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Abstract

This paper gives a characterisation of finite supersoluble groups of Wielandt length two of order coprime
to six.

2000Mathematics subject classificatioprimary 20D15.

1. Introduction

This paper treats finite supersoluble groups of Wielandt length two and provides a
characterisation of such groups whose order is coprime to six.

Recall that the Wielandt subgroug G) of a groupG is the subgroup of elements
of G normalising each subnormal subgroug@flt is non-trivial in every finite, non-
trivial group ([9]). A group has Wielandt length onedf(G) = G. Butif w(G) # G
andw(G/w(G)) = G/w(G) thenG is said to have Wielandt length two. We will
denote by#; the class of all finite groups of Wielandt length at most two.

The main results of this paper can be thought of as a generalisation of res#ilts of [
for p-groups of Wielandt length two and what we need fra@hi$ summarised and
extended in section two. One of our main results is that a non-nilpotent supersoluble
group of odd order and Wielandt length 2 splits over its nilpotent residual (Theo-
rem3.6). This result is a consequence of the technical result (The8r&mvhich is
also crucial in the characterisation of these groups in Sedtidrhe characterisation
of supersoluble groups of Wielandt length two and order coprime to six essentially
comes from analysing the properties that the splitting theorem gives us and can be
summarised by saying that we can find sufficient information about the structure of
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the nilpotent residual and a complement, as well as the action of a complement on the
residual to ensure that a group with those properties will be a supersoluble group of
Wielandt length two and exponent coprime to six. However the details are rather tech-
nical and we show how the group can be built up one prime at a time. Defidition
extracts the necessary features of a normal Sylow subgroup, while Defihifigives

the way in which a complement of a normal Sylow subgroup must act on the normal
Sylow subgroup. Then Theorefn6 and Theorend.7 show that supersoluble groups

of Wielandt length two and order coprime to six are characterised as groups with the
structure given by these definitions. The restriction to groups of order coprime to six
comes from the fact thgi-groups of Wielandt length two are more difficult to classify

for the primes two and three. Indeed 2-groups of Wielandt length two have not yet
been classified.

2. Preliminary results

For convenience, we state some results we will use frequently in what follows and
will use them without further reference.

THEOREMZ2.1 ([3, A.1.3]). LetU, V andW be subgroups of agroup withV C U.
ThenU N (VW) =V U NW).

THEOREM 2.2 ([3, Proposition A.12.5])If Q is a x’-group of operators of ar-
group P, then

(1) P=[P,QICr(Q).
(2) [P,Q]l=[P,Q,nQ]foralln> 1.
(3) If Pis abelian, therP = [P, Q] x Cp(Q).

THEOREM 2.3 ([1, Theorem 2.4])Let G = B A be a semidirect product of sub-
groups A and B of coprime order withA nilpotent and normal. IfP is the set of
those elements af(B) which act by conjugation as power automorphismsfothen
0(G) = Pw(A).

For the applications we make in later sections we have found it useful to complete
some of the detail omitted in Ormerod’s Theoresh [Our account will be directed
to the application we make in the later sections, where the groups will have order
coprime to six: the 3-groups in Ormerod’s work will therefore be omitted here.

We begin with the presentation of the following group

1) H= <x, iy X=X Xy, Yl =y X =y =[x,y = 1>_
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It is easy to see, by Dyck’s Theorem, that there is a homomorphism from Ormerod’s
group H(p, r) onto H. Since by its constructionH| = p* = |H(p,r)|, H is
isomorphic toH (p, r).

The properties we require &f (p, r) are summed up in the following theorem.

THEOREM2.4. H = H(p, r) is a regular group of ordeip> and nilpotency class
three satisfying
(1) H/H'=Cpy x Cy;
(2) Z,(H) has exponenp';
(8) H/ys(H) has exponenp'.

The proofs follow easily from the relations if.().

Now letL,(p") be the free group of rankin the variety of all groups of nilpotency
class at most two and exponent dividipg Next setG,(p") = H(p,r) *n, La(p")
forn > 1,r > 1, the second nilpotent product &f(p,r) andL,(p") (the second
nilpotent product of group# andB is defined to beE/N, whereE = A x B is the
free product ofA andB andN = [[A, B]®, G, G]; see for example5, Section 6.4].

