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Abstract

A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudo-
e-varieties, this product and the regular semidirect product by completely simple semigroups ‘almost
always’ coincide. This is applied to give a model of the bifree objects in every e-variety formed as a
regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups
that is not a group variety.

2000Mathematics subject classificatioprimary 20M17, 20M07, 20M10.

1. Introduction

Semidirect products appeared in the theory of regular semigroups in the 1970’s with
H. E. Scheiblich’s model of free inverse semigroups and D. B. McAlister’s results on
E-unitary inverse semigroups. While a semidirect product of a regular semigroup by
a group is necessarily regular, this is far from being the case in general when the grouy
is replaced by a regular semigroup. This ‘defect’ led to the development of several
variants, each generalizing the semidirect product by groups and producing regular
semigroups from regular ones.

Let us mention here three of them, each of which is defined for any regular semi-
group in the first factor and any completely simple semigroup in the second. The
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restricted regular semidirect product was introduced byalPaind the first author

in [2]. The Pastijn product originates ii ] and was applied by Kadourek.{)] to
describe the bifree objects in certain e-varieties of locally inverse semigroups, and sc
to provide decompositions of these e-varieties as a Pastijn product of the variety of
semilattices by a variety of completely simple semigroups. Further decomposition re-
sults using the Pastijn product can be foundlifi pnd [12]. The notion of the regular
semidirect product is due to Jones and Trotte©jnfhere, among a great number of
decompositions of certain e-varieties as regular semidirect products, special attentior
is paid to those where the second factor is the variety of right zero semigroups. For a
remarkable result in this direction, se&.[

It was noticed by Billhardt and the second author %) that, for any (regular)
semigroupT and completely simple semigrodp, each restricted regular semidirect
product of T by C is isomorphic to a Pastijn product of a (regular) subsemigrouip of
by C, and, conversely, each Pastijn productdfy C is embeddable into a restricted
regular semidirect product of a direct power Dfby C. Therefore the restricted
regular semidirect product by a completely simple semigroup and the Pastijn product
coincide on the level of e-varieties and pseudo-e-varieties.

The regular semidirect product by a completely simple semigroup is a more general
construction: for any regular semigrolipand completely simple semigro@pacting
on T, the restricted regular semidirect productToby C is a subsemigroup of the
regular semidirect product df by C. On the other hand, the Pastijn producfloby
C is a subsemigroup of a regular Rees matrix semigroup over a semidirect product
of T by a maximal subgroup o where the entries of the sandwich matrix have a
special form. The aim of this paper is to show that the regular semidirect product by
a completely simple semigroup and the generalization of the Pastijn product obtained
by omitting the restriction on the entries of the sandwich matrix—catkestijn-Rees
product—'almost always’ coincide on the level of e-varieties and pseudo-e-varieties
(Section3). This result allows us to give a model of the bifree objects in any e-variety
which is a regular semidirect product of a variety of inverse semigroups by a variety
of completely simple semigroups that is not a group variety (Sedjion

The results of this paper have been obtained while investigating how far the re-
stricted regular semidirect product and the regular semidirect product of the variety
of semilattices by a variety of completely simple semigroups can be from each other.
The results in this direction are published 8).[

2. Preliminaries

For the basic notions and notation in semigroup theory, the reader is referi@d to [
Let SandT be semigroups. ISis regular andl is a homomorphic image of a
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regular subsemigroup @then we say that regularly dividesS. We use Re(f) to
denote the set of all regular elementsSand EndS the endomorphism monoid &

Let | andA be non-empty sets. Considenax | matrix P = (p,;) overS. The
| x A Rees matrix semigroup ovBwith sandwich matriP, denotedM (I, S, A; P),
isthe setl x S x A endowed with the following multiplication:

(,s,)(j, t, w) = (i, sp;t, w.

It is well known that ifSis a group thenM(l, S, A; P) is completely simple and,
conversely, each completely simple semigroup is isomorphic to a Rees matrix semi-
group over a group. Therefore we refer to Rees matrix semigroups over groups also
as completely simple semigroups.

Completely simple semigroups are regular but, in general, a Rees matrix semigroup
over a regular semigroup need not be regular. However, the set of regular elements
forms a (regular) subsemigroup. This crucial observation is due to McAlisr [

ReEsuLT 2.1. Let S be a regular semigroupl and A be non-empty sets and let
P = (p,i) be aA x | matrix overS. Then
() anelementi,s, A) € M(l, S, A; P) isidempotent if and only = sp;s;
(i) anelementi,s, A) e M(l, S, A; P)isregularifand only itV (s)np,; Sp. #
¢ forsomej € | andu € A;
(i) the setReg M(l, S, A; P)) of regular elements oM (I, S, A; P) forms a
(regular) subsemigroup aM (I, S, A; P).

