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Abstract

This paper gives a characterisation of finite supersoluble groups of Wielandt length two of order coprime
to six.

2000Mathematics subject classification: primary 20D15.

1. Introduction

This paper treats finite supersoluble groups of Wielandt length two and provides a
characterisation of such groups whose order is coprime to six.

Recall that the Wielandt subgroup!.G/ of a groupG is the subgroup of elements
of G normalising each subnormal subgroup ofG. It is non-trivial in every finite, non-
trivial group ([9]). A group has Wielandt length one if!.G/ = G. But if !.G/ 6= G
and!.G=!.G// = G=!.G/ thenG is said to have Wielandt length two. We will
denote byW2 the class of all finite groups of Wielandt length at most two.

The main results of this paper can be thought of as a generalisation of results of [6]
for p-groups of Wielandt length two and what we need from [6] is summarised and
extended in section two. One of our main results is that a non-nilpotent supersoluble
group of odd order and Wielandt length 2 splits over its nilpotent residual (Theo-
rem3.6). This result is a consequence of the technical result (Theorem3.5) which is
also crucial in the characterisation of these groups in Section4. The characterisation
of supersoluble groups of Wielandt length two and order coprime to six essentially
comes from analysing the properties that the splitting theorem gives us and can be
summarised by saying that we can find sufficient information about the structure of
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the nilpotent residual and a complement, as well as the action of a complement on the
residual to ensure that a group with those properties will be a supersoluble group of
Wielandt length two and exponent coprime to six. However the details are rather tech-
nical and we show how the group can be built up one prime at a time. Definition4.1
extracts the necessary features of a normal Sylow subgroup, while Definition4.3gives
the way in which a complement of a normal Sylow subgroup must act on the normal
Sylow subgroup. Then Theorem4.6and Theorem4.7show that supersoluble groups
of Wielandt length two and order coprime to six are characterised as groups with the
structure given by these definitions. The restriction to groups of order coprime to six
comes from the fact thatp-groups of Wielandt length two are more difficult to classify
for the primes two and three. Indeed 2-groups of Wielandt length two have not yet
been classified.

2. Preliminary results

For convenience, we state some results we will use frequently in what follows and
will use them without further reference.

THEOREM2.1 ([3, A.1.3]). LetU;V andW be subgroups of a groupG with V ⊆ U.
ThenU ∩ .V W/ = V.U ∩ W/.

THEOREM 2.2 ([3, Proposition A.12.5]).If Q is a ³ ′-group of operators of a³ -
group P, then

(1) P = [P; Q]CP.Q/.
(2) [P; Q] = [P; Q; nQ] for all n ≥ 1.
(3) If P is abelian, thenP = [P; Q] × CP.Q/.

THEOREM 2.3 ([1, Theorem 2.4]).Let G = B A be a semidirect product of sub-
groups A and B of coprime order withA nilpotent and normal. IfP is the set of
those elements of!.B/which act by conjugation as power automorphisms onA, then
!.G/ = P!.A/.

For the applications we make in later sections we have found it useful to complete
some of the detail omitted in Ormerod’s Theorem [6]. Our account will be directed
to the application we make in the later sections, where the groups will have order
coprime to six: the 3-groups in Ormerod’s work will therefore be omitted here.

We begin with the presentation of the following group

H =
〈
x; y : [x; y; x] = xpr

; [x; y; y] = ypr

; xp2r = yp2r = [x; y]pr = 1
〉
:(2.1)
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It is easy to see, by Dyck’s Theorem, that there is a homomorphism from Ormerod’s
group H.p; r / onto H . Since by its construction|H | = p5r = |H.p; r /|, H is
isomorphic toH.p; r /.

The properties we require ofH.p; r / are summed up in the following theorem.

THEOREM 2.4. H = H.p; r / is a regular group of orderp5r and nilpotency class
three satisfying

(1) H=H ′ ∼= Cpr × Cpr ;
(2) Z2.H/ has exponentpr ;
(3) H=
3.H/ has exponentpr .

The proofs follow easily from the relations in (2.1).
Now let Ln.pr / be the free group of rankn in the variety of all groups of nilpotency

class at most two and exponent dividingpr . Next setGn.pr / = H.p; r / ∗N2 Ln.pr /

for n ≥ 1, r ≥ 1, the second nilpotent product ofH.p; r / and Ln.pr / (the second
nilpotent product of groupsA and B is defined to beE=N, whereE = A ∗ B is the
free product ofA andB andN = [[A; B]G;G;G]; see for example [5, Section 6.4].

