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Abstract

We develop a notion of a∗-product on a general abelian group, establish a Weyl calculus for operators
on the group and connect these with the representation theory of an associated Heisenberg group. This
can all be viewed as a generalization of the familiar theory forR. A symplectic group is introduced and
a connection with the classical Cayley transform is established. Our main application is to finite groups,
where consideration of the symbol calculus for the cyclic groups provides an interesting alternative to the
usual matrix form for linear transformations. This leads to a new basis for sl.n/ and a decomposition of
this Lie algebra into a sum of Cartan subalgebras.

2000Mathematics subject classification: primary 44A45 17B05 11F27.

1. Introduction

In this paper we show that a certain circle of ideas related to harmonic analysis onR
has a natural generalization to any locally compact abelian group satisfying a certain
parity requirement. The topics with which we are concerned are:

(1) the Weyl calculus for pseudo-differential operators onR (see for example Hor-
mander [5]);
(2) the Moyal product, or∗-product, for functions onT∗R (see Bayenet al. [2],

Moyal [9]); and
(3) the convolution structure on the Heisenberg group.

The close connection between these subjects has been described in Howe [6, 7],
Grossman, Loupias and Stein [4], Folland [3] and Lion and Vergne [8]. We wish here
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to point out that these three theories can be built around any locally compact abelian
group subject to a certain parity condition. This parity condition is satisfied byR
but not by the circle group, which is an explanation for why there is no good symbol
calculus for the latter. More generally, the crucial condition is that multiplication by 2
ought to be an automorphism of the group. For a finite abelian group, this simply
requires that the order of the group be odd. The significance of this factor 2 was
already mentioned in Howe [6, 7]. For quite another approach using Kac algebras,
see Aldrovandi and Saeger [1].

To avoid technicalities, we restrict our attention to the case ofG a finite abelian
group; since our formulae hold in general however, we have used integrals instead of
sums throughout.

We begin by considering the group̃G = G × Ĝ (following Weil [10]) and its
unique Haar measure. We show there is a canonical algebra structure on the space of
functions onG̃ which is given by an integral formula similar to one which may be
used to define the Moyal product onT∗R.

Furthermore, if|G| = n is odd (which we henceforth assume) then there is a
canonical identification of such functions as symbols of operators onC.G/ so, that
this algebra structure corresponds to operator multiplication.

This shows that abstractlyC.G̃/ is isomorphic toM.n;C/. Subgroups of̃G are
shown to naturally lead to subalgebras ofM.n;C/.

The above algebra structure is related to the representation theory of an associated
Heisenberg group which we define. We study the associated oscillator representation
of the symplectic group which arises as ‘quadratic’ symmetries ofC.G̃/ and show
how the familiar Cayley transform arises in a natural way when we derive formulae
for this representation. We are here combining well known ideas from the special case
G = R (as found, say, in Howe [6] or Lion and Vergne [8]) with the general approach
of Weil [10].

It is perhaps useful to point out the direction of the applications we have in mind.
The idea of representing a linear transformation ofRn by a matrix with respect to an
ordered basis permeates much of modern mathematics. This is simply one convenient
way of encodingn2 bits of information and corresponds to viewing the matrix as
a function onZn × Zn. However in infinite dimensional functional analysis it is
occasionally useful to encode an operator (say, onL2.R/) by its symbol. In the
finite dimensional case, this corresponds to representing a linear transformation by a
function onZn × Ẑn. This is an entirely equivalent formulation—strictly speaking no
information is either lost or gained. There will be situations in which such a symbol
representation of an operator poses distinct advantages to the matrix representation.

As an application therefore we consider the cyclic group and give an associated
symbol calculus forn by n matrices, culminating in a new decomposition of the Lie
algebra sl.n/ into a sum of Cartan subalgebras.
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2. Notation and preliminaries

For any finite setS, denote the space of complex-valued functions onS by C.S/.
If S has measureds, introduce the inner product.· ; ·/ on C.S/

. f1; f2/ =
∫

S

f1.s/ f2.s/ ds; ∀ f1; f2 ∈ C.G/;

and letŽs ∈ C.S/ be the function such that∫
S

Žs.s
′/ f .s′/ ds′ = f .s/; ∀ f ∈ C.S/:

If S1; S2 are sets and¦ : S1 → S2 a map, leta¦ = a ◦ ¦ for all a ∈ C.S2/. We let
Perm.S/ denote the group of permutations of the setS.

Now let G be a finite abelian group with|G| = n and with typical elementx,
operation addition and identity 0. Let̂G be the dual group with typical elementY
and denote the pairing betweenx ∈ G andY ∈ Ĝ by 〈Y; x〉. Let dx denote a Haar
measure onG (unique up to a constant).

