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Abstract

Let .2 (m;t) be the finite-dimensional odd Hamiltonian superalgebra over a field of prime charac-
teristic. By determining ad-nilpotent elements in the even part, the natural filtratiod’ ah;t) is

proved to be invariant in the following sense: df: 2 (m;t) — 2 (m';t’) is an isomorphism then
o(A(M; 1)) = .2 (m';t'); foralli > —1. Using the result, we complete the classification of odd Hamil-
tonian superalgebras. Finally, we determine the automorphism group of the restricted odd Hamiltonian
superalgebra and give further properties.

2000Mathematics subject classificatioprimary 17B50; secondary 17B40.

As is well known, filtration structures provide useful tools in the research of Lie
algebras and Lie superalgebras. In particular, they play an important role in the clas-
sifications of finite-dimensional simple modular Lie algebras and finite-dimensional
simple Lie superalgebras of characteristic zero respectively &eg ¥, 21, 17]).

We know that Cartan-type Lie algebras and Lie superalgebras possess natural fil-
tration structures. By means of invariance of filtrations one can characterize intrin-
sic properties of Cartan-type Lie algebras and Lie superalgebras and determine the
automorphism groups (se€d, 16, 24, 26]). In the case of Cartan-type modular

Lie algebras, it is proved inlp] that the filtration of X(m : 1) is invariant under

Aut X(m : 1), whereX = W, S, H or K, and the same conclusion is obtained in

[6] for all Cartan-type Lie algebras; by means of ad-nilpotent elements, the natural
filtrations of infinite-dimensional Cartan-type Lie algebras are proved to be invariant
under the automorphism groups (sép.[In the case of characteristic zero, the natural
filtrations of infinite-dimensional Lie algebra&(m) is invariant, whereX = W, S H

or K (see [L4]). In [23] the author discussed the simplicity and restrictiveness of the
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four classes of finite-dimensional modular Cartan-type Lie superalgebr&z4] and

[29], the invariance of natural filtrations of Hamiltonian superalgebras, generalized
Witt superalgebras and special superalgebras are determined by means of image-spa
dimensions and ad-nilpotent elements, respectively.

In this paper, we discuss the finite-dimensional odd Hamiltonian superalgebra
27 (m; 1) over a field of positive characteristic. In the case of characteristic zero, the
infinite-dimensional odd Hamiltonian superalgeb#&m, m), which is defined by odd
Hamiltonian differential forms, is even transitive irreducible simple Lie superalgebra
(see B, Theorem 4.1]). This Lie superalgebra was interpreted as the Lie superalgebra
of polyvector fields on am-dimensional space (se#]]. It was introduced in11] by
Leites, and was later called Leites superalgebra @gefaper [L2] gave a description
of the outer derivations of this superalgebra.

We denote the natural filtration of”(m;t) by {#(m;t),i > —1}. An isomor-
phism between any two odd Hamiltonian superalgebras is chlisdmorphism. In
Section2, we determine the ad-nilpotent elements with certain properties in the even
part of 77(m;t). The results are used in Secti@nto prove that the filtration of
2 (m; t) is invariant under any-isomorphisms; that is, if : 22 (m;t) — 22(m'’;t")
is an isomorphism thea(s#(m;t);) = 22 (m';t’); forall i > —1. As a result, we
complete the classification of odd Hamiltonian superalgebras. In Settioa first
prove the automorphism group of the restricted odd Hamiltonian superalgéhisa
isomorphic to Autz : 7¢), the admissible automorphism group of the base superal-
gebraZ . Then itis proved that the so-called standard normal series ofAig sent
to the one of Autz : 2#). More detailed properties of Au¥” are also discussed.
The works in this section are motivated by the results and methods involved in Lie
algebras (se€lp, 20, 4]), and based or2p, Theorem 1].

1. Preliminaries

1.1. Notation and conventions The following notation and conventions are used
throughout this paper:

e [ denotes the underlying field of characteristic> 2, Z, the ring of integers
modulo 2;N andNj the positive integer set and nonnegative integer set, respectively.
Fixme N\ {1, 2.

e U(m) denotes the divided power algebra oFerith the F-basis{x® | « € N}.

e A(m) denotes the Grassmann superalgebrra rariablesxi., 1, Xmi2, - . . , Xom-

e Denote the tensor product by(m, m) := U(m) ®; A(m).

e We abbreviateg ® f to gf whereg € U(m), f € A(m), andx®“’ to x;, where
& = (5il, 8i2, ey 8im)-

o SetYg:={12,....m},Yy:={m+1m+2...,2m}andY := Yy VY;.
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o SetBy :={(iy,....i) | M+1<i; <ip<--- <iy<2m}, B(m) := Up B
whereBy := @. Foru € By, put|u] := Kk, {u} := {ig, ..., Ik}, X" 1= X, X, - Xy,
x? =1

e Obviously,{x®x" | « € N7, u € B(m)} is anF-basis ofA(m, m).

e DefineDy, ..., Dy, to be linear transformations @f(m, m) such that

x@=e)xu i €Yo
X@axU/ax 1 € Yy,

Di (x“x") = {

wherex” := 0 wheneve ¢ N{.
e If deg(x) occurs in this paper, we always regards aZ,-homogeneous element
and degx) theZ,-degree oi.

e Define
i 6 i € Yo,
i):=1{_
o Fort =(t,...,tn) € N", putw := (my, ..., 1) Wherer;, := pi —1,i € Y,
andA(m;t) :={a e NJ' | o <, i € Yo}
e Set
i i+m ieYy
" li-m ieVv.

