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Abstract

We develop a notion of a-product on a general abelian group, establish a Weyl calculus for operators
on the group and connect these with the representation theory of an associated Heisenberg group. Thi
can all be viewed as a generalization of the familiar theonf®oA symplectic group is introduced and

a connection with the classical Cayley transform is established. Our main application is to finite groups,
where consideration of the symbol calculus for the cyclic groups provides an interesting alternative to the
usual matrix form for linear transformations. This leads to a new basis(forahd a decomposition of

this Lie algebra into a sum of Cartan subalgebras.

2000Mathematics subject classificatioprimary 44A45 17B05 11F27.

1. Introduction

In this paper we show that a certain circle of ideas related to harmonic analyRis on
has a natural generalization to any locally compact abelian group satisfying a certain
parity requirement. The topics with which we are concerned are:

(1) the Weyl calculus for pseudo-differential operatorsRofsee for example Hor-
mander §));
(2) the Moyal product, ok-product, for functions om*R (see Bayeret al. [2],
Moyal [9]); and
(3) the convolution structure on the Heisenberg group.

The close connection between these subjects has been described in@1ajye [
Grossman, Loupias and Steifi,[Folland [3] and Lion and Vergned]. We wish here
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to point out that these three theories can be built around any locally compact abelian
group subject to a certain parity condition. This parity condition is satisfie® by

but not by the circle group, which is an explanation for why there is no good symbol
calculus for the latter. More generally, the crucial condition is that multiplication by 2
ought to be an automorphism of the group. For a finite abelian group, this simply
requires that the order of the group be odd. The significance of this factor 2 was
already mentioned in Howe] 7]. For quite another approach using Kac algebras,
see Aldrovandi and Saegéi]

To avoid technicalities, we restrict our attention to the casé& af finite abelian
group; since our formulae hold in general however, we have used integrals instead of
sums throughout.

We begin by considering the grop = G x G (following Weil [1Q]) and its
unique Haar measure. We show there is a canonical algebra structure on the space «
functions onG which is given by an integral formula similar to one which may be
used to define the Moyal product ariR.

Furthermore, if|G| = n is odd (which we henceforth assume) then there is a
canonical identification of such functions as symbols of operator€ @ so, that
this algebra structure corresponds to operator multiplication.

This shows that abstractig(G) is isomorphic toM (n, C). Subgroups of5 are
shown to naturally lead to subalgebras\dtn, C).

The above algebra structure is related to the representation theory of an associate
Heisenberg group which we define. We study the associated oscillator representatior
of the symplectic group which arises as ‘quadratic’ symmetrie€ @) and show
how the familiar Cayley transform arises in a natural way when we derive formulae
for this representation. We are here combining well known ideas from the special case
G = R (as found, say, in Howe[ or Lion and Vergne§]) with the general approach
of Weil [10].

It is perhaps useful to point out the direction of the applications we have in mind.
The idea of representing a linear transformatiorRéfby a matrix with respect to an
ordered basis permeates much of modern mathematics. This is simply one convenien
way of encodingn? bits of information and corresponds to viewing the matrix as
a function onZ, x Z,. However in infinite dimensional functional analysis it is
occasionally useful to encode an operator (say,Lé(R)) by its symbol. In the
finite dimensional case, this corresponds to representing a linear transformation by &
function onz, x Z,. This is an entirely equivalent formulation—strictly speaking no
information is either lost or gained. There will be situations in which such a symbol
representation of an operator poses distinct advantages to the matrix representation.

