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Abstract

A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudo-
e-varieties, this product and the regular semidirect product by completely simple semigroups ‘almost
always’ coincide. This is applied to give a model of the bifree objects in every e-variety formed as a
regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups
that is not a group variety.

2000Mathematics subject classification: primary 20M17, 20M07, 20M10.

1. Introduction

Semidirect products appeared in the theory of regular semigroups in the 1970’s with
H. E. Scheiblich’s model of free inverse semigroups and D. B. McAlister’s results on
E-unitary inverse semigroups. While a semidirect product of a regular semigroup by
a group is necessarily regular, this is far from being the case in general when the group
is replaced by a regular semigroup. This ‘defect’ led to the development of several
variants, each generalizing the semidirect product by groups and producing regular
semigroups from regular ones.

Let us mention here three of them, each of which is defined for any regular semi-
group in the first factor and any completely simple semigroup in the second. The
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restricted regular semidirect product was introduced by Polák and the first author
in [2]. The Pastijn product originates in [17] and was applied by Kad’ourek [10] to
describe the bifree objects in certain e-varieties of locally inverse semigroups, and so
to provide decompositions of these e-varieties as a Pastijn product of the variety of
semilattices by a variety of completely simple semigroups. Further decomposition re-
sults using the Pastijn product can be found in [11] and [12]. The notion of the regular
semidirect product is due to Jones and Trotter in [9] where, among a great number of
decompositions of certain e-varieties as regular semidirect products, special attention
is paid to those where the second factor is the variety of right zero semigroups. For a
remarkable result in this direction, see [8].

It was noticed by Billhardt and the second author in [5] that, for any (regular)
semigroupT and completely simple semigroupC, each restricted regular semidirect
product ofT by C is isomorphic to a Pastijn product of a (regular) subsemigroup ofT
by C, and, conversely, each Pastijn product ofT by C is embeddable into a restricted
regular semidirect product of a direct power ofT by C. Therefore the restricted
regular semidirect product by a completely simple semigroup and the Pastijn product
coincide on the level of e-varieties and pseudo-e-varieties.

The regular semidirect product by a completely simple semigroup is a more general
construction: for any regular semigroupT and completely simple semigroupC acting
on T , the restricted regular semidirect product ofT by C is a subsemigroup of the
regular semidirect product ofT by C. On the other hand, the Pastijn product ofT by
C is a subsemigroup of a regular Rees matrix semigroup over a semidirect product
of T1 by a maximal subgroup ofC where the entries of the sandwich matrix have a
special form. The aim of this paper is to show that the regular semidirect product by
a completely simple semigroup and the generalization of the Pastijn product obtained
by omitting the restriction on the entries of the sandwich matrix—calledPastijn-Rees
product—‘almost always’ coincide on the level of e-varieties and pseudo-e-varieties
(Section3). This result allows us to give a model of the bifree objects in any e-variety
which is a regular semidirect product of a variety of inverse semigroups by a variety
of completely simple semigroups that is not a group variety (Section4).

The results of this paper have been obtained while investigating how far the re-
stricted regular semidirect product and the regular semidirect product of the variety
of semilattices by a variety of completely simple semigroups can be from each other.
The results in this direction are published in [3].

2. Preliminaries

For the basic notions and notation in semigroup theory, the reader is referred to [7].
Let S andT be semigroups. IfS is regular andT is a homomorphic image of a
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regular subsemigroup ofS then we say thatT regularly dividesS. We use Reg.S/ to
denote the set of all regular elements inSand EndS the endomorphism monoid ofS.

Let I and3 be non-empty sets. Consider a3× I matrix P = .p½i / over S. The
I ×3Rees matrix semigroup overSwith sandwich matrixP, denotedM.I ; S; 3; P/,
is the setI × S×3 endowed with the following multiplication:

.i; s; ½/. j ; t; ¼/ = .i; sp½ j t; ¼/:

It is well known that if S is a group thenM.I ; S; 3; P/ is completely simple and,
conversely, each completely simple semigroup is isomorphic to a Rees matrix semi-
group over a group. Therefore we refer to Rees matrix semigroups over groups also
as completely simple semigroups.

Completely simple semigroups are regular but, in general, a Rees matrix semigroup
over a regular semigroup need not be regular. However, the set of regular elements
forms a (regular) subsemigroup. This crucial observation is due to McAlister [15].

RESULT 2.1. Let S be a regular semigroup,I and3 be non-empty sets and let
P = .p½i / be a3× I matrix overS. Then

(i) an element.i; s; ½/ ∈ M.I ; S; 3; P/ is idempotent if and only ifs = sp½i s;
(ii) an element.i; s; ½/ ∈ M.I ; S; 3; P/ is regular if and only ifV.s/∩ p½ j Sp¼i 6=

∅ for somej ∈ I and¼ ∈ 3;
(iii) the setReg.M.I ; S; 3; P// of regular elements ofM.I ; S; 3; P/ forms a

(regular) subsemigroup ofM.I ; S; 3; P/.

The subsemigroup Reg.M.I ; S; 3; P// is usually denotedRM.I ; S; 3; P/ and
is called theI ×3 regular Rees matrix semigroup overS with sandwich matrixP.

Regular Rees matrix semigroups over inverse semigroups are of special importance
(see [15, 16]).

RESULT 2.2. Each regular Rees matrix semigroup over an inverse semigroup is
locally inverse.

Result2.1 (ii) does not provide an inverse of a regular element ofM.I ; S; 3; P/.
Therefore we give an alternative characterization of regularity, and produce inverses,
the proofs of which are routine and omitted.

PROPOSITION2.3. Let S be a regular semigroup,I and3 be non-empty sets and
let P = .p½i / be a3× I matrix overS. Then an element.i; s; ½/ ∈ M.I ; S; 3; P/
is regular if and only if there existsj ∈ I such thatsp½ j R s and¼ ∈ 3 such that
p¼i sL s, in which case. j ; .sp½ j /

′s.p¼i s/′; ¼/ ∈ V..i; s; ½// for any.sp½ j /
′ ∈ V.sp½ j /

and.p¼i s/′ ∈ V.p¼i s/.
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By a (left) actionof T onSwe mean an antihomomorphism" : T → EndS, t 7→ "t

such that"1 is the identity automorphism providedT is a monoid. For brevity, we
denotea"t by ta .a ∈ S; t ∈ T/. If T is a monoid then1a = a for everya ∈ S. In
particular, if T is a group then"t is an automorphism for everyt ∈ T . Note that,
in [9], the condition on"1 is not required, and an action with this additional property
is termed left unitary.

Thesemidirect productS∗ T of Sby T with respect to this action is defined on the
setS× T by the multiplication

.a; t/.b; u/ = .a · tb; tu/ .a; b ∈ S; t; u ∈ T/:

A straightforward calculation shows thatS∗ T is a semigroup.
If A; B are non-empty sets then the set of all mappings ofA into B is denoted by

BA. Also SA stands for the direct power ofS to the exponentA, and the product of
the elementsf; g in the semigroupSA is denoted byf g.

Thewreath productof Sby T , denoted bySwr T , is the semidirect product ofST1

by T with respect to the following action: for everyf ∈ ST1
andt ∈ T , we define

t f ∈ ST1
by x.t f / = .xt/ f .x ∈ T1/. Notice that ifT has an identity then indeed

1f = f for every f ∈ ST1
. Note that there is a natural embedding of any semidirect

productS∗ T into Swr T :

¹ : S∗ T → Swr T; .a; t/¹ = . fa; t/ .a ∈ S; t ∈ T/;

where

fa : T1 → S; x fa = xa .x ∈ T 1/:

A semidirect or wreath product of regular semigroups need not be regular. However,
a regular version of the semidirect product was introduced in [9] as follows. It was
noticed that if S and T are regular,T acts onS and at least one ofS and T is
completely simple then Reg.S∗ T/ forms a (regular) subsemigroup inS∗ T , and the
regular semidirect productS∗r T of Sby T was defined to be Reg.S∗T/. In particular,
Reg.Swr T/ is a regular subsemigroup inSwr T , which we denote bySwrr T . Since
¹ preserves regularity,S ∗r T embeds intoSwrr T . Note that if S or T is a group
thenS∗r T = S∗ T andSwrr T = Swr T . In this paper, we are interested in regular
semidirect products of regular semigroups by completely simple semigroups.

