms
is directed; that is, givenK ⊂ K1 two compact subsets of� andb ∈ R

K×N
+ there

existsc ∈ R
K×N
+ such that‖ f ‖p;K;b ≤ ‖ f ‖p;K1;c for eachp continuous seminorm on

E and for eachf ∈ M.�; E/.
First we see that the"-topology is weaker than the Mittag-Leffler topology and

after this we check that it is actually strictly weaker ifE is infinite dimensional.



284 Enrique Jord́a [12]

PROPOSITION4.1. If E does not contain! as a subspace then the topology−" is
coarser than−M L in M.�; E/.

PROOF. To establish the claim we have to show the continuity of the algebraic
isomorphismT : .M.�; E/; −M L / → M.�/"E, f 7→ Tf , whereTf .u/ = u ◦ f for
eachu ∈ E′. We identify f andTf for each f ∈ M.�; E/. We fix a continuous
seminormp on E, a compact subsetK of � andb = .bn

Þ/Þ∈K;n∈N ∈ R
K×N
+ and we

consider the continuous seminorm‖ · ‖p;K;b for −" as in (8). But the seminorm| · |
defined onM.�; E/ by

| f | := sup
z∈K

p

(
f −

∑
z∈K

hÞ. f /

)
.z/ +

∑
Þ∈K;n∈N

bn
Þ p.a−n

Þ . f //

is continuous for the Mittag-Leffler topologyaccording to (5). We observe that
a−n
Þ .u ◦ f / = u.a−n

Þ . f // holds for eachf ∈ M.�; E/, for eachn ∈ N and for each
u ∈ E′. Hence‖ f ‖K;p;b ≤ | f | for each f ∈ M.�; E/.

To see that the Mittag-Leffler topology is strictly stronger that the"-topology we
need to use a characterization of the locally convex spaces (not necessarily locally
complete) which are nuclear. For a locally convex spaceE, in [8, 15.7 and 16.5]
are defined the spacel1[E] of unconditionally¦.E; E′/-Cauchy sequences and the
spacel1{E} of absolutely Cauchy sequences. By [8, Theorem 21.2.1], the locally
convex spaces spacesE which are nuclear are those for whichl1{E} = l1[E] holds
algebraically and topologically. This characterization can be written as follows.

LEMMA 4.2. E is nuclear if and only if for each continuous seminormp on E there
exists a continuous seminormq on E and Ž > 0 such that, for each finite subset
{x1; : : : ; xn} of E,

sup
u∈U◦

q;1

n∑
i =1

|u.xi /| < Ž H⇒
n∑

i =1

p.xi / < 1:(9)

PROPOSITION4.3. Let E be a locally complete locally convex space which is not
nuclear and does not contain! as a subspace. Then the topology−M L is strictly finer
than the topology−" in M.�; E/.

PROOF. Let E be a locally complete space wich does not contain� and such that
−" = −M L on M.�; E/. We fix a continuous seminormp on E and an uncountable
compact subsetK0 of �. We define the following seminorm onM.�; E/ which,
according to (5), is continuous for−M L

‖ f ‖K0;p := sup
z∈K0

p

((
f −

∑
Þ∈K0

hÞ. f /

)
.z/

)
+

∑
Þ∈K0;n∈N

p.a−n
Þ . f //:



[13] Topologies on spaces of vector-valued meromorphic functions 285

By the hypothesis‖ ·‖K0;b is also continuous for−". Therefore we can find a seminorm
‖ · ‖K1;b;q as in (8) for a compact subsetK1 ⊇ K0 of �, a continuous seminormq on E
and a vectorb = .bn

Þ/ ∈ RK1×N+ such that‖ f ‖K0;p ≤ ‖ f ‖K1;b;q for eachf ∈ M.�; E/.
We define the setsBj = {.Þ;n/ ∈ K0 × N : |bn

Þ| < j }. We have thatK0 × N can
be written as the countable union of these sets and therefore we can getj0 ∈ N such
that Bj0 is infinite. We definec = .cn

Þ/ ∈ RK1×N+ by

cn
Þ =

{
j0 if .Þ;n/ ∈ Bj0;

bn
Þ otherwise.