For a p-group A, definee.A/ to be the positive number such thatpe.A/ is the
exponent ofA=
3.A/ and note thate.H.p; r // = r .

The next result gives the classification ofW2-groups of [6] and is essential in our
classification.

THEOREM 2.5 ([6, Theorem A]).Let p > 3 be a prime. For alln ≥ 1, r ≥ 1,
Gn.pr / ∈ W2.

Conversely, ifG ∈ W2 is a p-group withe.G/ = r and if G can be generated by
n + 2 elements, thenG is a homomorphic image ofGn.pr /.

For convenience, we writeG = Gn.pr /, H = H.p; r / and L = Ln.pr / in what
follows, p, n andr being understood.

Now we state results, which give connections between two numerical invariants of
p-groups inW2 and are used later in the article.

LEMMA 2.6. (1) Z2.G/ = Z2.H/L[L ; H ]:
(2) e.G/ = e.H/:
(3) Let A be a p-group, with p > 3, and Wielandt length two. ThenZ2.A/ has

exponent dividingpe.A/.

PROOF. (1) By the definition of second nilpotent product, we haveG = H L[L ; H ].
Also Z2.H/L[L ; H ] ⊆ Z2.G/; andZ2.G/ ∩ H ⊆ Z2.H/. Therefore,

Z2.H/L[L ; H ] ⊆ Z2.G/ ⊆ L[L ; H ].Z2.G/ ∩ H/ ⊆ L[L ; H ]Z2.H/;
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which gives the result claimed.
(2) This is because every commutator of weight three inG is a power of one

of the forms[h1; h2; h3]; [h1; l1; h2]; [h1; l1; l2] or [l1; l2; l3], wherehi ∈ H , l i ∈ L
(1 ≤ i ≤ 3/. Here we use the Jacobi identity which holds in a metabelian group.
However, all but the first of these are necessarily trivial inG. Hence
3.G/ = 
3.H/.
It follows thatG=
3.G/ ∼= H=
3.H/ ∗N2 L. Both factors on the right have exponent
dividing pe.H/ andH=
3.H/ has exactly this exponent, so, by regularity,G=
3.G/ has
the exponent exactlype.H/. That ise.G/ = e.H/, as required.

(3) If A has nilpotency class at most two, there is nothing to prove. So suppose that
A has nilpotency class three, and that it can be generated byn + 2 elements. Then,
for someN C G = Gn.pe.A//;G=N ∼= A.

Suppose thatg ∈ G and gN ∈ Z2.G=N/. SinceZ2.G/N=N ⊆ Z2.G=N/ and
Z2.G/ has exponentpe.A/ by Theorem2.4 and (1) above, we may suppose that
g 6∈ Z2.G/ and therefore thatg ∈ H but g 6∈ H ′, sinceG is regular.

Moreover we may suppose thatg = xmyn for some integersm; n. Then for
r = e.A/:

xmpr = [x; y; x]m = [g; y; x] ∈ N

and

ynpr = [x; y; y]n = [y; x; y]−n = [g; x; y]−1 ∈ N:

From this we see, using [4, Satz 3.9.4], thatgpr = .xmyn/pr = xmpr
ynpr ∈ N.

HenceZ2.A/ has exponent dividingpr = pe.A/.

LEMMA 2.7. Let p > 3 be a prime, letG1 be a p-group of Wielandt length two
and nilpotency class three andG2 a p-group of nilpotency class at most two. Let
W = G1 ∗N2 G2. If N ⊆ [G1;G2] is a normal subgroup ofW, thenW=N ∈ W2 if and
only if the exponent ofG2 dividespe.G1/.

PROOF. First suppose thatG2 has exponent dividingpr , wherer = e.G1/. Also
suppose thatG2 is generated bym elements. By Theorem2.5, for some positive
integern, there is an onto homomorphism� : Gn.pr / → G1. It follows that� may
be extended to an onto homomorphismGm+n.pr / → G1 ∗N2 G2, so W ∈ W2 by
Theorem2.5and henceW=N ∈ W2.

Conversely suppose thatW=N ∈ W2. Then

G2
∼= G2N=N ⊆ Z2.W/N=N ⊆ Z2.W=N/

and so the exponent ofG2 divides pe.W=N/ by Lemma2.6‘(3). Therefore

.W=N/=
3.W=N/ ∼= W=
3.W/N ∼= .W=
3.W//=.
3.W/N=
3.W//

soe.W=N/ ≤ e.W/ = e.G1/. Hence the exponent ofG2 divides pe.G1/ as required.
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3. Some basic results

The main result of this section is Theorem3.6 which says that in a supersoluble
group of odd order and Wielandt length two, the nilpotent residual is complemented.
To prove this fact we need the following results.