The subsemigroup Rey1 (1, S, A; P)) is usually denote®RM(l, S, A; P) and
is called thel x A regular Rees matrix semigroup ovBmwith sandwich matrixP.
Regular Rees matrix semigroups over inverse semigroups are of special importance

(see [L5, 16]).

REsSULT 2.2. Each regular Rees matrix semigroup over an inverse semigroup is
locally inverse.

Result2.1 (ii) does not provide an inverse of a regular elementétl, S, A; P).
Therefore we give an alternative characterization of regularity, and produce inverses,
the proofs of which are routine and omitted.

PrOPOSITION2.3. Let S be a regular semigroupl, and A be non-empty sets and
let P = (py) be aA x | matrix overS. Then an element, s, A) € M(l, S, A; P)
is regular if and only if there existg € | such thatsp; Rs and € A such that
p.iSLs, inwhich casdj, (sp,;)'s(p.iS). n) € V((i, s, 1)) forany(sp;) € V(sp,;)
and(p,is)’ € V(p,iS).
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By a (left) actionof T on Swe mean an antihomomorphism T — EndS;t — ¢
such thate; is the identity automorphism provided is a monoid. For brevity, we
denoteag, by'a (a € S;t € T). If T is a monoid therda = a for everya € S. In
particular, if T is a group thery; is an automorphism for evetye T. Note that,
in [9], the condition ore; is not required, and an action with this additional property
is termed left unitary.

Thesemidirect producS* T of Sby T with respect to this action is defined on the
setS x T by the multiplication

(@ t)yb,uy=(@-'b,tu) (@bes t,ueT).

A straightforward calculation shows th&t T is a semigroup.

If A, B are non-empty sets then the set of all mappingé aito B is denoted by
BA. Also S* stands for the direct power &to the exponenf, and the product of
the elementd, g in the semigrous” is denoted byfg.

Thewreath producof Sby T, denoted bySwr T, is the semidirect product &
by T with respect to the following action: for everfy ¢ ST" andt € T, we define
tf e ST by x(tf) = (xt)f (x € T1). Notice that ifT has an identity then indeed
If = f foreveryf € ST'. Note that there is a natural embedding of any semidirect
productSx* T into SwrT:

v: SxT — SwrT, (a,thv=(f,t) (@e€S teT),
where
f:T!>S xf,="a (xeT?hH.

A semidirect or wreath product of regular semigroups need not be regular. However,
a regular version of the semidirect product was introduce®]ia$ follows. It was
noticed that ifS and T are regular, T acts onS and at least one 0§ and T is
completely simple then Ré§ = T) forms a (regular) subsemigroup 8 T, and the
regular semidirect produc®*, T of Sby T was defined to be Ré§«T). In particular,
Reg Swr T) is a regular subsemigroup 8wr T, which we denote bpwrr T. Since
v preserves regularitys %, T embeds intaSwrr T. Note that ifSor T is a group
thenSx, T = S« T andSwrr T = Swr T. In this paper, we are interested in regular
semidirect products of regular semigroups by completely simple semigroups.

The following result from4] describes the regular elements of semidirect products
of regular semigroups, and gives inverses.

ResuLT 2.4. Let Sand T be regular semigroups, and l&t act onS. An element
(a,t) € S« T is regular if and only if there exists € V (t) such that'a >, ain S.
If this is the case thetdia’, t') € V((a, t)) for anya’ € V (a).
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A special role will be played in the paper by semidirect products of inverse semi-
groups by groups which are known to be inverse semigroups, and their basic properties
can be found in14].

Following Hall [7], a class of regular semigroups is termedeaistence varietyor
briefly ane-varietyif it is closed under the operato’s S andH of forming direct
products, regular subsemigroups and homomorphic images, respectively. In particular
a class of inverse semigroups or of completely simple semigroups constitutes an e-:
variety if and only if it is a variety of unary semigroups in the usual sense. Therefore,
for classes of inverse semigroups and of completely simple semigroups, we will use
the term ‘variety’ rather than ‘e-variety’. We introduce notation for the following
e-varieties:

LZ— left zero semigroups, R Z— right zero semigroups,
RB— rectangular bands, S— semilattices,
G— groups, Z— inverse semigroups,

CS— completely simple semigroups, LZ— locally inverse semigroups.

The finitary analogue of an e-variety ipaeudo-e-varietywhich is defined to be a
class of finite regular semigroups closed under forming finite direct products, regular
subsemigroups and homomorphic images.

Let X be a non-empty set. We ‘double’ it in the following way: consider aXset
disjoint from X together with a bijection: X — X', x — x’, and putX = X U X'.
Given a regular semigrouf, a mappingy: X — Sis calledmatchedif x, x'9
are mutual inverses is for all x € X . LetC be a class of regular semigroups.

A bifree objeciin C on a non-empty seX is defined to be a semigroupe C together
with a matched mapping X — S satisfying the following universal property: for
any semigroupl’ € C and any matched mappint;: X — T, there exists a unique
homomorphismp: S — T such thaty = . Obviously, such a bifree object is
unique up to isomorphism, if it exists.

