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Abstract

Some new random coincidence point and random fixed point theorems for multivalued mappings in
separable complete metric spaces are proved. The results presented in this paper are the stochas
versions of corresponding results of Chang and Peng and extend the result of the author.
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1. Introduction and preliminaries

In order to generalise the well-known contraction principle of Banach to multivalued
functions and random fixed point theorems, many authdss5([8, 7, 10, 9, 11])
introduced more general contractive inequalities. We intend to consider a class of
generalised contractions that includes the classes consideret & g, 7, 10, 9,
11]) and that enables us to prove a more general random fixed point theorem for
multifunctions.

Throughout this papearX, d) is a separable complete metric spaRé,= [0, co)
and , 8) is a measurable space. Let Be the family of all subsets ok, CB(X)
denote the family of all nonempty closed bounded subseXsarfdCC(X) denote the
family of all nonempty compact subsetsXf For any nonempty subsefs B of X,
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we denote

dx, A) =inf{d(x,a) :aec A} (X € X),
d(A, B) =inf{d(a,b) :a€ A,b e B},

H(A, B) = max{supd(a, B), supd(b, A)}

acA beB
andH (-, -) is called the Hausdorff metric a@B(X).

A mappingu : Q — 2% is calledmeasurablgf for any open subse€ of X,
wHC) ={w e Q:uw)NC # P} € 5. Amappingé : @ — X is said to be
measurable selectaf a measurable mapping: @ — 2% if u is measurable and for
anyw € Q,&(w) € u(w). Amappingf : @ x X — X is called arandom operator
if forany x € X, f (-, x) is measurable. A mapping : 2 x X — CB(X) is called
a multifunctionif for every x € X, T(-, X) is measurable. A measurable mapping
& . Q — X is called arandom fixed poinbf a multifunction gandom operator
T:Qx X = CBX) (f:Q2x X — X)ifforeveryw € @, £&(w) € T(w, &(w))
(f(w, E(w)) = &(w)). A measurable mapping: @ — X is arandom coincidence
pointof T : 2 x X — CB(X) andf : 2 x X — Xifforeveryw € @, f(w, §(w)) €
T(w, §(w)).

For the remaining part of this secti@® T : @ x X — CB(X) are multifunctions,
f : Q@ x X — Xisarandom operator argd : 2 — CB(X) is a measurable mapping
foreachn=0,1,2,....

Foramap, : @ — X, ifthere exists asequenfg(w)} suchthatf (w, &.1(w)) €
S(w, &x(w)), f(w,&i2(w)) € T(w,&a(w)), n=0,1,2,..., thenO¢ (§p(w)) =
{f(w, & w)):n=123,... foreachw € Q} is theorbit for (S, T, f) até&y(w). If
there exists a measurable map — X such thatf (w, &,(w)) — f(w, &(w)) for
all w € @, thenOy (§y(w)) converges inX. If O (&,(w)) converges irX, thenX is
called(S, T, f, &o(w))-orbitally complete

A function W (ty, t,, t3, t4, t5) : R™> — R* is said to satisfy the conditiofW), if it
is nondecreasing in each variable and there exists an increasing fud@¢tionR ™ —
R+ satisfying the conditionslj and @) such that

Y(t, t,t,at,bt) < ®), forallt>0  a+b=3 ab=12

LEmmA 1.1 ([2]). Let(X, d) be a metric spacéA ¢ X a nonempty compact subset
andB c X aclosed subset. H(A, B) = 0,thenAN B # #.

LEMMA 1.2 ([13, Theorem 1]).Let® : R™ — R™ be an increasing function such
that

@ d(t+) <t forall t >0 and
2) > @"t) s finite forall t > 0.
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Then there exists a strictly increasing function R* — R* such that

3) d(t) <o) forall t >0 and

() > ¢"(t) s finite for t > 0.

LEmmA 1.3 ([13]). (i) If & : Rt — R* is strictly increasing and satisfi€g),
then® satisfieq1).

(i) Letd:R™ — R* be increasing and satisfyin@). If > ®"(t,) is convergent
for somet; > 0, then(2) holds.

(i) Letd:R*™ — RT be increasing and satisfying). If t < ®(t) thent = 0.