As an application therefore we consider the cyclic group and give an associated
symbol calculus fon by n matrices, culminating in a new decomposition of the Lie
algebra 9In) into a sum of Cartan subalgebras.
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2. Notation and preliminaries

For any finite setS, denote the space of complex-valued functionssdsy C(S).
If Shas measurds, introduce the inner produ¢t, -) onC(S)

(ft= [ 1©TEds Vi fh.eCO)
S
and letés € C(S) be the function such that
/Ss(s’)f(s“)dﬁ = f(s), VfeC(S.
S

If S, S aresetsand : S — S amap, lea” = aoo foralla e C(S). We let
Perm(S) denote the group of permutations of the Set

Now let G be a finite abelian group withG| = n and with typical elemenk,
operation addition and identity O. L& be the dual group with typical elemeMt
and denote the pairing betwegne G andY ¢ G by (Y, x). Letdx denote a Haar
measure 016G (unique up to a constant).

The Fourier transfornt* : C(G) — C(@) is given by

fA(Y)=/ Y, x)f(x)dx, Vf e C(G).
G

Normalize Haar measu@Y on G so that the inversé of the Fourier transform is
given by

hY(x) = /;(Y, x)h(Y)dY, Vhe C(G).

Then both the Fourier transform and its inverse are unitary operatorsx Eo6,
let X denote the element & (G) given byx(Y) (Y, X). The mapx — X provides
us with a natural identification d& andG. For a general locally compact abelian
group, there is of course no isomorphism betw&eandG but whenG is finite there
is, although it is not unique. This follows from the basic structure theorem that states
that any finite abelian group is isomorphic to a direct product of cyclic groups along
with the obvious fact that the dual of the cyclic grogpis itself isomorphic tZ,.

Let G = G x G with typical elementz = (x, Y) and Haar measuréz = dxdY.
Note that this measure is canonical; it is independent of the original choite. dh
fac:t,f(§ dz = |G| = n. Furthermore we find that with these normalizatiép$z) is
the function ofz that is zero unless = z,, in which case it i$G| = n. From this also
follows the useful formula

/;(Z, 71)dz= 6o(z1)
g
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which we will use throughout.@ also has the canonical functiaix, Y) = (Y, x).
Now (G)~~ G x G with typical elemen€Z = (Y, x) and Haar measuxY dx Define
7 : (G — Gbyz(Y,X) = (X, —Y). Thent is a canonical isomorphism frogG)™
to G.

Forz = (x,Y) € G,i = 1,2, define(z, z) = (Y1, %) (Ya, X1). Fork > 2 and

z=0.Y) eG,i=1../kdefine,....za) = (z,2) - (Z1 2){Z z).
It is evident that for alk > 2, (21, 2, ..., z) = (%, ..., 2, z) and fork > 2 the
expressionz, ..., Z) is invariant under cyclic permutations of thés.

Forz e G, letz € C(G) be defined by(z) = (z, Z) forall Z € G.
3. The=-product

We will be interested in a particular algebra structure canonically defin€d Gi.
Fora;, a, € C(G), definea; x a, € C(G) by

a *xap(z) = /N /N (71, . )&y () (z) Az, A2, V25 € G.
GJG

THEOREM3.1. (C(G), ) is an associative algebra with identity the constant func-
tion 1.

PROOF. Letay, &, a; € C(G). Then for allz, € G,

(a1 * ap) * ag(z4) = /N s / (21, 2, 2)(Z, 75, Zo)ay (Z1)@x(Z)a3(Z3) Az dZ,

G G
while
ay * (8 * ag)(Zy) =/N-~-/N<zl, Z, 2) (2, 73, Z)aw(Z) A (Z)a3(z) dzadzdzdz
G G

Thus associativity of is equivalent to the validity for alky, z, z3, 2, € G of the
equation

/~<zl, 2, 2)(Z, zs, z4>dZ=fN<zl, Z,2)(2, 23, 2)dz

G G
Now

f~<zl, 2,2)(2,23, 2) dz = /(zl, )2z, 24)(2,2s — 2+ 23 — 74) Az
G

g
=0,(21 — B+ ) (21, o, Zs)

= /<Z4, 21)(2,2)(2. 21 — Z, + Z3 — Zs) dz

G

= /;(Zl, Z, Z4> (ZZa 23, Z) dZ

G
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which proves associativity 6f.
Fora e C(G) andz € G,

ax1l(z) = /N/JZL 2, )a(z)dz dz
GJG
= /N/Jsz z3— 71)(z, z)a(z1) dz dz
GJG

= /Nao(zs — 71)(z3, z1)a(z1) dz = a(z).