It was proved by Yeh19] that each e-variety of locally inverse semigroups has
a bifree object on any non-empty set. In particular, in a variety of inverse semi-
groups, the bifree objects coincide with the free objects. However, in a variety of
completely simple semigroups, the free object on a set is, up to isomorphism, a propel
subsemigroup in the bifree object on the same set. The reason for the existence o
the bifree objects in e-varieties of locally inverse semigroups is the following crucial
property of locally inverse semigroups. For every locally inverse semigiapd
for every subset) of Ssuch that each element bf has an inverse belonging t,
there exists a least regular subsemigrousicontainingU. This subsemigroup is
the least subsemigroup BicontainingU and being closed under forming sandwich
elements (the\ operation), and it is called thregular subsemigroup i generated
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byU. Animportant consequence of this fact is that, for any afas$locally inverse
semigroups, the e-variety generatedbig HS, PC (see [L9]).

Given a variety) of inverse semigroups and a non-empty Xetwe denote by
FV(X) the modell (X)/py, of the free object inY on X wherel(X) is the free
semigroup with involution onX and py, is the fully invariant congruence or(X)
corresponding t®’ (see [L8]). The underlying semigroup &t X) is the free semigroup
on X, and the unary operatior' is the extension of the bijection X — X' to an
involutory antiautomorphism. For notational convenience, we write’ ‘instead
of *"’, and suppose thaX € FV(X).

A similar description of bifree objects in e-varieties of locally inverse semigroups
was given in []. In this generality, the semigroup of terfigX) is the free binary
semigroup onX, that is, the absolutely free algebra ¥nin two binary operations
and A, where the operationis assumed to be associative. Although we do not need
it explicitly in this paper, we mention for completeness that, for any e-vabietf
locally inverse semigroups and any non-emptysahe bifree object iV on X can be
obtained as a factor semigroup®fX) modulo a congruence, called the bi-invariant
congruence, ot (X) corresponding td’.

Now letV be a variety of completely simple semigroups WRiS C V), and letX
be a non-empty set. We denoteBy ) (X) the Rees matrix model of the bifree object
in V on X obtained as follows (sed (]). ConsiderC = M (X, Gy, X; P), whereP
isanX x X matrix normalized ak, € X, and such thap,, # pu, if (y,2) # (u, v)
in (X\ {Xo}) x (X \ {Xo}), P = {py2:y.z€ X\ {Xo}}, G is the free group oiX U P
andG,, = G/N,, where the normal subgroug, is determined by’. For simplicity,
we suppose th&X U P € G,,. The matched mapping correspondingés X — C,

X > G = (X, X, X), X > Gy = (X, PoeX ™ Pries X).

As usual, for anyw € T(X), we denote the element &f corresponding tav by

(h(w), m(w), t(w)). In particular, we have

h(x) =x, mX) =X, t(x) =x and
h(x) =x, mX)=paXx'p.s, txX)=x.

Given any e-variety [pseudo-e-varietyf] and a variety [pseudo-e-variety] of
completely simple semigroups, the regular semidirect protfugt V of U by V is
defined in P] to be the e-variety [pseudo-e-variety] generated by the class of all regular
semidirect product¥ x, Cwith T € &/ andC € V.

3. The Pastijn-Rees product and its connection to
the regular semidirect product

In this section we define the notion of a (regular) Pastijn-Rees product of a (regular)
semigroup by a completely simple semigroup, and investigate the relation between
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the regular semidirect products and the regular Pastijn-Rees products of regular semi

groups by completely simple semigroups. As a consequence, we establish that, ir

most cases, these products coincide on the level of e-varieties and pseudo-e-varietie:
LetT be asemigroup an@d a group acting o . Consider a Rees matrix semigroup

C = M(, G, A;P). LetQ = (qg;;) be aA x | matrix over the semigroup®. Define

a multiplication onthe sef ¢« C =1 x T x G x A as follows:

(i,a,9,A)(j,b,h,w) = (,a-9,; - b, gp,;jh, w).

This multiplication is associative, and 3oc C a semigroup which is easily seen to

be a subsemigroup of a Rees matrix semigroup over a semidirect product as follows.
The action ofG can be naturally extended to an actionTdf by putting9. = 1 for
everyg € G. This defines a semidirect product * G. We can form aA x | matrix

Q x PoverT!x G by putting(Q x P),; = (q,, p,i) for everyx € A andi € |I.
ThenT < C may be identified with a subsemigroup.bt(l, T x G, A; Q x P) since

@, 9)(aj, pj) (b, h) = (a- 4, - b, gp,jh)

in T* x G. Moreover,T ¢ C is a co-extension of via the projection(i, a, g, A) —

(i, g, A). Therefore we ternT < C the Pastijn-Rees produaif T by C with respect
to the action ofG on T and the matrixQ. If we need to indicate the actignof G on

T and the matrixQ then we writeT ¢”Q C. Sometimes, we shall find it convenient
to denote an element of the Rees matrix semigi©@uwpith a single letter instead of a
triple. Therefore, an elemenit, a,g, 1) € T« Cwithc = (i, g, A) € C will be also
denoted bya; c).