LEMMA 3.1. Let A be a normal Sylowp-subgroup of a non-nilpotent groupG
and B be a Hall p′-subgroup ofG.

If N is the nilpotent residual ofG and H is the nilpotent residual ofB, then
N = H [B; A].

PROOF. SinceA is a normal Sylowp-subgroup ofG, we have[B; A] = [B; A; j B]
for all j ≥ 1 and so[B; A] ⊆ N. Since[B; A] is normal inG, we have

G=[B; A] = .B[B; A]=[B; A]/ × .A=[B; A]/
and soN=[B; A] is the nilpotent residual ofB[B; A]=[B; A].

Clearly, B[B; A]=H [B; A] is nilpotent and soN ⊆ H [B; A]. On the other hand,
the nilpotent residual ofB[B; A]=[B; A] is isomorphic to the nilpotent residual of
B=.B ∩ [B; A]/ ∼= B. ThereforeN=[B; A] ∼= H and henceN = H [B; A].

LEMMA 3.2. Let A be a normal Sylowp-subgroup of a non-nilpotent soluble group
G of odd order and Wielandt length two andB be a Hall p′-subgroup ofG. If B acts
non-trivially on A=!.A/, thenA has nilpotency class at most two.

PROOF. Since A is normal,A ∈ W2 and thereforeA=!.A/ is abelian. Also, it is
easy to see thatA has nilpotency class at most three.

Let us suppose, contrary to the claim of the lemma thatA has nilpotency class
exactly three. It follows from Theorem2.5that A has elementsa1; a2 for which

[a1; a2; a1] = apr

1 ;

wherer = e.A/. Now sinceG=!.G/ is a T-group,B!.G/=!.G/ acts as a power
automorphism by conjugation onA=!.A/ (by [7, 13.4.4 and 13.4.6]) and it is imme-
diate from [2, Theorem 5.3.1] that these power automorphisms are universal (that is,
they map each element ofA=!.A/ to the same power). Supposeb ∈ B induces a non-
trivial universal power automorphism by conjugation onA=!.A/. Then there exists
an integerm which is not divisible byp, for which ab

1 = am
1 c andab

2 = am
2 d where

c; d ∈ !.A/ ⊆ Z2.A/, by [8]. Then, using the regularity ofA and Lemma2.6(3):

[a1; a2; a1]m3 = [am
1 c; am

2 d; am
1 c] = [a1; a2; a3]b = .apr

1 /
b = .am

1 c/pr

= .am
1 /

pr

cpr [c; am
1 ]−pr .pr −1/=2 = .apr

1 /
m = [a1; a2; a1]m:
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It follows thatm3 − m ≡ 0 .mod p/. Hencem2 ≡ 1 .mod p/ asm 6≡ 0 .mod p/.
This means thatb2 ∈ CB..A=!.A/=.8.A=!.A/// whenceb2 ∈ CB.A=!.A// by [3,
Theorem A.9.14]. Thereforeb ∈ CB.A=!.A// because|B| is odd. This contradicts
our choice ofb. We conclude therefore, thatA has nilpotency class at most two, as
claimed.

The following lemmas give useful information about (non-nilpotent) supersoluble
groups. The statements involve increasingly more precise hypothesis on the groups
involved.

LEMMA 3.3. Let A be a normal Sylowp-subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two andB be a Hall p′-subgroup ofG.
Then either[B; A] ⊆ !.A/ or CA.B/ ⊆ !.A/.

PROOF. As in Lemma3.2 B acts as a group of universal power automorphism
on A=!.A/. Therefore, either[b; A] ⊆ !.A/ for all b ∈ B or, for someb ∈ B,
CA=!.A/.b/ = 1. Therefore, either[B; A] ⊆ !.A/ or CA.B/ ⊆ !.A/.

The next lemma gives more information about the semidirect product of subgroups
of coprime order of a group.

LEMMA 3.4. Let A be a normal Sylow subgroup of a supersoluble groupG of odd
order andB a Hall p′-subgroup ofG. SupposeA has nilpotency class exactly two,
B acts as a group of universal power automorphisms onA=!.A/ and [B; A] = A.
ThenCA.B/ = 1.

PROOF. By [3, Theorem A.11.6],A=A′ has a direct decomposition

A=A′ = A1=A′ × · · · × As=A′

into B-admissible subgroupsAi =A′ with the following properties for eachi =
1; : : : ; s:

(1) Ai=A′ is indecomposable as aB-module.
(2) .Ai=A′/=8.Ai =A′/ is an irreducibleB-module.