G
Similarly 1xa = aforalla € C(G).

The computation in the above theorem also shows the following.

PROPOSITION3.2. FOr 21, 25, 2 € G, 8,, % 8;, * 85, = (21, 2o, 23)5, Wherez, =

21— 2+ 2.
LEMMA 3.3. Foray, a, € C(G), ay * a; = &, * .
PROOF. Forz; € G,
b * a1(z3) = /5/5<Zl’ 2, BYax(z1)a1(2) dz dz
= /G /G (22, z1, YA (z1)ax(2) 2 d 2

= /~ /~ (71, 2, YA (Z) A (2) Az dz = & * & (Z).
GJG

LEMMA 3.4.If g € C(G) anda (x,Y) =a(X),i =1, 2thena; xa, = aya,. The

same holds i& (X, Y) = a(Y),i =1, 2.

PROOF. Suppose thaa (X, Y) = a;(X). Then forz; = (Xs, Ys) € G,

a * (L) = / /A/ /;(Yl, Xo — X3) (Y2, X3 — X1) (Y3, X1 — X2)
GJGJGJG
X al(X]_)az(Xz) le dX]_de dX2

= / / So(X2 — X3)80(Xs — X1) (Y3, X1 — Xp)&u (X1) @ (X2)d X, d %,
GJG

= a1(X3)Ax(Xa).

PROPOSITION3.5. For z;, z € G, 2, 2, = (2, 21)(z1 + 2) .

327
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PrROOE
% % 25(2) = / / (2. 2, 77, Z) (2, Z) dZ,d7,
GJG

- / 502 — 2 — 7)(Z). 222, 23) 0
G
= (2, ), 4+ ) = (, )z + 1) (B). O
COROLLARY 3.6. For z € G anda € C(G),

(1) zxa@) =22)aZ + 2);
(2) ax2(z)=2Z)a(z —z) forall Z € G.

PrROOF. Proposition3.5shows the formulae hold when= 2, for z, € G and thus
generally sincgz|z, € G} spanC(G). O

Proposition3.5 provides us with a ready supply of subalgebras®(G), ), for
if H is any subgroup o6 it follows that the span ofz | z € H} is a subalgebra
of C(G).

PROPOSITION3.7. For a;, a, € C(G), (a1, @) = fé a; xay(2)dz
PrROOF.
/Nal*az(Z)dz:/N/N/jzl, 2)(2, 2)(Z, )&y (Z1)@x(2) dzdzdz
G GJGJG
= /: /;50(21 — 2)(z1, L)ay(z)a() dz dz
GJG

= /~ a(z)ax(z) dz = (a4, ay). O

G

From Propositior8.7 and Lemma3.3 one easily obtains the following.

PROPOSITION3.8. For a;, a, as € C(G),
(1) [zaxa(ddz= [zaxa(2)dz
(2) (aq, @y xag) = (ay * as, A);

(3) (aq*a, ag) = (A, & * ag).

There are a number of other algebra structureﬁ:oﬁ) that can be derived from
thex-product. Suppose for example tlwats a permutation 06. Fora;, a, € C(G)
defineay x, a, € C(G) by a; *, a, = (& xag)° . Thenforallz; € G,

A ¥, Ap(Z3) = /N /N (0(z), 0(2), 0(Z))a(z1)a(2) dz dz,
GJG
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and the algebra structuee, is isomorphic tox. In particular ifk € Z andk and
|G| = n are relatively prime, then the ma{(x, Y)) = (kx, Y) is a permutation o6
and we have

A *, A(Z3) = /N /~<Zl, 2, Z3)a (21)a(22) dz, d 2.
gJa

In this case we will writex, as*,. Thenk plays the role that Planck’s constdnt
plays in the theory of the-product forR. It is easily seen that the constant function 1
is the identity for alk, and that forz;, z, € G, Proposition3.5becomes

2% = (2, z/K)(z + )" = (/K 21)(zs + ),

wherez — z/k is the inverse map ta — kz The case&k = 2 will be of special
importance for what follows.