REMARK 3.1. The Pastijn-Rees product is a common generalization of the Rees
matrix constructionT ¢ C = M(I, T, A; Q) if C is the rectangular bandx A and
each member of) belongs toT) and the Pastijn producti(¢ C = T ® C if each
entry inQ is 1). In particular, it is a generalization of a semidirect product by a group
(ToC =T=x%Cif Cisagroup and the unique entry @is 1).

It was noticed in 10] that a Pastijn product © C is independent of the choice
of the Rees matrix representation of the completely simple semigZoud similar
assertion holds more generally for Pastijn-Rees products.

PROPOSITION3.2. LetC = M(Il, G, A; P) andD = M(J, H, ®; R) be isomor-
phic completely simple semigroups andTebe an arbitrary semigroup. Moreover,
let Q be aA x | matrix overT?, and suppose that an actignof G on T is given.
Then there exist ® x J matrix S over T! and an actions of H on T such that
T o7 Q C is isomorphic toT ¢*S D.
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PrROOF. Let P = (pyi), Q = (Qi) and R = (ry;). It is well known that the
isomorphic Rees matrix semigrou@@sand D relate to each other in the following
way: there exist bijectiong: | — J, ¥ : A — ©, anisomorphisnw: G — H and
families of elements; € H,i € |, andv, € H, A € A, such thatp,jow = v;1;y,i4Ui
foreveryi € | andx € A, and the rulgi, g, A) — (i¢, U; - w - v, AY) determines
an isomorphism o€ onto D. Define a® x J matrix S = (sy;) overT* as follows:
for everyy € ® andj € J, put

Sy =" where =0y and i=j¢ "

Moreover, define an actiohof H on T by means of the actiop of G on T in the
following manner: forany € H anda € T, let

" =4,
It is straightforward to check that the mappifigp”:? C — T %S D defined by
(2,90 > (9, 2, Ui - go - v, AY)
is an isomorphism. This completes the proof. O

This assertion allows us to speak, in general, about a Pastijn-Rees product by ¢
completely simple semigroup.

Now we establish that each Pastijn-Rees product is embeddable into a semidirec
product.

ProrPOSITION3.3. Let T be a semigroup an€ a completely simple semigroup
which is not a group. Each Pastijn-Rees producfloby C is embeddable into the
wreath product ofT by C, that is, into a semidirect product of a direct powerTf
byC.

PROOF. Let T ¢ C be a Pastijn-Rees product ®fby C = M(l, G, A; P) with
respect to an action dé on T and a matrixQ = (q,;). Foranyi € | anda € T,
let us define a mapping; o: C* — T by 1f,, = aand(k, x,«) fia = X, - *™a
for every (k, x, ¥) € C. This mapping is well defined siné@ has no identity. It is
easy to checkthat ToC — TwrC(= T %C), (, a, 0, M)t = (fiari,g, 1) isan
embedding. This completes the proof. O

Parts (i) and (ii) of the following proposition are routine. Part (iii), which says
again that regular elements form a subsemigroup, follows easily from Res(jif).

PROPOSITION3.4. Let T ¢ C = T o2 C be a Pastijn-Rees product of a regular
semigroupl byC = M(l, G, A; P). Then
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() an elementi,a, g,1) € T o C is idempotent if and only iy = p;;* and

a=a-Pig,a

(i) anelementi,a, g, A) € T o C isregular if and only if there existf € | such
thata - 9,; R a and there existg € A such thatplilqmaﬁa; if this is the case, then
(j. P9(@- mp)'aig,a)), plg e,k 1) € V((i.a,9,4) for any (a- @)’ €
V(a- ;) and(q,a) € V(Piq,a);

(i) the seRegT ¢ C) of regular elements of ¢ C forms a(regular) subsemigroup
inT ¢ C.

The regular subsemigroup R8> C) in T ¢ C will be called aregular Pastijn-Rees
product of T by C and denoted b o, C or T o/*? C.

For later use, we record the following important observation, which follows easily
from Resul2.2.

PROPOSITION 3.5. A regular Pastijn-Rees product of an inverse semigroup by a
completely simple semigroup is a locally inverse semigroup.

The following consequence of Propositich8 and3.4 (iii) can be easily deduced.

COROLLARY 3.6. Let T be a regular semigroup an@ a completely simple semi-
group which is not a group. Each regular Pastijn-Rees product diy C is embed-
dable into the regular wreath product df by C, that is, into a regular semidirect
product of a direct power of byC.

