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Abstract

We extend the normal surfa€g-theory to non-compact 3-manifolds with respect to ideal triangulations.

An ideal triangulation of a 3-manifold often has a small number of tetrahedra resulting in a sysgem of
matching equations with a small number of variables. A unique feature of our approach is that a compact
surfaceF with boundary properly embedded in a non-compact 3-manNbldith an ideal triangulation

with torus cusps can be represented by a normal surfakkas follows. A half-open annulus made up

of an infinite number of triangular disks is attached to each boundary compon€ént ©he resulting
surfaceF, when normalized, will contain only a finite number @kdisks and thus correspond to an
admissible solution to the system @fFmatching equations. The correspondence is bijective.

2000Mathematics subject classificatioprimary 57M99; secondary 57M10.
Keywords and phrase8-manifold, normal surface, knot.

1. Introduction

In this paper we develop a normal surface theory that provides an efficient way to
represent spanning surfaces of knots using ideal triangulations of the knot comple-
ments. A normal surface is a properly embedded surface in a compact, triangulatec
3-manifold which intersects each tetrahedron in elementary disks. There are three
quadrilateral and four triangular disk types. There is a one-to-one correspondence
between normal surfaces in a 3-manifold with a fixed triangulation and admissible
solutions to a system of linear equations o¢fvariables, where is the number of
tetrahedra of the triangulation and each variable represents the number of disks o
each elementary disk type. This algebraic representation of normal surfaces was
introduced by Hakend.
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In [11], Tollefson observed that a normal surface without trivial components is
completely determined by its quadrilateral disks alone. Thusadiables are not
needed and only the ¥ariables associated with tlig-disks need be involved. There
are also feweQ-matching equations than in the original approach. In this paper we
extend this approach to apply to ideal triangulations which often have a small number
of tetrahedra.

Let M be a non-compact 3-manifold with a finite ideal triangulation with torus
cusps. We represent compact surfaces with boundaRy by their interiors properly
embedded irM as normal surfaces containing only a finite number of quadrilateral
disks and infinite number of triangular disks. A regular neighbourhood of a boundary
component of such a surface is represented by an infinite annulus consisting of only
triangular disks. In an ideal triangulation of a non-compact 3-manifdldregular
normal surface theory only works for closed surfaces. Bounded surfaces such as
Seifert surfaces can only be represented by using an infinite number of triangles.
Normal surfaceQ-theory only deals with quadrilateral disks to characterize a normal
surface by a finite-tuple of integers. We use tQeheory to study normal surfaces
representing both closed and bounded surfaces in a knot complement with an idea
triangulation.

An ideal triangulation of a non-compact 3-manifold often has a small number of
tetrahedra resulting in an algebraic representation of normal surfaces with a small
number of disk types. This leads to a system@Mmatching equations with a small
number of variables each of which represents the number of diskQedliak type.
Admissible solutions to the system @-matching equations correspond bijectively
to normal surfaces in the 3-manifold. Although we give an algorithm to construct a
normal surface corresponding to a given admissi@solution, one can determine
the surface modulo ‘trivial normal surfaces’ from the quadrilateral disks alone without
attaching triangular disks.

2. Normal surface Q-theory for ideal triangulations

Let M be a non-compact 3-manifold with an ideal triangulatidrwith torus
cusps. Letr be an ideal tetrahedron &f. We can viewr as the quotient of an
abstract tetrahedrorf with no self-intersections under a quotient n@p: 7 — ¢
and with its vertices removed. We define an elementary disktmbe the quotient
of an elementary disk ii under the magm,. Thus we allow identifications along
boundaries of elementary disks in We have exactly seven elementary disk types
in each tetrahedron af, four triangular disk(T-disK) types and threquadrilateral
disk (Q-disK) types, ignoring possible identification along boundaries. Throughout
this paper, we only deal with 3-manifolds decomposed into a finite number of ideal
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tetrahedra. We often omit the term ‘ideal’ to indicate cells in ideal triangulations.
A normal surfaceF is a properly embedded surface M which intersects each
tetrahedron only in elementary disk types. pfoperly embeddedurface in a 3-
manifold M is defined as a surface which is the image of an embedtiing — M
such thatf ~3(aM) = dF and preimages of compact sets are compact. The interior
of any properly embedded surface in a compact 3-manifold is properly embedded in
the interior of the 3-manifold. We say th&trepresentsa compact surface in R"
if there is a proper embeddinfy: G — M such thatf (G) = F. Let F be a normal
surface representing a compact surfé&with boundary. If we look at the behavior
of F in a small regular neighbourhodd of an ideal vertex oy, A= FNU is a
half-open infinite annulus consisting of only-disks and possibly some portions of
T-disks along A (see Figurel). For convenience, we call such an annuluginite
trivial normal annulus