The Fourier transform∧ : C.G/ → C.Ĝ/ is given by

f ∧.Y/ =
∫

G

〈Y; x〉 f .x/ dx; ∀ f ∈ C.G/:

Normalize Haar measuredY on Ĝ so that the inverse∨ of the Fourier transform is
given by

h∨.x/ =
∫

Ĝ

〈Y; x〉h.Y/ dY; ∀h ∈ C.Ĝ/:

Then both the Fourier transform and its inverse are unitary operators. Forx ∈ G,
let ˆ̂x denote the element ofC.Ĝ/ given by ˆ̂x.Y/ = 〈Y; x〉. The mapx → ˆ̂x provides
us with a natural identification ofG and ̂̂G. For a general locally compact abelian
group, there is of course no isomorphism betweenG andĜ but whenG is finite there
is, although it is not unique. This follows from the basic structure theorem that states
that any finite abelian group is isomorphic to a direct product of cyclic groups along
with the obvious fact that the dual of the cyclic groupZn is itself isomorphic toZn.

Let G̃ = G × Ĝ with typical elementz = .x;Y/ and Haar measuredz = dxdY.
Note that this measure is canonical; it is independent of the original choice ofdx. In
fact,

∫
G̃ dz = |G| = n. Furthermore we find that with these normalizationsŽz0.z/ is

the function ofz that is zero unlessz = z0, in which case it is|G| = n. From this also
follows the useful formula ∫

G̃

〈z; z1〉 dz = Ž0.z1/
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which we will use throughout.̃G also has the canonical functione.x;Y/ = 〈Y; x〉.
Now .G̃/̂ ' Ĝ×G with typical elementZ = .Y; x/ and Haar measuredY dx. Define
− : .G̃/̂ → G̃ by − .Y; x/ = .x;−Y/. Then− is a canonical isomorphism from.G̃/̂
to G̃.

For zi = .xi ;Yi / ∈ G̃, i = 1; 2, define〈z1; z2〉 = 〈Y1; x2〉〈Y2; x1〉. For k > 2 and
zi = .xi ;Yi / ∈ G̃, i = 1; : : : ; k, define〈z1; : : : ; zk〉 = 〈z1; z2〉 · · · 〈zk−1; zk〉〈zk; z1〉.
It is evident that for allk ≥ 2, 〈z1; z2; : : : ; zk〉 = 〈zk; : : : ; z2; z1〉 and fork > 2 the
expression〈z1; : : : ; zk〉 is invariant under cyclic permutations of thezi ’s.

For z ∈ G̃, let ẑ ∈ C.G̃/ be defined bŷz.z′/ = 〈z; z′〉 for all z′ ∈ G̃.

3. The∗-product

We will be interested in a particular algebra structure canonically defined onC.G̃/:
Fora1; a2 ∈ C.G̃/, definea1 ∗ a2 ∈ C.G̃/ by

a1 ∗ a2.z3/ =
∫

G̃

∫
G̃

〈z1; z2; z3〉a1.z1/a2.z2/ dz1 dz2; ∀z3 ∈ G̃:

THEOREM3.1. .C.G̃/; ∗/ is an associative algebra with identity the constant func-
tion 1.

PROOF. Let a1; a2; a3 ∈ C.G̃/. Then for allz4 ∈ G̃,

.a1 ∗ a2/ ∗ a3.z4/ =
∫

G̃

· · ·
∫

G̃

〈z1; z2; z〉〈z; z3; z4〉a1.z1/a2.z2/a3.z3/ dz1 dz2 dz3 dz;

while

a1 ∗ .a2 ∗ a3/.z4/ =
∫

G̃

· · ·
∫

G̃

〈z1; z; z4〉〈z2; z3; z〉a1.z1/a2.z2/a3.z3/ dz1 dz2 dz3 dz:

Thus associativity of∗ is equivalent to the validity for allz1; z2; z3; z4 ∈ G̃ of the
equation∫

G̃

〈z1; z2; z〉〈z; z3; z4〉 dz =
∫

G̃

〈z1; z; z4〉〈z2; z3; z〉 dz:

Now ∫
G̃

〈z1; z2; z〉〈z; z3; z4〉 dz =
∫

G̃

〈z1; z2〉〈z3; z4〉〈z; z1 − z2 + z3 − z4〉 dz

= Žz4.z1 − z2 + z3/〈z1; z2; z3〉
=

∫
G̃

〈z4; z1〉〈z2; z3〉〈z; z1 − z2 + z3 − z4〉 dz

=
∫

G̃

〈z1; z; z4〉〈z2; z3; z〉 dz
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which proves associativity of∗.
For a ∈ C.G̃/ andz3 ∈ G̃,

a ∗ 1.z3/ =
∫

G̃

∫
G̃

〈z1; z2; z3〉a.z1/ dz1 dz2

=
∫

G̃

∫
G̃

〈z2; z3 − z1〉〈z3; z1〉a.z1/ dz1 dz2

=
∫

G̃

Ž0.z3 − z1/〈z3; z1〉a.z1/ dz1 = a.z3/:

Similarly 1∗ a = a for all a ∈ C.G̃/.

The computation in the above theorem also shows the following.

