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Abstract

A subgroupH of a finite groupG is said to be c-normal inG if there exists a normal subgroupN of G
such thatG = H N with H ∩ N ≤ HG = CoreG.H/. We are interested in studying the influence of the
c-normality of certain subgroups of prime power order on the structure of finite groups.

2000Mathematics subject classification: primary 20D10, 20D30.

1. Introduction

All groups in this paper will be finite. We say, following Wang [11], that a subgroup
H of G is c-normal inG if there exists a normal subgroupN of G such thatG = H N
with H ∩ N ≤ HG, where HG = CoreG.H/ = ⋂

g∈G H g is the maximal normal
subgroup ofG which is contained inH .

Two subgroupsH andK of G are said to permute ifH K = K H . We say, following
Kegel [9], that a subgroup ofG is S-quasinormal inG if it permutes with every Sylow
subgroup ofG.

Let p be a prime and letP be ap-subgroup ofG, we write

�.P/ =
{
�1.P/ if p > 2;

�2.P/ if p = 2;

where�i .P/ is the subgroup ofP generated by its elements of order dividingpi .
Let = be a class of groups. We call= a formation if= contains all homomorphic

images of a group in=, and if G=M and G=N are in=, thenG=.M ∩ N/ is in =
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for normal subgroupsM , N of G. Each groupG has a smallest normal subgroup
N such thatG=N is in =. This uniquely determined normal subgroup ofG is called
the=-residual subgroup ofG and will be denoted byG=. A formation= is said to
be saturated ifG=8.G/ ∈ = implies G ∈ =. Throughout this paperU will denote
the class of supersolvable groups. Clearly,U is a formation. Since a groupG is
supersolvable if and only ifG=8.G/ is supersolvable [6, VI, page 713], it follows
thatU is saturated.

With every primep we associate some formation=.p/ (=.p/ could possibly be
empty). We say that= is the local formation, locally defined by{=.p/} provided
G ∈ = if and only if for every primep dividing |G| and everyp-chief factorH=K of
G, AutG.H=K / ∈ =.p/ (AutG.H=K / denotes the group of automorphisms induced
by G on H=K and it is isomorphic toG=CG.H=K /). It is known (see [5, IV, 4.6])
that a formation is saturated if and only if it is local.

We assume throughout that= is a formation, locally defined by the system{=.p/}
of full and integrated formations=.p/ (that is,Sp=.p/ = =.p/ ⊆ = for all primesp,
whereSp is the formation of all finitep-groups). It is well known (see [5, IV, 3.7])
that for any saturated formation=, there is a unique integrated and full system which
locally defines=.

A solvable normal subgroupN of a groupG is an=-hypercentral subgroup ofG (see
Huppert [7]) providedN possesses a chain of subgroups 1= N0CN1C · · ·CNr = N
satisfying (i) every factorNi +1=Ni is a chief factor ofG, and (ii) if Ni +1=Ni has
order a power of the primepi , thenG=CG.Ni +1=Ni / ∈ =.pi /. The product of all
=-hypercentral subgroups ofG is again an=-hypercentral subgroup ofG, denoted by
Z=.G/ and called the=-hypercentre of a groupG.

Ito in [8], proved that a groupG of odd order is nilpotent provided that every
subgroup ofG of prime order lies in the center ofG. Wang [11], proved that if all
subgroups ofG of prime order or order 4 are c-normal inG, thenG is supersolvable.
Deyu and Xiuyun [4], proved the following: (i) IfK is a normal subgroup of a solvable
groupG of odd order such thatG=K is supersolvable and all subgroups of Fit.K / of
prime order are c-normal inG, thenG is supersolvable. (ii) IfK is a normal subgroup
of a solvable groupG such thatG=K is supersolvable and all maximal subgroups of
all Sylow subgroups of Fit.K / are c-normal inG, thenG is supersolvable.

The aim of this paper is to improve and extend the above mentioned results in [4].
The results of our paper are obtained by independent proofs to those in [4].

Our notation is standard and taken mainly from [5].

2. Preliminary results

LEMMA 2.1. Let H ≤ K ≤ G.
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(i) If H is c-normal inG, thenH is c-normal inK .
(ii) If H is a normal subgroup ofG, thenK is c-normal inG if and only if K=H

is c-normal inG=H.

PROOF. See [11, Lemma 2.1, page 956].

LEMMA 2.2. Let P be a normalp-subgroup ofG and letQ be aq-subgroup ofG
such thatp 6= q. If Q is c-normal inG thenQ P=P is c-normal inG=P.

PROOF. See [13, Lemma 2.4].

LEMMA 2.3. Let p be the smallest prime dividing|G| and let P be a Sylowp-
subgroup ofG. If all subgroups ofP of order p or order4 are S-quasinormal and, in
particular normal, inG, thenG is p-nilpotent.