For a p-group A, definee(A) to be the positive number such thpt® is the
exponent ofA/y3(A) and note thag(H (p,r)) =r.

The next result gives the classification #$-groups of p] and is essential in our
classification.

THEOREM 2.5 ([6, Theorem A]).Let p > 3 be a prime. Foralln > 1, r > 1,
Gn(p") € 7.

Conversely, ilG € #; is a p-group withe(G) = r and if G can be generated by
n + 2 elements, the® is a homomorphic image @&, (p").

For convenience, we writ& = G,(p"), H = H(p,r) andL = L,(p") in what
follows, p, n andr being understood.

Now we state results, which give connections between two numerical invariants of
p-groups in#, and are used later in the article.

LEMMA 2.6. (1) Zx(G) = Z,(H)L[L, H].
(2) e(G) =¢e(H).
(3) Let A be ap-group, withp > 3, and Wielandt length two. Thef,(A) has
exponent dividingp®”.

PrROOF (1) By the definition of second nilpotent product, we h@&e- HL[L, H].
Also Z,(H)L[L, H] € Z,(G); andZ,(G) " H C Z,(H). Therefore,

Zo(H)L[L, H] € Z5(G) € L[L, HI(Z2(G) N H) < L[L, H]Z>(H),
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which gives the result claimed.

(2) This is because every commutator of weight threésinis a power of one
of the forms[hy, hy, hs], [h1, 11, h2], [ha, 14, 12] or [I4, 15, 3], whereh; € H, |, € L
(1 <i < 3). Here we use the Jacobi identity which holds in a metabelian group.
However, all but the first of these are necessarily triviabinHenceys(G) = y3(H).

It follows thatG/y3(G) = H/y3(H) %y, L. Both factors on the right have exponent
dividing p*™ andH /ys(H) has exactly this exponent, so, by regular@y,ys(G) has
the exponent exactlp®™). That ise(G) = e(H), as required.

(3) If A has nilpotency class at most two, there is nothing to prove. So suppose that
A has nilpotency class three, and that it can be generatedtbg elements. Then,
for someN <1 G = G, (p*?), G/N = A.

Suppose thaty € G andgN € Z,(G/N). SinceZ,(G)N/N < Z,(G/N) and
Z,(G) has exponenp®® by Theorem2.4 and (1) above, we may suppose that
g ¢ Z»(G) and therefore thay € H butg ¢ H’, sinceG is regular.

Moreover we may suppose thgt = x™y" for some integersn,n. Then for
r =e(A):

X" =[x,y,x]"=1[g,y,x] € N
and
YP =[xy, yI" =1y, X, yI " =[g, X, yI * € N.

From this we see, using[Satz 3.9.4], thag” = (x™y")? = x™P y"¥ ¢ N.
HenceZ,(A) has exponent dividing" = p&». O

LEMMA 2.7. Let p > 3 be a prime, letG; be a p-group of Wielandt length two
and nilpotency class three ar@, a p-group of nilpotency class at most two. Let
W = Gy, Gy. If N C [Gy, G,] is a normal subgroup oV, thenW/N e %5 if and
only if the exponent db, divides p*©».

PROOF. First suppose thab, has exponent dividing', wherer = e(G;). Also
suppose thaG, is generated byn elements. By Theorer.5, for some positive
integern, there is an onto homomorphistn: G,(p") — G;. It follows thatd may
be extended to an onto homomorphisay,,.n(p") — G *n, Go, SOW € %, by
Theorem2.5and henc&V/N € #5.

Conversely suppose thdf/N € #,. Then

G2 = G2N/N € Z,(W)N/N < Z,(W/N)
and so the exponent &, divides p®"V/N) by Lemma2.6(3). Therefore
(W/N)/ys(W/N) = W/ys(W)N = (W/y3(W))/(ra(W)N/y3(W))

soe(W/N) < e(W) = e(G;). Hence the exponent @&, divides p©» as required.
O
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3. Some basic results

The main result of this section is Theore6 which says that in a supersoluble
group of odd order and Wielandt length two, the nilpotent residual is complemented.
To prove this fact we need the following results.

