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Abstract

We show that, for any positive integkythere are only finitely many finite groups, up to isomorphism,
with exactlyk conjugacy classes of elements of prime power order. This generalizes a result of E. Landau
from 1903. The proof of our generalization makes use of the classification of finite simple groups.

2000Mathematics subject classificatioprimary 20C45.

1. Introduction

Landau has proved that, for any positive integethere are only finitely many finite
groups, up to isomorphism, with exacttyconjugacy classes]. In this paper we
prove a variant of Landau’s result in which we restrict our attention to conjugacy
classes of elements of prime power order only.

THEOREM 1.1. For any positive integek, there are only finitely many finite groups,
up to isomorphism, with exactkconjugacy classes of elements of prime power order.

Whereas the proof of Landau’s original result is elementary, our proof of Theo-
reml.1relies on the classification of finite simple groups. Theotehis also related
to a conjecture of Praeget,[page 30]. We are grateful to L. Pyber for pointing out
this reference.

In the following, we denote by kf®) the number of conjugacy classes of elements
of prime power order in a finite grou@. (Throughout the conjugacy class of 1 is
counted as one of the conjugacy classes of elements of prime power order.)
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LEmMMA 1.2. Let N be a normal subgroup of a finite grou®. Then

(i) kpp(G) = kpp(G/N) - NJ;
(i) kpp(G/N) < kpp(G) unlessN = 1.

PrOOF. Let N be arbitrary, and le€ be a conjugacy class of elements of prime
power order inG. Then the image of C in G = G/N is a conjugacy class of
elements of prime power order @.

Conversely, leix N be an element its/N whose order is a powes" of a prime
p. We writex = XX, = Xy X, Wherex, is a p-element and, is a p’-elementinG.
ThenxN = (X,N)(Xy N) = (Xy N)(X,N) wherex,N is a p-element ancky N is a
p’-element. Since N has ordem", we must havexy, N = 1. ThusxN = x,N, and
we see tha€ — C is a map from the set of conjugacy classes of elements of prime
power order inG ontothe set of conjugacy classes of elements of prime power order
inG = G/N.

LetN # 1. ThenN contains an element=£ 1 of prime order. Thus the conjugacy
classes ok and 1 have the same image@) N. Hence kppG/N) < kpp(G).

Now let C be a conjugacy class of elements of prime power ordegginThen
the pre-image oC in G consists of/C| - [N| elements. These form a union of
conjugacy classe8,, ... ,C, of G. Fori = 1,...,r, we haveC, = C and hence
ICi| > |G| = |C|. Hencer < |NJ|, and the result is proved. O

We are now going to prove Theorelrlin a series of lemmas.

LEMMA 1.3. There exists a functiow : N — N with the following property:
Whenevek is a positive integer ant is a finite simple group witkpp(G) = k then
|G| < a(k).

PrROOF. Letk € N, and letG be a finite simple group with kgf®) = k. We wish to
show thai G| is bounded in terms d€. (Our proof will make use of the classification
of finite simple groups.) Our claim is trivial & has prime order, or i6 is a sporadic
simple group. IfG is an alternating group\, then|G| = n!/2 can have at mo#t
different prime divisors, s¢G| is also bounded in this case.

Thus, in the remainder of the proof, we may assumeGhista finite simple group
of Lie type. There are 16 such families of groups (Se@gge 8]). It suffices to show
that there are only finitely many possibilities f@rin each fanily.

Suppose first thad = PSL(n, q) for somen > 1 and some prime powe, so that

IGl=m,q-)"q@@" -1)---(q-1).

The Zsigmondy prime number theorem (s2dX.8.3]) shows that every factof — 1
of |G| with i > 6 contributes a new prime divisor ¢&| and thus a new conjugacy
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class of elements of prime (power) order. Hekce kpp(G) > n — 6, and we have
shown than is bounded in terms &, in case ofG = PSL(n, q).

We now keem fixed and show thaf is also bounded in terms & LetG :=
SL(n,q) andZ := Z(G), so that|Z| = (n,q — 1). We keep|Z| fixed. NowG
contains a maximal toru§ of order(g — 1)"*. We write the prime factorization of
IT| in the form|T| = p™ ... p*. Then agaim is bounded in terms df. We regard
m as fixed. Thef containsp™ + - - - + p» —m+ 1 elements of prime power order.