PROPOSITION3.2. For z1; z2; z3 ∈ G̃, Žz1 ∗ Žz2 ∗ Žz3 = 〈z1; z2; z3〉Žz4, wherez4 =
z1 − z2 + z3.

LEMMA 3.3. For a1; a2 ∈ C.G̃/, a2 ∗ a1 = ā1 ∗ ā2.

PROOF. For z3 ∈ G̃,

a2 ∗ a1.z3/ =
∫

G̃

∫
G̃

〈z1; z2; z3〉a2.z1/a1.z2/ dz1 dz2

=
∫

G̃

∫
G̃

〈z2; z1; z3〉a1.z1/a2.z2/ dz1 dz2

=
∫

G̃

∫
G̃

〈z1; z2; z3〉a1.z1/a2.z2/ dz1 dz2 = ā1 ∗ ā2.z3/:

LEMMA 3.4. If ai ∈ C.G̃/ andai .x;Y/ = ai .x/, i = 1; 2 thena1 ∗ a2 = a1a2. The
same holds ifai .x;Y/ = ai .Y/, i = 1; 2.

PROOF. Suppose thatai .x;Y/ = ai .x/. Then forz3 = .x3;Y3/ ∈ G̃,

a1 ∗ a2.z3/ =
∫

G

∫
Ĝ

∫
G

∫
Ĝ

〈Y1; x2 − x3〉〈Y2; x3 − x1〉〈Y3; x1 − x2〉
× a1.x1/a2.x2/ dY1 dx1 dY2 dx2

=
∫

G

∫
G

Ž0.x2 − x3/Ž0.x3 − x1/〈Y3; x1 − x2〉a1.x1/a2.x2/dx1 dx2

= a1.x3/a2.x3/:

PROPOSITION3.5. For z1; z2 ∈ G̃, ẑ1 ∗ ẑ2 = 〈z2; z1〉.z1 + z2/ˆ.
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PROOF.

ẑ1 ∗ ẑ2.z3/ =
∫

G̃

∫
G̃

〈z′
1; z′

2; z3〉〈z1; z′
1〉〈z2; z′

2〉 dz′
1 dz′

2

=
∫

G̃

Ž0.z
′
2 − z3 − z1/〈z′

2; z3〉〈z2; z′
2〉 dz′

2

= 〈z1; z3〉〈z2; z1 + z3〉 = 〈z2; z1〉.z1 + z2/ˆ.z3/:

COROLLARY 3.6. For z ∈ G̃ anda ∈ C.G̃/,

(1) ẑ ∗ a.z′/ = ẑ.z′/a.z′ + z/;
(2) a ∗ ẑ.z′/ = ẑ.z′/a.z′ − z/ for all z′ ∈ G̃.

PROOF. Proposition3.5shows the formulae hold whena = ẑ0 for z0 ∈ G̃ and thus
generally since{ẑ0|z0 ∈ G̃} spansC.G̃/.

Proposition3.5 provides us with a ready supply of subalgebras of.C.G̃/; ∗/, for
if H is any subgroup of̃G it follows that the span of{ẑ | z ∈ H} is a subalgebra
of C.G̃/.

PROPOSITION3.7. For a1; a2 ∈ C.G̃/, .a1; a2/ = ∫
G̃ a1 ∗ ā2.z/ dz.

PROOF.∫
G̃

a1 ∗ ā2.z/ dz =
∫

G̃

∫
G̃

∫
G̃

〈z1; z2〉〈z2; z〉〈z; z1〉a1.z1/a2.z2/dz1 dz2 dz

=
∫

G̃

∫
G̃

Ž0.z1 − z2/〈z1; z2〉a1.z1/a2.z2/dz1 dz2

=
∫

G̃

a1.z1/a2.z1/ dz1 = .a1; a2/:

From Proposition3.7and Lemma3.3one easily obtains the following.

PROPOSITION3.8. For a1; a2; a3 ∈ C.G̃/,

(1)
∫

G̃ a1 ∗ a2.z/ dz= ∫
G̃ a2 ∗ a1.z/ dz;

(2) .a1; a2 ∗ a3/ = .a1 ∗ ā3; a2/;
(3) .a1 ∗ a2; a3/ = .a2; ā1 ∗ a3/.

There are a number of other algebra structures onC.G̃/ that can be derived from
the∗-product. Suppose for example that¦ is a permutation of̃G. Fora1; a2 ∈ C.G̃/
definea1 ∗¦ a2 ∈ C.G̃/ by a1 ∗¦ a2 = .a¦1 ∗ a¦2 /

¦−1
. Then for allz3 ∈ G̃,

a1 ∗¦ a2.z3/ =
∫

G̃

∫
G̃

〈¦.z1/; ¦ .z2/; ¦ .z3/〉a1.z1/a2.z2/ dz1 dz2;
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and the algebra structure∗¦ is isomorphic to∗. In particular if k ∈ Z and k and
|G| = n are relatively prime, then the map¦

(
.x;Y/

) = .kx;Y/ is a permutation of̃G
and we have

a1 ∗¦ a2.z3/ =
∫

G̃

∫
G̃

〈z1; z2; z3〉ka1.z1/a2.z2/ dz1 dz2:

In this case we will write∗¦ as∗k. Thenk plays the role that Planck’s constanth̄
plays in the theory of the∗-product forR. It is easily seen that the constant function 1
is the identity for all∗k and that forz1; z2 ∈ G̃, Proposition3.5becomes

ẑ1 ∗k ẑ2 = 〈z2; z1=k〉.z1 + z2/ˆ= 〈z2=k; z1〉.z1 + z2/ ;̂

wherez → z=k is the inverse map toz → kz. The casek = 2 will be of special
importance for what follows.