o Leté:=|n|+m=>_ p"

1.2. The construction processes We know thatA (m, m) is an associative superal-
gebra with aZ,-gradation induced by the trivid,-gradation of Um) and the natural
Z,-gradation ofA (m). The following formulae hold imA (m, m):

o+
X@OxP = ( ’B)x(‘“’”, a, B e NI,
o

XiXj = —=XjXi, i,] €Y
X% = x;x@, aeNj, jeVY.
Clearly, Dy, ..., Do, are superderivations @f(m, m). Let

W(m, m) = {ZaiDi ‘ai e A(mm),ieY}.
ieY

Then W(m, m) is an infinite-dimensional Lie superalgebra (s€€]), which is a

subalgebra of DgfA (m, m)). We note thatV(m, m) is free A(m, m)-module with

aA(m, my)-basis{D4, ..., Don}.
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The following formula holds inW(m, m):

(1) [aD,bE] =aD(b)E — (—1)%9aDdetbBhE@)D 4 (—1)%eDdabgp D, E].

Consequently,

(1) [aDi, bD;] = aDi(b)D; — (—1)%92P)%d*PIh D (a) D;

wherea,b e A(m,m), D, E € W(m, m),i, j €Y.
From the definition ofA(m;t), we obtain that

A(m, m;t) := span{x“x"|la € A(M;t), u € B(m)}

is a finite-dimensional subalgebra &fm, m). Set

W(m, m;t) = {ZaDi ‘a- e A(mm;t), i e Y},
ieY
thenW(m, m; t) is a finite-dimensional subalgebra\éf(m, m) (see R3)).

Define Th(@) = Y, (—1* 99D, (a)D;, wherea € A(m, m;t). Then T, is
an odd linear mapping fromh (m, m;t) to W(m, m;t), that is, T,(A(m, m;t),) C
W(m, m;t), 1, foro € Z,. LetsZ(m;t) = {Tu(@) | a € A(m, m;t)}. ThenszZ(m;t)
is a subalgebra oV(m, m; t), which is called odd Hamiltonian superalgebra (ste [
page 27]). We have the following formula (s&x page 28]):

2 [Tu@), Th(D)] = Tu(Tu@(b)).
Recall the naturaZ-gradations ofA (m, m;t) andW(m, m; t):

&
A, m;t) = P Am. m;ty;.  where
i=0
A(M, m; t); = spap{x“x" | la| + |ul =i, « € A(M;1), ue B(M)};
£-1
W(m, m;t) = @W(m, m;t)r;,  where
i=—1

W(m, m;t);; = span{a;D; | a; € A(M, M; Dty j € Y}

It is easy to verify thatZ’(m; 1) is aZ-graded subalgebra o¥(m, m;t)

£-2
A (m;t) = @%ﬂ(m;g)m, where

i=—1
20(m; )i = 22(m; 1) NW(m, m; t)g
={Tu(@ |ac A(Mm m;t); 2}
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SetW(m, m;t); = @jzi W(m, m; ), Z2(m; 1) = @jzi €(m; t);,. Recall that
{(W(m, m;t);,i > —1} and{s7(m;t);,i > —1} are said to be the natural filtrations
of W(m, m;t) and.7Z (m;t), respectively.

From now on, we frequently abbreviat®(m, m;t) and.Z(m;t) to W and .27,
respectively.

2. The ad-nilpotent elements in/%

Let L be a Lie superalgebra arf®la nonempty subset @f. Recall that an element
x of Sis called ad-nilpotent, if a® is a nilpotent linear transformation &f. We
denote by nilS) the set of ad-nilpotent elementsd

For.2#(m;t) wherem € N \ {1, 2} andt € N™, define

Q= {E e nil(44) | (adE)(¥) C nil())},
T :=(E e nil(#%) | (adE)(Q) C Q},
® = {E € & | (@dE)(J4 N 43) C nil () }.

Letm' e N\ {1,2},t' e N™. Forz#Z(m';t"), the corresponding sets are denoted by
Q', I and®’, respectively.

Proceeding analogously t&§, Theorem 1.3.1] ord, Theorem 2.1], we may prove
the following lemma.

LEMMA 2.1. LetL be afinite-dimensional Lie superalgebra, éd Lie subset of,
thatis,Sis closed under the multiplication &f. If S C nil(L), thenspan S C nil(L).

ForZ-graded Lie superalgebras we have the following lemma.

LEMMA 2.2. Let L be aZ-graded Lie superalgebra. Suppose that nil(L).
Thenmz(x) € nil(L), wherem;(X) is the nonzer@-component ok possessing the
minimal Z-degree.

PROOF. See P5, Lemma 2]. O
Now we return to the case of’(m;t).

LEMMA 2.3. Suppose thah € A(m, m;t). ThenTy(a) € nil(27) if and only if
Tw(@) is a nilpotent transformation af (m, m;t).

PROOF Letb € A(m, m;t). Applying (2) we obtain by induction ok that
(ad Tu(@) (Tu(®) = Tu ((Tu(@) () forall ke N.

Combining this with the fact KerJ = [ - 1, we obtain the desired result. O
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Since sZ is finite-dimensional, it is clear tha#{_,; U 74 C nil(2¢). For the
ad-nilpotent elements of7y;, we have the following result.