If we consider the−"-continuous seminorm‖ · ‖K1;c;q then we have

‖ f ‖K0;p ≤ ‖ f ‖K1;b;q ≤ ‖ f ‖K1;c;q(10)

for each f ∈ M.�; E/. We take a sequence.Þi ;ni /
∞
i =1 of different points ofBj0.

For an arbitrary finite subset.xi /
m
i =1 of E, we consider the meromorphic function

f .z/ = ∑m
i =1.z − Þi /

−ni xi ; and apply (10) to f to get

sup
u∈U◦

q;1

m∑
i =1

|u.xi /| < 1

j0
H⇒

m∑
i =1

p.xi / < 1:

Therefore Lemma4.2yields thatE is nuclear.

Now we introduce a concept closely related to the well-knowncountable neigh-
bourhood property(see [13, Definition 8.3.4]) satisfied by all the (DF)-spaces.

DEFINITION 4.4. Let Þ be a cardinal number. A locally convex spaceE is said
to satisfy theÞ-neighbourhood property if for each index setI with cardinality not
greater thanÞ and for each set.pi /i ∈ I of continuous seminorms onE there exists a
set.ci /i ∈ I of positive numbers and a continuous seminormp on E such thatpi ≤ ci p
for everyi ∈ I . Equivalently, if given a set.Ui /i ∈ I of 0-neighbourhoods inE there
area.i / > 0 such thatU :=⋂

i ∈ I a.i /Ui is a 0-neighbourhood inE.

TheÞ-neighbourhood property is easily checked to be inherited by subspaces. It
is also clear that every normed space satisfies theÞ-neighbourhood property for every
cardinal numberÞ. We are interested in the case whenÞ is the continuum cardinal 2ℵ0.
There exist non-normed spacesE which satisfy the 2ℵ0-neighbourhood property. For
instance, ifI is an index set whose cardinality is strictly greater than 2ℵ0 and we
defineE as the spacel∞.I / endowed with the topology of uniform convergence on the
subsets ofI with cardinality no greater than 2ℵ0, then we have thatE is a non-normed
space which satisfies the 2ℵ0-neighbourhood property.
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LEMMA 4.5. Let E be a nuclear locally convex space. ThenE satisfies the
2ℵ0-neighbourhood property if and only ifE is finite dimensional.

PROOF. Every space of finite dimension is a normed space and then satisfies the
Þ-neighbourhood property for every cardinal numberÞ.

If we suppose that there exists an infinite dimensional nuclear spaceE satisfying the
2ℵ0-neighbourhood property, then we could obtain a subspaceF of E with countable
algebraic dimension. ThusF is nuclear and it satisfies the 2ℵ0-neighbourhood property
as a subspace ofE. The spaceF endowed with its finest locally convex topology
is isomorphic to the separable space'. Then F is also separable with its topology
inherited fromE. We select a subsetD of F which is countable and dense. Let
.Ui /i ∈ I be a basis of pairwise different closed 0-neighbourhoods ofF such that each
Ui is the closure of its interior. We consider the map defined onI and with values
in P.D/ (the set formed by all the subsets ofD) which maps eachi ∈ I to the set
Ui ∩ D. We observe that for eachei ∈ Ui and for each open setV containingei , by
the hypothesis,V meets the interior ofUi . Consequently, the intersection ofV with
the interior ofUi is a non-empty open set and thenV ∩ Ui ∩ D 6= ∅. Thus we have
thatUi ∩ D = Ui , and from this it follows that the mappingi 7→ Ui ∩ D is injective.
Then we have that|I | ≤ 2ℵ0. Now we apply thatF satisfies the 2ℵ0-neighbourhood
property to obtain thatF is normed. AsF is also nuclear, then it is finite dimensional
by the Dvoretzky-Rogers theorem, a contradiction.

THEOREM 4.6. Let E be a locally complete locally convex space which does not
contain ! as a subspace. The locally convex topologies−" and −M L coincide in
M.�; E/ if and only if E is finite dimensional.