LEmMA 3.1. Let A be a normal Sylowp-subgroup of a non-nilpotent grou@
and B be a Hall p’-subgroup ofG.

If N is the nilpotent residual oG and H is the nilpotent residual oB, then
N = H[B, Al.

PROOF. SinceAis a normal Sylowp-subgroup of5, we havg B, A] = [B, A, B]
forall j > 1 and sdB, A] € N. Since[B, A] is normal inG, we have

G/[B, Al = (B[B, Al/[B, AD x (A/[B, A])

and soN/[B, A] is the nilpotent residual d8[B, A]/[B, Al.

Clearly, B[B, A]/H[B, A] is nilpotent and siN € H[B, A]. On the other hand,
the nilpotent residual oB[B, A]/[B, A] is isomorphic to the nilpotent residual of
B/(BN[B, A]) = B. ThereforeN/[B, A] = H and henceN = H[B, A]. O

LEMMA 3.2. Let A be a normal Sylowp-subgroup of a non-nilpotent soluble group
G of odd order and Wielandt length two amdbe a Hall p’-subgroup ofG. If B acts
non-trivially on A/w (A), then A has nilpotency class at most two.

PROOF. Since A is normal, A € %, and thereforeA/w (A) is abelian. Also, it is
easy to see thah has nilpotency class at most three.

Let us suppose, contrary to the claim of the lemma thdtas nilpotency class
exactly three. It follows from Theore5that A has elementa;, a, for which

[a1, ap, a1] = aip 5

wherer = e(A). Now sinceG/w(G) is a T-group,Bo(G)/w(G) acts as a power
automorphism by conjugation of/w (A) (by [7, 13.4.4 and 13.4.6]) and it is imme-
diate from P, Theorem 5.3.1] that these power automorphisms are universal (that is,
they map each element 8§/ w (A) to the same power). Suppdse& B induces a non-
trivial universal power automorphism by conjugation Afw (A). Then there exists

an integem which is not divisible byp, for whicha? = al"c andal = aJ"d where

c,d € w(A) C Z,(A), by [8]. Then, using the regularity ok and Lemma2.6 (3):

[ay, 8, 3™ = [a"c, al'd, ac] = [ay, &, as]® = (@ )® = (@"c)”
= @"PcP[c,al PP Y2 = @ )" = [ay, a, a]™
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It follows thatm® — m = 0 (mod p). Hencem? = 1 (mod p) asm # 0 (mod p).
This means thah? € Cg((A/w(A)/(P(A/w(A))) whenceb? € Cg(A/w(A)) by [3,
Theorem A.9.14]. Therefore € Cg(A/w(A)) becauseB| is odd. This contradicts
our choice ofb. We conclude therefore, th@ has nilpotency class at most two, as
claimed. O

The following lemmas give useful information about (non-nilpotent) supersoluble
groups. The statements involve increasingly more precise hypothesis on the group:
involved.

LEMMA 3.3. Let A be a normal Sylovp-subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two am@ibe a Hall p’-subgroup ofG.
Then eitheB, A] € w(A) or CA(B) C w(A).

PrROOF As in Lemma3.2 B acts as a group of universal power automorphism
on A/w(A). Therefore, eithefb, A] € w(A) for all b € B or, for someb € B,
Ca/wn(b) = 1. Therefore, eithelB, A] € w(A) or Ca(B) € w(A). O

The next lemma gives more information about the semidirect product of subgroups
of coprime order of a group.

LEMMA 3.4. Let A be a normal Sylow subgroup of a supersoluble gr@upf odd
order andB a Hall p’-subgroup ofG. SupposeA has nilpotency class exactly two,
B acts as a group of universal power automorphismsfom (A) and [B, A] = A.
ThenCa(B) = 1.