For a compact 3-manifold with a triangulation theweightof a normal surfacé&,
defined to be the number of points in the intersectiofr afith the 1-skeleton of the
triangulation, is given as a useful measureFof But for a non-compact 3-manifold
with an ideal triangulation, it does not make sense measuring a normal séface
representing a surface with boundary with the weight. So we define a new system
of measuringF, called theQ-weightand denoted bytgF, to be the number of
Q-disks of F. Since a geometric sum is only performed between normal surfaces
with compatible quadrilaterals, th@-weight is additive.

local view

FIGURE 1. A representation of a compact surface with boundary

Fix an orderingl?, dy, ..., dJ of all Q-disk types iny. There is a uniquet3tuple
representing theormal Q—coordinatelfQ = (Xq, Xp, ..., Xz) Of F, wherex; denotes
the number ofQ-disks ofd®-type, 1< i < 3t. SinceF is properly embedded, it
follows that each component of a norn@alcoordinate is a non-negative integer. Inthe
next section it will be shown thdt is uniquely determined, up to trivial components,
by the normaIQ-coordinatelfQ. A trivial componenis a normal surface containing
only triangular disks. A closed trivial component M is a link of an ideal vertex
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FIGURE 2. Gluing pattern to form an abstract polyhedron

which is a torus.

For a given 8-tuple (x1, X, ..., X3 ), there are two constraints to be satisfied for
the tuple to be a norma&)-coordinate of a normal surface. The first constraint is that
there is at most ong from a tetrahedron which is non-zero. The second constraint
is that it must satisfy a linear system of equations which represents the matching
criterion of elementary disks along 1-simplices. The structure of a normal surface
around a 1-simplex is completely determined by how the elementary disks along the
1-simplex are glued together in thbstract polyhedroassociated with the 1-simplex.

Let M’ be the compact 3-manifold obtained by removing the interiors of fixed regular
neighbourhoods of ideal vertices ®f The boundary components &’ are trivial
normal tori. We denote a 1-simplex of I by (ab), whereec N oM’ = {a, b},
and calla andb the boundary vertice®f .. Let B, be the union of all tetrahedra
of ¥ containinge, = (ab) as a face. Let be a tetrahedron B, which is the
quotient of an abstract tetrahedrérunder the quotient mag, : ¢ — 7. If g (&)
consists ofn componentgn < 6), then taken copies ofz, each associated with a
componeng, of g !(e). Repeat this for all tetrahedra B,. From this collection
of abstract tetrahedra, form tladstract polyhedrorB, associated with the edgg by
gluing pairwise the faces of these tetrahedra around ané&dgesuch a way that a
natural quotient map : B, — B, with q(&) = e andq|; = ¢, is well-defined (see
Figure2). Denoted, = (ab), wherea andb are points ing such that, (a) = a and
0. (b) = b. If an elementaryT-disk E in By is normal isotopic to & -disk (& x )
such that, ({(a = %)) is aT-disk in a trivial normal torus of M’, we callE ana-type
T-disk We define @-typeT-diskin the same manner. We call a spanning @iia

a 2-simplex oft ana-type arc(respectivelyb-type arg if « is an edge of ama-type
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T-disk (respectivelyo-type T-disk) in the tetrahedrof. For a given normal surface
F intersecting the edge,, a small neighbourhoody of g in By intersectsF in a
collection of pairwise disjoint disks meetirgg. Since the quotient map: B, — B
maps a small neighbourhood & homeomorpically onto a small neighbourhood of
e, the unionD of components ofj~(F N By) which intersecg is a disjoint union
of disks which consist of elementary diskség andq(lﬁ) NU, = FNU. Hence the
gluing method of elementary disks ihalongé dictates how the elementary disks of
F in By are glued together alorgy. The matching criterion of elementary disks in an
abstract polyhedron is described in tQematching equations irlfl]. It is based on
the observation that for a fixed 1-simplex, the numbeQediisks of positive sense is
the same as the number @tdisks of negative sense.