4. The symbol calculus

Define a locally compact abelian gro@ to be odd if the mapx — 2x is an
automorphism of5. Then for exampleR is odd while the unit circleS' is not. A
finite abelian grougs is odd if and only if|G| = nis odd. Throughout this section
we will assume that the finite abelian groGpis odd, so thak/2 is well-defined for
allx € G.

Fora € C(G), definew? : C(G) — C(G) by

(4.1) Waf(X) = /A/(Y/, X' —x)a((x +x)/2,Y) f(x)dx dY’
GJG

forall f € C(G) andx € G. This is essentially the same formula as use® ito
define an operator from a ‘Weyl’ symbol. The following facts are immediate.

LEmMMA 4.1. (1) If a(x,Y) = a(x), thenW? is multiplication bya(x).
(2) If a(x,Y) = a(Y) thenW? is multiplication bya(Y) on the Fourier transform
side.
(3) If a= 1thenW?is the identity.

PROPOSITION4.2. For a € C(G) the adjoint ofW? is WA,

PROOF. Leta € C(G) and f;, f, € C(G). Then

(Waf,, f,) = / /A/(Y’, X — x)a((x +x)/2, Y’) f1(X) fo(x) dx' dY dx
GJGJG

Zf/A/ fL(X) (Y, x = x)a((x +x)/2, Y') f2(x) dx dY dX
GJGJG
= (fy, W2fy). 0
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If a € C(G), thena™ € C(G x G) so that reversing the roles G andG in (4.1)
we may regardV® as an operator fror@(G) to C(G).

1

PROPOSITION4.3. Fora € C(G) leth = a*
(Waf) = WP~

€ C((G)). Then for all f € C(G),

PrROOF
(W3 ) (Y) = /G/G/GWW X' —x)a((x +x)/2,Y') f(x)dx dY dx
= fefémma(x/z, YY) (=2Y' —=Y)dY dx.
ReplaceY’ with (Y’ —Y)/2 to get
(W3 ) (Y) = /G /@ Y +Y)/2,x)ax/2, (Y —Y)/2) £ (Y)dY dx.
Finally replacex with 2x andY’ with —Y’ to get
(W3 ) (Y) = / [(Y/ =Y, x)a(x, —(Y' +Y)/2) f(Y)dY dx
= vij(?)(v). O
PROPOSITION4.4. FOr z = (Xo, Yo) € G and f € C(G),
WZE(X) = (Yo, Xo/2) (Yo, X) f (X + %) VX € G.
PROOF.

WZF(x) = /A/(Y/, X = X){(Yo, X+ X)/2)(Y’", Xo) f (X)) dX dY’
GJG

= / So(X" — X — Xo) (Yo, X + x)/2) f (X') dX
G
== (YO’ X) (YOa X0/2> f (X + XO)- Ol

We will be interested in recoverirye C(G) from a knowledge ofv2. ForY e G
andx € G,

Wy oo = [ [ (v = xia(oce+ x0/2.Y) (Yo x) dx dY
GJG
Z/A/(Y/,X/—Zx)a(x//z, Y)Y, x' —x)dx dY’
GJG

= (Y, x)[/(Y/,Zx/—Zx)(Y, 2xYax', Y)dx dY'.
GJG



[9] Weyl quantization and a symbol calculus for abelian groups 331

Then if we defines, € C(G) by ca(2) = ca(X, Y) = WAY(X) then

Ca(2) = @ﬁ(z/, —2z)(¢*a)(2) dZ.
G
Taking the Fourier transform gives
fa(z) = /N (2Z,2)(eq)(2)dz
G
We have proven the following.