PROOF. By Proposition4.3 if both topologies coincide inM.�; E/ then E is
nuclear. Suppose thatE is nuclear. We show that the equality between the topologies
is equivalent to the 2ℵ0-neighbourhood property, obtaining then the desired claim by
applying Lemma4.5. Let E be a space as in the hypothesis satisfying−" = −M L

and let.pi /i ∈ I be a set of continuous seminorms onE such that|I | ≤ 2ℵ0. Let K
be a compact subset of� with |K | = 2ℵ0. We define a mappingi : K × N → I ,
.Þ;n/ 7→ i .Þ;n/, such thati is surjective. If we definepn

Þ := pi .Þ;n/, then we have
{pn

Þ}n∈N;Þ∈K = {pi }i ∈ I . Let p be any continuous seminorm onE. We define the
0-neighbourhood in the Mittag-Leffler topology

U :=
{

f ∈ M.�; E/ : sup
z∈K

p ◦
(

f −
∑
Þ∈K

hÞ
)
. f /.z/ +

∑
Þ∈K;n∈N

pn
Þ.a

−n
Þ . f // < 1

}
:

By the hypothesis there existsŽ > 0, a compact subsetK1 of� (which we can assume
to contain K ), a continuous seminormq on E and a set.bn

Þ/Þ∈K1;n∈N of positive
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numbers such that, if we denote byV the 0-neighbourhood in−" formed by the
functions f ∈ M.�; E/ which satisfy

sup
z∈K1

∣∣∣∣∣u ◦
(

f −
∑
Þ∈K1

hÞ. f /

)
.z/

∣∣∣∣∣ + ∑
Þ∈K1;n∈N

bn
Þ|u.a−n

Þ . f //| < Ž

for eachu ∈ U ◦
q;1, then it holdsV ⊆ U . Looking at functions of the formf .z/ =

.z − Þ/−nx with x ∈ E and.Þ;n/ ∈ K ×N, we get that, for eachx ∈ E it holds

bn
Þq.x/ < Ž H⇒ pn

Þ.x/ < 1:

Hence we conclude thatE satisfies the 2ℵ0-neighbourhood property.
Conversely, if we suppose thatE has the 2ℵ0-neighbourhood property, by Proposi-

tion4.1we have only to show that−M L ≤ −". We consider an arbitrary 0-neighbourhood
of the basis in the Mittag-Leffler topology

U :=
{

f ∈ M.�; E/ : sup
z∈K

q

(
f −

∑
Þ∈K

hÞ. f /

)
.z/+

∑
Þ∈K;n∈N

qn
Þ.a

−n
Þ . f // < 1

}
;

whereq andqn
Þ are continuous seminorms onE and K is a compact subset of�.

By applying the 2ℵ0-neighbourhood property to the seminorms.qn
Þ/Þ∈K;n∈N we get a

continuous seminormp on E and positive numbersbn
Þ such thatq ≤ p, andqn

Þ ≤ bn
Þ p,

for eachÞ ∈ K and eachn ∈ N. Thereby, if we consider the 0-neighbourhood in−M L

W :=
{

f ∈ M.�; E/ : sup
z∈K

p

(
f −

∑
Þ∈K

hÞ. f /

)
.z/ +

∑
Þ∈K;n∈N

bn
Þ p.a−n

Þ . f // < 1

}

then we have thatW ⊂ U . SinceE is nuclear, we can apply Lemma4.2to obtain that
there exists a continuous seminormr on E such that, for eachfinite subset{x1; : : : ; xn}
of E, there existsŽ > 0 such that

sup
u∈U◦

r;1

n∑
i =1

|u.xi /| < Ž H⇒
n∑

i =1

p.xi / <
1

2
:(11)

From the fact that for everyf ∈ M.�; E/ and for each compact subsetK of � the
subset ofK × N formed by the.Þ;n/ for which a−n

Þ . f / 6= 0 is finite and (11), it
follows that if we denote byV the 0-neighbourhood in−" formed by the functions
f ∈ M.�; E/ which satisfy

sup
u∈U◦

r;1

(
sup
z∈K

∣∣∣∣∣u
(

f −
∑
Þ∈K

hÞ. f /

)
.z/

∣∣∣∣∣ + ∑
Þ∈K;n∈N

bn
Þ

∣∣u.a−n
Þ . f //

∣∣) < Ž

thenV ⊂ W ⊂ U , concluding the proof.
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LEMMA 4.7. (a) For every positive divisorŽ on�, the topology−" on M.�; Ž; E/
coincides with its natural topology inherited from the spaceH .� \ PŽ; E/.
(b) The projectionsP−n

Þ : .M.�; E/; −"/ → E, f 7→ a−n
Þ . f /, are continuous for

everyÞ ∈ � and for everyn ∈ N.