PrROOF. By [3, Theorem A.11.6]A/A has a direct decomposition
A/A = A /A x - x A/A

into B-admissible subgroup#\ /A" with the following properties for each =
1,....s:

(1) A/A isindecomposable asBrmodule.

(2) (A/A)/D(A/A) is anirreducibleB-module.

SinceA is supersoluble¢A; /A) /P (A /A) is cyclic of prime order. Hencéd, /A’ is
cyclic by [7, 5.2.12]. ThereforeA; /A = (y; A), for 1 < i < s, is cyclic of prime
power order. Leb € B. Then we may writg/® = yim‘(b)q for somec; € A’ and some
integersm®, for 1 < i < s. Note thatm® = 0 (mod p), for 1 <i <'s. Since
A C ®(A), it follows that A = (y1, 2, ..., ¥s), by [7, 5.2.12]. Also note that for
eachi there is at least oree B such tham® = 1 (mod p): otherwiseB, A] # A.
We aim now to show that

A =(ly.Yil: ¥ € o(A), Y € o(A).
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To this end suppose that, for somey; € w(A). Then choos® € B such that
m® # 1 (mod p). For simplicity we writem; = m®, for 1 < i < 's. By [6,
Corollary 4.3] there is an integersuch thaly;, y;] = y" for 1 <i < s. Note thatp
dividesn, otherwisdy;, vi] # 1. Hence, sincé has nilpotency class two,

Ve Y™™ =1y Y1 = (9 = ()" = (" e)"
— (yin)m‘ C|n[c| , yim‘ ]n(n—l)/2 — [y| , yj ]mi CIn [CI , yimi ]n(n—l)/z,

whencely;, y; 1™ ™Y € ®(A). Now [y, y;] € ®(A) would meamm;(m; — 1) =0
(mod p) leading tom; = 1 (mod p), a contradiction. Hencey, y;] € ®(A).
It follows that A’ is generated by the commutatdsg, y;] where neithery; nor y;
belongs tan (A).

Finally, we are given that eadhe B induces, by conjugation, a universal power
automorphism omA/w(A). That is, in particular, for some integer, m = m®

(mod p) if yi & w(A). It follows that, for all such pairg j (wheny, y; ¢ w(A)),
i yi1° = [, Y™™ = [y, v (mod @ (A)).

Hencely:, y;1° = i, ;] (mod ®(A)) if and only if m* = 1 (mod p) and that is
if and only if y* = y; (mod A') whence if and only ify® = y; (mod A) since
(2, |b]) = 1. This is a contradiction to our choice bf Hence at least onle € B
acts fixed point freely o'/ ®(A") and so[A’, B] = A. ThusCx(B) = 1. Finally
note thatC,,x(B) = 1 sinceA/A’ = [B, A/A’]. ThereforeC,(B) € CA(B)N A =
Ca(B) = 1 asrequired. O

THEOREM3.5. Let Abe a normal Sylovp-subgroup of a non-nilpotent supersoluble
group G of odd order and Wielandt length two am@ibe a Hall p’-subgroup ofG.
Then[B, A] N CA(B) = 1.

PrROOF. If A is abelian, the result is immediate. Therefore suppose Ahat
non-abelian. As in Lemma&.2, we see thaB acts as a group of universal power
automorphisms 0A/w (A). By Lemma3.3 either[B, A] C w(A) orCa(B) C w(A).
First suppose thdB, A] C w(A). Asw(A) is abelian, we have that

w(A) = [@(A), B] x Cyn)/(B).
But[B, A, B] = [B, Al and[B, w(A), B] = [B, w(A)]. Now
[B. Al=[B, A B] < [w(A), BIS [B, Al,

so[B, A] = [B, w(A)]. As we know from above thdB, w(A)] N C,x(B) = 1,
therefore[B, A] N C,n(B) = 1. ButC,(B) = @w(A) N Ca(B). Therefore,
[B, AN CA(B) =1 (as[B, A] € w(A)), as required.
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Now suppose thaEA(B) € w(A) so that[B, A/w(A)] = A/w(A). If [B, Al is
abelian, we hav€s o(B) = 1 and henc€,(B) N [B, A] = 1 as required.