4. The symbol calculus

Define a locally compact abelian groupG to be odd if the mapx → 2x is an
automorphism ofG. Then for exampleR is odd while the unit circleS1 is not. A
finite abelian groupG is odd if and only if|G| = n is odd. Throughout this section
we will assume that the finite abelian groupG is odd, so thatx=2 is well-defined for
all x ∈ G.

For a ∈ C.G̃/, defineWa : C.G/ → C.G/ by

Wa f .x/ =
∫

Ĝ

∫
G

〈Y′; x′ − x〉a(
.x + x′/=2;Y′) f .x′/ dx′ dY′(4.1)

for all f ∈ C.G/ andx ∈ G. This is essentially the same formula as used inR to
define an operator from a ‘Weyl’ symbol. The following facts are immediate.

LEMMA 4.1. (1) If a.x;Y/ = a.x/, thenWa is multiplication bya.x/.
(2) If a.x;Y/ = a.Y/ thenWa is multiplication bya.Y/ on the Fourier transform

side.
(3) If a = 1 thenWa is the identity.

PROPOSITION4.2. For a ∈ C.G̃/ the adjoint ofWa is Wā.

PROOF. Let a ∈ C.G̃/ and f1; f2 ∈ C.G/. Then

.Wa f1; f2/ =
∫

G

∫
Ĝ

∫
G

〈Y′; x′ − x〉a(
.x + x′/=2;Y′) f1.x

′/ f2.x/ dx′ dY′ dx

=
∫

G

∫
Ĝ

∫
G

f1.x
′/〈Y′; x − x′〉ā(

.x + x′/=2;Y′) f2.x/dx dY′ dx′

= . f1;Wā f2/:



330 N. J. Wildberger [8]

If a ∈ C.G̃/, thena− ∈ C.Ĝ × G/ so that reversing the roles ofG andĜ in (4.1)
we may regardWa− as an operator fromC.Ĝ/ to C.G/.

PROPOSITION4.3. For a ∈ C.G̃/ let b = a−
−1 ∈ C..G̃/̂ /. Then for all f ∈ C.G/,

.Wa f /ˆ= Wb f .̂

PROOF.

.Wa f /ˆ.Y/ =
∫

G

∫
Ĝ

∫
G

〈Y; x〉〈Y′; x′ − x〉a(
.x + x′/=2;Y′) f .x′/ dx′ dY′ dx

=
∫

G

∫
Ĝ

〈Y; x〉 〈Y′; x〉a.x=2;Y′/ f ˆ.−2Y′ − Y/ dY′ dx:

ReplaceY′ with .Y′ − Y/=2 to get

.Wa f /ˆ.Y/ =
∫

G

∫
Ĝ

〈.Y′ + Y/=2; x〉a.x=2; .Y′ − Y/=2/ f ˆ.Y′/ dY′ dx:

Finally replacex with 2x andY′ with −Y′ to get

.Wa f /ˆ.Y/ =
∫

G

∫
Ĝ

〈Y′ − Y; x〉a(
x;−.Y′ + Y/=2

)
f ˆ.Y′/ dY′ dx

= Wb. f ˆ/.Y/:
PROPOSITION4.4. For z = .x0;Y0/ ∈ G̃ and f ∈ C.G/,

Wẑ f .x/ = 〈Y0; x0=2〉〈Y0; x〉 f .x + x0/ ∀x ∈ G:

PROOF.

Wẑ f .x/ =
∫

Ĝ

∫
G

〈Y′; x′ − x〉〈Y0; .x + x′/=2〉〈Y′; x0〉 f .x′/ dx′ dY′

=
∫

G

Ž0.x
′ − x − x0/〈Y0; .x + x′/=2〉 f .x′/ dx′

= 〈Y0; x〉〈Y0; x0=2〉 f .x + x0/:

We will be interested in recoveringa ∈ C.G̃/ from a knowledge ofWa. ForY ∈ Ĝ
andx ∈ G,

WaY.x/ =
∫

Ĝ

∫
G

〈Y′; x′ − x〉a(
.x + x′/=2;Y′)〈Y; x′〉 dx′ dY′

=
∫

Ĝ

∫
G

〈Y′; x′ − 2x〉a(
x′=2;Y′)〈Y; x′ − x〉 dx′ dY′

= 〈Y; x〉
∫

Ĝ

∫
G

〈Y′; 2x′ − 2x〉〈Y; 2x′〉a.x′;Y′/ dx′ dY′:



[9] Weyl quantization and a symbol calculus for abelian groups 331

Then if we defineca ∈ C.G̃/ by ca.z/ = ca.x;Y/ = WaY.x/ then

ca.z/ = e.z/
∫

G̃

〈z′;−2z〉.e2a/.z′/ dz′:

Taking the Fourier transform gives

e2a.z′/ =
∫

G̃

〈2z′; z〉.eca/.z/ dz:

We have proven the following.