The following result from [4] describes the regular elements of semidirect products
of regular semigroups, and gives inverses.

RESULT 2.4. Let S and T be regular semigroups, and letT act onS. An element
.a; t/ ∈ S∗ T is regular if and only if there existst ′ ∈ V.t/ such thatt t

′
a ≥L a in S.

If this is the case then.t
′
a′; t ′/ ∈ V..a; t// for anya′ ∈ V.a/.
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A special role will be played in the paper by semidirect products of inverse semi-
groups by groups which are known to be inverse semigroups, and their basic properties
can be found in [14].

Following Hall [7], a class of regular semigroups is termed anexistence variety, or
briefly ane-varietyif it is closed under the operatorsP; Sr andH of forming direct
products, regular subsemigroups and homomorphic images, respectively. In particular,
a class of inverse semigroups or of completely simple semigroups constitutes an e-
variety if and only if it is a variety of unary semigroups in the usual sense. Therefore,
for classes of inverse semigroups and of completely simple semigroups, we will use
the term ‘variety’ rather than ‘e-variety’. We introduce notation for the following
e-varieties:

LZ— left zero semigroups, RZ— right zero semigroups,

RB— rectangular bands, S— semilattices,

G— groups, I— inverse semigroups,

CS— completely simple semigroups, LI— locally inverse semigroups.

The finitary analogue of an e-variety is apseudo-e-variety, which is defined to be a
class of finite regular semigroups closed under forming finite direct products, regular
subsemigroups and homomorphic images.

Let X be a non-empty set. We ‘double’ it in the following way: consider a setX ′

disjoint from X together with a bijection′ : X → X ′, x 7→ x′, and putSX = X ∪ X ′.
Given a regular semigroupS, a mapping# : SX → S is calledmatchedif x#; x′#
are mutual inverses inS for all x ∈ X . Let C be a class of regular semigroups.
A bifree objectin C on a non-empty setX is defined to be a semigroupS ∈ C together
with a matched mapping� : SX → S satisfying the following universal property: for
any semigroupT ∈ C and any matched mapping# : SX → T , there exists a unique
homomorphism' : S → T such that�' = # . Obviously, such a bifree object is
unique up to isomorphism, if it exists.

It was proved by Yeh [19] that each e-variety of locally inverse semigroups has
a bifree object on any non-empty set. In particular, in a variety of inverse semi-
groups, the bifree objects coincide with the free objects. However, in a variety of
completely simple semigroups, the free object on a set is, up to isomorphism, a proper
subsemigroup in the bifree object on the same set. The reason for the existence of
the bifree objects in e-varieties of locally inverse semigroups is the following crucial
property of locally inverse semigroups. For every locally inverse semigroupS and
for every subsetU of S such that each element ofU has an inverse belonging toU ,
there exists a least regular subsemigroup inS containingU . This subsemigroup is
the least subsemigroup inS containingU and being closed under forming sandwich
elements (the∧ operation), and it is called theregular subsemigroup inS generated
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byU . An important consequence of this fact is that, for any classC of locally inverse
semigroups, the e-variety generated byC is HSr PC (see [19]).

Given a varietyV of inverse semigroups and a non-empty setX, we denote by
FV.X/ the modelI.X/=²V of the free object inV on X where I.X/ is the free
semigroup with involution onX and²V is the fully invariant congruence onI.X/
corresponding toV (see [18]). The underlying semigroup ofI.X/ is the free semigroup
on SX, and the unary operation−1 is the extension of the bijection′ : X → X ′ to an
involutory antiautomorphism. For notational convenience, we write ‘−1 ’ instead
of ‘ ′ ’, and suppose thatSX ⊆ FV.X/.

A similar description of bifree objects in e-varieties of locally inverse semigroups
was given in [1]. In this generality, the semigroup of termsT.X/ is the free binary
semigroup onSX, that is, the absolutely free algebra onSX in two binary operations·
and∧, where the operation· is assumed to be associative. Although we do not need
it explicitly in this paper, we mention for completeness that, for any e-varietyV of
locally inverse semigroups and any non-empty setX, the bifree object inV on X can be
obtained as a factor semigroup ofT.X/ modulo a congruence, called the bi-invariant
congruence, onT.X/ corresponding toV.

Now letV be a variety of completely simple semigroups withRB ⊆ V, and letX
be a non-empty set. We denote byB FV.X/ the Rees matrix model of the bifree object
in V on X obtained as follows (see [10]). ConsiderC = M.SX;GV; SX; P/, whereP
is anSX × SX matrix normalized atx0 ∈ X, and such thatpyz 6= puv if .y; z/ 6= .u; v/
in .SX \ {x0}/× .SX \ {x0}/, P̂ = {pyz : y; z ∈ SX \ {x0}}, G is the free group onX ∪ P̂
andGV = G=NV where the normal subgroupNV is determined byV. For simplicity,
we suppose thatX ∪ P̂ ⊆ GV . The matched mapping corresponding toC is SX → C,
x 7→ cx = .x; x; x/, x′ 7→ cx′ = .x′; p−1

xx′ x−1 p−1
x′x; x′/.

As usual, for anyw ∈ T.X/, we denote the element ofC corresponding tow by
.h.w/;m.w/; t .w//. In particular, we have

h.x/ = x; m.x/ = x; t .x/ = x and

h.x′/ = x′; m.x′/ = p−1
xx′ x−1 p−1

x′x; t .x′/ = x′:

Given any e-variety [pseudo-e-variety]U and a variety [pseudo-e-variety]V of
completely simple semigroups, the regular semidirect productU ∗r V of U by V is
defined in [9] to be the e-variety [pseudo-e-variety] generated by the class of all regular
semidirect productsT ∗r C with T ∈ U andC ∈ V.

3. The Pastijn-Rees product and its connection to
the regular semidirect product

In this section we define the notion of a (regular) Pastijn-Rees product of a (regular)
semigroup by a completely simple semigroup, and investigate the relation between
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the regular semidirect products and the regular Pastijn-Rees products of regular semi-
groups by completely simple semigroups. As a consequence, we establish that, in
most cases, these products coincide on the level of e-varieties and pseudo-e-varieties.

LetT be a semigroup andG a group acting onT . Consider a Rees matrix semigroup
C = M.I ;G; 3; P/. Let Q = .q½i / be a3× I matrix over the semigroupT1. Define
a multiplication on the setT � C = I × T × G ×3 as follows:

.i; a; g; ½/. j ; b; h; ¼/ = .i; a · gq½ j · gp½ jb; gp½ j h; ¼/:

This multiplication is associative, and soT � C a semigroup which is easily seen to
be a subsemigroup of a Rees matrix semigroup over a semidirect product as follows.
The action ofG can be naturally extended to an action ofT1 by putting g1 = 1 for
everyg ∈ G. This defines a semidirect productT 1 ∗ G. We can form a3× I matrix
Q × P over T 1 ∗ G by putting.Q × P/½i = .q½i ; p½i / for every½ ∈ 3 and i ∈ I .
ThenT � C may be identified with a subsemigroup ofM.I ; T1 ∗ G; 3; Q × P/ since

.a; g/.q½ j ; p½ j /.b; h/ = .a · gq½ j · gp½ jb; gp½ j h/

in T1 ∗ G. Moreover,T � C is a co-extension ofC via the projection.i; a; g; ½/ 7→
.i; g; ½/. Therefore we termT � C thePastijn-Rees productof T by C with respect
to the action ofG on T and the matrixQ. If we need to indicate the action of G on
T and the matrixQ then we writeT �;Q C. Sometimes, we shall find it convenient
to denote an element of the Rees matrix semigroupC with a single letter instead of a
triple. Therefore, an element.i; a; g; ½/ ∈ T � C with c = .i; g; ½/ ∈ C will be also
denoted by.a; c/.