LEMMA 1.4 ([11)). If S, S : @ — CB(X) are measurable multifunctions; :
Q — X is ameasurable selector & andx : Q — (1, 00) is a measurable function
then there exists a measurable selesor 2 — X of the multifunctiorS, such that

d(si(w), $(w)) = Aw)H(S W), S(w)).

LEmMmA 1.5 ([11]). If S: @ — CB(X) is a continuous multifunction thex —
d(x, S(x)) is a continuous real valued function.

2. Main results

Recently, Mustafag] gave the stochastic generalisation of the results of Kaneko
and Sess&]] and proved the following theorem:

THEOREMZ2.1.Let ST : @ x X — CB(X) be two continuous multifunctions
and letf : @ x X — X be a random operator such th&w, X) U T(w, X) C
f (w, X) and forameasurable mdp : Q@ — X, f(w, X)is(S, T, f, &(w))-orbitally
complete, for every € 2, and
H(S(w, x), T(w, y)) < a(w)max{d(f(w,x), f(w,y)),
d(f(w, x), S(w, X)), d(f (w, y), T(w, y)),
[d(f(w,x), T(w,y) +d(f(w,y), S(w, x))1/2}
forall x,y € X and forallw € @, wherea : @ — (0, 1) is a measurable map. Then
there exists a random coincidence point$HfT and f.

LetS, T: Q2 x X - CB(X) andF : @ x X — CC(X) be multifunctions such
that
(5) H(Sw,x), T(w,y)) < @(max{d(F(w,x), F(w,y)),
d(F(w, X), S(w, X)), d(F(w, y), T (w, y)),
[d(F(w, x), T(w,y)) +d(F(w,y), S(w, x))1/2})
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forall x,y € X and for allw € @, where® : Rt — R* is an increasing function
satisfying conditions) and Q).
As an improvement and generalisation of Theofinwe have the following

THEOREM2.2.Let ST : @ x X — CB(X) andF : @ x X — CC(X) be
multifunctions such that

(i) S(w, ), T(w, -) are both continuous for al € Q;
(i) S(, x), T(-, x) are both measurable for ak € X;
@ii)  S(w, X) UT(w, X) C F(w, X), F(w, X) is closed
(iv) S, T andF satisfy(5) forall w € Qand allx, y € X.

Then there exists a measurable nsap2 — X such that

F(w, s(w)) N S(w, s(w)) N T (w, S(w)) # @.

PrOOF. By Lemmal.2, there exists a strictly increasing functign: R* — R*
satisfying conditions3) and @). For anyx, y € X andw € €, let us denote

A(x, y) < max{d(F (w, x), F(w, )), d(F (w, X), S(w, X)), d(F(w, y), T (w, y)),
[d(F(w., x), T(w,y) +d(F(w, y), S(w, x))1/2}.
Then 6) can be reduced to
H (S(w, X), T(w, y)) < ®(A(X, Y)).
Letgp : 2 x X — RT be the function
o(w, X) = d(x, S(w, X)), (w, X) € L x X.

Since by (i)w — S(w, X) is measurable for akk € X we conclude thap(-, x)
is measurable (se&,[ Theorem 3.5]) and since — S(w, X) is continuous for all
w € , we deduce from Lemma.5thate(w, -) is continuous for allv € Q. Hence
¢ . Q2 x X — RT is a Caratheodory function. Therefore,uf: @ — X is a
measurable mapping we also have that> ¢(w, u(w)) is measurable (sed?)).
If &, & : @ — X are measurable mappings and we consider the multifunction
S(, &(+) :  — CB(X), then we deduce from the Kuratowski-Ryll Nardzewski
Selection Theorem€] that there is a measurable selecgpr: Q@ — X such that
si(w) € S(w, &(w)) for all w € Q. Applying Lemmal.4 we find a measurable
functions, : @ — X such thas,(w) € T(w, &(w)), w € Q.