PROPOSITION4.5. Let T : C.G/ → C.G/ be any linear operator. DefinedT ∈
C.G̃/ by dT.x;Y/ = T Y.x/. ThenT = Wa, where

a.z/ = ē2.z/
∫

G̃

〈2z; z′〉e.z′/ dT.z
′/ dz′:

COROLLARY 4.6. The mapa → Wa is a linear isomorphism fromC.G̃/ to
End.C.G//.

We now relate the∗-product to the algebra structure onC.G̃/ arising from its
identification with End.C.G//.

THEOREM 4.7. For a; b ∈ C.G̃/, supposeWaWb = Wc, c ∈ C.G̃/. Thenc =
a ∗2 b.

PROOF. For .x;Y/ ∈ G̃,

WaWbY.x/ =
∫

Ĝ

∫
G

∫
Ĝ

∫
G

〈Y′; x′ − x〉a(
.x + x′/=2;Y′)〈Y′′; x′′ − x′〉

× b
(
.x′ + x′′/=2;Y′′)〈Y; x′′〉 dx′′ dY′′ dx′ dY′:

Then from Proposition4.5, for .x1;Y1/ ∈ G̃,

〈Y1; x1〉2c.x1;Y1/ =
∫

Ĝ

· · ·
∫

G

〈2Y1; x〉〈2Y; x1〉〈Y; x〉〈Y′; x′ − x〉〈Y′′; x′′ − x′〉〈Y; x′′〉
× a

(
.x + x′/=2;Y′)b

(
.x′ + x′′/=2;Y′′) dx′′ dY′′ dx′ dY′ dx dY:

Replacex′′ with x′′ − x′ to get

〈Y1; x1〉2c.x1;Y1/

=
∫

Ĝ

· · ·
∫

G

〈2Y1; x〉〈2Y; x1〉〈Y; x〉〈Y′; x′ − x〉〈Y′′; x′′ − 2x′〉〈Y; x′′ − x′〉
× a

(
.x + x′/=2;Y′)b

(
x′′=2;Y′′) dx′′ dY′′ dx′ dY′ dx dY:
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Replacex′ with x′ − x to get

〈Y1; x1〉2c.x1;Y1/

=
∫

Ĝ

· · ·
∫

G

〈2Y1; x〉〈2Y; x1〉〈Y; x〉〈Y′; x′ − 2x〉〈Y′′; x′′ − 2x′ + 2x〉
× 〈Y; x′′ − x′ + x〉a(

x′=2;Y′)b
(
x′′=2;Y′′) dx′′ dY′′ dx′ dY′ dx dY

=
∫

Ĝ

· · ·
∫

G

〈2Y1; x〉〈2Y; x1〉〈Y; x〉〈Y′; 2x′ − 2x〉〈Y′′; 2x′′ − 4x′ + 2x〉
× 〈Y; 2x′′ − 2x′ + x〉a.x′;Y′/b.x′′;Y′′/ dx dY dx′ dY′ dx′′ dY′′:

After integrating with respect toY andx and cancelling terms, we obtain

c.x1;Y1/ =
∫

Ĝ

∫
G

∫
Ĝ

∫
G

〈2Y1; x′ − x′′〉〈2Y′; x′′ − x1〉〈2Y′′; x1 − x′〉
× a.x′;Y′/b.x′′;Y′′/ dx′ dY′ dx′′ dY′′ = a ∗2 b.x1;Y1/:

COROLLARY 4.8. If G is an odd finite abelian group, then.C.G̃/; ∗/ is isomorphic
to the algebra ofn × n matrices.

PROOF. This follows from Theorem4.7and the observation in Section3 that if G
is odd, then.C.G̃/; ∗/ and.C.G̃/; ∗2/ are isomorphic.

For a general abelian groupG; .C.G̃/; ∗/ is isomorphic to a direct sum of matrix
algebras (this actually follows from the results of Section3). However if G is not
odd there will generally be more than one component in this sum. For example if
G = Z2 × · · · × Z2 then one may check directly that.C.G̃/; ∗/ is a direct sum of
1-dimensional algebras, and therefore abelian.

5. The Heisenberg group

Throughout this sectionG will be an odd finite abelian group. LetSG be the subset
of the unit circleS1 ⊆ C given bySG = {〈Y; x〉 | Y ∈ Ĝ; x ∈ G}.