SinceA is supersoluble,.Ai =A′/=8.Ai =A′/ is cyclic of prime order. HenceAi =A′ is
cyclic by [7, 5.2.12]. ThereforeAi =A′ = 〈yi A′〉, for 1 ≤ i ≤ s, is cyclic of prime

power order. Letb ∈ B. Then we may writeyb
i = y

m.b/
i

i ci for someci ∈ A′ and some
integersm.b/

i , for 1 ≤ i ≤ s. Note thatm.b/
i 6≡ 0 .mod p/, for 1 ≤ i ≤ s. Since

A′ ⊆ 8.A/, it follows that A = 〈y1; y2; : : : ; ys〉, by [7, 5.2.12]. Also note that for
eachi there is at least oneb ∈ B such thatm.b/

i 6≡ 1 .mod p/: otherwise[B; A] 6= A.
We aim now to show that

A′ = 〈[yi ; yj ] : yi 6∈ !.A/; yj 6∈ !.A/〉:
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To this end suppose that, for somej , yj ∈ !.A/. Then chooseb ∈ B such that
m.b/

j 6≡ 1 .mod p/. For simplicity we writemi = m.b/
i , for 1 ≤ i ≤ s. By [6,

Corollary 4.3] there is an integern such that[yi ; yj ] = yn
i for 1 ≤ i ≤ s. Note thatp

dividesn, otherwise[yi ; yi ] 6= 1. Hence, sinceA has nilpotency class two,

[yi ; yj ]mi mj = [yi ; yj ]b = .yn
i /

b = .yb
i /

n = .ymi

i ci /
n

= .yn
i /

mi cn
i [ci ; ymi

i ]n.n−1/=2 = [yi ; yj ]mi cn
i [ci ; ymi

i ]n.n−1/=2;

whence[yi ; yj ]mi .mj −1/ ∈ 8.A′/. Now [yi ; yj ] 6∈ 8.A′/ would meanmi .mj − 1/ ≡ 0
.mod p/ leading tomj ≡ 1 .mod p/, a contradiction. Hence[yi ; yj ] ∈ 8.A′/.
It follows that A′ is generated by the commutators[yi ; yj ] where neitheryi nor yj

belongs to!.A/.
Finally, we are given that eachb ∈ B induces, by conjugation, a universal power

automorphism onA=!.A/. That is, in particular, for some integerm, m ≡ m.b/
i

.mod p/ if yi 6∈ !.A/. It follows that, for all such pairsi; j (whenyi ; yj 6∈ !.A/),
[yi ; yj ]b = [yi ; yj ]mi mj = [yi ; yj ]m2

.mod8.A′//:

Hence[yi ; yj ]b = [yi ; yj ] .mod8.A′// if and only if m2 ≡ 1 .mod p/ and that is
if and only if yb2

i = yi .mod A′/ whence if and only ifyb
i = yi .mod A′/ since

.2; |b|/ = 1. This is a contradiction to our choice ofb. Hence at least oneb ∈ B
acts fixed point freely onA′=8.A′/ and so[A′; B] = A′. ThusCA′.B/ = 1. Finally
note thatCA=A′.B/ = 1 sinceA=A′ = [B; A=A′]. ThereforeCA.B/ ⊆ CA.B/ ∩ A′ =
CA′.B/ = 1 as required.

THEOREM3.5. Let Abe a normal Sylowp-subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two andB be a Hall p′-subgroup ofG.
Then[B; A] ∩ CA.B/ = 1.

PROOF. If A is abelian, the result is immediate. Therefore suppose thatA is
non-abelian. As in Lemma3.2, we see thatB acts as a group of universal power
automorphisms onA=!.A/. By Lemma3.3, either[B; A] ⊆ !.A/orCA.B/ ⊆ !.A/.
First suppose that[B; A] ⊆ !.A/. As!.A/ is abelian, we have that

!.A/ = [!.A/; B] × C!.A/.B/:

But [B; A; B] = [B; A] and[B; !.A/; B] = [B; !.A/]. Now

[B; A] = [B; A; B] ⊆ [!.A/; B] ⊆ [B; A];
so [B; A] = [B; !.A/]. As we know from above that[B; !.A/] ∩ C!.A/.B/ = 1,
therefore[B; A] ∩ C!.A/.B/ = 1. But C!.A/.B/ = !.A/ ∩ CA.B/. Therefore,
[B; A] ∩ CA.B/ = 1 (as[B; A] ⊆ !.A/), as required.
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Now suppose thatCA.B/ ⊆ !.A/ so that[B; A=!.A/] = A=!.A/. If [B; A] is
abelian, we haveC[B;A].B/ = 1 and henceCA.B/ ∩ [B; A] = 1 as required.