We get the same result whéB, A] is non-abelian becaug®, A] and B satisfy
the hypothesis of Lemma.4: here we have relied on Lemmas and3.3. O

Now we use these results to prove the following theorem.

THEOREM 3.6. Let N be the nilpotent residual of a supersoluble gro@pf odd
order and Wielandt length two. Thé¥his complemented i.

PrROOF. If G is nilpotent, there is nothing to prove. Therefore we supposeGhat
is non-nilpotent. LetA be the normal Sylowp-subgroup ofG, wherep is the largest
prime dividing|G| andB a Hall p’-subgroup ofs so thatG = B A. We can also write
G = B(CA(B)[B, A]). By induction on the order dg, if B is non-nilpotent then the
nilpotent residual (sail) of B must be complemented B. Let X be a complement
of H so thatB = X H. If Bis nilpotent therH = 1 andX = B. By Lemma3.1, we
know thatN = H[B, A] < G. LetY = XC,(B). ThenG = NY and

NNY = H[B, A]N XCa(B) = (HN X)([B, A]N CA(B)).

But by TheorenB.5we haveCA(B) N [B, A] = 1. ThereforeN NY = 1. Thus we
conclude thalN is complemented iG. O

The following result gives a necessary and sufficient condition for the direct product
of an abelian group and a T-group to be a T-group.

LEMMA 3.7. Let G, be a T-group and; be a complement 9k(G;) in G;. If G,
is abelian, therG; x G, is a T-group if and only if]|ys(Gy)|, |G2]) = 1andB; x G,
is a Dedekind group.

PROOF. The existence oB; is ensured by, 13.4.4]. The proof is a routine
application of [7, 13.4.6 and 13.4.4]. O

The following lemma gives conditions for an abeligrgroup G; (for a prime
p > 3) acting as a group of power automorphisms op-group G, of nilpotency
class at most two, to lie in the Wielandt subgroup of the semidirect prd@sli@s.

We use the standard notatiéh (G,) to denote the subgroup @&, generated by
elements of ordep'.

LEMMA 3.8. Let G, be an abeliarp-group(for p > 3) of exponenp" andG, be a
p-group of nilpotency class at most two. ket G; — PautG,) be a homomorphism
and writeG = G;G, for the semidirect product @, by G; underd. ThenG; C w(G)
if and only ifG; centralises?, (G,).
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PROOF. We start by observing that sin€®, is abelian, we have’ = G,[G,, G;].
Also sinceG; C PautG,), [2, Theorem 2.2.1] gives the following

[Ga2, Gl € Z(Gy)

and hence&’ € Z(G,) (sinceG, is also contained iZ (Gy)).

Now suppose thaB; € »(G) then by B], we haveG; C w(G) C Z,(G) and we
know from [7, 5.1.11(3)] thatZ,(G) commutes withG’. ThereforeG’ centralisess,
and hencé&s’ C Z(G) and soG has nilpotency class at most two.

SinceG; is abelian of exponenp', it is generated by elements of ordgr. So it
is sufficient to show that elements of ordgrof G, centralise; (G,). Letg; be an
element ofG; such thatg;| = p" and letg, € ©,;(G,). Note that the exponent of
Q, (G,) divides p', sinceG; is regular. Now pug = g:9,. Forx € Gy, there exists
an integem such thatg* = g™ and so(0:0,)* = 0105 = (0102)™. But asG is a
regular p-group, G, acts as a group of universal power automorphisms&doy [2,
Theorem 5.3.1]. So we hagg = g)'. But using §, Satz 3.9.4], we have

%oy = (019" = 9r'g7 Q2. Q™™ V2
As G; N G, = 1, we haveg" ! = [gy, g;]™™ Y2 = 1. This means than = 1
(mod |g;|) and thereforen = 1 (mod |g;|) (as|g.| divides|g;|). Thus we conclude
thatgy = g, and soG; acts trivially ong, (G,).

