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Abstract

We extend the normal surfaceQ-theory to non-compact 3-manifolds with respect to ideal triangulations.
An ideal triangulation of a 3-manifold often has a small number of tetrahedra resulting in a system ofQ-
matching equations with a small number of variables. A unique feature of our approach is that a compact
surfaceF with boundary properly embedded in a non-compact 3-manifoldM with an ideal triangulation
with torus cusps can be represented by a normal surface inM as follows. A half-open annulus made up
of an infinite number of triangular disks is attached to each boundary component ofF . The resulting
surfaceF̂ , when normalized, will contain only a finite number ofQ-disks and thus correspond to an
admissible solution to the system ofQ-matching equations. The correspondence is bijective.

2000Mathematics subject classification: primary 57M99; secondary 57M10.
Keywords and phrases: 3-manifold, normal surface, knot.

1. Introduction

In this paper we develop a normal surface theory that provides an efficient way to
represent spanning surfaces of knots using ideal triangulations of the knot comple-
ments. A normal surface is a properly embedded surface in a compact, triangulated
3-manifold which intersects each tetrahedron in elementary disks. There are three
quadrilateral and four triangular disk types. There is a one-to-one correspondence
between normal surfaces in a 3-manifold with a fixed triangulation and admissible
solutions to a system of linear equations of 7t variables, wheret is the number of
tetrahedra of the triangulation and each variable represents the number of disks of
each elementary disk type. This algebraic representation of normal surfaces was
introduced by Haken [3].
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In [11], Tollefson observed that a normal surface without trivial components is
completely determined by its quadrilateral disks alone. Thus 4t variables are not
needed and only the 3t variables associated with theQ-disks need be involved. There
are also fewerQ-matching equations than in the original approach. In this paper we
extend this approach to apply to ideal triangulations which often have a small number
of tetrahedra.

Let M be a non-compact 3-manifold with a finite ideal triangulation with torus
cusps. We represent compact surfaces with boundary inRn by their interiors properly
embedded inM as normal surfaces containing only a finite number of quadrilateral
disks and infinite number of triangular disks. A regular neighbourhood of a boundary
component of such a surface is represented by an infinite annulus consisting of only
triangular disks. In an ideal triangulation of a non-compact 3-manifoldM , regular
normal surface theory only works for closed surfaces. Bounded surfaces such as
Seifert surfaces can only be represented by using an infinite number of triangles.
Normal surfaceQ-theory only deals with quadrilateral disks to characterize a normal
surface by a finite-tuple of integers. We use theQ-theory to study normal surfaces
representing both closed and bounded surfaces in a knot complement with an ideal
triangulation.

An ideal triangulation of a non-compact 3-manifold often has a small number of
tetrahedra resulting in an algebraic representation of normal surfaces with a small
number of disk types. This leads to a system ofQ-matching equations with a small
number of variables each of which represents the number of disks of aQ-disk type.
Admissible solutions to the system ofQ-matching equations correspond bijectively
to normal surfaces in the 3-manifold. Although we give an algorithm to construct a
normal surface corresponding to a given admissibleQ-solution, one can determine
the surface modulo ‘trivial normal surfaces’ from the quadrilateral disks alone without
attaching triangular disks.

2. Normal surface Q-theory for ideal triangulations

Let M be a non-compact 3-manifold with an ideal triangulation= with torus
cusps. Let− be an ideal tetrahedron of=. We can view− as the quotient of an
abstract tetrahedroñ− with no self-intersections under a quotient mapq− : −̂ → −

and with its vertices removed. We define an elementary disk in− to be the quotient
of an elementary disk in̂− under the mapq− . Thus we allow identifications along
boundaries of elementary disks in− . We have exactly seven elementary disk types
in each tetrahedron of=, four triangular disk(T-disk) types and threequadrilateral
disk (Q-disk) types, ignoring possible identification along boundaries. Throughout
this paper, we only deal with 3-manifolds decomposed into a finite number of ideal
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tetrahedra. We often omit the term ‘ideal’ to indicate cells in ideal triangulations.
A normal surfaceF is a properly embedded surface inM which intersects each
tetrahedron only in elementary disk types. Aproperly embeddedsurface in a 3-
manifold M is defined as a surface which is the image of an embeddingf : F → M
such thatf −1.@M/ = @F and preimages of compact sets are compact. The interior
of any properly embedded surface in a compact 3-manifold is properly embedded in
the interior of the 3-manifold. We say thatF representsa compact surfaceG in Rn

if there is a proper embeddingf : G̊ → M such thatf .G̊/ = F . Let F be a normal
surface representing a compact surfaceG with boundary. If we look at the behavior
of F in a small regular neighbourhoodU of an ideal vertex of=, A = F ∩ SU is a
half-open infinite annulus consisting of onlyT-disks and possibly some portions of
T-disks along@A (see Figure1). For convenience, we call such an annulus aninfinite
trivial normal annulus.