IZROPOSITION4.5. LetT : C(G) — C(G) be any linear operator. Defind; €
C(G) bydr(x,Y) =TY(X). ThenT = W?, where

az) = &(2) [ (2z,Z)e(Z) dr (Z) dZ.
G

COROLLARY 4.6. The mapa — W2 is a linear isomorphism fronC(G) to
EndC(G)).

We now relate thex-product to the algebra structure @(G) arising from its
identification with End C(G)).

THEOREM 4.7. For a,b € C(G), supposeN*WP = W¢, ¢ € C(G). Thenc =
a *xo b.

PROOF. For(x,Y) € G,
WAWPY (x) = //// Y, X' = xpa((x +x)/2, Y)Y, X" =X
x b((X' +x")/2,Y")(Y,x"ydx"dY"dx dY'".
Then from Propositiod.5, for (X, Y1) € G,
(Y1, X1)2C(X1, Y1) = ﬁ / (2Y1, X)(2Y, X)) (Y, X) (Y, X" = x) (Y, x" = X')(Y, x")
xGa((x i x)/2,Yb((X' 4+ x")/2,Y") dx"dY"dx dY dx dY.

Replacex” with X" — x’ to get

(Y1, X1)%c(x1, Y1)

= /A---/(ZYl, XY(2Y, X )Y, WY, X — xY", X" — 2xX'){Y, X" — X)
G G

x a((x+x)/2,Y)b(x"/2,Y")dx"dY"dx dY' dx dY.
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Replacex’ with X’ — x to get
(Y1, X1)?C(X1, Y1)
f / (2Y1, X)(2Y, X)) (Y, X} (Y, X' — 2x)(Y", X" — 2X' + 2X)

(Y, X" = x' +x)a(x'/2, Y)b(x"/2,Y")dx"dY"dx dY dx dY

= / . / (2Y1, X)(2Y, X)) (Y, X){(Y', 2x" — 2x){Y", 2X" — 4x" + 2X)
G G
x (Y, 2x" — 2x" + x)a(x’, Y)b(x", Y"ydx dY dxdY dx"dY".

After integrating with respect t§ andx and cancelling terms, we obtain

O, Vo) = / / / / (Y1, X = X')2Y', X — X)(2Y", X — X)
cJeJGJa

x a(x’, Y)b(x", Y dx dY dx"dY” = a*, b(Xs, Y1). O

COROLLARY 4.8. If G is an odd finite abelian group, the(ﬁ:(é), %) is isomorphic
to the algebra oh x n matrices.

ProoF. This follows from Theorend.7 and the observation in Secti@that if G
is odd, then(C(G), x) and(C(G), *,) are isomorphic. O

For a general abelian gro®, (C(G), *) is isomorphic to a direct sum of matrix
algebras (this actually follows from the results of Sect&n However if G is not
odd there will generally be more than one component in this sum. For example if
G = 7, x --- x Z, then one may check directly th@(é), %) is a direct sum of
1-dimensional algebras, and therefore abelian.

5. The Heisenberg group

Throughout this sectio@ will be an odd finite abellan group. L& be the subset
of the unit circleS' € C given byS; = {(Y, x) | Y € G,x e G}.

LEMMA 5.1. S is a subgroup ofs'.

PROOF Supposethab ~ Z,, x - --x Z,. ThenS; consists of all complex numbers
of the formy; - - -y with 3 ann;th root of unity. This is clearly a subgroup &.
O

Any finite subgroup ofS! is cyclic. Let|S;| = m, so thatS; consists of almth
roots of unity. IfG ~ 7, x --- x Z, thenmis the least common multiple of the’s,
i =1,...,l. It follows that for anyk € 7Z, (k, m) = 1 if and only if (k, n) = 1.
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LetHg = G x S and introduce a multiplication iklg by

(Z1, Y1) - (22, v2) = (2 + o, iV2(Z2/2, 7).

ThenHg is a finite nilpotent group with identity0, 1) and centre

Ze={0y) |y e S} > .