Conversely suppose th@t centralise$, (G,). Foranyg € G, there exisg; € G;
andg, € G, such thatg = g:0,. Letx € G;. By hypothesis ifg, € ©:(G,), then
g* = g. Suppose tha, does not belong t&; (G,) and let|g,| = p° for s > r. But
g2 is an element of5, such thatg! | = p' and hence belongs @, (G,). This
means thatg! )* = g/ . But asG, is a regularp-group, G; acts as a group of
universal power automorphisms @3 by [2, Theorem 5.3.1]. Therefore there exists a
positive integem such thaigX = g for all gs € G, and so(g} ) =gy” =g} .
Thereforeg? ™" = 1 and hencgm — 1)ps" = tp° for some positive integet.
This meansn — 1 =tp" and son = 1+ tp". Henceg* = g;0; = .0, = 0705

We claim thatg"g;' = (0:02)™. By [4, Satz 3.9.4], we have

o9 = (glgz)mCz(rZ") e Y,

wherec, andc; are products of commutators with entrggsandg, of weight two and
three respectively, ang € y4(G). But sinceg"* = 1, we immediately see from[
Satz 3.10.6] that,(?)c;(3) = 1, sincep > 5. This means thag)" = (g,g>)™y and
hence(gys(G))* = gMya(G). Thus

G1y4(G)/v4(G) € w(G/ya(G)).
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SinceG/y4(G) has a factorisation satisfying the hypothesis of the theorem we have,
from the first paragraph of the proof, thayy,(G) has nilpotency class two. In other
words,y3(G) C y4(G) and sinceG is nilpotent, we immediately see thad(G) = 1

and hencés has nilpotency class at most two. This proves our claim that

g =010 = (18" =g"
and thusG; € w(G). O

We explicitly record one of the main features of the above theorem.

COROLLARY 3.9. LetG; be an abeliarp-group of exponent” andG, be ap-group
of nilpotency class at most two on whiGh acts as a group of power automorphisms.
If G; centralisex?, (G,), then the semidirect product &, by G, has nilpotency class
at most two.

We will need the following result: it has a routine proof.

THEOREM 3.10.Let G = BA whereAis normal inG and AN B = 1 with A
nilpotent andB supersoluble. The@ is supersoluble if and only if for every pringe
dividing |A|, By /Cg, (Aq) is abelian of exponent dividing — 1, whereBy, is a Hall
g’-subgroup ofB.

4. A structure theorem

We now have enough information in hand to construct all finite supersoluble groups
of Wielandt length two and order coprime to six.

To begin we introduce a definition which abstracts the properties elucidated in
TheoremB.5and in Lemmas.2, 2.7and3.8. In this section all groups will have order
coprime to six.

DEFINITION 4.1. We say that gpo-group A has aspecial factorisationYy Ny if the
following properties hold:
(1) Npis of nilpotency class at most two aiYg € #5.
(2) No << A, NoNYyg=1 andA = YoNo.
(3) Conjugation by the elements ¥ induces power automorphisms bdlg.
(4) If Yo is non-abelian, then
(@ A <Y
(b) e(Np) < e(Yo) if Yy has nilpotency class 3.
(5) If Yy is abelian therYy, 2, (No)] = 1, wherep' is the exponent of,.
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LEMMA 4.2. (a) LetAbeap-group having a special factorisation. Théne #5.
(b) If pis the largest prime dividing the order of a supersoluisge-group G and
if Ay is a normal Sylowp-subgroup ofG, and By a Hall p’-subgroup ofG, then
No = [Bo, Ao] andY, = Ca,(By) afford a special factorisation of.

PROOF (a) If Yy is abelian, then by (5) of the definition, and Coroll&, A has
nilpotency class at most two and 8o #,. Therefore suppose th#s is non-abelian.
Then A" C Y,. This means thal\, is abelian and Ng, Yo] = 1. It follows from
Lemma2.7 and (4) of the definition thaf € 5.