Now we find an analogous result for Pastijn-Rees products by groups.

PROPOSITION3.7. Let T be a regular semigroup an@ a group. Each regular
Pastijn-Rees product of by G is embeddable into the direct square ofragular)
semidirect product of by G.

PrROOF. If Sis a regular semigroup and € S' then one can define a multipli-
cation o, on the setShy ao, b = aub. It is routine to see tha§, = (S;oy)
is a semigroup called a variant & (see [L3]). It follows by Proposition2.3 that
RegS) = {a € S: auRaLua}, and RegS)) is a (regular) subsemigroup &.
LetT 72 G be aregular Pastijn-Rees producioby G whereG is regarded trivially
as a Rees matrix semigroup over itself (which suffices by Propositig)n Let S be
the semidirect product of by G defined by the actiory. It is easy to see by the
definition of the Pastijn-Rees product that:"'° G = §, with u = (q, 1) whereq
is the unique element d®. Therefore, in order to prove the statement, it suffices to
verify that RedS,) is embeddable into the direct squareSfLet us define a map-
ping¢: RegS) — Sx Sbya¢ = (au, ua) which is clearly a homomorphism. If
a,b e Req S) anda¢ = b¢ thenauR a L ua, buR b £ ubandau = bu, ua = ub,
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which immediately implies thad = b. Therefore¢ is injective, and the proof is
complete. O

The main purpose of this section is to find a relation in the opposite direction, that
is, to obtain each regular semidirect product from an appropriate regular Pastijn-Rees
product.

For semidirect products by groups, this relation is obvious (see Re3rngridiNow
we consider the general case.

PrROPOSITION3.8. Let T be a regular semigroup an@ a completely simple semi-
group. Each regular semidirect product ®fby C regularly divides a regular Pastijn-
Rees producT, ¢, D whereTy is a regular subsemigroup df and D is a subdirect
product ofC and a left zero semigroup.

PrROOF. Assume thaC acts onT, and letT %, C be defined by this action. We
construct a regular subsemigroMy in a direct product of a left zero semigroulyp
and a regular Pastijn-Rees proddgte’? D where D is a subdirect product of
and a left zero semigroup, such thats, C is a homomorphic image dV. The
statement of the proposition follows if we observe that (T, o' D) is isomorphic
to Ty er,é (L x D), where, ifD = M(J, G, A; P), we choose the Rees matrix
representatiooM (L x J, G, A; P) for the direct product x D with P, qj, = P
andg; ¢ j, = o foranyix € A and(, j) e L x J.

Suppose tha = M(l, G, A; P)whereP = (p;;) isnormalizedatCG | NA. The
rough idea of the construction is the following. The actiorolill be the restriction
of the action ofC to G whereG is identified withGy, = {(0,g9,0) € C : g € G},
and T, will be the greatest subsemigroup Thon whichG acts by automorphisms.
The completely simple semigroupis obtained fronC by ‘substituting’|l by the set
of all pairs of mutually inverse elements Bf«, C. The aim of this ‘blowing up’ is to
ensure that all pairs of mutually inverse elements of the subsemigroup

TxC={",c)eT+C:bceC,teT)}

of T », C possess inverse imagesligo”-? D of the form described in Propositiéh4.
Finally, we need to form the direct productx (T, ©7*? D), whereL will actually
be the left zero semigroup on the Setin order that all pairs of mutually inverse
elements ofl *, C have inverse images in x (T, ¢?:? D).

Now we present the construction precisely. Ogt= ©9T. SinceT, is the
image of T under the endomorphism corresponding@ol, 0), it is clearly a regular
subsemigroup of . Moreover(0, 1, 0), the identity element o6,, acts identically
on To. Therefore the elements @&, act by automorphisms of,. Thus we can
define an actiory of the groupG on T, by putting% = ©9% for everyg € G and
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a € Ty. Later on, we shall use both actions—the actiorCobn T involved in the
definition of T %, C and the action o on T, defined now by means of the former
action—simultaneously.

For brevity, denotd x, C by S. We need the following notation. §= (t,c) € S
wheret € T andc = (i, g, ») € C then we denotebyts, cbycs, i bysg andx bys; .
Consider

S={(s,5) € Sx S:5 € V(9)},

and defineD = M(S, G, A; P) whereP = (p,s) is the followingA x Smatrix over
G: foranyx € A and§ € Swith § = (s, 9), put s = pii, wherei = sg. Clearly,
D is a subdirect product & and the left zero semigroup on the &t

For anys = (s, s) € S, we have

(ts, Co)(ts, Co)(ts, Cs) = (15, G5)  and  (tg, Cs) (ts, C5)(ts, Cs) = (s, Cs)

in S. These two equalities are equivalent to the followirg:€ V(cs) in C and the
equalities

@ to- %ty - %St =1, and ty- St - ¥ty =t

are valid inT. In particular, these equalities imply that € V (5%ts). Conversely,
Result2.4ensures that i = (1, ¢;) andeis an idempotent wite R ¢s and%s >, ts
thens = (%', ¢), wherec’ € V (cs) with ¢’ £Leandt’ e V (t;), is an inverse o§.