LEMMA 2.4. Leti, j € Y. ThenTy(xX;) € nil(2¢) if and only ifi" # j.
PrROOF. By the definition of T;, we have
(3) TH(Xi Xj) — (_1)M(i)+u(i)u(j)xj Di' + (_1)M(j)xi Dj,'

Clearly, x” = x} = 0. Suppose that # j. Itis easy to see tha;D;)" =
(xiDj)P = 0. From ('), we have[x;D;/, x;Dj;] = 0. In combination with §), we
have(Tx(xixj))?" = 0. By virtue of Lemma2.3, we obtain that (X x;) € nil(J),
as desired.

Conversely, assume thai{ x;) € nil() withi’ = j. Without loss of generality,
we may assume thate Yy. By (3), Th(X %) = X D; — x; D;. Note that

(Tui X)) %) = % forall k e N.

Therefore, (X %) is not a nilpotent transformation af(m, m; t), which contradicts
Lemma2.3. U

LEMMA 2.5. Suppose thaEq € nil () and[Eq. Ejq)] = 0. ThenEjq + E; €
nil(o7) for all E; € 4.

ProoOF. Clearly, {E;q} U 771 is a Lie subset of#, in which all elements are ad-
nilpotent. By Lemme&2.1, span({E;q} U 2#1) C nil(27). In particular,E;q + E; €
nil(o7) for all E; € JA4. O

We shall prove tha2 C 7. First we make the following preparatory remarks.

Considers#y-module s#]_;;, and denote by the corresponding representation,
that is, p(E) = (adE) |, E € . Fix the F-basis{D;, ..., Dan} of J7_y.
For E € J#y, we identify p(E) with its matrix with respect to the fixed basis. Let
pl(m, m) denote the general linear Lie superalgebra wof 2 2m matrices overf
(see [L9)). Let

p(m) = {[é —iT} e pl(m, m) ‘ B=B",C= —CT}.

Thenp (m) is a subalgebra of gin, m) (see B, page 16]).

In the followinge; denotes therd x 2m matrix having 1 in(i, j) position and 0's
elsewhere. The following lemma only needs straightforward verifications, which are
omitted.
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LEMMA 2.6. The following statements hold

® Tu(XiXj) = (_1)u(i’)+u(i’)u(j)xi D + (_1)u(j)xi,Dj,, i,jevY.
(i) p(Tuxix)) = (=D Ve; — (=DrOrDey; i, j €Y.
(i) p is faithful.
(iv) Im(p) =p(m).

(v) If E € nil(#y) thenp(E) is a nilpotent matrix.

THEOREMZ2.7. Suppose thdE € nil(s#) andadE(27) C nil(27’). ThenE € 74,
that is, Q2 C 74 N 5.

PrOOFR DecomposeE = E;_j; + Eq, WhereE;_y € 74 11 N 5, Eq € 4. Let
E = ZieYoq Tu(X), G € F. Assume thak; ;; # 0. Without loss of generality
we may assume that = 1. Applying @), we obtain

[E[—l], Th (X(Zgl)xr)] = — Tu(XeXy).

By virtue of Lemma2.4and the equation above, we §Bt_1;, Ty(X®Vxy)] ¢ nil (7).
Now Lemmaz2.2 shows[E, Ty(x®*Vxy)] ¢ nil(2#), contradicting the assumption.
HenceE,_;; =0, E = Ey € 4.

Assume thatE = Ej,) + E;, whereEjq € g N 94, E; € A4 N 5. By
Lemma2.6(iv), p(Ej) € p(m)g. Thus we may suppose thatEq) = [* . ].

Assume thak, # 0. According to Lemma.6 (iii), A is a nonzero matrix. Put
A = (Cj)mxm- Suppose that theth row is the leading nonzero row and théh
column is the leading nonzero column.

We treat two cases separately.

Case(i): | <t.

Letk=maxj € Yo | c; #0}. Thenl <t <k.

Assume that = k. Thenl =t = k andg, # 0. Obviously,A is of the following
block form A = [ 41 %], whereA, is anl x | matrix with (I, 1)-entry g, # 0 and 0
elsewhere. So the matrix(Eq) is not nilpotent. By Lemma&.6 (v), Eq is not ad-
nilpotent. Then by Lemma.2, E is not ad-nilpotent. This contradicts the assumption
thatE € Q c nil(2¢). Thusl < k.

Obviously,

k m m
p(Epo) = qual + Z ZC”G, D Cig— D D GiCii

i=l+1 j=t j=t i=l+1 j=t

Direct computatlon shows that

[p(Eo), &1 — Q'k']

m
= Ci@ — ZqJeKJ + Z Cik€1 — Gk&- +ZqJeJ K= Y Gk@ir

i=l+1 i=l+1
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This matrix possesses the bIockfo[ﬁ;;l 2], whereB; is anl x| matrix in whichdl, I)-
element isc, # 0 and the others are all 0. Therefore, the mawikE;q), & — Q1«1
is not nilpotent. By Lemma&.6 (ii), & — ex = p(Tu(X¢X)), and the matrix
P ([(Epoy, TH(XeX)]) is not nilpotent. In combination with Lemnia6 (v), we see that
[Ejo, TH(XeX)] is not ad-nilpotent. Now Lemma.2 ensures thatE, Ty(XeX)] ¢
nil(7’). This contradicts the assumption thate <.

Case(ii): | >t.
Letk =max{i € Yo | Gi #0}. Thenk>1 > t, a4 # 0and

k m m k m m
p(Eq) = Zcite‘n + Z Zcijej — Zcite[’i’ — Z Zcijej’i’-
i=l i=l

j=t+1 i=l j=t+1 i=l

By Lemma2.6 (i), p(Tu(X¢Xk)) = €k — & Thus
[0 (Eo). p(Tr(XeXi) |

k m k m
= Gl — Calu — Y Gj@j — > Gi8eir + Cuu + Y Cij€jr-
i=l

i=l j=t+1 j=t+1

This matrix is of the following forn{ %t * ], whereA is at x t matrix whose(t, t)-
entry is—c # 0 and remaining entries are 0. Proceeding analogously to Case (i), we
may prove thafE, Ty (X X«)] is not ad-nilpotent, contradicting the assumption that
E e Q.