We get the same result when[B; A] is non-abelian because[B; A] and B satisfy
the hypothesis of Lemma3.4: here we have relied on Lemmas3.2and3.3.

Now we use these results to prove the following theorem.

THEOREM 3.6. Let N be the nilpotent residual of a supersoluble groupG of odd
order and Wielandt length two. ThenN is complemented inG.

PROOF. If G is nilpotent, there is nothing to prove. Therefore we suppose thatG
is non-nilpotent. LetA be the normal Sylowp-subgroup ofG, wherep is the largest
prime dividing|G| andB a Hall p′-subgroup ofG so thatG = B A. We can also write
G = B.CA.B/[B; A]/. By induction on the order ofG, if B is non-nilpotent then the
nilpotent residual (sayH ) of B must be complemented inB. Let X be a complement
of H so thatB = X H. If B is nilpotent thenH = 1 andX = B. By Lemma3.1, we
know thatN = H [B; A]C G. Let Y = XCA.B/. ThenG = NY and

N ∩ Y = H [B; A] ∩ XCA.B/ = .H ∩ X/.[B; A] ∩ CA.B//:

But by Theorem3.5we haveCA.B/ ∩ [B; A] = 1. ThereforeN ∩ Y = 1. Thus we
conclude thatN is complemented inG.

The following result gives a necessary and sufficient condition for the direct product
of an abelian group and a T-group to be a T-group.

LEMMA 3.7. Let G1 be a T-group andB1 be a complement of
3.G1/ in G1. If G2

is abelian, thenG1 × G2 is a T-group if and only if.|
3.G1/|; |G2|/ = 1 and B1 × G2

is a Dedekind group.

PROOF. The existence ofB1 is ensured by [7, 13.4.4]. The proof is a routine
application of [7, 13.4.6 and 13.4.4].

The following lemma gives conditions for an abelianp-group G1 (for a prime
p > 3) acting as a group of power automorphisms on ap-group G2 of nilpotency
class at most two, to lie in the Wielandt subgroup of the semidirect productG1G2.

We use the standard notation�r .G2/ to denote the subgroup ofG2 generated by
elements of orderpr .

LEMMA 3.8. LetG1 be an abelianp-group(for p > 3) of exponentpr andG2 be a
p-group of nilpotency class at most two. Let� : G1 → Paut.G2/ be a homomorphism
and writeG = G1G2 for the semidirect product ofG2 byG1 under� . ThenG1 ⊆ !.G/
if and only ifG1 centralises�r .G2/.
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PROOF. We start by observing that sinceG1 is abelian, we haveG′ = G′
2[G2;G1].

Also sinceG1 ⊆ Paut.G2/, [2, Theorem 2.2.1] gives the following

[G2;G1] ⊆ Z.G2/

and henceG′ ⊆ Z.G2/ (sinceG′
2 is also contained inZ.G2/).

Now suppose thatG1 ⊆ !.G/ then by [8], we haveG1 ⊆ !.G/ ⊆ Z2.G/ and we
know from [7, 5.1.11(3)] thatZ2.G/ commutes withG′. ThereforeG′ centralisesG1

and henceG′ ⊆ Z.G/ and soG has nilpotency class at most two.
SinceG1 is abelian of exponentpr , it is generated by elements of orderpr . So it

is sufficient to show that elements of orderpr of G1 centralise�r .G2/. Let g1 be an
element ofG1 such that|g1| = pr and letg2 ∈ �r .G2/. Note that the exponent of
�r .G2/ divides pr , sinceG2 is regular. Now putg = g1g2. For x ∈ G1, there exists
an integerm such thatgx = gm and so.g1g2/

x = g1gx
2 = .g1g2/

m. But asG is a
regular p-group,G1 acts as a group of universal power automorphisms onG by [2,
Theorem 5.3.1]. So we havegx

2 = gm
2 . But using [4, Satz 3.9.4], we have

g1gm
2 = .g1g2/

m = gm
1 gm

2 [g2; g1]−m.m−1/=2:

As G1 ∩ G2 = 1, we havegm−1
1 = [g2; g1]m.m−1/=2 = 1. This means thatm ≡ 1

.mod |g1|/ and thereforem ≡ 1 .mod |g2|/ (as|g2| divides|g1|). Thus we conclude
thatgx