Let us defings =t - %ty for every$ = (s, s) andq,s = ©@1Vrs for everyr e A
ands € S. Obviously,g,s € To, and s0Q = (g,s) is @A x Smatrix overT,. Thus we
have defined the regular Pastijn-Rees prodyet D = T, o7° D.

Let T be the left zero semigroup on the JetConsider the following subset of the
direct producfT x (T, ¢, D):

W={[x,(8Dbg M eTx(Too, D): for §=(s,S),i = Sg,
n = s anda = x - 1%, the relationsh = ©Pi' 4,
b £ Pig,sb hold in T ands >% (a;i, g, &) in S}.

Notice that, by Resul?.4, (a;i, g, A) belongs, indeed, t& because
) @ptig = (10h > . 5

We intend to verify thaWV is a regular subsemigroup af x (T, ¢, D) andSiis a
homomorphic image oW.

First we verify thatW is a subsemigroup. Léxk, (§, b, g, )] and[y, (0, d, h, &)]
be arbitrary elements &F. Then we havé = (s,S),i =Sz, u =5, ,a = x- 10,
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b = ©Piwa, b L Pig,sb ands >x (a;i, g, 1), and, moreover, we also have=
(U, ), k=ug,n=u,,c=y -®0d d = P, d £ Prq,d andu >x (c;k, h, £).
By definition,

[x. (5.0, 9, MLy, (@, d, h,§)] =[x, (5 f, gpuxh, §)],
wheref =b - %4 - 9d. Pute = x - “29f, Then
3) e=x- "% %, - 9d)
— x.010p, (i,1,0)(o,g,0)(0,1,x)rlj . (,1,000.9px, 0y
—a. 000, . GeNklog — 5 doby . (onkplng

and
Opitig = Oy . (10F) — @Ry  OL0f _ Oplwy . f — f

since@ P iy . = @Ry . OPEwWGL0K — ©Oplu k. (:L0h) — O wg — b, Sincel
is a right congruence, the relatidnl Pﬁilqugb implies f £ plilqugf. To prove the
relations >% (€;i, gpi«h, &), it suffices to show thata;i, g, 1) >% (€, gp«kh, &).
Result2.4implies by @) that(a;i, g, ») has an inverse i% of the form

(e Rl ptg gt ),
wherea’ € V(a). Now we see that

(a; i’ g, X)((J»P;jlgflp;il,u)a/; j, p;jlg—lp;il, /’L) (e i, gpxkha %-)
—(a- Py Pl )@@ 0o, @9 MK Pacng: gp«h, &) by (3

i 2
— (a . (i.p;il.lt)(a/a) . (i,g,}n)ra . (i,9,1) (K, p;kl-n)c; i’ gmkh’ é:)
— (a. (0, . Gonk p;kl.mc; i,gp«h. &) by (2
= (g1, gpuh, §).

Hence(e; i, gpwh, &) < (a;i, g, ») which was to be verified. Thus we have shown
thatW is a subsemigroup.

Now we prove thaiV is regular. Lefx, (§,b, g, A)] € W as before. Define’ =
(a;i, g, 1), and letu be the inversg!-P'o " igy’; P, 9P, ) of U’ considered
above. Puti = (u, u). Moreover, letd = 9 ('b(Piq,sb)’), whereb’ = © P,
which is obviously an inverse df, and (Pq,sb)’ € V(Piq.sb). Let us also define
¢ = (19 andy = cc for somec’ € V(c). By assumption, we have L Piq,sb.
Furthermore, we see that

-1
(4) b- ng — Opimy . (0,9,0)(0,1,/\)1'li
_ <0.1,0>(<i,p;i1,u)a_ <i,g,x>(<i,p;ﬁg*lp;ﬁ,ma/ ) <J.p;,-19*1p;ﬁ,ma))

= ©100R. Y gga) = OPi g = b,
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Hence Propositio.4(ii) ensures that(, d, p;jlg‘1 p;il, w)isaninverse ofs, b, g, A)

in Too, D. Therefore itremainsto check thgt (0, d, p;jlg‘lp;il, w)] € W. ltisclear

by the definition ofc andy thaty - 1-1°d = cc'c = c and @ P+ = @R P10 —
0104 = d. By (4) it follows thatb'b >, b - 9q,sb'b = bbb = bLb'b, whence
b'b £ %p,b'b. This implies thaPi(Pig,ad) = % - 9Pid £ 9Pid, and soPiqed £ d
holds. Finally, by definition, we have