We conclude thaE;q =0, E = E; € JA4. O

3. Natural filtration and classification

For the sake of simplicity, an isomorphism between two odd Hamiltonian superalge-
bras will be called anh-isomorphism. In this section, we shall prove that the natural fil-
tration of 77 is invariant undef -isomorphisms, that is, if : 72 (m;t) — 22(m';t’)
is an isomorphism of Lie superalgebras, thetw?(m;t);) = s (m';t'); for all
i >—1,wherem,m’ e N\ {1,2},t e N", " ¢ N™,

LEMMA 3.1. Letk, | € Yo. ThenTy(x%9x,,) € Q if and only ifk # I.

PrOOF. Assume thak = |. By (2), [Tu(Xe), TH(X®9x)] = — Ty(XXi). By
Lemma2.4, we have T;(XX) € nil(2#). Therefore, T(x%¥x,) ¢ Q.
Conversely, lek # |. Let E = E_j;; + Eo be an element of#’, whereE,_; €
A_11, Eo € 4. Assume thatE_y = ), G Tu(X), wherec; € F. PutD :=
[E_1, TH(X®x)]. Then

(4) D =[ce TuO%) + & Tu(x), Tu(X®¥x) ] = —ce Tu(XX) + ¢ T(X®¥).
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By Lemma2.4, T(xX) and T;(x®¥) are all ad-nilpotent elements. Applying)(
we obtain thafTy (XX, TH(X%¥)] = 0. S0S := {0, Tu(XkX), Th(X®¥)} is a Lie
subset of77. By Lemma2.1and @), we haveD e nil(Z’). Obviously,

(5) [E, Ta(X®x)] = D + [Eo, TH(X®*¥x)],

where[Eq, Th(x®¥x)] € 7. Note thatk # |. It is easy to verify thafD, D] = 0.
By virtue of Lemma2.5 and 6), we get[E, Ty(x®“x)] € nil(2#). Hence
Ta(x®9x,) € Q. O

PROPOSITION3.2. 571 N &G =T .

PROOF It is clear thatsz; N J%& C nil(J4). By Theorem2.7, Q C 54 N 75
and therefore[771 N 74, Q] C [0 N 4, 74 N G C 5N A5 C Q. Thus
J0NHCT.

To prove the converse inclusion, we suppose that T" and decompos& =
E/_1+ Eo, whereE|_y, € J4_q), Eq € J%. Assume thaE_; # 0. SinceE_y € J7,
without loss of generality, we may suppose tlat;; = D; + ZT‘:Z ¢;Dj, where
¢c; € F. Direct computation and application of Theor@ni show that

(6) [E, Ta(x®%2)] = Tu(x1X2) + [Eo, TH(X*Vx2)] ¢ Q.

By Lemma3.1, Ty(x*?Yx,) € Q. Moreover, 6) implies thatE ¢ I', which is a
contradiction. Sdg;_;; =0, E = Eg € J4.

We next decomposk, = E = Eq) + E;, whereEg € ), E1 € /4. Assume
that E;q # 0. SinceEjq € /4, we may assume thdg = >, .y, Cj Tu(X X)),
wherec;; € F. Put

[ :=min{i € Yy | Cj, # 0 for some j, € Y},
t :=min{j € Yy | C,j # 0 for somei, € Y}.

Case(i): | <t.
Letk :=maxXj € Yo | ¢; # 0}. Thenl <t < kandcgy, # 0.
If | =k, proceeding similarly as in the proof of Theor@n, we may prove thaE
is not ad-nilpotent, which gives a contradiction.
If I <k, then

k m m
Eo = chj Th(xXj) + Z Zcij Th(XiXj).
i—t

j=I+1 j=t
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Let D := [Ty(X*¥x), Eg]. Then

D = [XX D — x®¥ Dy, Egg]
k m
= G T X) — Y ¢ TuX®%) + Y Gk Tr(XeX).
j=t j=I+1

Therefore,

k m
[Th(X), D] = —Ci TH(X X)) + ZQ] Th(XXj) — Z Gk TH(X/ ).

j=t j=l+1

By Lemma2.6 (i), we have

k m
P([Tu(X), D) = —ck(e — &1) + chj (ejx — &j) — Z Cik(8i —&n).

j=t j=l+1

This matrix is of the following block for A'O' :], where A, is anl x | matrix
whose(l, I)-entry is—¢x # 0, but other entries are 0. Consequently, the matrix
o([Tu(X), D]) is not nilpotent. This and Lemma.6 (v) show that[Ty(Xy), D]

is not ad-nilpotent. By Lemma.2, [Ty(Xe), [Th(X®¥x), E]] is not ad-nilpotent.
Furthermore, we obtain that

(7) [TH (X(ng)Xp), E] ¢ Q.

On the other hand, by Lemnfal, Ty(x*¥x,) € Q. Hence {) implies thatE ¢ T,
which is a contradiction.