For a compact 3-manifold with a triangulation=, theweightof a normal surfaceF ,
defined to be the number of points in the intersection ofF with the 1-skeleton of the
triangulation, is given as a useful measure ofF . But for a non-compact 3-manifold
with an ideal triangulation, it does not make sense measuring a normal surfaceF
representing a surface with boundary with the weight. So we define a new system
of measuringF , called theQ-weight and denoted bywtQ F , to be the number of
Q-disks of F . Since a geometric sum is only performed between normal surfaces
with compatible quadrilaterals, theQ-weight is additive.
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FIGURE 1. A representation of a compact surface with boundary

Fix an orderingdQ
1 ; dQ

2 ; : : : ; dQ
3t of all Q-disk types in=. There is a unique 3t-tuple

representing thenormal Q-coordinate EFQ = .x1; x2; : : : ; x3t/ of F , wherexi denotes
the number ofQ-disks ofdQ

i -type, 1≤ i ≤ 3t . SinceF is properly embedded, it
follows that each component of a normalQ-coordinate is a non-negative integer. In the
next section it will be shown thatF is uniquely determined, up to trivial components,
by the normalQ-coordinateEFQ. A trivial componentis a normal surface containing
only triangular disks. A closed trivial component inM is a link of an ideal vertex
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FIGURE 2. Gluing pattern to form an abstract polyhedron

which is a torus.
For a given 3t-tuple .x1; x2; : : : ; x3t/, there are two constraints to be satisfied for

the tuple to be a normalQ-coordinate of a normal surface. The first constraint is that
there is at most onexi from a tetrahedron which is non-zero. The second constraint
is that it must satisfy a linear system of equations which represents the matching
criterion of elementary disks along 1-simplices. The structure of a normal surface
around a 1-simplex is completely determined by how the elementary disks along the
1-simplex are glued together in theabstract polyhedronassociated with the 1-simplex.
Let M ′ be the compact 3-manifold obtained by removing the interiors of fixed regular
neighbourhoods of ideal vertices of=. The boundary components ofM ′ are trivial
normal tori. We denote a 1-simplexek of = by 〈ab〉, whereek ∩ @M ′ = {a; b},
and calla andb the boundary verticesof ek. Let Bk be the union of all tetrahedra
of = containingek = 〈ab〉 as a face. Let− be a tetrahedron inBk which is the
quotient of an abstract tetrahedron−̂ under the quotient mapq− : −̂ → − . If q−1

− .ek/

consists ofn components.n ≤ 6/, then taken copies of−̂ , each associated with a
component̂eki of q−1

− .ek/. Repeat this for all tetrahedra inBk. From this collection
of abstract tetrahedra, form theabstract polyhedron̂Bk associated with the edgeek by
gluing pairwise the faces of these tetrahedra around an edgeêk in such a way that a
natural quotient mapq : B̂k → Bk with q.êk/ = ek andq|−̂ = q− is well-defined (see
Figure2). Denoteêk = 〈âb̂〉, whereâ andb̂ are points inêk such thatq− .â/ = a and
q− .b̂/ = b. If an elementaryT-disk E in B̂k is normal isotopic to aT-disk 〈â ∗ ∗〉
such thatq− .〈â ∗ ∗〉/ is aT-disk in a trivial normal torus of@M ′, we callE ana-type
T-disk. We define ab-typeT-disk in the same manner. We call a spanning arcÞ in
a 2-simplex of−̂ ana-type arc(respectivelyb-type arc) if Þ is an edge of ana-type
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T-disk (respectivelyb-type T-disk) in the tetrahedron̂− . For a given normal surface
F intersecting the edgeek, a small neighbourhoodUk of ek in Bk intersectsF in a
collection of pairwise disjoint disks meetingek. Since the quotient mapq : B̂k → Bk

maps a small neighbourhood ofêk homeomorpically onto a small neighbourhood of
ek, the unionD̂ of components ofq−1.F ∩ Bk/ which intersect̂ek is a disjoint union
of disks which consist of elementary disks inB̂k andq.D̂/∩Uk = F ∩Uk. Hence the
gluing method of elementary disks in̂D alongêk dictates how the elementary disks of
F in Bk are glued together alongek. The matching criterion of elementary disks in an
abstract polyhedron is described in theQ-matching equations in [11]. It is based on
the observation that for a fixed 1-simplex, the number ofQ-disks of positive sense is
the same as the number ofQ-disks of negative sense.
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FIGURE 3. The signs of corners of aQ-disk E around an edgeek