REMARK 3.1. The Pastijn-Rees product is a common generalization of the Rees
matrix construction (T � C = M.I ; T; 3; Q/ if C is the rectangular bandI ×3 and
each member ofQ belongs toT) and the Pastijn product (T � C = T � C if each
entry inQ is 1). In particular, it is a generalization of a semidirect product by a group
(T � C = T ∗ C if C is a group and the unique entry inQ is 1).

It was noticed in [10] that a Pastijn productT � C is independent of the choice
of the Rees matrix representation of the completely simple semigroupC. A similar
assertion holds more generally for Pastijn-Rees products.

PROPOSITION3.2. Let C = M.I ;G; 3; P/ and D = M.J; H; 2; R/ be isomor-
phic completely simple semigroups and letT be an arbitrary semigroup. Moreover,
let Q be a3 × I matrix overT1, and suppose that an action of G on T is given.
Then there exist a2 × J matrix S over T1 and an actionŽ of H on T such that
T �;Q C is isomorphic toT �Ž;S D.
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PROOF. Let P = .p½i /, Q = .q½i / and R = .r# j /. It is well known that the
isomorphic Rees matrix semigroupsC and D relate to each other in the following
way: there exist bijections� : I → J,  : 3 → 2, an isomorphism! : G → H and
families of elementsui ∈ H , i ∈ I , andv½ ∈ H , ½ ∈ 3, such thatp½i! = v½r½ ;i�ui

for everyi ∈ I and½ ∈ 3, and the rule.i; g; ½/ 7→ .i�; ui · g! · v½; ½ / determines
an isomorphism ofC onto D. Define a2× J matrix S = .s# j / overT 1 as follows:
for every# ∈ 2 and j ∈ J, put

s# j = v−1
½ !−1

q½i where ½ = # −1 and i = j�−1:

Moreover, define an actionŽ of H on T by means of the action of G on T in the
following manner: for anyh ∈ H anda ∈ T , let

ha = h!−1

a:

It is straightforward to check that the mappingT �;Q C → T �Ž;S D defined by

.i; a; g; ½/ 7→ .i�; ui!
−1

a; ui · g! · v½; ½ /
is an isomorphism. This completes the proof.

This assertion allows us to speak, in general, about a Pastijn-Rees product by a
completely simple semigroup.

Now we establish that each Pastijn-Rees product is embeddable into a semidirect
product.

PROPOSITION3.3. Let T be a semigroup andC a completely simple semigroup
which is not a group. Each Pastijn-Rees product ofT by C is embeddable into the
wreath product ofT by C, that is, into a semidirect product of a direct power ofT
by C.

PROOF. Let T � C be a Pastijn-Rees product ofT by C = M.I ;G; 3; P/ with
respect to an action ofG on T and a matrixQ = .q½i /. For anyi ∈ I anda ∈ T ,
let us define a mappingfi;a : C1 → T by 1 fi;a = a and .k; x; �/ fi;a = xq�i · xp� ia
for every.k; x; �/ ∈ C. This mapping is well defined sinceC has no identity. It is
easy to check that� : T � C → T wr C.= T C1 ∗ C/, .i; a; g; ½/� = . fi;a; i; g; ½/ is an
embedding. This completes the proof.

Parts (i) and (ii) of the following proposition are routine. Part (iii), which says
again that regular elements form a subsemigroup, follows easily from Result2.1(iii).

PROPOSITION3.4. Let T � C = T �;Q C be a Pastijn-Rees product of a regular
semigroupT by C = M.I ;G; 3; P/. Then
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(i) an element.i; a; g; ½/ ∈ T � C is idempotent if and only ifg = p−1
½i and

a = a · p−1
½i q½i a;

(ii) an element.i; a; g; ½/ ∈ T � C is regular if and only if there existsj ∈ I such
that a · gq½ j Ra and there exists¼ ∈ 3 such thatp

−1
¼i q¼i aLa; if this is the case, then

. j ; p−1
½ j g−1

..a · gq½ j /
′a.p−1

¼i q¼i a/′/; p−1
½ j g−1 p−1

¼i ; ¼/ ∈ V..i; a; g; ½// for any .a · gq½ j /
′ ∈

V.a · gq½ j / and.p−1
¼i q¼i a/′ ∈ V.p−1

¼iq¼i a/;
(iii) the setReg.T �C/ of regular elements ofT �C forms a(regular) subsemigroup

in T � C.

The regular subsemigroup Reg.T �C/ in T �C will be called aregular Pastijn-Rees
product ofT by C and denoted byT �r C or T �;Qr C.

For later use, we record the following important observation, which follows easily
from Result2.2.

PROPOSITION3.5. A regular Pastijn-Rees product of an inverse semigroup by a
completely simple semigroup is a locally inverse semigroup.

The following consequence of Propositions3.3and3.4(iii) can be easily deduced.

COROLLARY 3.6. Let T be a regular semigroup andC a completely simple semi-
group which is not a group. Each regular Pastijn-Rees product ofT by C is embed-
dable into the regular wreath product ofT by C, that is, into a regular semidirect
product of a direct power ofT by C.

Now we find an analogous result for Pastijn-Rees products by groups.

PROPOSITION3.7. Let T be a regular semigroup andG a group. Each regular
Pastijn-Rees product ofT by G is embeddable into the direct square of a(regular)
semidirect product ofT by G.

PROOF. If S is a regular semigroup andu ∈ S1 then one can define a multipli-
cation ◦u on the setS by a ◦u b = aub. It is routine to see thatSu = .S; ◦u/

is a semigroup called a variant ofS (see [13]). It follows by Proposition2.3 that
Reg.Su/ = {a ∈ S : auRaL ua}, and Reg.Su/ is a (regular) subsemigroup ofSu.
Let T �;Qr G be a regular Pastijn-Rees product ofT by G whereG is regarded trivially
as a Rees matrix semigroup over itself (which suffices by Proposition3.2). Let S be
the semidirect product ofT by G defined by the action . It is easy to see by the
definition of the Pastijn-Rees product thatT �;Q G = Su with u = .q; 1/ whereq
is the unique element ofQ. Therefore, in order to prove the statement, it suffices to
verify that Reg.Su/ is embeddable into the direct square ofS. Let us define a map-
ping� : Reg.Su/ → S× S by a� = .au; ua/ which is clearly a homomorphism. If
a; b ∈ Reg.Su/ anda� = b� thenauRaL ua, buRbL ub andau = bu, ua = ub,
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which immediately implies thata = b. Therefore� is injective, and the proof is
complete.

The main purpose of this section is to find a relation in the opposite direction, that
is, to obtain each regular semidirect product from an appropriate regular Pastijn-Rees
product.

For semidirect products by groups, this relation is obvious (see Remark3.1). Now
we consider the general case.

PROPOSITION3.8. Let T be a regular semigroup andC a completely simple semi-
group. Each regular semidirect product ofT byC regularly divides a regular Pastijn-
Rees productT0 �r D whereT0 is a regular subsemigroup ofT and D is a subdirect
product ofC and a left zero semigroup.