Case(ii): | >t.
Letk :=maxi € Yo | ¢y #0}. Thenk > 1 > t, ¢ # 0 and

k m m
Eo =Y G Tu(ix)+ Y > G Tuxixp).
i=l i=l j=t+1
PutG := [Tu(X®*Vxy), Eg]. Using @) we compute
K m
G =) GiTu(XXeX) = GaTu(X®'x) = Y G Tu(x®x;).

i=l j=t+1
Therefore,

k m
[T (%), Gl = G Tu(xXe) = D G Tu(ieX) + Y G Tu(Xix).

i=l j=t+1
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By Lemma2.6 (ii),

k m
pTu(Xv), G = Cu(& — &) — Z Cit (& — &) + Z Cj (€t — &jr).

i=l j=t+1

This matrix is of the form] & °], whereB; is anl x | matrix whose(l, |)-entry is
c« # 0, but other entries are 0. Similar to (i), we obtain thB{(x%'x,), E] ¢ Q.
By Lemma3.1, Ty (x®Yx,) € Q and thereforeE ¢ I, a contradiction.

Combining (i) and (ii), we conclude th#,, = 0 andE = E; € .741. This proves
thatl" C 74 N 4. O

PROPOSITION3.3. J4& = &.

PROOF. The inclusionszy C @ is clear. So, we need only to prove the converse
inclusion. Assume thaE = E;_;; + E; € &, whereE|_y; € 1), Eq € J%4. Let
Ei-y =2 iy G Tu(X), G € F. Assume thak,_; # 0. Then there exists sorkec Y
such that, # 0. If k € Y1, we may letk = 1. PutD := [E;_y;, TH(X®*¥X;)]. Then
we have

D = [c1 Th(X1) + Cv Tu(Xy), Tu(X*Vxy)]
= ¢ Tu(x®*?) — ¢y Th(XeXe)
= C1X1 Dy — cy(Xy Dy — X Dy).
Therefore,D'(x;) = ¢}, x; for all | € N. ThusD is not nilpotent as a linear trans-
formation. By Lemma2.3, D is not ad-nilpotent. Now Lemma.2 shows that
[E, Th(x®vYxy)] is not ad-nilpotent. Observe that;[Xx *Yxy) € 54 N . This

contradicts the assumption thate ®. HenceE; ;; = ZieYo G Tu(X). Without loss
of generality, we may suppose that£ 0. LetG := Ty (XyXoX3 + X X2 Xz). Then

[E_1), Gl = ¢ Th(XoX3 4+ X2 Xz) — C TH(XyXg) + C3 Tu(XuX2).
Therefore,
@A E;_3, GD*(Th(X2 + X3)) = €' Tu(X2 + X3) forallt e N.

By Lemma2.2, [E, G] ¢ nil(27). Notice thatG € 7 N . This contradicts the
assumption thaE € ®. HenceE;_;; =0, E € 4. So® C 7%, as required. O

Before proving the following main theorem we recall the notation introduced in the
beginning of Sectior.

THEOREM 3.4. The natural filtrations of finite-dimensional odd Hamiltonian su-
peralgebras are invariant undgrisomorphisms.
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PROOF. Letm,m' e N\ {1,2},t e N",t" e N"andg : £ (m;t) — 2 (m';t') be
anf-isomorphism. Observe thatpreserved,-gradations. By the definition @, it
is clear thafpp(2) = Q'; furthermorep(I") = I'’. By Propositior8.2and the definition
of @, (®) = &’. This and Propositio.3 ensure thap (7 (M; t)g) = 22(M';t'),.

As

I ={E e A 1 |adE() C H 1}, 1>1,
we may prove, by induction an thate (22 (m;t);) = 22(m’;t"); foralli > —1. O

COROLLARY 3.5. Thefiltration of finite-dimensional odd Hamiltonian superalgebra
S is invariant underAut J7.

PROOF. This is a direct consequence of Theorém O

As a direct application of Theore®.4, we establish the following property of
isomorphisms of odd Hamiltonian superalgebras.
By Theorem3.4, we may easily prove the following

COROLLARY 3.6. Let¢ and g be f-isomorphisms o7’ (m;t) to Z(m';t’). Then
¢ =g ifandonly ifp|x , = ¢l ,-

Employing Theoren8.4, we may prove tham andt are intrinsic for the odd
Hamiltonian superalgebraz’(m;t), that is, we may give a classification of odd
Hamiltonian superalgebras. Foit’ € N™, t, t’ are said to be equivalent and denoted
byt ~ t if there exists a permutation € S, such that,;, =t/ foralli € Y,.

THEOREM3.7. Suppose thah, m' € N\ {1, 2},t € N™ t € N™. Then#’(m;t) =
27(m';t) if and only ifm = m’ andt ~ t'.

PROOF Assume that : 7 (m;t) — 22 (m’;t") is an isomorphism of Lie super-
algebras. Then Theoref4 ensures thap induces canonically an isomorphism of
quotient spacesz’(m;t)/# (m;t), — 2 (m';t") /7 (m';t),. Note that

dim(JZ°(m; 1) /2 (m; t)o) = dim 27 (m; 1)y = 2m.
It follows thatm = m'.
Without loss of generality, we may suppose that --- > t, andt; > --- >t/ .

Assume on the contrary that4 t'. Then we may suppose that for sokne Yy,

(8) t>t butt; =t for k<j<m (maybek=m).
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We assert tha%(m;g)[pkz] 2 %(m;g/)[pkz]. According to 8) and the definition
of 7 (m;1), the implication 5’ is clear. Notice that

(pk—2] [pk—2]°

Ty (x”’lﬁgk)) e A (m;1) but Ty (x“’lﬁgk)) ¢ 2 (m;t)

So our assertion holds and therefore, di#ffiim;t) On

the other hand, Theoref4implies that

> dim.#(m;t’)

[pk—2] [pk—2"

9 ¢ (M b)) =2 (m;t'), forall i > —1.