Q»

a-type T-disk

,@>

Q)

b-type T-disk

(The sense oE associated witle) = 1 b

FIGURE 3. The signs of corners of @-disk E around an edge,

We here define theenseof a Q-disk associated with a fixed 1-simplex. LEetbe
a Q-disk in a tetrahedrom ande, a 1-simplex with the positive orientation froato
b so that the positive orientation éf is froma to b. We define the positive rotation
aroundé,, by the right hand rule as shown in FiguBeLet v, be a corner o on the
edgee, and E; the Q-disk in the abstract tetrahedrénin By such thaty, (E)) = E
andq, (0;) = v, wheret, is the corner of; oné.. Define the sigr,; of the corner
u;, relative to the edge,, to be+1 if the positive rotation aroungk carries the face of
%, containing the-type arc ofE; through?, to the face of; containing theb-type arc
of E; (see Figure3). We say that th&-disk E is of thedirection froma to b around
the corner, relative t@ = (ab). The signsy; of v; is —1 if E is of thedirection
from b to a around the corner. For a corner Bfwhich does not intersect the edge
e, = (ab), we define the sign of the corner to be 0 (see FigR)reWe define the
senseg, of E relative to the edge to be the sum of signs of all corners Bf This
definition is an extension of the notion of sense @alisk in [11]. Note that (1) the
sign is independent of the orientation of the edge, (2) if two corners@fdisk on
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opposite edges of the tetrahedron have non-zero sign, then the signs are identical, an
(3) if both endpoints of an edge of @-disk have non-zero sign, then the signs are
opposite. Hence the sign determinesi@eof a Q-disk inside the tetrahedron with
respect to an edge.

By an argument similar to that irnl]], we can get the system dP-matching
equationsf M for ¥ as follows

3
{Zek.ixi =0} , 0<x, 1<i<3t,
i=1 Kk

whereg,; is the sense of @-disk of d3-type relative to the edge.. A non-
negative integral solutio(x, X,, ..., Xs) to the system ofQ-matching equations is
admissiblef it satisfies the first constraint that, for each tetrahedroh, @t most one

x; associated with the tetrahedron is non-zero. Qhprojective solution spacef M

is the projectivised solution space, which is a compact, convex, linear dRfl,iof
the system ofQ-matching equations onto the unit polyhedron which is the solution
space ofy >, x, = 1. A Q-vertex surfacén M is a normal surface whose norn@}
coordinates is projected onto@vertex solutiorin the Q-projective solution space.
A finite spanning set of solutions containing tQevertex solutions can be constructed
by elementary methods$]. We call a solution in the spanning setafundamental
solution These solutions can be obtained from tQerertex solutions as in the case
of regular normal surface theorg][ We call a normal surface corresponding tQa
fundamental solution &-fundamental surfaceSome interesting surfaces are found
in the collection ofQ-fundamental surfaces.

There is a characterization d@-vertex surfaces an@-fundamental surfaces.
A connected two-sided normal surfa¢eis a Q-vertex surface (respectivel@®-
fundamental surface) if and only if whenevérandY are two-sided normal surfaces
such thanF + X = X 4+ Y (respectivelyF + ¥ = X 4 Y) for some integen and
family of trivial surfacesx, then each component &f andY is normal isotopic to
eitherF or a component of.

REMARK 1. The geometric sums of normal surfaces with respect to ideal triangu-
lations are always modulo trivial normal tori. Thus the Euler characteristic formula
for geometric sums is valid for th@-theory with respect to ideal triangulations.

We have observed that the norrr@coordinatelfQ of a normal surfacé- repre-
senting a compact surface is a well-defined finite tuple of non-negative integers which
is an admissible solution to the system @fmatching equations. The following
theorem gives the converse argument.
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THEOREMZ2.1. Let M be an orientablépossibly non-compagrB-manifold with an
ideal triangulation with torus cusps. 1% is a non-zero admissible solution to the
system of)-matching equations then there exists a unique normal suFgg@®ssible
non-compadgtin M with no trivial components such théb =7

Thus there is a one-to-one correspondence between the set of all normal surface
and the set of all admissible solutions to the systen@ahatching equations for a
given non-compact 3-manifoll with an ideal triangulation with torus cusps. It also
follows that allQ-fundamental surfaces span the set of all normal surfachk in

3. The proof of Theorem2.1

Let Z be a non-zero admissible solution to the systenQafatching equations.
To construct a normal surfade with IEQ = 7, we first glue together a collection of
Q-disks corresponding tbalong corners and then fill out the holes obtained from the
gluing, by attachingr -disk components along the curves made up of unglued edges
of the Q-disks.