We call Hg the Heisenberg group @3.

Suppose thap is any irreducible unitary representationldf. ThenZg acts as
scalars so there is a characteof Zg such thafo(y) = x(y)I forall y € Zs. Since
any charactex of Zg ~ S is given by (y) = y* for somek € Z, 0 < k < m, we
may separate the unitary duafs) of Hg into m components

m—1
(He) = |_J(Ho),
k=0

with p € (Hg), if and only if the central character pfis y — .
ForO<k < m, let

C(He)k = {¢ € C(Ho) | #(yh) = y*¢(h) ¥y € Zg, h € Hg).

Then we have the orthogonal decomposit®ts) = @y, C(He)x andp € (Ho),
if and only if all the matrix coefficients b belong toC(Hg)k (recall that a matrix
coefficient ofp is a function onHg of the formh — (p(h)v, w), wherev, w are
vectors in the space af).

PROPOSITIONS.2. There is(up to equivalendeexactly one representation (i), .
It acts onC(G) and is given by (z, y) = y W=

PROOF It is easy to check thap; is a unitary representation dfls. Since
(2| z € G} span<C(G) the representation is irreducible and clearly belong$te), .
Now since the space of matrix coefficientsogfis n? dimensional it exhausts (Hg):.
Thus there are no other representationéHg);. O

6. The symplectic group and the oscillator representation

G is a finite abelian group with additional structure determined by the ‘form
(-,-). Let HomG) denote the ring of homomorphisms: G — G, and AutG) the
subgroup of automorphisms. For anye Aut(G), there isaunigue* € Aut(G) such
that(o*zy, ) = (z;, 0 2) forallz;, z, € G. In analogy with the caseé = R we define
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the symplectic group Sﬁ) to bf the set of automorphismsof G which preserve
(-, ), that isNthe set of € Aut(G) such thab* = o, It follows immediately that
foro € SPG),

(6.1) a’ xb’ = (axb)’, Va,beC(G),

so thatx, = x.

Let Perm(G, %) denote the group of permutations of G which satisfy 6.1).
Clearly SgG) is a subgroup of Per(®, x) and we may consides as contained in
Perm(G, =) if we identify z € G with the permutatiom, of G given by

(6.2) 0,(Z)=7+2z VZeG.
THEOREM6.1. PermG, *) = G x SpG).

PrROOF. G N Sp(G) contains just the identity and 8p) normalizesG. It thus
suffices to show that & € Perm(G, %) ando (0) = 0, theno € Sp(G).
First note that.1) is equivalent to the condition

(021,02,02) = (21,2, 23), V21,2,2 € G.
Settingz; = 0 and using the condition (0) = 0 shows that
(071,02) = (z1,), Vz,2z€C.

We thus need only show thatis a homomorphism. Recall that every characteBof
is of the formz for somez € G. Then the computation

(2°(Z) = 2(02) = (z2,02)
=(0'2,7)=(0"'2)(Z), VZeG

shows that the map — x° permutes the characters @f
Now letz, 2, zz € G. Then since characters separate points of an abelian group,

22 =2 = x(2)x(2) = x(), Vx € (G}
= X (X" (2) = X° (), Vx € (G}
= x(0m)x(02) = x(0z3), Vx € (GN}
< (021)(02) = 0125. O

If o € PermG, ) then Propositior8.7 shows that preserves the inner product
(-,-) on C(G). Now suppose that is odd. Then PergG, x) acts as a group of
automorphisms of the Hilbert algeb¢(@(G), *,) which we have seen is isomorphic
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to M(n, ©). Now any automorphism df1(n, C) which preserves the Hilbert space
structure must be conjugation by a unitary matrix. Thus for gaehPermG, *) we
can findc, € C(G) such that for alb € C(G)

C. #2b#,C,(2) = b(u(2)), VzeG.
Furthermorec, is unique up to a multiplicative constant of modulus one. We may re-
state this by saying that — W¢ is a projective unitary representation of P& )

which we call the oscillator representation. Fore Sp(G), the correspondence
u — ¢, involves a ‘Cayley transform’.