From this we see easily that dig#’(m; t);; = dim.sZ(m;t")y; for alli > —1. In
particular, dimz7(m; Dy = dim AW ST contradicting to 9).
The converse implication is automatic. The proof is completed. O

4. The automorphism group of.7#’(m, m; 1)

Recall that a Lie superalgebta= Ly @& L7 overF is calledrestricted if the Lie
algebral ; is restricted and th&g-moduleL; is restricted (seelfd]). The proof of
Lemma4.1lis analogous tol[8, Theorem 4.4.5 (2)] ord3, Theorem 5].

LEMMA 4.1. 27 (m;t) is restricted if and only if = 1.

Let .« be a finite-dimensional superalgebra oferDenote by Aut’ the (even)
automorphism group of7. If o € Aut.«¥ andD € Der.«Z, thenD’ := o Dot is
again a superderivation of . It is easy to see that : D — D is an automorphism
of Derg/. Suppose tha? is a Lie subsuperalgebra of Def. We callo € Aut.«/
admissibleto 2 if 6(2) Cc 2. Put Al : 2) .= {0 € Aut | 6(2) C 2}.
Then Aulw : 2) is a subgroup of Aut/, and is referred to as thadmissible
automorphism groupf .« (to 2). Obviously,® : Aut(«/ : 2) - Aut 2,0 +> Gl
is a homomorphism of groups. In this section, we only deal with the restricted
odd Hamiltonian superalgebr#’(m; 1), and therefore adopt the conventi@n :=
Am,m; D), 77 = #(m;1) andW := W(m, m; D).

The main result of this section is the following theorem.

THEOREM 4.2. Let ® : Aut(% : ) — Auts?, o — G|u. Thend is an
isomorphism of groups.

To prove it, we need the following lemmas. First we introduce some notation. Let
M.m(% ) denote thér-algebra consisting of allr@ x 2m matrices ove , pr, and py
be the projections o onto%o; = F and#,, respectively. FOA = (&) € M (%),
set pfy A == (pr(a;)) and pg A := (pry(a;)).
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LEMMA 4.3. The following statements hold

(i) LetA e Mayn(%). ThenAis invertible if and only ipr,, Ais invertible matrix
overF.
(i) Suppose thafE, ..., Ex} is a % -basis of W. Then {pr_;(E), ...,
pr_y;(E2m)} is anfF-basis ofW_y;, wherepr,_,; is the projection ofV onto W,_y.
(iii) Suppose thap € AutsZ and{G; | i € Y} C 2 is a? -basis ofW. Then
{#(G)) | i € Y}isalso aZ -basis ofW.

ProOF. (i) Clearly, A = pr, A+ pry A. Since every element &#; is nilpotent, so
is every 2Zn x 2m matrix overZ;. From these facts one may easily prove (i).

(i) Suppose that D, ..., Doy)" = A(E;, ..., Exm)", A € Man(%). Then
(D1, ..., Dan)™ = (pro, Apr_y(Ey), ..., pr_y(Ezm))". Since{Ds, ..., Don} is
an[F-basis ofW_y, so is{pr;_;,(E1), ..., pr_y(Eam)}.

(iii) By Corollary 3.5, the natural filtration{.#/} is invariant underp. Thus¢
induces canonicallyp € GL(J#/s%). Denote byG; the image ofG; under the
canonical map? — /. Then{G; | i e Y} is anF-basis of/# /7. Assume
that

(#(G), ..., #(Gom)" = A(Dy, ..., Dom)', A € Mony(%).

DecomposeA = pr, A+ pr; A. We obtain that

@G, .., #(Gam)" = (¢(Gy), ., $(Gom))" = (Prig A(Dx, ..., Dom).

This implies that p, A is invertible. By (i), A is invertible and therefor¢p (G;) |
i €Y}isa? -basis ofw. O

LEMMA 4.4. Suppose thap € Aut.s#. Then there exisy; € % with deqy;) =
n(j) such that(¢(Di))(y;) = &; + 818 for i, j € Y. In particular, the matrix
((@(D))(Yj))ijev is invertible.

PROOF. Let j € Y. By Lemma4.3 (iii), {¢(Dy), ..., ¢(Dan)}is aZ -basis ofW.

Thus we may suppose tha(Ty(xXj)) = Zfi‘l a; ¢ (D)), whereay; € %. From
Lemma4.3(ii), we see easily thad; € 7. Using (1), we obtain that

2m 2m
(10)  ¢(UD;, Th(ax)]) = [¢(Di>, Za“qs(Do] = (#(D)(@))$(D).
1=1 =1

Onthe other hand, by Lemn2a6 (i), Tw(x1X;) = X; D1+ (—1)*x, D; and therefore,

(11) ¢ ([Di, Tu(x1X{)]) = 8¢ (Dy) + (—=1)* D810 (D).
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Comparing {0) and (L1), one getsp(Di)(ajy) = & + §;18i1. Puty; := ajy for
j e Y. We see thalz&(D,)(y,) = 8ij + (Sjléil, yi € Q/l and degy,) = deg(a,-lf) =
w(j) + pn@) = u(j), as desired. O

PROOF OF THEOREM 4.2. Let 0 € Aut(Z : 7). Assume that |, = 1|...
We proceed by induction ofa| + |u| to show thato (x“x") = x@x". Note that
W[_]_] - [—1]- We 0bta|n that

Djxi = &j = 0 (i) =o(Djx) = Dj(6(X)) = Dj(c(x)), 1, ]j€Y.