PROOF. Assume thatC acts onT , and letT ∗r C be defined by this action. We
construct a regular subsemigroupW in a direct product of a left zero semigroupL
and a regular Pastijn-Rees productT0 �;Qr D where D is a subdirect product ofC
and a left zero semigroup, such thatT ∗r C is a homomorphic image ofW. The
statement of the proposition follows if we observe thatL × .T0 �;Qr D/ is isomorphic
to T0 �;Q̃r .L × D/, where, if D = M.J;G; 3; P/, we choose the Rees matrix
representationM.L × J;G; 3; P̃/ for the direct productL × D with p̃½ .l ; j / = p½ j

andq̃½ .l ; j / = q½ j for any½ ∈ 3 and.l ; j / ∈ L × J.
Suppose thatC = M.I ;G; 3; P/whereP = .p½i / is normalized at 0∈ I ∩3. The

rough idea of the construction is the following. The action ofG will be the restriction
of the action ofC to G whereG is identified withG0 = {.0; g; 0/ ∈ C : g ∈ G},
andT0 will be the greatest subsemigroup inT on whichG acts by automorphisms.
The completely simple semigroupD is obtained fromC by ‘substituting’ I by the set
of all pairs of mutually inverse elements ofT ∗r C. The aim of this ‘blowing up’ is to
ensure that all pairs of mutually inverse elements of the subsemigroup

CT ∗r C = {.bt ; c/ ∈ T ∗r C : b; c ∈ C; t ∈ T}

of T ∗r C possess inverse images inT0 �;Q D of the form described in Proposition3.4.
Finally, we need to form the direct productL × .T0 �;Qr D/, whereL will actually
be the left zero semigroup on the setT , in order that all pairs of mutually inverse
elements ofT ∗r C have inverse images inL × .T0 �;Qr D/.

Now we present the construction precisely. LetT0 = .0;1;0/T . SinceT0 is the
image ofT under the endomorphism corresponding to.0; 1; 0/, it is clearly a regular
subsemigroup ofT . Moreover.0; 1; 0/, the identity element ofG0, acts identically
on T0. Therefore the elements ofG0 act by automorphisms onT0. Thus we can
define an action of the groupG on T0 by puttingga = .0;g;0/a for everyg ∈ G and
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a ∈ T0. Later on, we shall use both actions—the action ofC on T involved in the
definition of T ∗r C and the action ofG on T0 defined now by means of the former
action—simultaneously.

For brevity, denoteT ∗r C by S. We need the following notation. Ifs = .t; c/ ∈ S
wheret ∈ T andc = .i; g; ½/ ∈ C then we denotet by ts, c by cs, i by sR and½ by sL .
Consider

Ŝ = {.s; s′/ ∈ S× S : s′ ∈ V.s/};

and defineD = M.Ŝ;G; 3; P̂/ whereP̂ = . p̂½ŝ/ is the following3× Ŝmatrix over
G: for any½ ∈ 3 andŝ ∈ Ŝ with ŝ = .s; s′/, put p̂½ŝ = p½i , wherei = sR. Clearly,
D is a subdirect product ofC and the left zero semigroup on the setŜ.

For anyŝ = .s; s′/ ∈ Ŝ, we have

.ts; cs/.ts′; cs′/.ts; cs/ = .ts; cs/ and .ts′; cs′/.ts; cs/.ts′ ; cs′/ = .ts′; cs′/

in S. These two equalities are equivalent to the following:cs′ ∈ V.cs/ in C and the
equalities

ts · csts′ · cscs′ts = ts and ts′ · cs′ts · cs′ csts′ = ts′(1)

are valid inT . In particular, these equalities imply thatcsts′ ∈ V.cscs′ts/. Conversely,
Result2.4ensures that ifs = .ts; cs/ ande is an idempotent witheR cs andets ≥L ts

thens′ = .c′
t ′; c′/, wherec′ ∈ V.cs/ with c′ Le andt ′ ∈ V.ts/, is an inverse ofs.

Let us definer ŝ = ts · csts′ for everyŝ = .s; s′/ andq½ŝ = .0;1;½/r ŝ for every½ ∈ 3
andŝ ∈ Ŝ. Obviously,q½ŝ ∈ T0, and soQ = .q½ŝ/ is a3× Ŝmatrix overT0. Thus we
have defined the regular Pastijn-Rees productT0 �r D = T0 �;Qr D.

Let ST be the left zero semigroup on the setT . Consider the following subset of the
direct productST × .T0 �r D/:

W = {[x; .ŝ; b; g; ½/] ∈ ST × .T0 �r D/ : for ŝ = .s; s′/, i = sR,
¼ = s′

L and a = x · .i;1;0/b, the relationsb = .0;p−1
¼i ;¼/a,

bL p−1
¼i q¼ŝb hold in T ands ≥R .a; i; g; ½/ in S}.

Notice that, by Result2.4, .a; i; g; ½/ belongs, indeed, toS because

.i;p−1
¼i ;¼/a = .i;1;0/b ≥L a:(2)

We intend to verify thatW is a regular subsemigroup ofST × .T0 �r D/ and S is a
homomorphic image ofW.

First we verify thatW is a subsemigroup. Let[x; .ŝ; b; g; ½/] and[y; .û; d; h; ¾ /]
be arbitrary elements ofW. Then we havês = .s; s′/, i = sR, ¼ = s′

L , a = x · .i;1;0/b,
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b = .0;p−1
¼i ;¼/a, bL p−1

¼iq¼ŝb and s ≥R .a; i; g; ½/, and, moreover, we also haveû =
.u; u′/, k = uR, � = u′

L , c = y · .k;1;0/d, d = .0;p−1
�k ;�/c, dL p−1

�kq�ûd andu ≥R .c; k; h; ¾ /.
By definition,

[x; .ŝ; b; g; ½/][y; .û; d; h; ¾ /] = [x; .ŝ; f; gp½kh; ¾ /];
where f = b · gq½û · gp½kd. Pute = x · .i;1;0/f . Then

e = x · .i;1;0/.b · gq½û · gp½kd/(3)

= x · .i;1;0/b · .i;1;0/.0;g;0/.0;1;½/rû · .i;1;0/.0;gp½k ;0/d

= a · .i;g;½/rû · .i;g;½/.k;1;0/d = a · .i;g;½/rû · .i;g;½/.k;p−1
�k ;�/c

and
.0;p−1

¼i ;¼/e = .0;p−1
¼i ;¼/.x · .i;1;0/f / = .0;p−1

¼i ;¼/x · .0;1;0/f = .0;p−1
¼i ;¼/x · f = f;

since.0;p
−1
¼i ;¼/x ·b = .0;p−1

¼i ;¼/x · .0;p−1
¼i ;¼/.i;1;0/b = .0;p−1

¼i ;¼/.x · .i;1;0/b/ = .0;p−1
¼i ;¼/a = b. SinceL

is a right congruence, the relationbL p−1
¼i q¼ŝb implies f L p−1

¼i q¼ŝ f . To prove the
relations ≥R .e; i; gp½kh; ¾ /, it suffices to show that.a; i; g; ½/ ≥R .e; i; gp½kh; ¾ /.
Result2.4 implies by (2) that.a; i; g; ½/ has an inverse inSof the form(

. j;p−1
½ j g−1 p−1

¼i ;¼/a′; j ; p−1
½ j g−1 p−1

¼i ; ¼
)
;

wherea′ ∈ V.a/. Now we see that

.a; i; g; ½/
(
. j;p−1

½ j g−1 p−1
¼i ;¼/a′; j ; p−1

½ j g−1 p−1
¼i ; ¼

)
.e; i; gp½kh; ¾ /

= .a · .i;p−1
¼i ;¼/a′; i; p−1

¼i ; ¼/.a · .i;g;½/rû · .i;g;½/.k;p−1
�k ;�/c; i; gp½kh; ¾ / by .3/

= .a · .i;p−1
¼i ;¼/.a′a/ · .i;g;½/rû · .i;g;½/.k;p−1

�k ;�/c; i; gp½kh; ¾ /

= .a · .i;g;½/rû · .i;g;½/.k;p−1
�k ;�/c; i; gp½kh; ¾ / by .2/

= .e; i; gp½kh; ¾ /:

Hence.e; i; gp½kh; ¾ / ≤R .a; i; g; ½/ which was to be verified. Thus we have shown
thatW is a subsemigroup.