Let F denote the algebraic closure of the finite fi#lg with g elements. The
elements off can be diagonalized simultaneously in@LF). Two diagonal matrices
in GL(n, F) are conjugate if and only if one can be obtained from the other by
permuting the diagonal entries. Hence @éir+ - - - + p2» —m+ 1 elements fall into
atleastn!)~(p{* + - -- + p& — m+ 1) different conjugacy classes under @LF).
Thus

kpp(G) = (D L(pf + -+ + pi —m+ 1),
and Lemmal.2implies that
k =kpp(G) = kpp(G)/IZ| = (n,q — D7)~ (Pt + -+ + pir —m+1).

Hencepf, ..., pa are bounded in terms &f in particular,(q — 1)"* = p{* ... p&n
is bounded in terms d. Thus certainlyg is bounded in terms d€. This finishes the
proof in caseés = PSL(n, q).

The argument is similar for the other families of finite simple groups of Lie type,
and will therefore be omitted. This finishes the proof of Lemhia O

LEmMMA 1.4. There exists a functiop : N — N with the following property
Whenevek is a positive integer an¢ is a characteristically simple finite group with
kpp(G) = k then|G| < B(Kk).

PrOOF. Letk be a positive integer, and I1& be a characteristically simple finite
group with kpgG) = k. We know thatG = S = Sx --- x S(r factors) for a finite
simple groupS and a positive integer. Now certainly kpgG) > r (kpp(S) — 1).
Thusr < k and kpgS) < k. By Lemmal.3 we have

IS < maX{a(l),...,ak)) = AK).
Hence|G| < Ak)* =: B(k), and the Lemma is proved. O

The following Lemma implies Theorefinl.

LEmMMA 1.5. There exists a functioy : N — N with the following property
Whenevek is a positive integer ands is a finite group withkpp(G) = k then
IG| < y(K).
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ProoOF. We definey (k) inductively, starting withy (1) := 1. Then the result is
certainly true fork = 1. So let us assume thiat> 1, and thaty (1), ... ,y(k — 1)
have been defined already. Moreover,@&ebe a finite group with kpG) = k, and
let N be a minimal normal subgroup &. Then kpgG/N) < k by Lemmal.2 (ii)
sinceN # 1, so that

IG/N| <maxX{y(),... ,y(k—D}=T(k-1),

by induction. Also,N contains at mosk G-conjugacy classes of elements of prime
power order. Each of these splits into at mgSt : N| N-conjugacy classes of
elements of prime power order. ThiNscontains at mokI' (k — 1) conjugacy classes
of elements of prime power order. Sinbkis characteristically simple we conclude
that

IN| <max{B():i=1,...,kI'(k — 1)} =: B(k).
Thus|G| < B(k)T'(k — 1) =: y(k), and our result is proved. O

Our proof of Theoren. 1is now complete. Atthe end of this paper, we will discuss
some related questions. Letbe a set of primes, and lat denote the set of primes
not contained int. In the following, k (G) is defined as the number of conjugacy
classes ofr-elements in a finite grou@, and k.. (G) is defined in a similar way.

(1) Suppose thah is ar-group, thatB is ax’-group, and thaG = A x B is their
direct product. Then(G), the number of conjugacy classes®f satisfies

k(G) = k(A k(B) =k, (G) k,.(G).
One may ask whether the inequality
K(G) <k:(G) k. (G)

holds for an arbitrary finite grou@. This, however, is not the case: Let= {3}, and
let G be a dihedral group of ordegévhereq is a prime different from 2 and 3. Then
we have

k(G) = (Bq+3)/2, k.(G) =2 ki(G)=k(G/P)=(q+3/2
with P := O3(G). Thus
k. (G k. (G) =g+ 3 < (3g+3)/2=Kk(G).

(2) Now let A be a finiterr’-group acting faithfully on a finiter-group B, and let
G be the corresponding semidirect product. One may ask whether
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However, this is not true, in general. For example,#et= {p} for an odd prime
numberp, and letG = AGL (1, p) be the affine general linear group of degree 1 over
the field with p elements. Thei® is the semidirect product of a cyclic groupof
orderp — 1 and a cyclic grouB of order p. Moreover, we have KG) = 2 and

k. (G) = p—1, but

IBl=p<2(p—1) =k:(G) ks (G).
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