This implies that, — o (X)) € F. Sinceo (%1) C %, it follows thato () = X;,
i €Y. Suppose thawe| + |u| > 1. Then by induction hypothesis, we obtain

Di (0 (X“x") — x“x") = o (D; (x“'x")) — D;(x“x") =0 forall i e,

and thereforer (x @ x") —x@xY € F. Thuso (xX“x") = x@x". Consequentlyy = 1
and® is injective.

We next prove tha® is surjective. Letp € Aut.Z. By Lemmad4.4there exists
yj € %, with deqy;) = w(j) such that(¢(D;))(y;) = & + 5;16i1. Assume that
¢ (D) = Zlea” D;, a; € 7. Then we have the matrix equatién(D;)(y;)) =
(a&;)(Diy;) and therefore,

(&ij +3j18i1) = (@(Di)(Y})) = Prigy(@(Di)(Y})) = Pl (Cij) Prig(Diyj)-
Thus py, (Diyj) is invertible. Define the endomorphismof %/ such that
(12) o(x)=y; forallie.

Theno is even. We claim that € Aut%/. From (L2) it is easy to see that leaves
the natural filtration ofZ invariant, that isg (%) c % for all i > 0. Therefore,
it induces linear transformations of % /%1, i > 0. Note that the matrix of;
relative toF-basis{x; + %, ..., Xem + %>} is just (pr, (Diy;)). It follows thato; is
bijective. Proceeding by induction ar> 1, one may prove that is bijective. Now
our claim follows.

Note thats (Di)(y;) = (6Dio™H(y)) = o(Dixj) = &; = ¢(Dy)(y;) for all
i,j €Y. Sincely; | j € Y} generates/, we conclude tha& (D;) = ¢(D;),i € Y.
By induction onk, we may prove thak |4, = ¢|x,, K> —1,thatisg|,» = ¢. The
proof is complete. O

To prove the next theorem, we establish the following lemma.

LEMMA 4.5. The natural filtration of7 is invariant under automorphisms @f .
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PROOF. Since Derz = W, we have AutZ = Aut(%Z : W). By [25, Theorem 1],
the natural filtration ofW is invariant under AufV. Note thats(aD;) = o(a)o,
oeAutz,aec,i €Y,whichimplies the desired result. O

Following [20], we introduce some notations. F&r= % or .7, put

Aut* X = {U e Aut X | O'(X[j]) C X[j], J € Z},
AUt X = {0 € AutX | (o — 1)(X;) C Xiujs j €2}, i 0.

According to Lemma4.5 and Corollary3.5, the natural filtration ofX is invariant
under AutX. Thus Aut X < Aut X and Aut X < Aut X,i > 0. We call Aug X >
Aut; X > Aut, X > --- the standard normal series of AXit

Set Aut(%Z : ) = Aut" Z N Aut(% : 2¢) and Aul(% : 77) = Aut, Z N
Aut(z . 7). We call Aut(% : ) the homogeneous admissible automorphism
group of %, and Aup(% : ) > Aut (% : ) > --- the standard normal series
of Aut(% : 7).

THEOREM4.6. Suppose thab is defined as in Theoret2. Then
(i) AU (% . ) =Aut, 7,1 > 0;

(i) @AWY : ) = Aut" 7,

(iii) Aut, 7 is a solvable normal subgroup éiut 7,

(iv) AutZ = Auty 7 x Aut® 7.

PrROOF (i) We first prove the inclusionc’. Let o € Aut (% : 7). Then
ot e Auty(% : ). Fork e Npandf € %, we may suppose that* f = f + f/,
f'e %+k, U(D] f) = D] f+ f”, f7e 6Z/i+k_1. By Lemma4.5, U(D] f/) € 02/i+k—1-
Note that

6(Dj)(f) =0Djo *(f)=0D;(f + )

We obtain thats(D;)f = D;f (mod % _«_1). This implies thato(D;) = D;
(modW_;), j € Y. Notice thatG(aD;) = o(@0c(Dj), j € Y, a € . We
may obtain that (aD;) = aD; (modW,_;). Thereforec € Aut W. Thuss €
Aut; W N AutsZ C Aut, 27, and® (Aut; (7 - W)) C Aut; W.

To prove the converse inclusion, suppose that Aut 27, i > 0 and set
o= & g). Givenj €Y, pickk € Y\ j. By Lemma2.6 (i), Ta(XXj) =
(_1)u(k’)+u(k’)u<i)xj D, + (_1)u(i>xk, D].,_ Then

(13) (=)D (%)) (D) + (—1D)* Vo (%) (9 D))
= @(Tu(X X))
= (_1)M(k’)+u(k’)u(1)xj Dy + (—1)“(j)XkrDj/ (mod 7).
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Noticing thaty € Aut; 77 andW,_y; = J4_y;, we have
(14) ¢(Dy) = D+ E1,  ¢(Dj) =Dy + E,, where Ej, E; € 77;.

By Lemma4.5, itis easy to see that(x;) Ei, o () E; € Wi. Thus we obtain from
(13) and (4),

(=D (g (%)) — ) Dy + (=1 (0 (%) = %)Dj =0 (mod W).

Sincek # j’, we obtaino (x;) = X; (mod %,1). Now using induction ore| + |ul,
one may prove that (xX®x") = x®x" (mod Z,4u+i)- This meansr € Aut; Z
and thereforer € Aut; (% : 7). Hence® (Aut (% : 2¢)) D Aut, .

(i) The proof is completely analogous to (i), therefore is omitted.