Now we prove thatW is regular. Let[x; .ŝ; b; g; ½/] ∈ W as before. Defineu′ =
.a; i; g; ½/, and letu be the inverse.. j;p−1

½ j g−1 p−1
¼i ;¼/a′; j ; p−1

½ j g−1 p−1
¼i ; ¼/ of u′ considered

above. Put̂u = .u; u′/. Moreover, letd = p−1
½ j g−1

.b′b.p−1
¼i q¼ŝb/′/, whereb′ = .0;p−1

¼i ;¼/a′,
which is obviously an inverse ofb, and.p−1

¼iq¼ŝb/′ ∈ V.p−1
¼iq¼ŝb/. Let us also define

c = . j;1;0/d and y = cc′ for somec′ ∈ V.c/. By assumption, we havebL p−1
¼i q¼ŝb.

Furthermore, we see that

b · gq½û = .0;p−1
¼i ;¼/a · .0;g;0/.0;1;½/rû(4)

= .0;1;0/..i;p
−1
¼i ;¼/a · .i;g;½/.. j;p−1

½ j g−1 p−1
¼i ;¼/a′ · . j;p−1

½ j g−1 p−1
¼i ;¼/a//

= .0;1;0/.i;p−1
¼i ;¼/.aa′a/ = .0;p−1

¼i ;¼/a = b:
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Hence Proposition3.4(ii) ensures that.û; d; p−1
½ j g−1 p−1

¼i ; ¼/ is an inverse of.ŝ; b; g; ½/
in T0�r D. Therefore it remains to check that[y; .û; d; p−1

½ j g−1 p−1
¼i ; ¼/] ∈ W. It is clear

by the definition ofc andy that y · . j;1;0/d = cc′c = c and.0;p
−1
½ j ;½/c = .0;p−1

½ j ;½/. j;1;0/d =
.0;1;0/d = d. By (4) it follows that b′b ≥L b · gq½ûb′b = bb′b = bLb′b, whence
b′bL gq½ûb′b. This implies thatgp½ j.p−1

½ j q½ûd/ = gq½û · gp½ jdL gp½ jd, and sop−1
½ j q½ûdL d

holds. Finally, by definition, we have

c = . j;1;0/d = . j;1;0/.0;p−1
½ j g−1;0/.b′b.p−1

¼i q¼ŝb/
′/

= . j;p−1
½ j g−1;0/..0;p

−1
¼i ;¼/.a′a/.p−1

¼i q¼ŝb/
′/

= . j;p−1
½ j g−1 p−1

¼i ;¼/.a′a/ · . j;p−1
½ j g−1;0/.p−1

¼iq¼ŝb/
′;

which impliesc = . j;p−1
½ j g−1 p−1

¼i ;¼/.a′a/c = . j;p−1
½ j g−1 p−1

¼i ;¼/.a′a/ · . j;p−1
½ j ;½/c. Hence we see that

uu′.c; j ; p−1
½ j g−1p−1

¼i ; ¼/

= .. j;p−1
½ j g−1 p−1

¼i ;¼/a′; j ; p−1
½ j g−1 p−1

¼i ; ¼/.a; i; g; ½/.c; j ; p−1
½ j g−1 p−1

¼i ; ¼/

= .. j;p−1
½ j g−1 p−1

¼i ;¼/.a′a/; j ; p−1
½ j ; ½/.c; j ; p−1

½ j g−1 p−1
¼i ; ¼/

= .c; j ; p−1
½ j g−1p−1

¼i ; ¼/;

and so.c; j ; p−1
½ j g−1 p−1

¼i ; ¼/ ≤R u follows. Thus[y; .û; d; p−1
½ j g−1 p−1

¼i ; ¼/] ∈ W is
proved andW is, indeed, regular.

Now we define a mapping8 : W → S by [x; .ŝ; b; g; ½/]8 = .a; i; g; ½/, where
i = sR anda = x · .i;1;0/b. We have seen after the definition ofW that.a; i; g; ½/ ∈ S.
We intend to show that8 is a surjective homomorphism. Let

[x; .ŝ; b; g; ½/]; [y; .û; d; h; ¾ /] ∈ W

as before. When proving thatW is a subsemigroup, we have seen that

[x; .ŝ; b; g; ½/][y; .û; d; h; ¾ /] = [x; .ŝ; f; gp½kh; ¾ /];

where f = b · gq½û · gp½kd and, by (3), e = x · .i;1;0/ f = a · .i;g;½/rû · .i;g;½/.k;p−1
�k ;�/c. Thus,

by the definition of8,

.[x; .ŝ; b; g; ½/][y; .û; d; h; ¾ /]/8 = .a · .i;g;½/rû · .i;g;½/.k;p−1
�k ;�/c; i; gp½kh; ¾ /:

On the other hand, we have

[x; .ŝ; b; g; ½/]8 · [y; .û; d; h; ¾ /]8 = .a; i; g; ½/.c; k; h; ¾ /

= .a · .i;g;½/c; i; gp½kh; ¾ /:



52 K. Auinger and M. B. Szendrei [14]

Therefore, in order to show that8 is a homomorphism, it suffices to verify that
c = rû · .k;p−1

�k ;�/c. Sinceu ≥R .c; k; h; ¾ /, we have.c; k; h; ¾ / = ux = .tu; cu/.tx; cx/

for somex ∈ S, whencec = tu · cutx follows. Sinceu′ ∈ V.u/, (1) implies that
tu · cutu′ · cucu′tu = tu. Herecucu′ = .k; p−1

�k ; �/ sinceuR = k andu′
L = �. This implies

that rû · .k;p−1
�k ;�/tu = tu, and sorû · .k;p−1

�k ;�/tu · cutx = tu · cutx. However,c = tu · cutx,
and since.k; p−1

�k ; �/cu = cu, we also have.k;p
−1
�k ;�/tu · cutx = .k;p−1

�k ;�/.tu · cutx/ = .k;p−1
�k ;�/c.

Thusrû · .k;p−1
�k ;�/c = c holds, and8 is, indeed, a homomorphism.

Finally, we show that8 is surjective. Lets = .a; i; g; ½/ ∈ S. Since it is regular,
by Result2.4 there is an idempotent.i; p−1

¼i ; ¼/ ∈ C such that.i;p
−1
¼i ;¼/a ≥L a and

an inverse ofs of the forms′ = .. j;p−1
½ j g−1 p−1

¼i ;¼/a′; j ; p−1
½ j g−1 p−1

¼i ; ¼/, where j ∈ I and

a′ ∈ V.a/. Putŝ = .s; s′/, b = .0;p−1
¼i ;¼/a andx = r ŝ. Then, by the definition ofr ŝ, we

see that

x · .i;1;0/b = r ŝ · .i;p−1
¼i ;¼/a = a · .i;g;½/.. j;p−1

½ j g−1 p−1
¼i ;¼/a′/ · .i;p−1

¼i ;¼/a = a · .i;p−1
¼i ;¼/.a′a/ = a:

Hence it follows that
p−1
¼iq¼ŝb = .0;p−1

¼i ;¼/r ŝ · .0;p−1
¼i ;¼/a = .0;p−1

¼i ;¼/.r ŝ · .i;p−1
¼i ;¼/a/ = .0;p−1

¼i ;¼/a = b:

Thus [x; .ŝ; b; g; ½/] ∈ W and [x; .ŝ; b; g; ½/]8 = .a; i; g; ½/. This completes the
proof of the proposition.