We here define thesenseof a Q-disk associated with a fixed 1-simplex. LetE be
a Q-disk in a tetrahedron− andek a 1-simplex with the positive orientation froma to
b so that the positive orientation ofêk is from â to b̂. We define the positive rotation
aroundêk, by the right hand rule as shown in Figure3. Let×i be a corner ofE on the
edgeek and Êi the Q-disk in the abstract tetrahedron−̂i in B̂k such thatq− .Êi / = E
andq− .×̂i / = ×i , where×̂i is the corner ofÊi on êk. Define the signŽk;i of the corner
×i , relative to the edgeek, to be+1 if the positive rotation around̂ek carries the face of
−̂i containing thea-type arc ofÊi through−̂i to the face of̂−i containing theb-type arc
of Êi (see Figure3). We say that theQ-disk E is of thedirection froma to b around
the corner, relative toek = 〈ab〉. The signŽk;i of ×i is −1 if E is of thedirection
from b to a around the corner. For a corner ofE which does not intersect the edge
ek = 〈ab〉, we define the sign of the corner to be 0 (see Figure3). We define the
sense"k of E relative to the edgeek to be the sum of signs of all corners ofE. This
definition is an extension of the notion of sense of aQ-disk in [11]. Note that (1) the
sign is independent of the orientation of the edge, (2) if two corners of aQ-disk on
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opposite edges of the tetrahedron have non-zero sign, then the signs are identical, and
(3) if both endpoints of an edge of aQ-disk have non-zero sign, then the signs are
opposite. Hence the sign determines aslopeof a Q-disk inside the tetrahedron with
respect to an edge.

By an argument similar to that in [11], we can get the system ofQ-matching
equationsof M for = as follows

{
3t∑

i =1

"k;i xi = 0

}
k

; 0 ≤ xi ; 1 ≤ i ≤ 3t;

where "k;i is the sense of aQ-disk of dQ
i -type relative to the edgeek. A non-

negative integral solution.x1; x2; : : : ; x3t/ to the system ofQ-matching equations is
admissibleif it satisfies the first constraint that, for each tetrahedron of=, at most one
xi associated with the tetrahedron is non-zero. TheQ-projective solution spaceof M
is the projectivised solution space, which is a compact, convex, linear cell inRn, of
the system ofQ-matching equations onto the unit polyhedron which is the solution
space of

∑3t
i =1 xi = 1. A Q-vertex surfacein M is a normal surface whose normalQ-

coordinates is projected onto aQ-vertex solutionin the Q-projective solution space.
A finite spanning set of solutions containing theQ-vertex solutions can be constructed
by elementary methods [8]. We call a solution in the spanning set aQ-fundamental
solution. These solutions can be obtained from theQ-vertex solutions as in the case
of regular normal surface theory [4]. We call a normal surface corresponding to aQ-
fundamental solution aQ-fundamental surface. Some interesting surfaces are found
in the collection ofQ-fundamental surfaces.

There is a characterization ofQ-vertex surfaces andQ-fundamental surfaces.
A connected two-sided normal surfaceF is a Q-vertex surface (respectivelyQ-
fundamental surface) if and only if wheneverX andY are two-sided normal surfaces
such thatnF + 6 = X + Y (respectivelyF + 6 = X + Y) for some integern and
family of trivial surfaces6, then each component ofX andY is normal isotopic to
eitherF or a component of6.

REMARK 1. The geometric sums of normal surfaces with respect to ideal triangu-
lations are always modulo trivial normal tori. Thus the Euler characteristic formula
for geometric sums is valid for theQ-theory with respect to ideal triangulations.

We have observed that the normalQ-coordinateEFQ of a normal surfaceF repre-
senting a compact surface is a well-defined finite tuple of non-negative integers which
is an admissible solution to the system ofQ-matching equations. The following
theorem gives the converse argument.
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THEOREM2.1. Let M be an orientable(possibly non-compact) 3-manifold with an
ideal triangulation= with torus cusps. IfEz is a non-zero admissible solution to the
system ofQ-matching equations then there exists a unique normal surfaceF (possible
non-compact) in M with no trivial components such thatEFQ = Ez.

Thus there is a one-to-one correspondence between the set of all normal surfaces
and the set of all admissible solutions to the system ofQ-matching equations for a
given non-compact 3-manifoldM with an ideal triangulation with torus cusps. It also
follows that allQ-fundamental surfaces span the set of all normal surfaces inM .