THEOREM 6.2. SupposeG is odd. Letu € SpG) and suppose that + u €
Hom(G) is invertible. DefineC(x) = (1 — n)/(1+ w). Thenc,(z) = (z, C(n)2).

PROOF. Foro € Hom(é), seta,(z) = (z,oz) forall z G. Then forb € C(é),

a, ¥ b*,8,(2) = //// z1, )42, z3)X(z3, 21)%(21, 021)D(2)

(23, 20)*(24, 2)%(2, Z3)*(0 2z, 22) dznd A 2 d
/// 2, 2)%80(zs — 22+ 24 — 2)(z1, 02)b(2)

,2)*(0z, z)dzdzdz
= /é/é(zl, z— 2%z, 02)b(z1 + 2 — 2) (74, 2)°
X (024, 24) dz dz
Now make the change of variables= z; + z; ands = z; — z; so that
un=01t+s)/2, z=(t-ys/2

The above integral then becomes
// <+st—s> <t+sa(t+s)>
2 2’ 2
< (t_TS> t- >b(t—z)dtds
// Z,S) st 2><s,7>b(t—z)dtds
_/é ( Ozt Ut)b(t—z)dt
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Assume for the moment that2¢* + o : G — G is invertible. Then we may solve
t=2-0"+0) %42
so that the above integral becomes simply

b((2— 0" +0)"(42) — 2) = b(z(2)),

where
24+0*—0 l1—(oc—0%/2

(2 = 2—o0*+o0 2= 1+ (o —0%)/2

(2).

We have established thatdf € Hom(G) with 2 — o* + o invertible, then for all
b e C(G), a, ;b *,3,(2) = b(a(2)), wherex is defined in terms of above.

Now suppose that € SpG) and that 1y is invertible. Let) = (1— ) /(1+ ).
Thenn* = —». To see this, let;, z, € G with z = (1 + w)wi. Then

(N7, o) = (L — pws, (14 p)ws,) = (w1, pwz) (Lwsy, wo)

and similarly(z;, nz) = (nws, wa) (wy, pw,) so the claim follows.

Consequently 2= n* +n = 2+ 2n = 4/(1+ p) is invertible, so replacingr
in () with n we get that for allb € C(G), ¢, %, b %, T,(2) = b(a(2)), where
@) =1—n/A+n) = pn®@. O

7. Systems of Cartan subalgebras for ¢h)

We now give some applications of our approach of regarding matrices from a
symbol point of view. To be very concrete, we work out some of the ramifications of
the preceding approach in the simplest possible case, that @herZ; = {0, 1, 2}.

The dual groupG can also be regarded @s, where the pairing betwedne G and
| € Gis (k, 1) = £X whereg = €2"/3, Writing

G=GxG={zg=(k,1|0<kI <2

we get(z;, zq) = &%, The spac&/ = C(G) has basisey, e, &} whereg (j) = &;.
We get from Propositiod.4 the formula

Wae (K) = (j,i1/2)(], K)§ ki = E2TEMITDg = &10g (K).

ThusW?g = £10+)g_;, where of course the subscripts are computed mod 3. We
will write W3 = Wi;, an operator oV and letM;; denote the matrix of the operator
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in the basid ey, e, &}. Here are these nine matrices:

100 [10 0] [1 0 O]
010/ [0& 0| |[0& 0
0 0 1] |0 0] |0 0 £]
MOO MOl MOZ
0 1 0] [0 & 0] [0 & O]
o041l |0 o 1| |0 0 1
1 00 |¢ 0 of |& 0 0]
MlO Mll MlZ
0 0 I] [0 0 &] [0 O £2]
1 00| |€ 00| |£ 0 0
010 [0 11 |01 0]
MZO M21 M22