If U is any e-variety [pseudo-e-variety] andV is a variety [pseudo-e-variety] of
completely simple semigroups, then we define theregular Pastijn-Rees productU �r V
of U by V to be the e-variety [pseudo-e-variety] generated by the class of all regular
Pastijn-Rees productsT �r C whereT ∈ U andC ∈ V.

Combining Proposition3.7, Remark3.1and Corollary3.6, Proposition3.8, respec-
tively, we obtain the following result.

THEOREM 3.9. Let U be any e-variety[pseudo-e-variety], and letV be either a
variety[pseudo-e-variety] of groups or of completely simple semigroups withLZ ⊆ V.
Then we haveU ∗r V = U �r V.

Notice that ifV 6⊆ G andLZ 6⊆ V then the equalityU ∗r V = U �r V does not
hold in general. For example,G ∗r RZ = CS, see [9], but G �r RZ = G ∨ RZ.
For, it is easy to check that, for any Pastijn-Rees product of a groupG by a right
zero semigroup3, we haveG �r 3 = G � 3, and the mappingG � 3 → G × 3,
.g; ½/ 7→ .gq½; ½/ is an isomorphism into the direct product ofG and3.

By applying the main result in [4], we can deduce the following result which
handles the case not covered by Theorem3.9.

THEOREM 3.10. LetU be any e-variety[pseudo-e-variety], and letV be a variety
[pseudo-e-variety] of right groups such thatV 6⊆ G. Then we haveU ∗r V = V =
U �r V if U ⊆ RZ andU ∗r V = U �r .LZ ∨ V/ otherwise.



[15] Rees matrix semigroups 53

PROOF. Suppose first thatU ⊆ RZ. ThenU ∗r V = U ∨ V = V by [4, Proposi-
tion 5.1]. By Corollary3.6, we haveU �r V ⊆ U ∗r V. Since the inclusionV ⊆ U �r V
is clear, the equalitiesU ∗r V = V = U �r V follow.

Now assume thatU 6⊆ RZ. Theorem3.9 implies thatU ∗r .LZ ∨ V/ = U �r

.LZ ∨ V/. By [4, Proposition 5.2 and Theorem 5.1], we see thatU ∗r .LZ ∨ V/ =

.U ∗r V/∗r LZ = .U ∗r V/∨LZ. However, [9, Lemma 4.2] ensures thatLZ ⊆ U ∗r V,
and so.U ∗r V/ ∨ LZ = U ∗r V, which completes the proof.

4. Bifree objects in e-varieties which are regular semidirect products of inverse
semigroup varieties by completely simple semigroup varieties

Given a varietyU of inverse semigroups and a varietyV of completely simple
semigroups withRB ⊆ V, the main result Theorem3.9of the previous section allows
us to construct a model of any bifree object in the e-varietyU ∗r V by making use of
the Pastijn-Rees product construction. Similarly to the models of the bifree objects
found in [10], these models have a graphical interpretation which makes them more
transparent than the models presented in [9, Section 8].

It is known from [9] that, for any inverse semigroupT and completely simple
semigroupC, every regular semidirect product ofT by C is locally inverse. By
Proposition3.5, each regular Pastijn-Rees product ofT by C is also locally inverse.
ThereforeU ∗r V, U �r V ⊆ LI providedU ⊆ I andV ⊆ CS.

In caseT is an inverse semigroup, Proposition3.4(ii) can be strengthened as
follows.

PROPOSITION4.1. Let T � C = T �;Q C be a Pastijn-Rees product of an inverse
semigroupT by a completely simple semigroupC = M.I ;G; 3; P/. Two elements
.i; a; g; ½/ and. j ; b; h; ¼/ are mutually inverse inT �C if and only ifh = p−1

½ j g−1 p−1
¼i ,

a = a · g.q½ j q
−1
½ j / = p−1

¼i.q−1
¼i q¼i /a andb = p−1

½ j q−1
½ j · p−1

½ j g−1
a−1 · p−1

½ j g−1 p−1
¼i q−1

¼i .

PROOF. Suppose first that. j ; b; h; ¼/ ∈ V..i; a; g; ½//. Then an easy calculation
givesh = p−1

½ j g−1 p−1
¼i and, by Proposition3.4 (ii), a · gq½ j Ra and p−1

¼iq¼i aLa. The
relationa·gq½ j Ra impliesa·g.q½ j q

−1
½ j /a

−1 = aa−1 whencea = aa−1a = a·g.q½ j q
−1
½ j /·

a−1a = a · g.q½ j q
−1
½ j /. Similarly, we obtain fromp−1

¼i q¼i aL a that p−1
¼i.q−1

¼i q¼i /a = a.
Moreover, a straightforward calculation shows that

a = a · gq½ j · gp½ jb · p−1
¼i q¼i a and(5)

b = b · p−1
½ j g−1 p−1

¼iq¼i · p−1
½ j g−1

a · p−1
½ j q½ j b:(6)

From (5), we deduce thatp
−1
½ j g−1

a = p−1
½ j g−1

a · p−1
½ j q½ j · b · p−1

½ j g−1 p−1
¼iq¼i · p−1

½ j g−1
a, and so

p−1
½ j g−1 p−1

¼i q¼i · p−1
½ j g−1

a · p−1
½ j q½ j = p−1

½ j g−1 p−1
¼i q¼i · p−1

½ j g−1

a · p−1
½ j q½ j b · p−1

½ j g−1 p−1
¼i q¼i · p−1

½ j g−1

a · p−1
½ j q½ j :
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Taking into account (6), this implies that

b =
(

p−1
½ j g−1 p−1

¼i q¼i · p−1
½ j g−1

a · p−1
½ j q½ j

)−1 = p−1
½ j q−1

½ j · p−1
½ j g−1

a−1 · p−1
½ j g−1 p−1

¼i q−1
¼i :

The if part follows from the given conditions and the last statement in Proposi-
tion 3.4(ii) if we observe that

p−1
½ j g−1

(
.a · gq½ j /

−1a.p−1
¼i q¼i a/

−1
)

= p−1
½ j g−1

(
gq−1
½ j a−1aa−1 · p−1

¼i q−1
¼i

)
= p−1

½ j q−1
½ j · p−1

½ j g−1

a−1 · p−1
½ j g−1 p−1

¼iq−1
¼i = b:

The proof is complete.

The next lemma provides a formula for the sandwich operation in a regular Pastijn-
Rees product of an inverse semigroup by a completely simple semigroup.

LEMMA 4.2. LetT �r C = T �;Qr C be a regular Pastijn-Rees product of an inverse
semigroupT by a completely simple semigroupC = M.I ;G; 3; P/. Then, for any
elements.i; a; g; ½/; . j ; b; h; ¼/ ∈ T �r C, we have

.i; a; g; ½/ ∧ . j ; b; h; ¼/ = .i; aa−1 · p−1
¼iq−1

¼i · p−1
¼i h−1

.b−1b/; p−1
¼i ; ¼/:

PROOF. For brevity, putt = aa−1 · p−1
¼i q−1

¼i · p−1
¼i h−1

.b−1b/, u = .i; a; g; ½/, v =
. j ; b; h; ¼/ andw = .i; t; p−1

¼i ; ¼/. We check thatw belongs to the sandwich set ofv

andu. First we notice thatt = es−1 f wheree = aa−1, s = p−1
¼i q¼i and f = p−1

¼i h−1
.b−1b/.