3. The proof of Theorem2.1

Let Ez be a non-zero admissible solution to the system ofQ-matching equations.
To construct a normal surfaceF with EFQ = Ez, we first glue together a collection of
Q-disks corresponding toEz along corners and then fill out the holes obtained from the
gluing, by attachingT-disk components along the curves made up of unglued edges
of the Q-disks.

We first describe theQ-corner gluing rulewhich is a gluing method ofQ-disks
along corners.

Let M ′ be a compact 3-manifold obtained fromM by removing a collection of open
regular neighbourhoods of ideal vertices of=. The boundary ofM ′ is a collection of
tori each with a pseudo-triangulation induced by=. Choose a collection� of Q-disks
in M ′ corresponding toEz. We glue the corners of theQ-disks in� together by applying
the Q-corner gluing rule [11] to the abstract polyhedron̂Bk associated with each 1-
simplexek = 〈ab〉. If there is a normal surfaceG meetingek, then each component
of G ∩ B̂k is a diskDi which consists of elementary disks glued along the edgeek.
Since the elementary disks ofDi are completely determined by the arcs ofDi ∩ @ B̂k,
Di is fully determined by the simple closed curveDi ∩ @ B̂k. So we first construct a
collection of pairwise disjoint simple closed curves in@ B̂k which are obtained from
edges ofQ-disks in@ B̂k by addinga-type arcs andb-type arcs in@ B̂k or isotoping
edges ofQ-disks in@ B̂k (see Figure4). Note that the collection of closed curves can
be constructed because the matching equation ofek provides as many positive slopes
as there are negative slopes in@ B̂k. Since the quotient mapq : B̂k → Bk maps a small
neighbourhood of̂ek homeomorphically onto a small neighbourhood ofek, the gluing
rule associated with the edgeêk in B̂k dictates how the corners onek in Bk are glued
together. TwoQ-disks glued along both boundary points of an edge are glued along
this edge. Thus the gluing rule is well-defined globally.

Let F ′ be the union of allQ-disks in� after gluing corners ofQ-disks together.
We designate a collection of closed curves from the unglued edges of theQ-disks
in F ′ to which we will attach embedded trivial components. When we perform the
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FIGURE 4. Q-corner gluing rule alongek = 〈ab〉

Q-corner gluing rule, the construction not only gives the gluing of the corners of
Q-disks but also shows how the desired normal surface extends around each glued
corner of theQ-disks. We can complete a diskD, possibly with some identification
along the boundary, which is the local extension ofF ′ around a glued cornerx of
Q-disks by attachingT-disks along unglued edges ofQ-disks aroundx. We can take
a pair of edges ofQ-disks which are glued at the cornerx on ek with opposite signs
and joined with eithera-type T-disks orb-typeT-disks (see Figure5). Denote such
a pair by.
̂i ; Ž̂i / and the image under the quotient map by.
i ; Ži /. Let {.
i ; Ži /} be
the collection of all such unordered pairs. We define an equivalence relation on the
collection as follows and several other occurrences;.
n; Žn/ and.
m; Žm/ are equivalent
if there is a chain{.
k1; Žk1/, .
k2; Žk2/; : : : ; .
kl ; Žkl /} such that.
k1; Žk1/ = .
n; Žn/,
.
kl ; Žkl / = .
m; Žm/ andŽki = 
ki+1, for i = 1; 2; : : : ; l − 1. Each equivalence class
defined on the collection is a closed chain determining a closed curve made up of
edges ofQ-disks. Let0 be the collection of such closed curves. We attach trivial
normal surfaces along each curve of0. To facilitate this and to obtain a trivial surface
to attach along a curve of0, we will project the curve onto a torus boundary ofM ′.

Let C be a closed curve of0 determined by an equivalence class

{.
1; Ž1/; .
2; Ž2/; : : : ; .
n; Žn/};

whereŽi −1 = 
i for i = 2; 3; : : : ; n and Žn = 
1. If n = 1, 
1 = Ž1 itself is a
closed curve of0 and normal isotopic to a closed 1-simplex in a torus boundary.
We project the curve onto the 1-simplex. Assumen > 1. For each pair.
i ; Ži /,
there is a corresponding pair.
̂i ; Ž̂i / in the abstract polyhedron̂Bi associated with the
edgeei = 〈ai bi 〉 such thatxi = 
i ∩ Ži is on the edgeei and x̂i = 
̂i ∩ Ž̂i is on the
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FIGURE 5. Classification of edges ofQ-disks