LEMMA 5.1. SG is a subgroup ofS1.

PROOF. Suppose thatG ' Zn1 ×· · ·×Znl . ThenSG consists of all complex numbers
of the form1 · · · l with i an ni th root of unity. This is clearly a subgroup ofS1.

Any finite subgroup ofS1 is cyclic. Let |SG| = m, so thatSG consists of allmth
roots of unity. IfG ' Zn1 × · · · × Znl thenm is the least common multiple of theni ’s,
i = 1; : : : ; l . It follows that for anyk ∈ Z, .k;m/ = 1 if and only if .k; n/ = 1.
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Let HG = G̃ × SG and introduce a multiplication inHG by

.z1; 1/ · .z2; 2/ = .z1 + z2; 12〈z2=2; z1〉/:
ThenHG is a finite nilpotent group with identity.0; 1/ and centre

ZG = {.0;  / |  ∈ SG} ' SG:

We call HG the Heisenberg group ofG.
Suppose that² is any irreducible unitary representation ofHG. ThenZG acts as

scalars so there is a character� of ZG such that². / = �. /I for all  ∈ ZG. Since
any character� of ZG ' SG is given by�. / =  k for somek ∈ Z, 0 ≤ k < m, we
may separate the unitary dual.HG/̂ of HG into m components

.HG /̂ =
m−1⋃
k=0

.HG/̂k

with ² ∈ .HG /̂k if and only if the central character of² is  →  k.
For 0≤ k < m, let

C.HG/k = {� ∈ C.HG/ | �.h/ =  k�.h/ ∀ ∈ ZG; h ∈ HG}:

Then we have the orthogonal decompositionC.HG/ = ⊕m−1
k=0 C.HG/k and² ∈ .HG/̂k

if and only if all the matrix coefficients of² belong toC.HG/k (recall that a matrix
coefficient of² is a function onHG of the form h → .².h/v; w/, wherev;w are
vectors in the space of²).

PROPOSITION5.2. There is(up to equivalence) exactly one representation in.HG/̂1.
It acts onC.G/ and is given by²1.z;  / = Wẑ.

PROOF. It is easy to check that²1 is a unitary representation ofHG. Since
{ẑ | z ∈ G̃} spansC.G̃/ the representation is irreducible and clearly belongs to.HG/̂1.
Now since the space of matrix coefficients of²1 is n2 dimensional it exhaustsC.HG/1.
Thus there are no other representations in.HG/1.

6. The symplectic group and the oscillator representation

G̃ is a finite abelian group with additional structure determined by the ‘form’
〈· ; ·〉. Let Hom.G̃/ denote the ring of homomorphisms¦ : G̃ → G̃, and Aut.G̃/ the
subgroup of automorphisms. For any¦ ∈ Aut.G̃/, there is a unique¦ ∗ ∈ Aut.G/ such
that〈¦ ∗z1; z2〉 = 〈z1; ¦z2〉 for all z1; z2 ∈ G̃. In analogy with the caseG = Rwe define
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the symplectic group Sp.G̃/ to be the set of automorphisms¦ of G̃ which preserve
〈· ; ·〉, that is the set of¦ ∈ Aut.G̃/ such that¦ ∗ = ¦−1. It follows immediately that
for ¦ ∈ Sp.G̃/,

a¦ ∗ b¦ = .a ∗ b/¦ ; ∀a; b ∈ C.G̃/;(6.1)

so that∗¦ = ∗.
Let Perm.G̃; ∗/ denote the group of permutations¦ of G̃ which satisfy (6.1).

Clearly Sp.G̃/ is a subgroup of Perm.G̃; ∗/ and we may consider̃G as contained in
Perm.G̃; ∗/ if we identify z ∈ G̃ with the permutation¦z of G̃ given by

¦z.z
′/ = z′ + z; ∀z′ ∈ G̃:(6.2)

THEOREM6.1. Perm.G̃; ∗/ = G̃n Sp.G̃/.

PROOF. G̃ ∩ Sp.G̃/ contains just the identity and Sp.G̃/ normalizesG̃. It thus
suffices to show that if¦ ∈ Perm.G̃; ∗/ and¦.0/ = 0, then¦ ∈ Sp.G̃/.