2 = g2 and soG1 acts trivially on�r .G2/.
Conversely suppose thatG1 centralises�r .G2/. For anyg ∈ G, there existg1 ∈ G1

andg2 ∈ G2 such thatg = g1g2. Let x ∈ G1. By hypothesis ifg2 ∈ �r .G2/, then
gx = g. Suppose thatg2 does not belong to�r .G2/ and let|g2| = ps for s > r . But
gps−r

2 is an element ofG2 such that|gps−r

2 | = pr and hence belongs to�r .G2/. This
means that.gps−r

2 /x = gps−r

2 . But asG2 is a regularp-group,G1 acts as a group of
universal power automorphisms onG2 by [2, Theorem 5.3.1]. Therefore there exists a
positive integerm such thatgx

3 = gm
3 for all g3 ∈ G2 and so.gps−r

2 /x = gmps−r

2 = gps−r

2 .
Thereforegps−r .m−1/

2 = 1 and hence.m − 1/ps−r = tps for some positive integert .
This meansm − 1 = tpr and som = 1 + tpr . Hencegx = gx

1 gx
2 = g1gx

2 = gm
1 gm

2 .
We claim thatgm

1 gm
2 = .g1g2/

m. By [4, Satz 3.9.4], we have

gm
1 gm

2 = .g1g2/
mc2
.m

2/c3
.m

3/y;

wherec2 andc3 are products of commutators with entriesg1 andg2 of weight two and
three respectively, andy ∈ 
4.G/. But sincegm−1

1 = 1, we immediately see from [4,
Satz 3.10.6] thatc2

.m
2/c3

.m
3/ = 1, sincep ≥ 5. This means thatgm

1 gm
2 = .g1g2/

my and
hence.g
4.G//x = gm
4.G/. Thus

G1
4.G/=
4.G/ ⊆ !.G=
4.G//:
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SinceG=
4.G/ has a factorisation satisfying the hypothesis of the theorem we have,
from the first paragraph of the proof, thatG=
4.G/ has nilpotency class two. In other
words,
3.G/ ⊆ 
4.G/ and sinceG is nilpotent, we immediately see that
3.G/ = 1
and henceG has nilpotency class at most two. This proves our claim that

gx = gm
1 gm

2 = .g1g2/
m = gm

and thusG1 ⊆ !.G/.

We explicitly record one of the main features of the above theorem.

COROLLARY 3.9. LetG1 be an abelianp-group of exponentpr andG2 be ap-group
of nilpotency class at most two on whichG1 acts as a group of power automorphisms.
If G1 centralises�r .G2/, then the semidirect product ofG2 byG1 has nilpotency class
at most two.

We will need the following result: it has a routine proof.

THEOREM 3.10. Let G = B A where A is normal in G and A ∩ B = 1 with A
nilpotent andB supersoluble. ThenG is supersoluble if and only if for every primeq
dividing |A|, Bq′=CBq′ .Aq/ is abelian of exponent dividingq − 1, whereBq′ is a Hall
q′-subgroup ofB.

4. A structure theorem

We now have enough information in hand to construct all finite supersoluble groups
of Wielandt length two and order coprime to six.

To begin we introduce a definition which abstracts the properties elucidated in
Theorem3.5and in Lemmas3.2, 2.7and3.8. In this section all groups will have order
coprime to six.

DEFINITION 4.1. We say that ap-group A has aspecial factorisationY0N0 if the
following properties hold:

(1) N0 is of nilpotency class at most two andY0 ∈ W2.
(2) N0C A, N0 ∩ Y0 = 1 andA = Y0N0.
(3) Conjugation by the elements ofY0 induces power automorphisms onN0.
(4) If Y0 is non-abelian, then

(a) A′ ⊆ Y0;
(b) e.N0/ ≤ e.Y0/ if Y0 has nilpotency class 3.

(5) If Y0 is abelian then[Y0; �r .N0/] = 1, wherepr is the exponent ofY0.
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LEMMA 4.2. (a) Let Abe ap-group having a special factorisation. ThenA ∈ W2.
(b) If p is the largest prime dividing the order of a supersolubleW2-group G and

if A0 is a normal Sylowp-subgroup ofG, and B0 a Hall p′-subgroup ofG, then
N0 = [B0; A0] andY0 = CA0.B0/ afford a special factorisation ofA0.

PROOF. (a) If Y0 is abelian, then by (5) of the definition, and Corollary3.9, A has
nilpotency class at most two and soA ∈ W2. Therefore suppose thatY0 is non-abelian.
Then A′ ⊆ Y0. This means thatN0 is abelian and[N0;Y0] = 1. It follows from
Lemma2.7and (4) of the definition thatA ∈ W2.