edgeêi , whereqi .êi / = ei andqi .x̂i / = xi for the quotient mapqi defined onB̂i .
Both 
̂i and Ž̂i are eitherai -type arcs orbi -type arcs. There is a natural projection
map pi : B̂i → D̂ai (respectivelŷDbi ) such thatqi ◦ pi .
̂i / andqi ◦ pi .Ž̂i / are arcs on
a torus boundary ofM ′ andqi ◦ pi .x̂i / = ai (respectivelybi ), where
̂i and Ž̂i are
ai -type (respectivelybi -type) arcs,qi .D̂ai / = Dai (respectivelyqi .D̂bi / = Dbi ) and
Dai ∪ Dbi = Bk ∩ @M ′. Let C∗ be the union of images of all such pairs.
̂i ; Ž̂i / under
the mapqi ◦ pi . C∗ is a well-defined closed curve in a torus boundaryT× of M ′. We
attach a trivial component alongC according to the following three cases.

Case 1. C∗ is a trivial simple closed curve inT×.
In this case,C∗ separatesT× into two components, a diskD and a torus with a hole

T0. Let Ê
i and ÊŽi be theQ-disks in B̂i along 
̂i and Ž̂i , whose images under the
quotient mapqi are theQ-disks ofF ′ along
i andŽi respectively. Then the image of
Ê
i under the mapqi ◦ pi must be on the same side ofC∗ as the image of̂EŽi . This
is true for alli . Thus the union of images ofQ-disks along.
̂i ; Ž̂i / is in eitherD or
T0. We attach eitherD or T0, which is on the opposite side, alongC by isotoping its
boundary along 2-simplices containing the arcs of the equivalence class of.
i ; Ži /.

Case 2. C∗ is an essential simple closed curve inT×.
In this case, we will attach a half infinite normal annulus alongC as follows.
Take an infinite sequence of pairwise disjoint tori{ T× × 1=n | n ∈ Z+ } in the

regular neighbourhood of the ideal vertex× bounded byT× such thatT× × 1 = T× and
limn→∞ T× × 1=n = ×. We can define a projection map from each torusT× × 1=n
onto T× in the obvious way. There is a simple closed curveCn in T× × 1=n, for
n = 2; 3; : : : , whose image by the projection map is the simple closed curveC∗ in T×.
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FIGURE 6. Construction of an infinite normal annulus

Let C1 = C∗ in T× × 1 = T× . Cut each torusT× × 1=n along the curveCn to obtain
two copies ofCn, sayC′

n andC′′
n (see Figure6). To construct a half infinite normal

annulus, we join these curves in one of the following ways.
The first way is to joinC′

n andC′′
n−1 for all n > 1. We isotope each normal arc

of C′
n to the parallel normal arc ofC′′

n−1 along the 2-simplex of= containing these
two arcs. The isotopy preserves the elementary disk types of the disks isotoped along
the curves and does not introduce any intersection ofQ-disks in F ′. This process
produces the desired infinite trivial normal annulusA1 with the boundaryC′′

1 which
is disjoint fromF ′. We can get the second infinite trivial normal annulusA2 with the
boundaryC′

1, by joiningC′′
n to C′

n−1 for all n > 1 in the same manner.
We attach eitherA1 or A2 alongC depending on the images of theQ-disks alongC

under the mapsqi ◦ pi using the same technique as used in Case 1. Note that the slope
of the resulting normal surface is the slope ofC∗.

Case 3. C∗ is not a simple closed curve inT×.
In this case, we can modifyC∗ to a simple closed curve by attaching subtriangles

along arcs ofC. (For a detailed description, see [9].) Then we follow the procedure
in either Case 1 or Case 2 to attach a trivial component alongC.

Repeat this construction for all curves of0. We may have intersections among
the trivial surfaces, disks or infinite annuli, which we have attached along each curve
of 0. We may assume that they intersect transversely, that is, the elementary disks
along the intersection curves intersect transversely in abstract tetrahedra. We can
perform a regular exchange along all such intersection curves. Discard any trivial
components resulting from the regular exchange. The resulting surface is the desired
normal surfaceF embedded inM .
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The uniqueness ofF follows from the construction; theQ-corner gluing rule, the
way of choosing the collection0 and the way of attaching trivial components along
the curves in0.

REMARK 2. We obtained an algorithm, from the above proof, to construct a normal
surface corresponding to a given admissible solution to the system ofQ-matching
equations of an orientable 3-manifold with an ideal triangulation with torus cusps.
Note that these normal surfaces can be completely specified by considering only the
Q-disks glued at corners without attaching any triangular disks. A finite set of normal
surfaces containing all theQ-fundamental surfaces can be constructed. One only
needs to take the set of all normal surfaces whoseQ-weight is less than or equal
to the sum of theQ-weights of all theQ-vertex surfaces. (This was observed by
Jaco in [4].) We can obtain the remaining normal surfaces by geometric sums of the
Q-fundamental surfaces.