Obviously,e; f ∈ E.T/. Therefore

t · p−1
¼iq¼i t = es−1 f ses−1 f = e2s−1 f ss−1 f = es−1ss−1 f 2 = es−1 f = t:

This implies by Proposition3.4(i) that w is an idempotent. Now let us choose an
inverseu′ of u. By Proposition4.1, we have

u′ = .k; p−1
½kq−1

½k · p−1
½k g−1

a−1 · p−1
½k g−1 p−1

� i q−1
�i ; p−1

½k g−1 p−1
�i ; �/;

wherek ∈ I and� ∈ 3 such that

a = a · g.q½kq
−1
½k / = p−1

� i .q−1
�i q�i /a:(7)

Then a straightforward calculation shows thatuu′w = w: equality of the components
in C is obvious; for the component inT of the left hand side, we see by (7) that

a · gq½k · gq−1
½k a−1 · p−1

� i q−1
�i · p−1

� i q�i t

= a · gq½k · gq−1
½k a−1 · p−1

� i q−1
�i · p−1

� i q�i · aa−1 · p−1
¼i q−1

¼i · p−1
¼i h−1

.b−1b/

= aa−1aa−1 · p−1
¼i q−1

¼i · p−1
¼i h−1

.b−1b/ = t:
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Therefore we obtain thatw ≤R u. Routine checking similarly givesw ≤L v. Finally,
we can check thatvwu = vu. Again it is enough to show the equality of the
components inT . On the left hand side, we have

b · hq¼i · hp¼i.aa−1/ · hq−1
¼i · b−1b · hq¼i · hp¼ia

= b · hq¼i · hq−1
¼i · b−1b · hq¼i · hp¼i.aa−1/ · hp¼ia

= bb−1b · hq¼i
hq−1
¼i · hq¼i · hp¼ia = b · hq¼i · hp¼ia;

which is just the component inT of the right hand side. The proof is complete.

Now letU be a variety of inverse semigroups andV a variety of completely simple
semigroups withRB ⊆ V. Let X be a non-empty set. Consider the bifree object
C = B FV.X/ presented in Section 2. Now letQ be anSX × SX matrix such that
qyz 6= quv provided.y; z/ 6= .u; v/ in SX × SX, and putQ̂ = {qyz : y; z ∈ SX}. Suppose
also thatX ∩ Q̂ = ∅. DefineA = GV × .X ∪ Q̂/, and let us ‘double’ it in the usual
way. PutSA = A ∪ A−1, whereA−1 is disjoint from A and a bijection−1 : A → A−1,
a 7→ a−1 is fixed. Consider the free objectFU.A/ = I.A/=²U , and, for brevity,
denote it byT .

The groupGV acts onA by h.g; `/ = .hg; `/, h ∈ GV , .g; `/ ∈ A, and this
action can be extended to an action ofGV on T in the usual way. Now we define
an SX × SX matrix QA = ..qA/yz/ over T by .qA/yz = .1;qyz/ (.y; z/ ∈ SX × SX).
The action ofGV on T and the sandwich matrixQA define a Pastijn-Rees product
T � C .= FU.A/ � B FV.X// and a regular Pastijn-Rees productT �r C. Consider
the following elements inT � C: for anyx ∈ X, let

x̃ = .rx²U ; cx/ and x̃′ = .rx′²U ; cx′/;

where

rx = .1; x/.x;qxx′/.x;qxx′/−1.1; x/−1.p−1
x′x;qx′x/

−1.p−1
x′x;qx′x/.1; x/;

rx′ = .p−1
xx′ ;qxx′/−1.p−1

xx′ x−1; x/−1.p−1
xx′ x−1 p−1

x′x;qx′x/
−1:

We now check by applying Proposition4.1that x̃′ ∈ V.x̃/. The equality

rx²U = rx²U · x
(
.1;qxx′/²U ..1;qxx′/²U/−1

)
holds, since idempotents commute in an inverse semigroup. Similarly, we can see that

rx²U = p−1
x′ x

(
..1;qx′x/²U /−1.1;qx′x/²U

)
rx²U :

Finally, we have, by the definitions and routine cancellation in an inverse semigroup,

p−1
xx′..1;qxx′/²U/−1 · p−1

xx′ x−1

.rx²U /−1 · p−1
xx′ x−1 p−1

x′ x..1;qx′x/²U/−1 = rx′²U :

This verifies, by Proposition4.1, that x̃′ ∈ V.x̃/. Hencex̃; x̃′ ∈ T �r C for every
x ∈ X.
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THEOREM 4.3. LetU be a variety of inverse semigroups andV a variety of com-
pletely simple semigroups withRB ⊆ V. For any non-empty setX, consider the
regular Pastijn-Rees productFU.A/ �r B FV.X/ defined above. Then the regular
subsemigroup inFU.A/�r B FV.X/ generated by the set{x̃; x̃′ : x ∈ X} is the bifree
object inU �r V on the setX.

PROOF. We shall use the notation introduced before the theorem. Sincex̃ and
x̃′ are inverses of each other in the locally inverse semigroupT �r C, the regular
subsemigroupW generated by{x̃; x̃′ : x ∈ X} is well defined, and the mapping
SX → T �r C, x 7→ x̃, x′ 7→ x̃′ (x ∈ X) is matched. By definition, the e-varietyU �r V
is generated by the classC of all regular Pastijn-Rees productsU �r D whereU ∈ U
andD ∈ V. It is routine to see thatC is closed under forming direct products. Thus,
by [9, Lemma 7.2], it suffices to prove that each matched mapping into a member of
C can be extended to a homomorphism ofW.

Consider a memberU �r D ∈ C, where D = M.I ; H; 3; R/ and the regular
Pastijn-Rees product is defined by means of an action ofH on U and a3 × I
sandwich matrixS = .s½i / over U . Furthermore, letSX → U �r D, y 7→ .uy; dy/

(y ∈ SX) be a matched mapping wheredy = .i y; hy; ½y/. By Proposition4.1, we have

ux = ux · hx
(
s½xi x′ s

−1
½xi x′

)
;(8)

ux = r −1
½x′ i x

(
s−1
½x′ i x

s½x′ i x

) · ux;(9)

ux′ = r −1
½x ix′s−1

½xi x′ · r −1
½x ix′ h−1

x u−1
x · r −1

½x ix′ h−1
x r −1

½x′ i xs−1
½x′ i x

(10)

in U . In particular, the mappingSX → D, y 7→ dy (y ∈ SX) is matched, and therefore
it can be uniquely extended to a homomorphism : C → D.

Due to Proposition3.2, we can assume without loss of generality that the Rees
matrix representationM.I ; H; 3; R/ of D is chosen in the way thatR is normalized
at .i x0; ½x0/. In this case, there exists a group homomorphism : GV → H such that
pyz = r½yi z (y; z ∈ SX) and.y; g; z/ = .i y; g; ½z/ for every.y; g; z/ ∈ C.