PROOF. See [10, Theorem 3.2, page 290].

LEMMA 2.4. Let K be a normal subgroup ofG such thatG=K ∈ =, where= is a
saturated formation. If�.P/ ≤ Z=.G/, whereP is a Sylowp-subgroup ofK , then
G=Op′.K / ∈ =.

PROOF. See [3, Theorem, page 2].

LEMMA 2.5. If G is a solvable group and all subgroups ofFit.G/ of prime order or
order4 are S-quasinormal and, in particular normal, inG, thenG is supersolvable.

PROOF. See [2, Corollary 2, page 402].

LEMMA 2.6. If = is a saturated formation andN is an=-hypercentral subgroup of
G, thenG=CG.N/ ∈ =.

PROOF. This is an easy consequence of a result due to Huppert (see [5, IV, 6.10]).

LEMMA 2.7. Let = be a saturated formation containingU. Suppose thatG is
a solvable group with a normal subgroupK such thatG=K ∈ =. If all maximal
subgroups of all Sylow subgroups ofFit.K / are S-quasinormal and, in particular
normal, inG, thenG ∈ =.

PROOF. See [1, Theorem 1.4, page 3650].

LEMMA 2.8. Let P be a normalp-subgroup ofG. If P ∩8.G/ = 1, thenP is a
direct product of abelian minimal normal subgroups ofG.

PROOF. See [5, Theorem 10.6, page 36].
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3. Main results

We begin with the following lemma:

LEMMA 3.1. Let p be the smallest prime dividing|G| and let P be a Sylowp-
subgroup ofG. If all subgroups ofP of order p or order4 are c-normal inG, thenG
is p-nilpotent.

PROOF. We prove the result by induction on|G|. If all subgroups ofP of orderp or
order 4 are normal inG, thenG is p-nilpotent by Lemma2.3. Thus, we may assume
that there exists a subgroupH of P of order p or order 4 such thatH is not normal
in G. By hypothesis,H is c-normal inG. Then there exists a normal subgroupN of
G such thatG = H N with H ∩ N ≤ HG, and sinceH is not normal inG, it follows
that N < G. Clearly, P ∩ N is a Sylow p-subgroup ofN. By Lemma2.1 (i), all
subgroups ofP ∩ N of order p or order 4 are c-normal inN. Then, by induction on
|G|, N is p-nilpotent and so also doesG.

REMARK. The formationU of all supersolvable groups is locally defined by the
integrated and full system{U.p/}, where for each primep, U.p/ is the class of all
strictly p-closed groups (see [12, Theorem 1.9 and Corollary 1.5]). (Letp be a prime.
A group G is said to be strictlyp-closed wheneverP, a Sylow p-subgroup ofG, is
normal inG with G=P abelian of exponent dividingp − 1.)

We can now prove:

THEOREM3.2. Let= be a saturated formation containingU and letG be a group.
Then the following two statements are equivalent:

(i) G ∈ =.
(ii) There exists a normal subgroupK in G such thatG=K ∈ = and all subgroups

of K of prime order or order4 are c-normal inG.

PROOF. (i) implies (ii): If G ∈ =, then (ii) is true withK = 1.
(ii) implies (i): Suppose the result is false and letG be a counterexample of minimal

order. By Lemma2.1 (i) and Lemma3.1, K possesses an ordered Sylow tower and
so K has a normal Sylowp-subgroupP, wherep is the largest prime dividing|K |.
Clearly, P is a normalp-subgroup ofG and so.G=P/=.K=P/ ∼= G=K ∈ =. By
Lemma2.2, all subgroups ofK=P of prime order or order 4 are c-normal inG=P.
Then, by the minimality ofG, G=P ∈ =. Hence, 16= G= ≤ P. If all subgroups ofG=

of orderp or order 4 are normal inG, then�.G=/ ≤ ZU.G/ (see the above Remark).
SinceU and= are saturated formations withU ⊆ =, it follows that ZU.G/ ≤ Z=.G/
(see [5, IV, 3.11]). Hence�.G=/ ≤ Z=.G/. Applying Lemma2.4, G ∈ =; a
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contradiction. Thus, there exists a subgroupH of G= of order p or order 4 such that
H is not normal inG. By hypothesis,H is c-normal inG. Then there exists a normal
subgroupN of G such thatG = H N with H ∩ N ≤ HG, and sinceH is not normal
in G, it follows that N < G. Clearly,G= � N. SinceG=N is a p-group, it follows
thatG=N ∈ U ⊆ =. Hence,G= ≤ N; a final contradiction.

Below we list some immediate corollaries of Theorem3.2.

COROLLARY 3.3 (Wang [11, Theorem 4.2, page 964]).If all subgroups ofG of
prime order or order4 are c-normal inG, thenG is supersolvable.