4. Some extensions of theQ-theory

A semi-ideal-triangulationis a pseudo-triangulation allowing both ideal vertices
and real vertices. We can extend the normal surfaceQ-theory developed for ideal
triangulations to this cell structure. The only additional feature is the construction
of the desired normal surface around real vertices. The idea for the construction of
a trivial surface to attach along a closed curve made up of edges ofQ-disks and
projected onto a 2-sphere neighbourhood of a real vertex is exactly the same as the
case of an ideal vertex in the proof of Theorem2.1but all the trivial surfaces are disks.

THEOREM4.1. Let M be an orientable3-manifold with a semi-ideal-triangulation
with torus cusps. IfEz is a non-zero admissible solution to the system ofQ-matching
equations then there exists a unique normal surfaceF in M with no trivial components
such thatEFQ = Ez.

We now extend theQ-theory toalmost normal surfaces. A properly embedded
surfaceF in a 3-manifold with an ideal triangulation is analmost normal surfaceif F
intersects each tetrahedron in a collection of elementary disks ofT-disk types and
Q-disk types and, in one of the tetrahedra, precisely one disk with boundary curve
consisting of eight normal arcs, which is called aoctagonal disk(O-disk) and possibly
someT-disks. We add three more elementary disk types ofO-disk to obtain this more
general notion of surfaces (see Figure7). This definition follows [10].

An octagonal diskE has two corners in each of two opposite 1-simplices such that
the both normal arcs joined at each corner are of the same type relative to the edge
where the corner is. In this case, we define the sign of the corner to be 0. For the
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FIGURE 7. 8-sided disk types

other four corners ofE, we apply the same method as the case of aQ-disk to define
the signs of corners (see Figure7). We define the sense"k of E relative toek to be the
sum of all the signs of the corners ofE which meet the edgeek. Let d1; d2; : : : ; d3t

andd3t+1; d3t+2; : : : ; d6t be a fixed order of quadrilateral disk types and octagonal disk
types, respectively, of a 3-manifoldM with an ideal triangulation havingt tetrahedra.
As in the case of normal surfaces we define normalQ-coordinates of 6t-tuples for
almost normal surfaces whose positive entries represent at most one quadrilateral or
octagonal disk type from each tetrahedron. The following is the system ofQ-matching
equations for almost normal surfaces ofM :{

6t∑
i =1

"k;i xi = 0

}
k

; 0 ≤ xi ; 1 ≤ i ≤ 6t;

where"k;i is the sense of a disk of typedi relative to a 1-simplexek. An admissible
solution to the system is a non-negative integral solution.x1; x2; :::x6t/ satisfying the
condition, that for each tetrahedron=, at most onexi associated with the tetrahedron
is non-zero, and for exactly one tetrahedron, exactly one of the three components
associated withO-disk types in the tetrahedron is non-zero. We can construct an
almost normal surface embedded inM corresponding to a given admissible solution
to the system ofQ-matching equations. The idea of the construction is similar to the
proof of Theorem2.1.

THEOREM 4.2. Let M be a non-compact orientable3-manifold with an ideal
triangulation = with torus cusps. IfEz is a non-zero admissible solution to the ex-
tended system ofQ-matching equations for almost normal surfaces inM then there
exists a unique almost normal surfaceF (possibly non-compact) in M with no trivial
components such thatEFQ = Ez.

PROOF. The only additional case from the proof of Theorem2.1 is the gluing of
corners on the edges meeting octagonal disks.

Let O be the octagonal disk in a collection� of elementary disks corresponding to
the solutionEz. When we glue the corners ofQ-disks on an edgeek, the gluing pattern
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is described in terms of matching edges of theQ-disks aroundek and does not depend
on the whole structure of the disks but only on the arc types of edges of theQ-disks.
This makes it possible to extend the gluing rule to the case of almost normal surfaces.

Let B̂k be the abstract polyhedron associated with the edgeek andêk the center edge
of B̂k. Two spanning edges intersecting at a corner onêk determine an elementary disk
type of eitherT-disk or Q-disk. For a cornerx of the octagonal diskO on êk = 〈ab〉,
we replace the diskO with an elementary disk of eitherT-disk type orQ-disk type,
which conforms with the arcs ofO cornered atx. If x is of sign 0, we replaceO with
a T-disk and otherwise, we replaceO with a Q-disk which has the same sign at the
corner. We now perform the gluing rule applied to the case of normal surfaces. When
we construct a collection of simple closed curves in@ B̂k, in a stack of zero slopes, the
one coming from anO-disk has to be closest to the equator.