1

. : 1 1
c = (109 — (.1.00O.pjg -0)(b/b(P,,iqu§b)’)
PR | —1 1
= (29 0@ R0 @) (P b))
i n-lg-1p-1 PR -] —1
— P9 Py ””(a/a) CUpg ’°>(p"iqugb)/,
. . . i ly—1p-1 i1l —1 41 PR
which impliesc = 4:P5'9 P W@ ayc = U-P'9 "Pa-#(@a) - 4P+, Hence we see that
. —1~—1,~-1
UU/(C, J pxj g pui . )
pte it el i =1y —1~—1 .: T [ |
= ((l Py 9 Py “)a/, Jv p}LJ g pu,i R ,[,L)(a, I, g, )\.)(C, J, p}LJ g plli s ,LL)
i.pitg et .ion-l e |
= ((l Py 9 P M)(a/a)’ i, pkj , )\.)(C, i, pM_ g pui ’M)
.y —1~—1,.-1
=(C ), P9 P, 1),

and so(c; j, p;;'97*p,, ) <r u follows. Thusly, (0,d, p;'g~*p,", w)] € W is
proved andV is, indeed, regular.

Now we define a mappin@: W — S by [x, (§,b, g, 1)]® = (a;i, g, A), where
i =sganda = x- 1%, We have seen after the definition\&fthat(a;i, g, 1) € S.
We intend to show thab is a surjective homomorphism. Let

[x, (5, b, g, V)], [y, (0,d,h, )] e W
as before. When proving th#l is a subsemigroup, we have seen that
[X, (5, b, g, MLy, (0,d, h, )] =[x, (5 f,gp«h, &)],

wheref = b- % - 9°«d and, by ), e = x - (:10f = g. (.94, . (.ehkpine Thus,
by the definition ofd,

(I, (3, b, g, VLY, (@, d, h, )N = (a- “97r, . COPEPLIG | gp, h, &).
On the other hand, we have

[X, (5, b, g, )P - [y, (G,d, h,&)]P = (a;i,9,1)(c;k, h, §)
= @- "%, gpih, £).
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Therefore, in order to show thak is a homomorphism, it suffices to verify that
c=rg- ®Pimc, Sinceu > (Ck, h, &), we have(c; K, h, &) = ux = (ty, Cy)(ty, Cy)
for somex € S, whencec = t, - ®t, follows. Sinceu € V(u), (1) implies that
ty - Sty - @%t, = t,. Herecycy = (K, p;kl, n) sinceur = k andu; = ». This implies
thatr, - ®Pict, = t,, and sorg - ©Piomg, - %, = t, - %, However,c = t, - %,
and sincek, pyl, 1)C, = Cy, We also havék P, - o, = ®Pi, . o) = kP,
Thusr, - ®Px7c = ¢ holds, and® is, indeed, a homomorphism.

Finally, we show thatd is surjective. Les = (a;i, g, A) € S. Since itis regular,
by Result2.4 there is an idempoterd, p,*, #) € C such that"P:#a >, a and
an inverse of of the forms’ = (I"P/'9 P way; j, prtgtp.t, w), wherej € | and
a’ € V(a). Putd = (s, ), b= ©Pia andx = rs. Then, by the definition afs, we
see that

—-1.-1,-1

x . (10 — rs - (i,pﬁil,u)a —a. (LW)((J»P-A,- 9 Py ”‘)a/) . (i,pﬁil’u)a —a. (ivp;il’ﬂ)(a/a) —a.
Hence it follows that
1 1 1 1 P —1
pﬂiqp.éb — ©, P, sﬂ}é . (O, P sﬂ)a — ©, P, -l’»)(lf-é . (l-,pﬂi sﬂ)a) — ©, P, sﬂ)a — b

Thus([x, (§,b,g,1)] € W and[x, (§b,g,1)]® = (a;i, g, »). This completes the
proof of the proposition. O

If U is any e-variety [pseudo-e-variety] andis a variety [pseudo-e-variety] of
completely simple semigroups, then we definertigrilar Pastijn-Rees produtt o, V
of U by V to be the e-variety [pseudo-e-variety] generated by the class of all regular
Pastijn-Rees produci® ¢, C whereT € Uf andC € V.

Combining PropositioB.7, Remark3.1and Corollary3.6, Propositior.8, respec-
tively, we obtain the following result.

THEOREM 3.9. Let i/ be any e-varietypseudo-e-variely and let) be either a
variety[pseudo-e-variefyof groups or of completely simple semigroups @it C V.
Thenwe havef x, V =U o, V.

Notice that ifY & G andLZ € V then the equalityf %, V = U o, V does not
hold in general. For examplg, x, RZ = CS, see p], butG o, RZ = GV RZ.
For, it is easy to check that, for any Pastijn-Rees product of a gélyy a right
zero semigroup\, we haveG ¢, A = G ¢ A, and the mappin@g ¢ A — G x A,
(9, A) — (gq., A) is an isomorphism into the direct product@fand A.