For any measurable mafg: @ — X, sinceS(w, X) C F(w, X), there exist
measurable maps, s&y & : Q — X such that (w, & (w)) N S(w, &(w)) # B. Let
s (w) € F(w, &(w)) N S(w, &(w)), then we have

d(si(w), T(w, &1(w))) = d(si(w), S(w, &(w))) + H(Sw, &(w)), T (w, &(w)))
= ®(AGo(w), £21(w))).
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(@) If A6o(w), &1 (w)) = 0, thend(F (w, &(w)), S(w, &(w))) = 0. By Lemmal.1,
F(w, &(w)) N S(w, &(w)) # 0. Takings(w) € F(w, &(w)) N S(w, &(w)), we
have

d(s(w), T(w, &(w))) =< d(s(w), S(w, &(w))) + H(S(w, &(w)), T (w, &(w)))
< ®(max{0, 0, d(F (w, &(w)), T (w, &(w))),
d(F (w, &(w)), T (w, &(w)))/2})
=< ®(d(F(w, &), T(w, &(w))))
=< ®(d(s(w), T (w, &(w)))).

By Lemmal.3 (iii) d(s(w), T (w, &(w))) = 0, sinceT (w, &(w)) is closeds(w) €
T (w, &(w)). Therefore in this case the conclusion of Theogfis proved.
(b) If A(&o(w), &1(w)) > 0, then, by 8) we have

d(si(w), T (w, &1(w))) < P(AG(w), &1(w))) < ¢ (A (w), E1(w))).
Consequently, we can find ap(w) € T (w, &(w)) such that
(6) d(si(w), (w)) < (A (w), &1(w))).

SinceT(w, X) C F(w, X), for s,(w) € T(w, &(w)) C F(w, X), there exists a
measurable map, s&y : @ — X such thas,(w) € F(w, &(w)). This implies that
we can find ars(w) € F(w, &(w)) N T (w, & (w)) such that@) holds.

On the other hand, by the assumption we have

d(S(w, &(w)), £ (w)) = H(S(w, &(w)), T(w, {1(w))) = P(AG(w), &(w))).

If A& (w), &(w)) = 0, by the same reason as stated in the proof of (a) we can prove
that the conclusion of Theoret2is true.

If A& (w), &(w)) > 0, repeating the reasoning as mentioned above, we can find
measurable maps, s; : 2 — X such thag(w) € F(w, &(w)) N S(w, &(w)) and

d(ss(w), %(w)) = P (A(w), &1(w))).

Inductively, we can define two sequerég(w)}, {s,(w)} C X such that

d(Sns3(w), Snv2(w)) = G (Aléanr2(w), Eania(w)))

) Snp1(w) € F(w, &xnpa(w)) N S(w, Exn(w)) n=012...
Snt2(w) € F(w, &xnya(w)) N T (w, Exnpa(w))

and

) {d(szn+1(w), Snt2(w)) < ¢ (An(w), Enqa(w))) n=012....
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Now, we prove thats,(w)} is a Cauchy sequenceX Infact, for any positive integer
n, we have

AEon(w), Exns1(w)) < Max|{d(Sy (w), Sons1(w)), d(Sn (W), Sonra (w)),
d(Soni1(w), Snp2(w)),
[d(Sn (W), Sons2(w)) + A(Sns1(W), S (w))1/2}
< max{d(sn(w), Snp1(w)), d(Sns1 (W), Snp2(w))}.

Using the same argument we can prove that

Al&oniz(w), Eonrr(w)) < max{d(sz,m(w), Sns2(w)), d(32n+2(w)’ Snta(w))}.

Consequently, in general,far=1, 2, ..., we have

(9)  ds(w), si2(w) = @(AG (W), &nra(w)))
= ¢p(Max{d(s,(w), Si+1(w)), d(S41 (W), Sir2(w))}).

If d(She1(w), Srez(w)) > d(s(w), Sip1(w)) > 0, then, by 9) and Lemmal.3, we
have

d(Sh+1(w), Shs2(w)) = P (A(Si1(w), Sir2(w))) < d(S11(w), Shsz(w))

a contradiction. Therefore(s,,1(w), Si2(w)) < d(S(w), Siy1(w)). Hence

(10) d(s,(w), Sir1(w)) < P(A(S 1 (w), §H;(W))) < --- < " (S (w), H(w))).