First note that (6.1) is equivalent to the condition

〈¦z1; ¦z2; ¦z3〉 = 〈z1; z2; z3〉; ∀z1; z2; z3 ∈ G̃:

Settingz3 = 0 and using the condition¦.0/ = 0 shows that

〈¦z1; ¦z2〉 = 〈z1; z2〉; ∀z1; z2 ∈ G̃:

We thus need only show that¦ is a homomorphism. Recall that every character ofG̃
is of the formẑ for somez ∈ G̃. Then the computation

.ẑ/¦ .z′/ = ẑ.¦z′/ = 〈z; ¦z′〉
= 〈¦−1z; z′〉 = .¦−1z/ˆ.z′/; ∀z′ ∈ G̃

shows that the map� → �¦ permutes the characters of̃G.
Now let z1; z2; z3 ∈ G̃. Then since characters separate points of an abelian group,

z1z2 = z3 ⇐⇒ �.z1/�.z2/ = �.z3/; ∀� ∈ .G̃/̂ ;
⇐⇒ �¦ .z1/�

¦ .z2/ = �¦.z3/; ∀� ∈ .G̃/̂ ;
⇐⇒ �.¦z1/�.¦z2/ = �.¦z3/; ∀� ∈ .Ĝ/̂ ;
⇐⇒ .¦z1/.¦z2/ = ¦z3:

If ¦ ∈ Perm.G̃; ∗/ then Proposition3.7 shows that¦ preserves the inner product
.· ; ·/ on C.G̃/. Now suppose thatG is odd. Then Perm.G̃; ∗/ acts as a group of
automorphisms of the Hilbert algebra.C.G̃/; ∗2/ which we have seen is isomorphic
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to M.n;C/. Now any automorphism ofM.n;C/ which preserves the Hilbert space
structure must be conjugation by a unitary matrix. Thus for each¼ ∈ Perm.G̃; ∗/ we
can findc¼ ∈ C.G̃/ such that for allb ∈ C.G̃/

c¼ ∗2 b ∗2 c¼.z/ = b.¼.z//; ∀z ∈ G̃:

Furthermorec¼ is unique up to a multiplicative constant of modulus one. We may re-
state this by saying that¼ → Wc¼ is a projective unitary representation of Perm.G̃; ∗/
which we call the oscillator representation. For¼ ∈ Sp.G̃/, the correspondence
¼ → c¼ involves a ‘Cayley transform’.

THEOREM 6.2. SupposeG is odd. Let¼ ∈ Sp.G̃/ and suppose that1 + ¼ ∈
Hom.G̃/ is invertible. DefineC.¼/ = .1 − ¼/=.1 + ¼/. Thenc¼.z/ = 〈z;C.¼/z〉.

PROOF. For¦ ∈ Hom.G̃/, seta¦ .z/ = 〈z; ¦z〉 for all z ∈ G̃. Then forb ∈ C.G̃/,

a¦ ∗2 b ∗2 a¦ .z/ =
∫

G̃

∫
G̃

∫
G̃

∫
G̃

〈z1; z2〉2〈z2; z3〉2〈z3; z1〉2〈z1; ¦z1〉b.z2/

× 〈z3; z4〉2〈z4; z〉2〈z; z3〉2〈¦z4; z4〉 dz1 dz2 dz3 dz4

=
∫

G̃

∫
G̃

∫
G̃

〈z1; z2〉2Ž0.z1 − z2 + z4 − z/〈z1; ¦z1〉b.z2/

× 〈z4; z〉2〈¦z4; z4〉 dz1 dz2 dz4

=
∫

G̃

∫
G̃

〈z1; z4 − z〉2〈z1; ¦z1〉b.z1 + z4 − z/〈z4; z〉2

× 〈¦z4; z4〉 dz1 dz4

Now make the change of variablest = z1 + z4 ands = z1 − z4 so that

z1 = .t + s/=2; z4 = .t − s/=2:

The above integral then becomes

∫
G̃

∫
G̃

〈z; s〉2

〈
t + s

2
;

t − s

2

〉2 〈
t + s

2
; ¦

(
t + s

2

)〉

×
〈
¦

(
t − s

2

)
;

t − s

2

〉
b.t − z/ dt ds

=
∫

G̃

∫
G̃

〈z; s〉2〈s; t〉
〈
t;
¦s

2

〉 〈
s;
¦ t

2

〉
b.t − z/ dt ds

=
∫

G̃

Ž0

(
t − 2z − ¦ ∗t

2
+ ¦ t

2

)
b.t − z/ dt:
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Assume for the moment that 2− ¦ ∗ + ¦ : G̃ → G̃ is invertible. Then we may solve

t = .2 − ¦ ∗ + ¦/−1.4z/

so that the above integral becomes simply

b..2 − ¦ ∗ + ¦/−1.4z/− z/ = b.− .z//;

where

Þ.z/ = 2 + ¦ ∗ − ¦

2 − ¦ ∗ + ¦
.z/ = 1 − .¦ − ¦ ∗/=2

1 + .¦ − ¦ ∗/=2
.z/:

We have established that if¦ ∈ Hom.G̃/ with 2 − ¦ ∗ + ¦ invertible, then for all
b ∈ C.G̃/, a¦ ∗2 b ∗2 a¦ .z/ = b.Þ.z//, whereÞ is defined in terms of¦ above.