REMARK 3. The theorem also holds for a semi-ideal-triangulation with torus cusps
of a 3-manifold.

REMARK 4. If we allow an almost normal surface to contain a single exceptional
piece which is a pair of normal disks with an unknotted tube as well as an octagon,
the Q-theory applies without any constraints. Since both theQ-corner gluing and the
attaching ofT-disks depends only on the arc types, we can replace, as we glue the
corners of disks, each tube by normal disks corresponding to the boundary normal
curves of the tube.

5. Some results of theQ-theory

A knot complement inS3 is always given an ideal triangulation with a torus cusp
by the SnapPea software package [12]. We apply the normal surfaceQ-theory for
ideal triangulations to knot complements.

In a compact, irreducible,@-irreducible, triangulated 3-manifold, any incompress-
ible, @-incompressible, compact surface can be moved by an isotopy to a normal
surface [6]. But in a knot complement with an ideal triangulation, the existence of a
normal surface representing a minimal Seifert surface of the knot is not guaranteed.
The figure-eight knot is a counterexample which does not contain any normal or
almost normal surface representing a minimal Seifert surface of the knot [8].

Many applications of normal surface theory result from interesting surfaces occur-
ring in the collection of fundamental surfaces. This leads to some efficient algorithms
deciding topological properties of given 3-manifolds [7].

In this section we prove the existence of aQ-fundamental surface representing a
non-trivial essential torus in a knot complement of a non-simple knot. This results in
an algorithm to decide if a given knot is a simple knot.
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The following result is due to Burton and Rubinstein [2].

THEOREM 5.1. Given an ideal triangulation= of a non-compact orientable irre-
ducible and@-irreducible3-manifoldM, we can construct an ideal triangulation with
no embedded non-trivial normal or almost normal2-spheres inM.

Moreover, Casson observed the following result which is proven in [1] using an
interesting argument.

THEOREM 5.2. For a non-compact3-manifold admitting a complete hyperbolic
metric of finite volume, given an ideal hyperbolic triangulation, there are no immersed
or embedded normal or almost normal2-spheres or tori, except for peripheral ones
which consist entirely of triangular normal disks.

Let F be a normal surface in a 3-manifoldM and� be the union of allQ-disks
in the induced cell structure ofF . We call a connected component of� a Q-disk
componentof F .

PROPOSITION5.3. Let M be a3-manifold with an ideal triangulation(semi-ideal-
triangulation) with torus cusps and letF be aQ-fundamental surface inM. ThenF
has only oneQ-disk component, that is, the union of allQ-disks ofF is connected.

PROOF. For eachQ-disk component ofF , we can construct a unique normal surface
represented by the finite-tuple corresponding to the component. IfF has more than
one Q-disk component then there is a non-trivial geometric sum of normal surfaces
which results inF modulo trivial normal surfaces.

For the use in the next theorem, we recall thatF +6 = X + Y is in reduced form,
where6 is a (possibly infinite) collection of trivial normal tori, ifX intersects with
Y in a minimal set of intersection curves, that is, we cannot remove any intersection
curves inX ∩ Y by isotopies.

THEOREM 5.4. Let M be a non-compact irreducible and@-irreducible3-manifold
with an ideal triangulation= with torus cusps. Suppose thatF is a closed normal
surface having the least weight or the leastQ-weight among all normal surfaces
isotopic toF andF +6 = X + Y is in reduced form, where6 is a (possibly infinite)
collection of trivial normal tori. IfF is two-sided and incompressible, then bothX
andY are incompressible.

PROOF. Note that normal surfacesX andY intersect in open intervals or in simple
closed curves. IfX ∩ Y contains an open interval, then there is a cusp ofM on which
X + Y = F + 6 has boundary. However, all components ofF + 6 are closed, and
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henceX ∩ Y only contains simple closed curves. The proof is now largely based
on the proofs of Lemma 2.1 and Theorem 2.2 in [5], which the reader may wish to
refer to.

Assume that there is a compressing disk forX. Among all compressing disks, we
choose a diskD such thatD is transverse toY, and such that it has the least number
of components of intersection withY.

Using the fact thatF is incompressible, we have the two following cases. In the
first case, we haveD ∩ Y = ∅, and@D is a boundary slope ofX. But this implies
that D is a compressing disk for a component of@M , which is not possible sinceM
is @-irreducible.