We now record various properties of these matrices which follow from Se6tion

THEOREM7.1. (1) B={M;; |0 <1i,j < 2} forms a basis oM (3, C).
(2) By = B\ Mg, forms a basis 0$l(3, C), the trace zer® x 3 matrices.
(3) EachMj; is invertible, in fact unitary. Furthermord?e/li]?1 = M__j.
(4) MijMy = 2TOM 4.
(5) Mij Mk| MHl = %—”_jkMkp
6) M =M.
(7) My =M _j.
(8) If we defineM;; = Mj; and extend to the entire algebra linearly, thehB)° =
B°A°,

Some remarks are in order. We will shortly see that Propetyis( potentially
useful in Lie theory, where the fact that there is no ‘canonical’ basis @f, §l)
constructed from the usual badtg (the matrix with a single 1 in thg th position)
is always a source of some awkwardness. Propétsiiow that pairwise thé/;;
‘almost’ commute. Propertys] shows that conjugation bl;; is diagonalized by the
subspace$M, ). Properties®) and (7) reveal a symmetry between the operations of
transposition and conjugation not so apparent in the usual formulation. Progerty (
reveals another transposition-like symmetry which is canonical in this basis.

We now point out a consequence of our discussions of subalgebragsGf
There are 4 subgroups & of size 3, namelyG; = {(00), (01, (02}, G, =
{(00), (12), (22}, G3 = {(00), (21), (12)} and G, = {(00), (10), (20)}. To each
corresponds a 3-dimensional commutative subalgebfz(éf) = M(3, O), spanned
by the corresponding matricéd;;. When we pass tg = sl(3, C) regarded as a Lie
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algebra, we get the decomposition

(%) g=01Dh, ®hsD b,

whereb; = (Mo1, Mo), ho = (M11, Ma), s = (M1, M1o) andhy = (Myg, Mo).

This implies an interesting decomposition on the group level as weHi; I§ the
Cartan subgroup it = SL(3, C) corresponding td);, then it is natural to ask to
what extent doesx] extend to a decomposition of the fo@= H; H, Hs H,? It will
certainly hold in a neighbourhood of the identity.

The discussion here easily generalizes tn)sITo what extent can we decompose
other simple Lie algebras as direct sums of Cartan subalgebras?

References

[1] R. Aldrovandi and L. A. Saeger, ‘Projective Fourier duality and Weyl quantizatiotérnat. J.
Theoret. Phys36 (1997), 573—-612.

[2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, ‘Deformation theory and
quantization’ Ann. Physic411(1978), 61-110, 111-151.

[3] G. Folland,Harmonic analysis on phase spag&rinceton University Press, Princeton, NJ, 1989).

[4] A. Grossman, G. Loupias and E. M. Stein, ‘An algebra of pseudo-differential operators and
Quantum Mechanics in phase spadein. Inst. Fourier (Grenoble)8 (1968), 343-368.

[5] L. Hormander, ‘The Weyl calculus of pseudo-differential operatd@Zsimm. Pure Appl. Matt82
(1979), 127-208.

[6] R. Howe, ‘Quantum Mechanics and partial differential equatiods’Funct. Anal.38 (1980),
188-254.

[7] ——, ‘The oscillator semigroup’, inThe mathematical heritage of Hermann Weyl (Durham,
NC, 1987) Proc. Sympos. Pure Math. 48 (Amer. Math. Soc., Providence, RI, 1988) pp. 61-132.

[8] G. Lion and M. Vergne,The Weil representation, Maslov index, and theta sefiiskhauser,
Boston, 1980).

[9] J. E. Moyal, ‘Quantum mechanics as a statistical thedWgth. Proc. Cambridge Philos. So¢5
(1949), 99-124.

[10] A. Weil, ‘Sur certaines groupes d'épateurs unitairesActa. Math.111(1964), 143-211.

School of Mathematics

UNSW

Sydney 2052

Australia

e-mail: n.wildberger@unsw.edu.au


mailto:n.wildberger@unsw.edu.au