(b) By Theorem3.5 we know thatA0 = Y0N0 with N0 C A0 and N0 ∩ Y0 = 1.
Hence, by (a),Y0 ∈ W2 sinceY0

∼= A0=N0. From Lemma3.3 either N0 ⊆ !.A0/

or Y0 ⊆ !.A0/. In the first case[N0;Y0] ⊆ N0 ∩ Y0 = 1, so A0 = N0 × Y0. Since
also N ′

0 = 1, we haveA′
0 = N ′

0Y′
0[N0;Y0] = Y′

0 ⊆ Y0. In particularY′
0 6= 1 ensures

A′
0 ⊆ Y0. What is more, ifY0 has nilpotency class three then we conclude from

Lemma2.7that the exponent ofN0 dividespe.Y0/ so that (4) holds. Clearly in the case
whenY′

0 6= 1, (3) is satisfied too.
Finally if Y0 ⊆ !.A0/ then Lemma3.8 ensures that (5) holds, and also that (3) is

satisfied in this case.

DEFINITION 4.3. G = B0 A0 is a matched extensionof A0 by B0 if, for some
prime p,

(1) A0 is a normalp-subgroup having special factorisationY0N0 with N0 = [A0; B0]
andY0 = CA0.B0/;
(2) B0 is a supersolublep′-group inW2;
(3) B0=CB0.N0/ is abelian of exponent dividingp − 1;
(4) if Y0 is abelian then the elements ofB0 induce, by conjugation, power automor-

phisms inN0=N0 ∩ !.A0/;
(5) .|
3.B0=!.B0//|; |B0=CB0.A0/|/ = 1.

LEMMA 4.4. If G = B0 A0 is a matched extension, thenG is a supersolubleW2-
group.

PROOF. The aim of the proof is to calculate!.G/ and to show thatG=!.G/ is a
T-group. First of all we have,!.G/ = P0!.A0/, whereP0 is the subgroup of!.B0/

inducing power automorphisms inA0, by conjugation.
Note thatC!.B0/.A0/ ⊆ P0. Also C!.B0/.A0/ = CB0.A0/ ∩ !.B0/.
Now B0=!.B0/ is a T-group, by hypothesis, andB0=CB0.A0/ is abelian by (3) of

the definition of a matched extension. It follows from (5) of the definition of matched
extension and Lemma3.7 that B0=!.B0/ × B0=CB0.A0/ is a T-group. Hence, by [7,
13.4.7],C!.B0/.A0/ is a T-group. It then follows thatB0=P0 is a T-group sinceB0=P0

is isomorphic to a homomorphic image ofB0=C!.B0/.A0/.
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If A0 is abelian, then!.G/ = P0 A0 and soG=!.G/ ∼= B0=P0. This implies that
G ∈ W2.

Now suppose thatA0 is non-abelian. In this caseP0 = C!.B0/.A0/, by [2, Theo-
rem 5.3.2]. There are two cases to consider: eitherY′

0 6= 1 or Y′
0 = 1.

In the first case it follows from property (4) of the definition of special factorisation,
that N0 ⊆ !.A0/. HenceG=!.G/ ∼= Y0=Y0 ∩ !.A0/ × B0=P0, a direct product of
T-groups of relatively coprime orders and soG=!.G/ is also a T-group.

In the second case, whenY0 is abelian, we have from property (5) of the definition
of special factorisation and Lemma3.8thatY0 ⊆ !.A0/. Hence

A0!.G/=!.G/ ∼= A0=!.A0/ ∼= N0=N0 ∩ !.A0/;

an abelianp-group. However

G=!.G/ = .B0!.G/=!.G//.A0!.G/=!.G/;

and B0!.G/=!.G/ ∼= B0=P0 is a T-group of p′-order acting by conjugation on
A0!.G/=!.G/ as power automorphisms: property (4) of matched extension. Hence
G=!.G/ is a T-group.

This completes the proof thatG ∈ W2. To see thatG is supersoluble, use Theo-
rem3.10.

We now generalise the concept of a matched extension.

DEFINITION 4.5. Let G = Y N, with NCG, N∩Y = 1 and bothN andY nilpotent.
Suppose thatp1; p2; : : : ; pr ≥ 5 are the primes in decreasing order which divide|G|
and putNi ;Yi for the Sylowpi -subgroups ofN andY respectively, 1≤ i ≤ r .

We define ageneralised matched extensioninductively as follows:

(i) If r = 1 andG = Y1N1, thenY1N1 is a special factorization ofG.
(ii) If r > 1 andB1 is a generalised matched extension,G is a matched extension

of Y1N1 by B1.

The last lemma now enables us to prove the following theorem.