(b) By Theorem3.5 we know thatAy = YoNp with Ny <t Ag and Ny N Yy = 1.
Hence, by (a)Yo € #5 sinceYy, = Ayg/No. From Lemma3.3 either Ny € w(Ap)
orYy € w(Ay). In the first cas¢Np, Yol € NoN Yy =1, s0A; = Ny x Yp. Since
alsoNg = 1, we haveA; = N{Yg[No, Yol = Y € Yo. In particularY} # 1 ensures
Ay € Yo. What is more, ifY, has nilpotency class three then we conclude from
Lemma2.7that the exponent dfl, divides p*¥ so that (4) holds. Clearly in the case
whenY] # 1, (3) is satisfied too.

Finally if Yo € w(Ag) then Lemma3.8 ensures that (5) holds, and also that (3) is
satisfied in this case. O

DEFINITION 4.3. G = ByAp is a matched extensionf A, by By if, for some
prime p,
(1) Ayisanormalp-subgroup having special factorisatiggiNg with Ng = [Ag, Bol
andYy = Ca,(Bo);
(2) Byis a supersoluble’-group in#5;
(3) By/Cg,(Np) is abelian of exponent dividing — 1;
(4) if Yy is abelian then the elements Bf induce, by conjugation, power automor-
phisms inNg/No N w (Ao);
(5) (lya(Bo/w(Bo))l, Bo/Cgy(A0)]) = 1.

LEMMA 4.4.1f G = ByAp is a matched extension, th&his a supersoluble#s-
group.

PrROOF. The aim of the proof is to calculate(G) and to show thaG/w(G) is a
T-group. First of all we havey (G) = Pyw (Ap), whereP, is the subgroup ob (By)
inducing power automorphisms #y, by conjugation.

Note thatC, g, (Ag) S Po. Also C,, s, (Ag) = Cg,(Ag) Nw(By).

Now By/w(By) is a T-group, by hypothesis, arigh/Cg,(Ao) is abelian by (3) of
the definition of a matched extension. It follows from (5) of the definition of matched
extension and Lemma 7 that By/w (By) x Bo/Cpg,(Ao) is a T-group. Hence, byr[
13.4.7],C, s, (Ao) is a T-group. It then follows thaB,/ P, is a T-group sinceBy/ Py
is isomorphic to a homomorphic image B§/C,, g, (Ao).
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If Aqis abelian, them (G) = PyAy and soG/w(G) = By/Py. This implies that
G € #s.

Now suppose tha#, is non-abelian. In this case, = C, g, (Ao), by [2, Theo-
rem 5.3.2]. There are two cases to consider: eiffjer 1 or Yy = 1.

In the first case it follows from property (4) of the definition of special factorisation,
that Ng € w(Ag). HenceG/w(G) = Yo/ Yo N w(Ag) x By/Po, a direct product of
T-groups of relatively coprime orders andGgw (G) is also a T-group.

In the second case, whéf is abelian, we have from property (5) of the definition
of special factorisation and Lemn3a3thatY, C w(Ay). Hence

A (G) /o (G) = Ao/w(Ao) = No/No N (Ao),
an abelianp-group. However
G/w(G) = (Bow(G)/w(G)) (A (G)/w(G),

and Byw (G)/w(G) = By/P, is a T-group of p’-order acting by conjugation on
Aow (G)/w(G) as power automorphisms: property (4) of matched extension. Hence
G/w(G) is a T-group.

This completes the proof th& € #,. To see that is supersoluble, use Theo-
rem3.10 O

We now generalise the concept of a matched extension.

DErFINITION 4.5. LetG = Y N, with N <tG, NNY = 1 and bothN andY nilpotent.
Suppose thap, pa, ..., pr > 5 are the primes in decreasing order which diviGe
and putN;, Y; for the Sylowp;-subgroups ofN andY respectively, I<i <r.

We define ageneralised matched extensimaluctively as follows:

(i) If r =1andG = YNy, thenY;N; is a special factorization d&.
(i) If r > 1 andB, is a generalised matched extensiGnis a matched extension
of Y:N; by B;.

The last lemma now enables us to prove the following theorem.