We first describe th&-corner gluing rulewhich is a gluing method o-disks
along corners.

Let M” be a compact 3-manifold obtained frdvhby removing a collection of open
regular neighbourhoods of ideal verticesXofThe boundary oM’ is a collection of
tori each with a pseudo-triangulation inducedtiyChoose a collectiof of Q-disks
in M’ corresponding t@. We glue the corners of th@-disks in$2 together by applying
the Q-corner gluing rule 11] to the abstract polyhedroB, associated with each 1-
simplexeg, = (ab). If there is a normal surfacé meetinge,, then each component
of G N By is a diskD; which consists of elementary disks glued along the ezige
Since the elementary disks Bf are completely determined by the arcsyfn 9 By,
D; is fully determined by the simple closed curie N aék. So we first construct a
collection of pairwise disjoint simple closed curvesiiB, which are obtained from
edges ofQ-disks ind B, by addinga-type arcs and-type arcs ind B, or isotoping
edges ofQ-disks ind B, (see Figurel). Note that the collection of closed curves can
be constructed because the matchlng equatian pfovides as many positive slopes
as there are negative slopesi,. Since the quotient map: B, — B, maps a smalll
neighbourhood o& homeomorphically onto a small neighbourhoodgfthe gluing
rule associated with the ed@ein By dictates how the corners @q in By are glued
together. TwoQ-disks glued along both boundary points of an edge are glued along
this edge. Thus the gluing rule is well-defined globally.

Let F’ be the union of allQ-disks in2 after gluing corners of)-disks together.
We designate a collection of closed curves from the unglued edges @}-tfisks
in F’ to which we will attach embedded trivial components. When we perform the
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glue these pair of two edges

glue

glue 3 By flattened out on the plane
b

FIGURE 4. Q-corner gluing rule alongx = (ab)

Q-corner gluing rule, the construction not only gives the gluing of the corners of
Q-disks but also shows how the desired normal surface extends around each glue
corner of theQ-disks. We can complete a digk, possibly with some identification
along the boundary, which is the local extensionFdfaround a glued corner of
Q-disks by attaching -disks along unglued edges Qfdisks around. We can take
a pair of edges of)-disks which are glued at the correion g, with opposite signs
and joined with eithea-type T-disks orb-type T-disks (see Figur®). Denote such
a pair by(7;, &) and the image under the quotient map(py. &). Let {(y1, §;)} be
the collection of all such unordered pairs. We define an equivalence relation on the
collection as follows and several other occurren¢gs;s,) and(ym, ém) are equivalent
if there is a chain(y4,, dk,)s (ks Sks)s - - - » (V> k) such that(y,, 8x,) = (Vn, 6n),
(V> 8) = (Ym, 8m) @anddy, = y,, fori =1,2,...,1 — 1. Each equivalence class
defined on the collection is a closed chain determining a closed curve made up of
edges ofQ-disks. LetI" be the collection of such closed curves. We attach trivial
normal surfaces along each curvdbfTo facilitate this and to obtain a trivial surface
to attach along a curve af, we will project the curve onto a torus boundaryMf.

Let C be a closed curve df determined by an equivalence class

{(y1, 61), (72, 82), - -s (W, S0},

where§_, = y fori = 2,3,...,nands§, = y1. Ifn=1,y, = § itself is a
closed curve ofl" and normal isotopic to a closed 1-simplex in a torus boundary.
We project the curve onto the 1-simplex. Assume- 1. For each paify, &),
there is a corresponding pdi#., §) in the abstract polyhedro associated with the
edgee = (ab) such thatx, = y; N & is on the edge and% = y N 5 is on the
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a pair of edges oQ-disks equivalent classes of pairs

FIGURE 5. Classification of edges @-disks

edgeé, whereq(€) = ¢ andq (%) = x for the quotient magm; defined onB,.
Both 7 and$; are eithera;-type arcs ombi-type arcs. There is a natural projection
mapp, : B — D, (respectiveld, ) such tha o pi(7) andg o pi(5,) are arcs on
a torus boundary oM’ andq; o pi (X)) = & (respectivelyb), wherey; and 5 are
a-type (respectivel\n -type) arcs,qi(lﬁa) = D, (respectivelyqi(lﬁbi) = Dy) and
D, U Dy = ByN daM’. LetC* be the union of images of all such pais, Si) under
the mapg o pi. C* is a well-defined closed curve in a torus bound@nof M’. We
attach a trivial component alorg according to the following three cases.