Now suppose that¼ ∈ Sp.G̃/ and that 1+¼ is invertible. Let� = .1−¼/=.1+¼/.
Then�∗ = −�. To see this, letz1; z2 ∈ G̃ with zi = .1 + ¼/wi . Then

〈�z1; z2〉 = 〈.1 − ¼/w1; .1 + ¼/w2〉 = 〈w1; ¼w2〉〈¼w1; w2〉

and similarly〈z1; �z2〉 = 〈¼w1; w2〉〈w1; ¼w2〉 so the claim follows.
Consequently 2− �∗ + � = 2 + 2� = 4=.1 + ¼/ is invertible, so replacing¦

in . / with � we get that for allb ∈ C.G̃/, c¼ ∗2 b ∗2 c¼.z/ = b.Þ.z//, where
Þ.z/ = .1 − �/=.1 + �/ = ¼.z/.

7. Systems of Cartan subalgebras for sl(n)

We now give some applications of our approach of regarding matrices from a
symbol point of view. To be very concrete, we work out some of the ramifications of
the preceding approach in the simplest possible case, that whenG = Z3 = {0; 1; 2}.
The dual group̂G can also be regarded asZ3, where the pairing betweenk ∈ G and
l ∈ Ĝ is 〈k; l 〉 = ¾ kl where¾ = e2³ i =3. Writing

G̃ = G × Ĝ = {zkl = .k; l / | 0 ≤ k; l ≤ 2}

we get〈zi j ; zkl〉 = ¾ jk−i l . The spaceV = C.G/ has basis{e0; e1; e2} whereei . j / = Ži j .
We get from Proposition4.4the formula

Wẑi j el .k/ = 〈 j ; i =2〉〈 j ; k〉Žl ;k+i = ¾ 2i j ¾ jk.l−i /Žl−i;k = ¾ j .i +l /el−i .k/:

ThusWẑi j el = ¾ j .i +l /el−i , where of course the subscripts are computed mod 3. We
will write Wẑi j = Wi j , an operator onV and letMi j denote the matrix of the operator
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in the basis{e0; e1; e2}. Here are these nine matrices:


1 0 0

0 1 0
0 0 1





1 0 0

0 ¾ 0
0 0 ¾ 2





1 0 0

0 ¾ 2 0
0 0 ¾




M00 M01 M02
0 1 0

0 0 1
1 0 0





0 ¾ 2 0

0 0 1
¾ 0 0





 0 ¾ 0

0 0 1
¾ 2 0 0




M10 M11 M12
0 0 1

1 0 0
0 1 0





 0 0 ¾

¾ 2 0 0
0 1 1





0 0 ¾ 2

¾ 0 0
0 1 0




M20 M21 M22

We now record various properties of these matrices which follow from Section6.

THEOREM7.1. (1) B = {Mi j | 0 ≤ i; j ≤ 2} forms a basis ofM.3;C/.
(2) B0 = B \ M00 forms a basis ofsl.3;C/, the trace zero3 × 3 matrices.
(3) EachMi j is invertible, in fact unitary. FurthermoreM−1

i j = M−i − j .
(4) Mi j Mkl = ¾ 2.i l − jk/Mi +k; j +l .
(5) Mi j Mkl M

−1
i j = ¾ i l − jk Mkl .

(6) M T
i j = M−i; j .

(7) Mi j = Mi;− j .
(8) If we defineM◦

i j = M ji and extend to the entire algebra linearly, then.AB/◦ =
B◦ A◦.

Some remarks are in order. We will shortly see that Property (2) is potentially
useful in Lie theory, where the fact that there is no ‘canonical’ basis of sl.n;C/
constructed from the usual basisEi j (the matrix with a single 1 in thei j th position)
is always a source of some awkwardness. Property (4) show that pairwise theMi j

‘almost’ commute. Property (5) shows that conjugation byMi j is diagonalized by the
subspaces〈Mkl〉. Properties (6) and (7) reveal a symmetry between the operations of
transposition and conjugation not so apparent in the usual formulation. Property (8)
reveals another transposition-like symmetry which is canonical in this basis.

We now point out a consequence of our discussions of subalgebras ofC.G̃/.
There are 4 subgroups of̃G of size 3, namelyG1 = {.00/; .01/; .02/}, G2 =
{.00/; .11/; .22/}, G3 = {.00/; .21/; .12/} and G4 = {.00/; .10/; .20/}. To each
corresponds a 3-dimensional commutative subalgebra ofC.G̃/ ∼= M.3;C/, spanned
by the corresponding matricesMi j . When we pass tog = sl.3;C/ regarded as a Lie
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algebra, we get the decomposition

g = h1 ⊕ h2 ⊕ h3 ⊕ h4;(∗)

whereh1 = 〈M01;M02〉, h2 = 〈M11;M22〉, h3 = 〈M21;M12〉 andh4 = 〈M10;M20〉.
This implies an interesting decomposition on the group level as well. IfHi is the

Cartan subgroup inG = SL.3;C/ corresponding tohi , then it is natural to ask to
what extent does (∗) extend to a decomposition of the formG = H1 H2 H3 H4? It will
certainly hold in a neighbourhood of the identity.

The discussion here easily generalizes to sl.n/. To what extent can we decompose
other simple Lie algebras as direct sums of Cartan subalgebras?
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