THEOREM 4.6. Every generalised matched extension of nilpotent groups whose
orders are coprime to 6 is a supersoluble group/a

PrROOF. We use induction on the numberof primes dividing the order of the
generalised matched extensi@n If r = 1 then, in the notation of the definition
above,G is a p;-group in#,, so we are done.

Suppose > 1 and a generalised matched extension involving at mest primes
is a supersolubléZ,-group. Then ifG is a generalised matched extension involving
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r primes, we may writd5 = B;A;, whereB; is a generalised matched extension
involving ther — 1 primesp,, ps, ..., P, WhereA; is a p;-group, and where the
extensionB; A; is matched. By inductiom, is supersolublep;-group in#,. Hence
by Lemmad4.4, G is a supersolubl&,-group. This completes the induction. [

Conversely we show that generalised matched extensions give rise to all supersol:
uble #5-groups.

THEOREM4.7. Let G be a supersolubléZ;-group of order coprime t&. ThenG
has an expression as a generalised matched extension.

PROOF. We use induction on the numberof primes dividing|G|. If G is a
p:-group then, withY; = G andN; = 1 we see thaG is a generalised matched
extension.

Suppose > 1 and that supersolubl&;-groups with fewer than prime divisors
of their orders are generalised matched extensions.

If p;is the largest prime dividingG|, let A; be the normal Sylowp;-subgroup of
G and letB, be a Hallp;-subgroup of5, so thatG = B, A;. Write N; = [B,, Aj] and
Y, = Cx,(By). By inductionB; has an expression as a generalised matched extension.

ByLemma4.2(b) A; = Y;N; is aspecial factorisation &; andB; is a supersoluble
p;-group, so (1), (2) of the definition of matched extension hold. We need to verify
that the remaining axioms (3)—(5) of matched extension hol&fer B; A;.

First of all (3) holds because, by Theor&i0, N;B; is supersoluble.

To prove (4) we observe first thatk; is abelian, then (4) is automatically satisfied
asN;Nw(A) = N;N A = Npand soN; /N Nw (Ay) is trivial. So suppose thad; is
abelian butA; is non-abelian. Thel; € w(A,) is immediate from Lemma.3if N;
is non-abelian; and iN; is abelian andN; € w(A;) then[N;, Y1 S N;NY; =1, so
A, is abelian, a contradiction. Hence, in this cageC « (A;). Therefore

Ao (G)/w(G) = A/w(G) N AL = Ar/w(A) = Ni/NiNw(Ay).

Next observe thab (G) = Pyw(A;) whereP; is the subgroup o (B;) inducing
power automorphisms o#;. Since A; is non-abelian,P, = C, i, (A) by [2,
Theorem 5.3.2]. Hence, sin€&/w(G) is a T-group and

G/w(G) = (Aiw(G)/w(G))(Biw(G)/w(G)),

it follows that B, acts as a group of power automorphismsNN; N w(A;), as
required to confirm (4).

Finally, to prove (5) note thaC,, (A1) = Cg, (A1) N w(By), so the T-group
B,/P, = B;/C, &, (A1) is a subdirect product dB;/w(B;) andB;/Cg, (A;). Since
A;, B; have coprime order<Cg, (A;) is just the intersection of the centralisers of
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the chief factors ofG contained inA;. But sinceG is supersoluble, each of these
centralisers containB;. It then follows thatB,/Cg, (A;) is abelian. Now (5) follows
from the following lemma. O

LeEmMmMA 4.8. If H is a T-group andM;, M, are normal subgroups dfl for which
M; N M, = 1andH /M, is abelian, ther|H /M|, |ys(H/My)|) = 1.

PrROOF. Firstly y3(H) € M, and soM; N y3(H) = 1. Therefore
Y3(H/My) = y3s(H)M1/My = y3(H),
whereadH /M, is isomorphic to a factor group ¢ /y3(H). The result follows since

(Iys(H)I, IH/ys(H)]) = 1,

by [7, 13.4.4]. O

With this lemma we have concluded our characterisation of superscfakdeoups
of order coprime to 6. Theoremds6-4.7 show that they are precisely the groups with
a generalised matched extension.
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