Case 1. C*is atrivial simple closed curve im,.

In this caseC* separate§,, into two components, a didR and a torus with a hole
To. Let E, andE; be theQ-disks in B, alongy; ands;, whose images under the
quotient magy; are theQ-disks of F’ alongy;, ands; respectively. Then the image of
éyl under the mag; o p; must be on the same side @f as the image of;. This
is true for alli. Thus the union of images @-disks along(y;, &) is in eitherD or
To. We attach eitheb or Ty, which is on the opposite side, alofgby isotoping its
boundary along 2-simplices containing the arcs of the equivalence clégs &9.

Case 2. C* is an essential simple closed curvelin
In this case, we will attach a half infinite normal annulus al@gs follows.
Take an infinite sequence of pairwise disjoint tpiT, x 1/n | n € Z, } in the
regular neighbourhood of the ideal vertevounded byT, such thafl, x 1 =T, and
lim,_. T, x 1/n = v. We can define a projection map from each tofus< 1/n
onto T, in the obvious way. There is a simple closed cu€gin T, x 1/n, for
n=23,...,whoseimage by the projection map is the simple closed cbive T,.
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FIGURE 6. Construction of an infinite normal annulus

LetC; =C*inT, x 1 =T,. Cut each torug, x 1/n along the curveC, to obtain
two copies ofC,, sayC/ andC/ (see Figures). To construct a half infinite normal
annulus, we join these curves in one of the following ways.

The first way is to joinC/ andC/_, for all n > 1. We isotope each normal arc
of C/, to the parallel normal arc of;_, along the 2-simplex ofs containing these
two arcs. The isotopy preserves the elementary disk types of the disks isotoped along
the curves and does not introduce any intersectio®@afisks in F’. This process
produces the desired infinite trivial normal annulswith the boundaryC; which
is disjoint fromF’. We can get the second infinite trivial normal annuljswith the
boundaryC;, by joiningC/ to C/_, for all n > 1 in the same manner.

We attach eitheA; or A, alongC depending on the images of tRedisks alongC
under the mapg; o p; using the same technique as used in Case 1. Note that the slope
of the resulting normal surface is the slopedst

Case 3. C*is nota simple closed curve .

In this case, we can modif@* to a simple closed curve by attaching subtriangles
along arcs ofZ. (For a detailed description, se4.) Then we follow the procedure
in either Case 1 or Case 2 to attach a trivial component abng

Repeat this construction for all curves Bf We may have intersections among
the trivial surfaces, disks or infinite annuli, which we have attached along each curve
of I'. We may assume that they intersect transversely, that is, the elementary disks
along the intersection curves intersect transversely in abstract tetrahedra. We cal
perform a regular exchange along all such intersection curves. Discard any trivial
components resulting from the regular exchange. The resulting surface is the desirec
normal surfacéd= embedded irM.
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The uniqueness df follows from the construction; th®-corner gluing rule, the
way of choosing the collectioll and the way of attaching trivial components along
the curves .

REMARK 2. We obtained an algorithm, from the above proof, to construct a normal
surface corresponding to a given admissible solution to the syste@rotching
equations of an orientable 3-manifold with an ideal triangulation with torus cusps.
Note that these normal surfaces can be completely specified by considering only the
Q-disks glued at corners without attaching any triangular disks. A finite set of normal
surfaces containing all th@-fundamental surfaces can be constructed. One only
needs to take the set of all normal surfaces whQseeight is less than or equal
to the sum of theQ-weights of all theQ-vertex surfaces. (This was observed by
Jaco in B].) We can obtain the remaining normal surfaces by geometric sums of the
Q-fundamental surfaces.