(iii) Using the invariance of the natural filtration (see Corolld@y), one may
verify directly that[Aut; .77, Aut; 7] C Autiy; 77, 1, j > 0 (see L9, page 210]).
From this we see that the normal series At > Aut, 77 > --- is abelian (that
is, Aut o7/ Aut ., o2 are abelian groups, for all> 1), and reaches 0. Therefore
Aut, 27 is solvable.

(iv) Let ¢ € Aut 7. Then there existgy, ¢ € Homg (7, 5¢) suchthaty = ¢o+
o1 andeo () C ), 1(H]) C A1, | = —1. As the filtration of77 is invariant
under AutsZ, we havep, € Aut* Z. Thereforep,'d = 1+ ¢ylp1 € Auty 7.
Hence (iv) holds. O

Acknowledgement. The authors thank the referee for helpful suggestions.

References

[1] F. A. Berezin and M. S. Marinov, ‘Particle spin dynamics as the grassmann varlant of classical
mechanics’Ann. Physic404(1977), 336-362.

[2] R.E.Block and R. L. Wilson, ‘Classification of the restricted simple Lie algebda&lgebrall4
(1988), 115-259.

[3] N.Jacobsonl.ie algebrag(Interscience, New York, 1962).

[4] N. Jin, ‘Ad-nilpotent elements, quasi-nilpotent elements and invariant filtrations of infinite-
dimensional Lie algebras of Cartan-typ8ti. China Ser. 85(1992), 1191-1200.

[5] V.G.Kac, ‘Onthe classification of the simple Lie algebras over a field with nonzero characteristic’,
Math. USSR 1z (1970), 391-413.

, ‘Description of filtered Lie algebras with which graded Lie algebras of Cartan-type are
associated’Math. USSR 1z\8 (1974), 801-835.

[7] ——, ‘Lie superalgebras’Adv. Math.26 (1977), 8-96.

[8] , ‘Classification of infinite-dimensional simple linearly compact Lie superalgebfat/,
Math.139(1998), 1-55.

[9] Yu. Kochetkov, ‘Induced irreducible representations of Leites superalgebrasPrioblem in
group theory and homological algebra 18%aroslav. Gos. Univ., Yaroslavl, 1983) pp. 120-123.
(in Russian).

(6]




130
[10]
(1]

(12]

(23]
(14]
[15]
[16]
(17]
(18]
[19]
[20]

[21]

Wende Liu and Yongzheng Zhang [18]

A. . Kostrikin and I. R. Shafarevic, ‘Graded Lie algebras of finite characteridfiath. USSR |zv.
3(1969), 237-304.

D. A. Leites, ‘New Lie superalgebras and mechanibBsikl. Akad. Nauk SSSE6 (1977), 804—
807. English translatiorSoviet Math. Dokl. (5)18 (1977), 1277-1280.

, ‘Automorphisms and real forms of simple Lie superalgebras of formal vector fields’,
in: Problem in group theory and homological algebra 1daroslav. Gos. Univ., Yaroslavl, 1983)
pp. 126-128. (in Russian).

V. M. Petrogradski, ‘ldentities in the enveloping algebras for modular Lie superalgebragiebra
145(1992), 1-21.

A. N. Rudakov, ‘Subalgebras and automorphisms of Lie algebras of Cartan-Byp#sional.
Anal. Prilozhen20(1986), 83—84 (in Russian).

M. ScheunertTheory of Lie superalgebrakectures Notes in Math. 716 (Springer, Berlin, 1979).
G.-Y. Shen, ‘Anintrinsic property of the Lie algebiXam, n)’, Chin. Ann. Math2 (1981), 104-107.

H. Strade, ‘The classification of the simple modular Lie algebras: V. Determining of the associated
graded algebraAnn. of Math. (2)138(1993), 1-59.

H. Strade and R. Farnsteinéfodular Lie algebras and their representatio(idarcel Dekker,
1988).

R. L. Wilson, ‘Classification of generalized Witt algebras over algebraically closed figldsis.
Amer. Math. Soc153(1971), 191-210.

——, ‘Automorphisms of graded Lie algebras of Cartan tyg@gmmun. Algebra (1975),
591-613.

, ‘A structural characterization of the simple Lie algebras of generalized Cartan-type over
fields of prime characteristicl. Algebra40(1976), 418-465.

[22] ——, ‘Simple Lie algebras of type SJ. Algebra62 (1980), 292—298.

[23] Y.-Z. Zhang, ‘Finite-dimensional Lie superalgebras of Cartan-type over fields of prime character-
istic’, Chin. Sci. Bull42(1997), 720-724.

[24] Y.-Z. Zhang and H.-C. Fu, ‘Finite-dimensional hamiltonian Lie superalgebCashymun. Algebra
30(2002), 2651-2673.

[25] Y.-Z. Zhang and J.-Z. Nan, ‘Finite-dimensional Lie superalgeldm, n, t) and S(m, n,t) of
Cartan-type’Chin. Adv. Math27 (1998), 240—-246.

[26] Y.-Z.Zhang and G.-Y. Shen, ‘The embedding theoreri-gfraded Lie superalgebraSci. China
Ser. A41(1998), 1009-1016.

Department of Mathematics Department of Mathematics

Harbin Normal University Harbin Normal University

Harbin 150080 Harbin 150080

China China

and e-mail: zhyz@nenu.edu.cn

Department of Mathematics
Northeast Normal University
Changchun 130024

China

e-mail: wendeliu@sohu.com


mailto:wendeliu@sohu.com
mailto:zhyz@nenu.edu.cn