Now let us define a mappingA → U in the following manner:

.g; x/ 7→ gux; .g;qyz/ 7→ gs½yi z .g ∈ GV ; x ∈ X; qyz ∈ Q̂/:

This mapping can be uniquely extended to an inverse semigroup homomorphism
� : T → U . In particular, we have.1;qyz/� = s½yi z for everyy; z ∈ SX, and.gt/� =
gt� for everyg ∈ GV andt ∈ T . By means of these properties, it is straightforward
to see that the mapping� ×  : T �r C → U �r D, .t ; c/.� ×  / = .t�; c / is a
homomorphism. In particular, we have

x̃.� ×  / = (
ux · hx.s½xi x′ s

−1
½x i x′ /u

−1
x · r −1

½x′ i x.s−1
½x′ i x

s½x′ i x /ux; dx

)
= .uxu−1

x ux; dx/ = .ux; dx/
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by (8) and (9), and

x̃′.� ×  / = (r −1
½x ix′s−1

½x i x′ · r −1
½x ix′ h−1

x u−1
x · r −1

½x ix′ h−1
x r −1

½x′ i xs−1
½x′ i x

; dx′
) = .ux′ ; dx′/

by (10), that is,� ×  extends the matched mappingSX → U �r D we started with.
This completes the proof.

The bifree object obtained in this proposition has a transparent graphical interpre-
tation. Consider the directed graphX with set of verticesGV and set of edgesA. For
any edge.g; `/ ∈ A, its initial vertex isg and its terminal vertex isg` provided` ∈ X
and isgpuv provided` = quv ∈ Q̂. We term` the label of the edge.g; `/. When
‘doubling’ A, it is convenient to chooseA−1 in a special form. First let us ‘double’̂Q

in the following way: put ¯̂Q = Q̂ ∪ Q̂−1, whereQ̂−1 is a disjoint copy ofQ̂ together
with a fixed bijection−1 : Q̂ → Q̂−1, qyz 7→ q−1

yz . Let A−1 = {a−1 : a ∈ A}, where

a−1 =
{
.gx; x−1/ if a = .g; x/ ∈ GV × X;

.gpyz;q−1
yz / if a = .g;qyz/ ∈ GV × Q̂:

Notice that, for each edgea ∈ A, the edgea−1 can be interpreted as the reverse ofa,
since the initial vertex ofa−1 is just the terminal vertex ofa, the terminal vertex of
a−1 is just the initial vertex ofa, and the label ofa−1 is the inverse of the label ofa.
Finally, observe thatX can be obtained from the Cayley graph ofGV by adding loop
edges to it at each vertex with labelsqyz wherey or z is x0.

As it was mentioned above, the elements ofT are²U -classes of words over the
alphabetSA. Observe that the wordsrx andrx′ chosen to represent the first components
of x̃ and x̃′, respectively, label paths on the graphX from 1 to the respectiveGV -
componentsm.x/ andm.x′/ (see Section2).

The regular subsemigroupW in T �r C generated by{x̃; x̃′ : x ∈ X} can be
obtained recursively with respect to the complexity of the terms inT.X/. This leads
to the following definition. As usual, for anyw ∈ T.X/, we denote the element ofC
corresponding tow by .h.w/;m.w/; t .w//.

Now we define an element!.w/ of I.A/ for any termw ∈ T.X/ as follows: for
x ∈ X, let !.x/ = r x and!.x′/ = rx′ . Moreover, if!.u/ and!.v/ are defined for
someu; v ∈ T.X/, then let

!.uv/ = !.u/.m.u/;qt .u/h.v// · m.u/pt .u/h.v/!.v/ and

!.u ∧ v/ = !.u/!.u/−1.p−1
t .v/h.u/;qt .v/h.u//

−1 · p−1
t .v/h.u/m.v/

−1

.!.v/−1!.v//:

It is easy to see by induction that, for everyw ∈ T.X/, the word!.w/ ∈ I.A/ is a
path onX from 1 tom.w/. For any termw ∈ T.X/, let us define

w� = .h.w/; !.w/²U;m.w/; t .w// ∈ T � C:
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In particular, we havex� = x̃ and x′� = x̃′ for any x ∈ X. An induction on
the complexity of terms shows that� is a .·;∧/-homomorphism. For, it is clear by
definition thatu� · v� = .uv/�, and Lemma4.2implies thatu�∧ v� = .u ∧ v/�. Denote
the image of� by RX.U ;V/. Since RX.U ;V/ is just the regular subsemigroup of
T �r C generated by{x̃; x̃′ : x ∈ X}, Theorem4.3implies that, in this way, we have a
model of the bifree object inU �r V on X.

THEOREM 4.4. LetU be a variety of inverse semigroups andV a variety of com-
pletely simple semigroups withRB ⊆ V. For any non-empty setX, the subsemigroup

RX.U ;V/ = {.h.w/; !.w/²U;m.w/; t .w// : w ∈ T.X/}
of FU.A/ �r B FV.X/ together with the matched mappingSX → RX.U ;V/, y 7→
.h.y/; !.y/²U;m.y/; t .y// .y ∈ SX/ is a bifree object inU �r V on the setX.

Combining Theorem4.4 with Theorem3.9 and Theorem3.10, we deduce the
following corollary.

COROLLARY 4.5. Let U be a variety of inverse semigroups andV a variety of
completely simple semigroups. LetX be a non-empty set.

(i) If RB ⊆ V then the semigroupRX.U ;V/ is a bifree object inU ∗r V on the
setX.

(ii) If U is non-trivial andV is a variety of right groups such thatV 6⊆ G then the
semigroupRX.U ;LZ ∨ V/ is a bifree object inU ∗r V on the setX.

The arguments of this section apply with slight modifications to Pastijn products.
Thus, ifU is a variety of inverse semigroups andV a variety of completely simple
semigroups withRB ⊆ V then we obtain a model of a bifree object in the Pastijn
productU � V of U by V, which coincides with the restricted regular semidirect
productU ∗rr V of U by V, in the following way. For anyw ∈ T.X/, define�.w/
to be the word inSA obtained from!.w/ by deleting all factors.g;q/ with labels

q ∈ ¯̂Q. Notice that�.w/ does not label a path any more. Instead ofX , we can
work with the subgraph of the Cayley graph ofGV consisting of the edges with labels
in SX. In particular,�.x/ = .1; x/.1; x/−1.1; x/—which can be clearly changed for
�.x/ = .1; x/—and�.x′/ = .p−1

xx′ x−1; x/−1. Thus we obtain the following result.

THEOREM 4.6. LetU be a variety of inverse semigroups andV a variety of com-
pletely simple semigroups withRB ⊆ V. For any non-empty setX, the subsemigroup

PX.U ;V/ = {.h.w/; �.w/²U;m.w/; t .w// : w ∈ T.X/}
is a regular subsemigroup of the Pastijn productFU.A/� B FV.X/, and PX.U ;V/
together with the matched mappingSX → PX.U ;V/, y 7→ .h.y/; �.y/²U;m.y/; t .y//
.y ∈ SX/ is the bifree object inU ∗rr V = U � V on the setX.
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This construction was introduced in [10] in the special case ofU being the varietyS
of semilattices to give models of bifree objects in the e-varieties of locally inverse
semigroups generated by Mal’cev productsS ◦ V.

Finally, let us note that Theorems4.4 and 4.6 have the following consequence.
Given a (regular) Rees matrix semigroupS = .R/M.I ;U ∗ G; 3; P/ over a semidi-
rect product of an inverse semigroup by a group, we can associate to it a completely
simple semigroupS³CS as follows: S³CS = M.I ;G; 3; P′/, where the.½; i / entry
of P′ is the component fromG of the.½; i / entry of P.

COROLLARY 4.7. Let U be a variety of inverse semigroups andV a variety of
completely simple semigroups withRB ⊆ V.

(i) The e-varietyU ∗r V = U �r V is generated by the class of all regular Rees
matrix semigroupsS = RM.I ;U ∗ G; 3; P/, whereU ∈ U and S³CS ∈ V.

(ii) The e-varietyU ∗rr V = U � V is generated by the class of all Rees matrix
semigroupsS = M.I ;U ∗ G; 3; P/, whereU ∈ U , S³CS ∈ V and the entries ofP
are in the group of units ofU 1 ∗ G.
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