If d(si(w), (w)) = 0, that is,s(w) = $(w), for all w € R, denotings(w) =
Si(w) = S(w), thens(w) = s(w) € F(w, & (w)) N S(w, &(w)), S(w) = S(w) €
F(w, &(w)) N T(w, &(w)). Hences(w) € F(w, &w)) N T (w, &(w)). Similarly
using the proof in (a) we can prove ths&tw) € S(w, & (w)). Hence the conclusion
of Theorem?2.2is proved.

If d(s;(w), s(w)) > 0, in view of condition ¢), we know that)_ ¢"-*d(s;(w),
S(w)) is convergent. It follows from1(0) that > d(s,(w), S\41(w)) IS convergent
too. This implies thafs,(w)} is a Cauchy sequence K. SinceX is complete, there
exists a measurable ma& : @ — X such thats,(w) — s*(w). Sinces,(w) €
F(w, & (w)) C F(w, X) andF(w, X) is closed, this shows that(w) € F(w, X).
Hence there exists measurable nsap2 — X such thas*(w) € F(w, s(w)). By
(5) and (7) we have

d(s*(w), S(w, s(w))) = d(s"(w), Sny2(w)) + d(Snr2(w), S(w, S(w)))
< d(s" (W), Seni2(w)) + d(Sn2(w), T(w, Eania(w)))
+ H(T (w, &ani1(w)), S(w, s(w))),
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d(s*(w), S(w, s(w))) < d(S"(w), Sns2(w))
+ @ (max{d(s" (w), Sni1(w)), d(s"(w), S(w, s(w))),

d(SZnJrl(w)’ S'Zn+2(w))v

[d(s"(w), Snr2(w)) + d(Snpa(w), S(w, S(w)))]/2}).
Lettingn — oo, we haved(s*(w), S(w, s(w))) < ®(d(s (w), S(w, s(w)))). By
Lemmal.3 (iii) we haved(s*(w), S(w, s(w))) = 0. SinceS(w, s(w)) is closed,
we haves*(w) € S(w, s(w)). Similarly, we can prove that'(w) € T(w, S(w)).
Therefore we have*(w) € F(w, s(w)) N S(w, sS(w)) N T (w, S(w)). This completes
the proof. O

REMARK. Theorem2.1is a special case of Theore2 with F being a single-
valued mapping ané (t) = a(w)t, wherea : @ — (0, 1) is a measurable mapping
andt € R*.

COROLLARY 2.3. LetT, : @ x X — CB(X),i = 1,2,..., be multifunction such
that

(i) Ti(w,-), T;(w,-) are continuous for allv € 2, i # j;

(i) Ti(-, x), Tj(-, x) are measurable for atkk € X,i # j;

(i) Foralli, j,i #]j
(11) H (-rl ('LU, X)v TJ ('LU, y)) =< CD(maX{d(X, y)v d(Xv -rl ('LU, X))7 d(y7 TJ ('LU, y))7

[d(x, Tj(w, y)) +d(y, Ti(w, X))1/2})

for all X,y € X and for allw € @, where® : Rt — R* is an increasing function
satisfying condition§l) and(2).
Then the random fixed point s€ts: @ — X : &é(w) € Ti(w,E(w)}, i =1,2,...,
are nonempty, closed and equal to each other.

ProOOF. For the sake of convenience we prove the conclusions of Corallay
only for the casé = 1 andj = 2. By Theoren®.2, there exists a measurable map
s : Q — X such thats(w) € Ti(w, s(w)) N To(w, S(w)). Now we prove that the
random fixed point sets df; and T, are equal to each other. In fact, if measurable
mapu : Q — X is a random fixed point of;, that isu(w) € Ty(w, u(w)), then we
have

d(u(w), Ta(w, u(w)))

< H(Ty(w, u(w)), T2 (w, u(w)))

< ®(max{d(u(w), u(w)), du(w), Ty(w, u(w))), du(w), To(w, u(w))),
[d(u(w), To(w, u(w))) + d(u(w), Te(w, u(w)))1/2})

< oduw), Ty(w, u(w)))).
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By Lemmal.3(iii), we haved(u(w), T, (w, u(w))) = 0. SinceT,(w, u(w)) is closed,
u(w) € T,(w, u(w)). Using the same argument we can prove that if a measurable
mapv :  — X is a random fixed point of, thenv is also a random fixed point

of T;. Hence

(§:Q— X:8w) e Ti(w,§w))} =1{§: Q2 — X:§w) € T(w, §(w))}.