4. Some extensions of th&-theory

A semi-ideal-triangulatioris a pseudo-triangulation allowing both ideal vertices
and real vertices. We can extend the normal surf@etheory developed for ideal
triangulations to this cell structure. The only additional feature is the construction
of the desired normal surface around real vertices. The idea for the construction of
a trivial surface to attach along a closed curve made up of edg€¥-ditks and
projected onto a 2-sphere neighbourhood of a real vertex is exactly the same as the
case of an ideal vertex in the proof of Theor2rhbut all the trivial surfaces are disks.

THEOREM4.1. Let M be an orientable3-manifold with a semi-ideal-triangulation
with torus cusps. I is a non-zero admissible solution to the systen@eahatching
equations then there exists a unique normal surfa@e M with no trivial components
such thatFo = 2.

We now extend th&)-theory toalmost normal surfacesA properly embedded
surfaceF in a 3-manifold with an ideal triangulation is aimost normal surfacé F
intersects each tetrahedron in a collection of elementary disksaisk types and
Q-disk types and, in one of the tetrahedra, precisely one disk with boundary curve
consisting of eight normal arcs, which is calledaagonal disk O-disk) and possibly
someT -disks. We add three more elementary disk type®-afisk to obtain this more
general notion of surfaces (see Fig)e This definition follows [LQ].

An octagonal diskE has two corners in each of two opposite 1-simplices such that
the both normal arcs joined at each corner are of the same type relative to the edge
where the corner is. In this case, we define the sign of the corner to be 0. For the



316 Ensil Kang [12]

e

FIGURE 7. 8-sided disk types

other four corners oE, we apply the same method as the case Qfdisk to define

the signs of corners (see Figufe We define the sensg of E relative toe, to be the

sum of all the signs of the corners &f which meet the edge. Letd;, d,, ..., ds
andds 1, dx 1o, . . ., dg be a fixed order of quadrilateral disk types and octagonal disk
types, respectively, of a 3-manifold with an ideal triangulation havingtetrahedra.

As in the case of normal surfaces we define norQatoordinates of Gtuples for
almost normal surfaces whose positive entries represent at most one quadrilateral o
octagonal disk type from each tetrahedron. The following is the systé&paméatching
equations for almost normal surfacesihf

6t
{ng,ixi :0} ., 0<x, 1<i<ét,
i=1 K

wheregy; is the sense of a disk of typk relative to a 1-simplexy. An admissible
solution to the system is a non-negative integral solu@iqnx,, ...Xe) satisfying the
condition, that for each tetrahedrén at most one; associated with the tetrahedron

is non-zero, and for exactly one tetrahedron, exactly one of the three components
associated withD-disk types in the tetrahedron is non-zero. We can construct an
almost normal surface embeddedNhcorresponding to a given admissible solution

to the system of)-matching equations. The idea of the construction is similar to the
proof of Theoren®.1

THEOREM 4.2. Let M be a non-compact orientabld-manifold with an ideal
triangulation 3 with torus cusps. I£ is a non-zero admissible solution to the ex-
tended system d@P-matching equations for almost normal surfacegMnthen there
exists a unique almost normal surfaég(possibly non-compagin M with no trivial
components such th&, = 2.

PrOOF The only additional case from the proof of Theoréni is the gluing of
corners on the edges meeting octagonal disks.

Let O be the octagonal disk in a collectiéhof elementary disks corresponding to
the solutionz. When we glue the corners @f-disks on an edge;, the gluing pattern
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is described in terms of matching edges of @welisks aroundy and does not depend

on the whole structure of the disks but only on the arc types of edges f-tiisks.

This makes it possible to extend the gluing rule to the case of almost normal surfaces
Let B, be the abstract polyhedron associated with the eggadé, the center edge

of B,. Two spanning edges intersecting at a corneiatetermine an elementary disk

type of eitherT -disk or Q-disk. For a cornex of the octagonal diskO on &, = (aby),

we replace the dislkO with an elementary disk of eith&r-disk type orQ-disk type,

which conforms with the arcs @ cornered ak. If x is of sign 0, we replac® with

a T-disk and otherwise, we replac2 with a Q-disk which has the same sign at the

corner. We now perform the gluing rule applied to the case of normal surfaces. When

we construct a collection of simple closed curves Ifiu, in a stack of zero slopes, the

one coming from arD-disk has to be closest to the equator. O

REMARK 3. The theorem also holds for a semi-ideal-triangulation with torus cusps
of a 3-manifold.