COROLLARY 3.4. If all subgroups of a groupG of prime order are c-normal inG,
thenG is supersolvable if and only ifG is p-nilpotent, wherep is the smallest prime
dividing |G|.

COROLLARY 3.5. If G is a solvable group and all subgroups ofFit.G/ of prime
order or order4 are c-normal inG, thenG is supersolvable.

PROOF. We prove the result by induction on|G|. If all subgroups of Fit.G/ of
prime order or order 4 are normal inG, thenG is supersolvable by Lemma2.5. Thus,
we may assume that there exists a subgroupH of Fit.G/ of prime order or order 4
such thatH is not normal inG. By hypothesis,H is c-normal inG. Then there exists
a normal subgroupN of G such thatG = H N with H ∩ N ≤ HG, and sinceH is not
normal inG, it follows thatN < G. Clearly,G = Fit.G/N and Fit.N/ < Fit.G/. By
Lemma2.1 (i), all subgroups of Fit.N/ of prime order or order 4 are c-normal inN.
Then, by induction on|G|, N is supersolvable. SinceG=Fit.G/ ∼= N=.N ∩ Fit.G//
is supersolvable, it follows by Theorem3.2, thatG is supersolvable.

The following example shows that the converse of Corollary3.3, is not true.

EXAMPLE. Let Cn be a cyclic group of ordern. Consider the wreath product
G = C9 rwr C2. Then|G| = |C2||C9|2 and soG is supersolvable. It is easy to check
that8.G/ contains a subgroupH of order 3 that fails to be normal inG and henceH
is not c-normal inG. The same example shows that the converse of Corollary3.5, is
not true.

We are now ready to prove:

THEOREM3.6. Let= be a saturated formation containingU and letG be a group.
Then the following two statements are equivalent:

(i) G ∈ =.
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(ii) There exists a normal solvable subgroupK in G such thatG=K ∈ = and all
subgroups ofFit.K / of prime order or order4 are c-normal inG.

PROOF. (i) implies (ii): If G ∈ =, then (ii) is true withK = 1.
(ii) implies (i): Suppose the result is false and letG be a counterexample of

minimal order. By Lemma2.1(i) and Corollary3.5, K is supersolvable. Then by [12,
Theorem 1.8, page 6],K possesses an ordered Sylow tower and soK has a normal
Sylow p-subgroupP, where p is the largest prime dividing|K |. Clearly, P is a
normalp-subgroup ofG. If all subgroups ofP of orderp or order 4 are normal inG,
then�.P/ ≤ ZU.G/. SinceU and= are saturated formations withU ⊆ =, it follows
that ZU.G/ ≤ Z=.G/ (see [5, IV, 3.11]). Hence�.P/ ≤ Z=.G/. By Lemma2.6,
G=CG.�.P// ∈ = and sinceG=K ∈ =, it follows that G=CK .�.P// ∈ =. Let V
be a Sylowp-subgroup ofCK .�.P//. Clearly,�.V/ ≤ �.P/ ≤ Z=.G/. Then by
Lemma2.4, G=Op′.CK .�.P/// ∈ = and sinceOp′.CK .�.P/// ≤ Op′.K /, it follows
thatG=Op′.K / ∈ =. Then

.G=P/=.Op′.K /P=P/ ∼= G=Op′.K /P ∼= .G=Op′.K //=.Op′.K /P=Op′.K // ∈ =

Put Fit.Op′.K /P=P/ = L=P. Clearly,L = P.L∩Op′.K //and soL=P ∼= L∩Op′.K /
is nilpotent. SinceP andL ∩ Op′.K / are normal nilpotent subgroups ofK , it follows
that L = P.L ∩ Op′.K // is a normal nilpotent subgroup ofK . Then L ≤ Fit.K /
and so Fit.Op′.K /P=P/ = Fit.K /=P. Hence, by Lemma2.2, all subgroups of
Fit.Op′.K /P=P/ of prime order or order 4 are c-normal inG=P. By the minimality
of G, G=P ∈ =. Then by Theorem3.2, G ∈ =; a contradiction. Thus, there exists a
subgroupH of P of orderp or order 4 such thatH is not normal inG. By hypothesis,
H is c-normal inG. Then there exists a normal subgroupN of G such thatG = H N
with H ∩ N ≤ HG and sinceH is not normal inG, it follows that N < G. Clearly,
G = P N = K N and soG=K ∼= N=.N ∩ K / ∈ =. SinceN ∩ K is a normal subgroup
of K , it follows that Fit.N ∩ K / ≤ Fit.K /. Hence, by Lemma2.1 (i), all subgroups
of Fit.N ∩ K / of prime order or order 4 are c-normal inN. By the minimality ofG,
N ∈ =. SinceG=P ∼= N=.N ∩ P/ ∈ =, it follows by Theorem3.2, that G ∈ =; a
final contradiction.