Hence, we are in the second case, whereD ∩ Y is not empty. Note thatD ∩ Y
cannot contain any simple closed curves, and hence consists of finitely many spanning
arcs forD. Let p be an endpoint of a spanning arc ofD ∩ Y. Thenp is in X ∩ Y and
a regular exchange along the curve ofX ∩ Y containingp puts one of the two regions
of D − .D ∩ Y/ associated top into a region, saybad regionassociated top, joined
to the outside ofD aroundp. Following the argument of Jaco-Oertel [5], there is a
componentE of D − .D ∩ Y/ containing at most one bad region.

regular
exchange

D D

X XY Yp

b

b

g

g

bad region

good region

FIGURE 8. Bad region associated top

AssumingE has no bad region, then there is a disk1 in M with boundary either
on a component ofF or on a boundary parallel torusT ⊂ 6. Hence,@1 bounds
a disk on eitherF or T because bothF andT are incompressible. As in [5] (using
the fact that the geometric sum is reduced and the manifold is irreducible), we get a
contradiction to the choice ofD.

Thus, there is a regionE with exactly one bad region at a pointp on a curveC
in X ∩ Y. As in [5], this region yields a disk1, whose boundary consists of an
arcŽ′ on some annulusA′ in M and an arcŽ, which is either on a component of the
closed surfaceF or on some boundary parallel torusT ⊂ 6. If Ž is contained onT ,
the minimality of D implies thatT is at an end ofM where bothX andY have a
non-trivial boundary slope, and thatC cuts an infinite normal annulus off by portions
of @D andC. We can perform an isotopy of@D acrossE which determines an isotopy
of D and reduces the number of arcs inD ∩ Y. But this contradicts our choice ofD.
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Hence,Ž is contained onF . However, in case ofF is of least weight, the argument
of [5] applies now (using the fact thatM is irreducible and thatF is closed) to give
a contradiction to the fact thatF was of minimal weight. Now assume thatF is of
leastQ-weight. We have already introduced the annulusA′ in M with zero weight.
We can observe that the weight-reducing isotopy in [5] across the meridian disk1 of
a solid torusT̂ with the boundary@ T̂ = A∪ A′ for some annulusA in F also reduces
the Q-weight which also gives a contradiction. LetF ′ be the surface (which is not
normal) obtained by an isotopy movingA to A′. We claim that a normal surfaceF ′′

obtained fromF ′ by normalization process is of lessQ-weight thanF . Otherwise,
the annulusA is involved with only triangular disks along one cusp and then follow
the same argument as the previous case thatŽ is on a boundary parallel torusT .

As we arrive at a contradiction in each case, it follows thatX must be incompress-
ible. By the symmetry of the situation, the same applies toY.

By Theorem5.1, we can always construct an ideal triangulation allowing no em-
bedded non-trivial normal 2-spheres for a given arbitrary ideal triangulation of a
non-trivial knot complement inS3. Hence the following theorem gives an algorithm
to decide if a given knot is a simple knot.

THEOREM5.5. Let M be a knot complement of a non-simple knotK in S3 which has
an ideal triangulation= allowing no normal2-spheres. Then there is aQ-fundamental
surface representing a non-trivial essential torus.

PROOF. We can normalize any closed incompressible surface inM by the same
processes as in the case of compact triangulated 3-manifolds. Since the knot is non-
simple, M contains a non-trivial essential torus. LetF be a normal surface having
the leastQ-weight among all normal surfaces representing non-trivial essential tori.
Suppose thatF +6 = X + Y in reduced form, where6 is a collection of trivial tori
andX andY are non-trivial normal surfaces. Since there are no normal 2-spheres and
no normal disks embedded inM , the Euler characteristic of any component ofX andY
is negative unless it is a torus and 0= �.F/ + �.6/ = �.X/ + �.Y/. Thus each
component of bothX andY is a non-trivial torus which is essential by the previous
theorem, and hasQ-weight less thanF which contradicts the fact thatF has the least
Q-weight.

REMARK 5. Algorithm to decide if a given knotK is a simple knot (we may assume
that the knot is not trivial due to an algorithm deciding if a given knot is trivial):

Step 1. Find an ideal triangulation= of the knot complementM = S3 − K with
no normal 2-spheres. We can obtain such a triangulation from an arbitrary ideal
triangulation by collapsing all possible normal 2-spheres by the process given in [2].
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Step 2. Construct allQ-fundamental surfaces inM with respect to= using the
process given in the Section3.

Step 3. If there is a non-trivial essential torus among theQ-fundamental surfaces
constructed in the Step 2,K is a non-simple knot. Otherwise,K is simple.
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