ReEMARK 4. If we allow an almost normal surface to contain a single exceptional
piece which is a pair of normal disks with an unknotted tube as well as an octagon,
the Q-theory applies without any constraints. Since both@aeorner gluing and the
attaching ofT -disks depends only on the arc types, we can replace, as we glue the
corners of disks, each tube by normal disks corresponding to the boundary normal
curves of the tube.

5. Some results of theQ-theory

A knot complement ir§® is always given an ideal triangulation with a torus cusp
by the SnapPea software packadé&]] We apply the normal surfac®-theory for
ideal triangulations to knot complements.

In a compact, irreducibley-irreducible, triangulated 3-manifold, any incompress-
ible, 3-incompressible, compact surface can be moved by an isotopy to a normal
surface f]. Butin a knot complement with an ideal triangulation, the existence of a
normal surface representing a minimal Seifert surface of the knot is not guaranteed.
The figure-eight knot is a counterexample which does not contain any normal or
almost normal surface representing a minimal Seifert surface of the &not [

Many applications of normal surface theory result from interesting surfaces occur-
ring in the collection of fundamental surfaces. This leads to some efficient algorithms
deciding topological properties of given 3-manifold§.[

In this section we prove the existence oQafundamental surface representing a
non-trivial essential torus in a knot complement of a non-simple knot. This results in
an algorithm to decide if a given knot is a simple knot.
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The following result is due to Burton and Rubinstei. [

THEOREM 5.1. Given an ideal triangulatiory of a non-compact orientable irre-
ducible andd-irreducible 3-manifold M, we can construct an ideal triangulation with
no embedded non-trivial normal or almost norn2aspheres inM.

Moreover, Casson observed the following result which is proverdliuging an
interesting argument.

THEOREM 5.2. For a non-compacB-manifold admitting a complete hyperbolic
metric of finite volume, given an ideal hyperbolic triangulation, there are no immersed
or embedded normal or almost norniakpheres or tori, except for peripheral ones
which consist entirely of triangular normal disks.

Let F be a normal surface in a 3-manifod and 2 be the union of allQ-disks
in the induced cell structure df. We call a connected component @Qfa Q-disk
componendf F.

ProOPOSITIONS.3. Let M be a3-manifold with an ideal triangulatiorisemi-ideal-
triangulation) with torus cusps and lgt be aQ-fundamental surface iM. ThenF
has only oneQ-disk component, that is, the union of &kdisks ofF is connected.

PrOOF. For eachQ-disk component o, we can construct a unique normal surface
represented by the finite-tuple corresponding to the componeift.hHs more than
one Q-disk component then there is a non-trivial geometric sum of normal surfaces
which results inF modulo trivial normal surfaces. O

For the use in the next theorem, we recall that X = X 4+ Y is inreduced form
whereX is a (possibly infinite) collection of trivial normal tori, X intersects with
Y in a minimal set of intersection curves, that is, we cannot remove any intersection
curves inX N'Y by isotopies.

THEOREM5.4. Let M be a non-compact irreducible artdirreducible 3-manifold
with an ideal triangulationy with torus cusps. Suppose thatis a closed normal
surface having the least weight or the lea@tweight among all normal surfaces
isotopic toF andF + X = X + Y is in reduced form, wher& is a(possibly infinitg
collection of trivial normal tori. IfF is two-sided and incompressible, then bath
andY are incompressible.

PrROOF. Note that normal surfaces andY intersect in open intervals or in simple
closed curves. IX N'Y contains an open interval, then there is a cusmain which
X +Y = F + T has boundary. However, all components-of- ¥ are closed, and



[15] Normal surfaces in non-compact 3-manifolds 319

henceX N'Y only contains simple closed curves. The proof is now largely based
on the proofs of Lemma 2.1 and Theorem 2.25h which the reader may wish to
refer to.

Assume that there is a compressing diskXorAmong all compressing disks, we
choose a dislD such thatD is transverse t&, and such that it has the least number
of components of intersection with.

Using the fact thafF is incompressible, we have the two following cases. In the
first case, we hav® N'Y = ¢, andaD is a boundary slope oK. But this implies
that D is a compressing disk for a componentadfl, which is not possible sinckl
is d-irreducible.