Finally we prove the following result:

THEOREM3.7. Let= be a saturated formation containingU and letG be a solvable
group. Then the following two statements are equivalent:

(i) G ∈ =.
(ii) There exists a normal subgroupK in G such thatG=K ∈ = and all maximal

subgroups of all Sylow subgroups ofFit.K / are c-normal inG.
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PROOF. (i) implies (ii): If G ∈ =, then (ii) is true withK = 1.
(ii) implies (i): Suppose the result is false and letG be a counterexample of minimal

order. We separate the proof into two cases:
Case 1.K ∩8.G/ 6= 1. Then there exists a primep such thatp divides|K ∩8.G/|.

Let P be a Sylowp-subgroup ofK∩8.G/. Clearly,P is a normalp-subgroup ofG and
so.G=P/=.K=P/ ∼= G=K ∈ =. By [6, Satz 3.5, page 270], Fit.K=P/ = Fit.K /=P.
Then by Lemma2.1(ii) and Lemma2.2, all maximal subgroups of all Sylow subgroups
of Fit.K=P/ are c-normal inG=P. By the minimality of G, G=P ∈ =. Since
P ≤ 8.G/ and= is a saturated formation, it follows thatG ∈ =; a contradiction.

Case 2.K ∩8.G/ = 1. If all maximal subgroups of all Sylow subgroups of Fit.K /
are normal inG, thenG ∈ = by Lemma2.7; a contradiction. Thus, there exists a
maximal subgroupP1 of a Sylow p-subgroupP of Fit .K /, for some primep, such
that P1 is not normal inG. By hypothesis,P1 is c-normal inG. Then there exists a
normal subgroupH of G such thatG = P1H with P1 ∩ H ≤ .P1/G, and sinceP1 is
not normal inG, it follows that H < G. Let M be a maximal subgroup ofG such
that H ≤ M < G. ThenM is a normal subgroup ofG asG=H is a p-group and so
G = P1M = P M. SinceP ∩ 8.G/ = K ∩ 8.G/ = 1, it follows by Lemma2.8,
that P = R1 × R2 × · · ·× Rn, whereRi is a minimal normal subgroup ofG, for every
1 ≤ i ≤ n. ThenRi � M , for somei . Hence,G = Ri M andRi ∩ M = 1. Clearly,
.G=Ri /=.K=Ri / ∼= G=K ∈ =. Put Fit.K=Ri / = L=Ri . SinceRi ≤ L ≤ Ri M = G,
it follows that L = Ri .L ∩ M/ and soL=Ri

∼= L ∩ M is nilpotent. SinceRi and
L ∩ M are normal nilpotent subgroups ofG, it follows thatL = Ri .L ∩ M/ is a normal
nilpotent subgroup ofG. ThenL = Fit.K / and so Fit.K=Ri / = Fit.K /=Ri . Hence,
by Lemma2.1 (ii) and Lemma2.2, all maximal subgroups of all Sylow subgroups
of Fit.K=Ri / are c-normal inG=Ri . By the minimality of G, G=Ri ∈ =. Since
G=M ∼= Ri ∈ U ⊆ =, it follows thatG ∼= G=.Ri ∩ M/ ∈ =; a final contradiction.

REMARKS. (i) Our results are not true for saturated formations which do not
containU. For example, if= is the saturated formation of all nilpotent groups, then
the symmetric group of degree three is a counterexample.

(ii) Our results are not true for non-saturated formations. Let= be the formation
composed of all groupsG such thatGU, the supersolvable residual, is elementary
abelian. Clearly,U ⊆ = but = is not saturated. PutG = SL.2; 3/ and K = Z.G/.
ThenG=K is isomorphic to the alternating group of degree four and soG=K ∈ =, but
G does not belong to=.

(iii) Theorem3.2 is not true in general if we replace the condition ‘prime order
or order 4’ by ‘prime order’, as the following example shows. The class= = <U
of groups whose derived subgroup is nilpotent is a saturated formation containing
the classU of supersolvable groups (see [6, VI, 9.1 (b)]). Consider the groupG =
GL.2; 3/. This group has a normal subgroupK isomorphic to to the quaternion
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group of order 8 such thatG=K is isomorphic to the symmetric group of degree 3.
Therefore we have thatG=K ∼= =. Notice that the unique subgroup ofK with prime
order isZ.K / and this is not only ac-normal subgroup ofG. But the derived group
G′ = SL.2; 3/ is not nilpotent, and thenG =∈ =. SinceK is a nilpotent group, the
same example shows Theorem3.6is not true in general if we require that all subgroups
of Fit.K / of prime order arec-normal inG.

(iv) Theorems3.6 and 3.7 are not true if we omit the condition of solvability.
Put G = H × K , where H ∈ U and K = SL.2; 5/. Then | Fit.K /| = 2 and
G=K ∼= H ∈ U, but G does not belong toU.
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