THEOREM 4.6. Every generalised matched extension of nilpotent groups whose
orders are coprime to 6 is a supersoluble group inW2.

PROOF. We use induction on the numberr of primes dividing the order of the
generalised matched extensionG. If r = 1 then, in the notation of the definition
above,G is a p1-group inW2, so we are done.

Supposer > 1 and a generalised matched extension involving at mostr −1 primes
is a supersolubleW2-group. Then ifG is a generalised matched extension involving
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r primes, we may writeG = B1 A1, whereB1 is a generalised matched extension
involving ther − 1 primes p2; p3; : : : ; pr , where A1 is a p1-group, and where the
extensionB1A1 is matched. By inductionB1 is supersolublep′

1-group inW2. Hence
by Lemma4.4, G is a supersolubleW2-group. This completes the induction.

Conversely we show that generalised matched extensions give rise to all supersol-
ubleW2-groups.

THEOREM 4.7. Let G be a supersolubleW2-group of order coprime to6. ThenG
has an expression as a generalised matched extension.

PROOF. We use induction on the numberr of primes dividing |G|. If G is a
p1-group then, withY1 = G and N1 = 1 we see thatG is a generalised matched
extension.

Supposer > 1 and that supersolubleW2-groups with fewer thanr prime divisors
of their orders are generalised matched extensions.

If p1 is the largest prime dividing|G|, let A1 be the normal Sylowp1-subgroup of
G and letB1 be a Hallp′

1-subgroup ofG, so thatG = B1 A1. Write N1 = [B1; A1] and
Y1 = CA1.B1/. By inductionB1 has an expression as a generalised matched extension.

By Lemma4.2(b) A1 = Y1N1 is a special factorisation ofA1 andB1 is a supersoluble
p′

1-group, so (1), (2) of the definition of matched extension hold. We need to verify
that the remaining axioms (3)–(5) of matched extension hold forG = B1 A1.

First of all (3) holds because, by Theorem3.10, N1B1 is supersoluble.
To prove (4) we observe first that ifA1 is abelian, then (4) is automatically satisfied

asN1 ∩!.A1/ = N1 ∩ A1 = N1 and soN1=N1 ∩!.A1/ is trivial. So suppose thatY1 is
abelian butA1 is non-abelian. ThenY1 ⊆ !.A1/ is immediate from Lemma3.3 if N1

is non-abelian; and ifN1 is abelian andN1 ⊆ !.A1/ then[N1;Y1] ⊆ N1 ∩ Y1 = 1, so
A1 is abelian, a contradiction. Hence, in this case,Y1 ⊆ !.A1/. Therefore

A1!.G/=!.G/ ∼= A1=!.G/ ∩ A1
∼= A1=!.A1/ ∼= N1=N1 ∩ !.A1/:

Next observe that!.G/ = P1!.A1/ whereP1 is the subgroup of!.B1/ inducing
power automorphisms onA1. Since A1 is non-abelian,P1 = C!.B1/.A1/ by [2,
Theorem 5.3.2]. Hence, sinceG=!.G/ is a T-group and

G=!.G/ = .A1!.G/=!.G//.B1!.G/=!.G//;

it follows that B1 acts as a group of power automorphisms onN1=N1 ∩ !.A1/, as
required to confirm (4).

Finally, to prove (5) note thatC!.B1/.A1/ = CB1.A1/ ∩ !.B1/, so the T-group
B1=P1 = B1=C!.B1/.A1/ is a subdirect product ofB1=!.B1/ and B1=CB1.A1/. Since
A1; B1 have coprime orders,CB1.A1/ is just the intersection of the centralisers of
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the chief factors ofG contained inA1. But sinceG is supersoluble, each of these
centralisers containsB1. It then follows thatB1=CB1.A1/ is abelian. Now (5) follows
from the following lemma.

LEMMA 4.8. If H is a T-group andM1, M2 are normal subgroups ofH for which
M1 ∩ M2 = 1 and H=M2 is abelian, then.|H=M2|; |
3.H=M1/|/ = 1.

PROOF. Firstly 
3.H/ ⊆ M2 and soM1 ∩ 
3.H/ = 1. Therefore


3.H=M1/ = 
3.H/M1=M1
∼= 
3.H/;

whereasH=M1 is isomorphic to a factor group ofH=
3.H/. The result follows since

.|
3.H/|; |H=
3.H/|/ = 1;

by [7, 13.4.4].

With this lemma we have concluded our characterisation of supersolubleW2-groups
of order coprime to 6. Theorems4.6–4.7show that they are precisely the groups with
a generalised matched extension.
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