Hence, we are in the second case, where Y is not empty. Note thaD N'Y
cannot contain any simple closed curves, and hence consists of finitely many spanning
arcs forD. Let p be an endpoint of a spanning arc@f Y. Thenpisin XNY and
a regular exchange along the curveXofi Y containingp puts one of the two regions
of D — (D NY) associated t@ into a region, sapad regionassociated t@, joined
to the outside oD aroundp. Following the argument of Jaco-Oertél,[there is a
component of D — (D NY) containing at most one bad region.

Y X4 bad region h¢ QJ

regular D
exchange

good region
FIGURE 8. Bad region associated o

AssumingE has no bad region, then there is a diskn M with boundary either
on a component oF or on a boundary parallel torué ¢ X. Hence, 0 A bounds
a disk on either or T because botlr andT are incompressible. As irb] (using
the fact that the geometric sum is reduced and the manifold is irreducible), we get a
contradiction to the choice db.

Thus, there is a regiok with exactly one bad region at a poipton a curveC
in XNY. Asin [5], this region yields a diskA, whose boundary consists of an
arcé’ on some annulug\' in M and an ar@, which is either on a component of the
closed surfacé- or on some boundary parallel torlisc . If § is contained orT,
the minimality of D implies thatT is at an end oM where bothX andY have a
non-trivial boundary slope, and th@tcuts an infinite normal annulus off by portions
of 9D andC. We can perform an isotopy 6D acrossE which determines an isotopy
of D and reduces the number of arcsDm Y. But this contradicts our choice @f.
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Hence,s is contained orf-. However, in case oF is of least weight, the argument
of [5] applies now (using the fact thédl is irreducible and thaF is closed) to give
a contradiction to the fact tha was of minimal weight. Now assume thitis of
leastQ-weight. We have already introduced the annufisn M with zero weight.
We can observe that the weight-reducing isotopysirelcross the meridian disk of
a solid torusT with the boundary T = AU A’ for some annulud\ in F also reduces
the Q-weight which also gives a contradiction. LEt be the surface (which is not
normal) obtained by an isotopy movirigto A'. We claim that a normal surfade”
obtained fromF’ by normalization process is of le§¥weight thanF. Otherwise,
the annulusgA is involved with only triangular disks along one cusp and then follow
the same argument as the previous casedtisabn a boundary parallel torus.

As we arrive at a contradiction in each case, it follows thahust be incompress-
ible. By the symmetry of the situation, the same appli€g.to O

By Theoremb5.1, we can always construct an ideal triangulation allowing no em-
bedded non-trivial normal 2-spheres for a given arbitrary ideal triangulation of a
non-trivial knot complement ir8°. Hence the following theorem gives an algorithm
to decide if a given knot is a simple knot.

THEOREM5.5. LetM be a knot complement of a non-simple kikdh S* which has
anideal triangulationy allowing no normaPR-spheres. Then there iS@g-fundamental
surface representing a non-trivial essential torus.

PrROOF. We can normalize any closed incompressible surfackliby the same
processes as in the case of compact triangulated 3-manifolds. Since the knot is non
simple, M contains a non-trivial essential torus. Letbe a normal surface having
the leastQ-weight among all normal surfaces representing non-trivial essential tori.
Suppose thaf + X = X 4+ Y in reduced form, wher& is a collection of trivial tori
andX andY are non-trivial normal surfaces. Since there are no normal 2-spheres and
no normal disks embeddedM, the Euler characteristic of any componenkadindY
is negative unless it is a torus and=D x (F) + x(2) = x(X) 4+ x(Y). Thus each
component of botlX andY is a non-trivial torus which is essential by the previous
theorem, and ha®-weight less tharr which contradicts the fact th& has the least
Q-weight. O

REMARK 5. Algorithm to decide if a given kndf is a simple knot (we may assume
that the knot is not trivial due to an algorithm deciding if a given knot is trivial):

Step 1. Find an ideal triangulatiah of the knot complemenil = S* — K with
no normal 2-spheres. We can obtain such a triangulation from an arbitrary ideal
triangulation by collapsing all possible normal 2-spheres by the process givan in [
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Step 2. Construct alQ-fundamental surfaces iM with respect to¥ using the
process given in the Sectidn

Step 3. If there is a non-trivial essential torus among@hiindamental surfaces
constructed in the Step &, is a non-simple knot. Otherwis; is simple.
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