PROOF. The description (8) of −" implies (b) and, together with Proposition3.2and
Proposition4.1, also implies (a) as in [4, Theorem 4 (b)].

THEOREM 4.8. If F is a Baire space continuously embedded in the space
.M.�; E/; −"/, then there is some positive divisorŽ on � such that the image of
F under the embedding is contained inM.�; Ž; E/.

PROOF. We denote byA the continuous embedding. Let.On/n be a sequence of
relatively compact subdomains of� such that the closure ofOn is contained inOn+1

for everyn ∈ N and� = ⋃
n On. We fix n ∈ N and, form ∈ N we defineOnm as

the subset ofF formed by the vectorse such thatA.e/ is a meromorphic function
which has inOn at mostm poles. It is clear thatF = ⋃

m∈N Onm: We show thatOnm

is closed inF . Let e ∈ F \ Onm. There exist distinct points{Þ1; : : : Þm+1} in On and
natural numbersk1; : : : ; km+1 such thatP−ki

Þi
.A.e// 6= 0 for every 1≤ i ≤ m+ 1. By

Lemma4.7(b), the subset

H :=
m+1⋂
i =1

.P−ki
Þi
/−1.C \ {0}/

is open in.M.�; E/; −"/. The continuity ofA implies thatA−1.H / is an open subset
of F containinge which does not meetOnm. Thus, sinceF is a Baire space we
conclude that there existsm0 ∈ N such thatOn;m0 has non-empty interior. We observe
that it holdsOnm + Onm ⊂ On2m and½Onm = Onm for each½ ∈ C \ {0} to conclude
that there exists a 0-neighbourhood inOn;2m0. This yields thatF = On;2m0. It is not
difficult to show that, for each subspaceG of M.�; E/, if f ∈ G, Þ ∈ On is not a
pole of f and there existsg ∈ G such thatÞ is a pole ofg, then there exists" > 0
such that ifþ ∈ C satisfies 0< |þ| < " then each pole off in On and alsoÞ are poles
of f + þg ∈ G. Thus, the equalityF = On;2m0 yields that the subset ofOn formed
by the points which are poles of the meromorphic functions which belong toA.F/ is
finite. Hence, if we denote byP.F/ the subset of� formed by the points which are
poles of meromorphic functions which can be written asA.e/ with e ∈ F , we have
that P.F/ is discrete in�.

Now we fixÞ ∈ P.F/. We define

Fn
Þ :=

∞⋂
k=n

.P−k
Þ ◦ A/−1.0/:
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EachFn
Þ is a closed vector subspace ofF . Moreover, we haveF = ⋃∞

n=1 Fn
Þ . Since

F is a Baire space, we can getn.Þ/ ∈ N such thatF = Fn.Þ/
Þ . Then we can define

Ž : � → N∪ {0} by Ž.Þ/ = n.Þ/ if Þ ∈ P.F/ andŽ.Þ/ = 0 otherwise. We have that
Ž is a positive divisor on� andF ⊂ M.�; Ž; E/.

COROLLARY 4.9. If E is a locally complete locally convex space which does not
contain a subspace isomorphic to!, then the subsets ofM.�; E/ which are −"-
bounded are the same ones that the−M L-bounded(or −Hol-bounded) sets.

PROOF. .M.�; E/; −"/ is the locally complete spaceM.�/"E (sinceM.�/ and
E are locally complete). Therefore the conclusion follows as in Corollary3.5 by
applying Lemma4.7(a) and Theorem4.8.

COROLLARY 4.10. If E is an infinite dimensional locally complete locally convex
space which does not contain copies of! then.M.�; E/; −"/ is not bornological.
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