Let {&(w)} C {€:Q — X :&(w) € Ti(w, E(w))} andé,(w) — &(w) ash — oo.
Sinceé,(w) € Ty(w, &, (w)) andTy(w, &,(w)) — Ti(w, E(w)) asn — oco. We have

dEw), To(w, §(w))) = dEw), &(w)) + dE w), Tu(w, §(w)))
< dEW), &) + H(Tu(w, &w)), Ty(w, &(w))) — 0,

that is, &£(w) € Ti(w, E(w)). Therefore,(é : Q@ — X : &(w) € Ty(w, E(w))} is
closed. This completes the proof. O

LetS, T: Q2 x X - CB(X) andF : @ x X — CC(X) be multifunctions such
that

(12)  H(Sw.x), T(w,y)) < ¥(d(F(w,x), Fw, y)), d(F (w, X), S(w, X)),
d(F(w, ), T(w, ), d(F(w, ), T (w, )),
d(F (w, ), Sw, X))

for all x,y € X and for allw € @, whereW(t,, t,, t3, ts, ts) : R*®> — R* satisfies
condition ().

THEOREM2.4.Llet ST : @ x X — CB(X) andF : @ x X — CC(X) be
multifunctions such that

(i) S(w, ), T(w, -) are both continuous for al € Q;

(i) S(, x), T(-, x) are both measurable for ak € X;
@ii) S(w, X) UT(w, X) C F(w, X), F(w, X) is closed
(iv) S, TandF satisfy(12) forall w € Q and allx,y € X.

Then there exists a measurable nsap2 — X such that
F(w, s(w)) N S(w, s(w)) N T (w, S(w)) # @.
PROOF. Let

t* = max{d(F (w, x), F(w, ), d(F(w, X), S(w, X)), d(F(w, y), T (w, ),
[d(F (w, x), T(w, y)) + d(F(w, y), S(w, x))1/2}.
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Without loss of generality we can assume that

d(F(w,x), T(w,y)) = d(F(w,Yy), S(w, X)).
Then
t* > maxd(F(w, X), F(w, y)), d(F(w, X), S(w, X)), d(F(w, y), T (w, y))},

t* > [d(F(w, X), T(w,y)) +d(F(w,y), S(w, X))]/2 > d(F(w, y), S(w, X)),
2t > d(F(w, x), T(w, y)) +d(F(w, y), S(w, X)) > d(F(w,X), T (w, y)).
Using condition(¥) and (L2) we have

H(S(w, x), T(w,y)) < W{",t7,t", 2", t") < (1)
= ®(max{d(F(w, x), F(w, y)), d(F(w, ), S(w, X)),
d(F(w,y), T(w,y)),
[d(F(w, ), T(w, y)) + d(F(w, y), S(w, x))1/2}).

Therefore,F, SandT satisfy all conditions of Theorer@.2 The conclusion of
Theorenm2.4follows from Theoren®.2immediately. O

From Theoren2.4we can obtain the following

COROLLARY 2.5. LetT; : @ x X — CB(X),i =1, 2, ..., be multifunctions such
that

(i) Ti(w,-), T;(w,) are continuous for allw € Q,i # j;
(i) T.(,x), T;(;,x) are measurable for ak € X,i # j;
(i) Foralli,j,i # |
H (i (w, x), Tj(w, y)) < W(d(X, y), d(x, Ti(w, X)), d(y, Tj(w, y)),
d(X9 TJ ('LU, y))7 d(y7 -rl ('LU, X)))’
forall w € Q and all x,y € X, whereW(ty, tp, ts, t;, t5) : R*®> — RT satisfies
condition ().

Then the random fixed point s€ts: Q@ — X : &é(w) € Ti(w, E(w)}, i =1,2,...,
are nonempty, closed and equal to each other.

REMARK. Our results are stochastic versions of the corresponding results of
Chang P].
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