By applying the main result in4], we can deduce the following result which
handles the case not covered by Theofetn

THEOREM 3.10. Let/ be any e-varietypseudo-e-variefy and let) be a variety
[pseudo-e-varieiyof right groups such that Z G. Then we havéf x, V =) =
Uo VIFEUCRZandU x V =U o, (LZ Vv V) otherwise.
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PROOF. Suppose first thdf € RZ. Thenld %, V =U vV =V by [4, Proposi-
tion 5.1]. By Corollary3.6, we havd/ ¢, V C U *, V. Since the inclusioy C U ¢, V
is clear, the equalitield x, V =)V = U ¢, V follow.

Now assume thatY & RZ. Theorem3.9implies thatif «, (LZ Vv V) = U o,
(LZ v V). By [4, Proposition 5.2 and Theorem 5.1], we see thiat (LZ Vv V) =
U WV)* LZ = U V)V LZ. However, P, Lemma4.2] ensuresthétZ C UV,
and soUd * V) v LZ =U % V, which completes the proof. O

4. Bifree objects in e-varieties which are regular semidirect products of inverse
semigroup varieties by completely simple semigroup varieties

Given a varietyld of inverse semigroups and a varietyof completely simple
semigroups wittR B C V, the main result Theoref9of the previous section allows
us to construct a model of any bifree object in the e-vaidéty )V by making use of
the Pastijn-Rees product construction. Similarly to the models of the bifree objects
found in [L0], these models have a graphical interpretation which makes them more
transparent than the models presentedjrSection 8].

It is known from P] that, for any inverse semigroup and completely simple
semigroupC, every regular semidirect product af by C is locally inverse. By
Proposition3.5, each regular Pastijn-Rees producfloby C is also locally inverse.
Therefored «, V,U o, V C LI providedd € 7 andV C CS.

In caseT is an inverse semigroup, Propositi@¥(ii) can be strengthened as
follows.

PROPOSITION4.1. Let T « C = T o2 C be a Pastijn-Rees product of an inverse
semigroupT by a completely simple semigro@= M(l, G, A; P). Two elements
(i,a,g,r) and(j, b, h, u) are mutually inverse iff ¢C if and only ifh = p;jlgflp;il,
a=a- 90,0 = P(g;'g.)aandb = Pig - P9 At P R L,

PROOF. Suppose first thatj, b, h, ) € V((i, a, g, A)). Then an easy calculation

givesh = p;'g~'p,* and, by Propositior.4 (i), a - @;; R a and PiguaLla. The

relationa-%;; R aimpliesa-9(q;;0;;)a™* = aa* whencea = aa'a = a-%(q;;q;;") -
a'a = a-9q;q;"). Similarly, we obtain fromPiig, a £ a that plil(q;ilqui)a = a.
Moreover, a straightforward calculation shows that

. —1
5) a=a- 9, -"™b-Pig,a and
—1 . —1 —1 —1
(6) b=Db.P9 lpmq,ﬂ Py, Pig;b.
—1.— —1 - —1 —1 —1 —1 ..
From (), we deduce thati 9 a = P49 a - Pig,; - b- P9 Pig, - P9 a, and so

11,1 11 —1 11,1 11 —1 11,1 11 —1
P9 p“iqui . P9 a- Pij q}hj — P9 p“iqui . P9 a- Pij qub' P9 p“iqui TR a- Pij q}Lj-
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Taking into account®), this implies that

-1

~1o-15-1 ~1,-1 —1 —1 11 ~1q-15-1
— (P9 P . . P9 Pia. — Pig=l. P9 -1, P9 Rl
b = < J i qp.l . Maj a- ]qkj) = ]qkj . A a o M2 i q;Li .

The if part follows from the given conditions and the last statement in Proposi-
tion 3.4 (ii) if we observe that

-1 —1a/p -1 oY ogy-1a-10~4-1 piy—1
e ((a-%ﬂ a(ig,ia) ):p,_,g (gq-a aa -"#'qm)
— pA,q T ST p;ﬁq/:il —b.

The proof is complete. O

The next lemma provides a formula for the sandwich operation in a regular Pastijn-
Rees product of an inverse semigroup by a completely simple semigroup.

LEMMA 4.2. LetT o, C = T ©:2C be a regular Pastijn-Rees product of an inverse
semigroupTl by a completely simple semigro@= M(l, G, A; P). Then, for any
elementsi, a, g, A), (j, b, h, u) € T o, C, we have

(i.a,9.2) A (j. b, h, ) = (i,aat Pagt - P (b7th), pit ).

PROOF. For brevity, putt = aal Pt PN (bb), u = (,8,0,4), v =
(j, b, h, w)andw = (i, t, p;t, u). We check thatv belongs to the sandwich set of

i
andu. Firstwe notice that = es* f wheree = aa™!,s = ”ﬁilqm andf = P (b~1p).
Obviously,e, f € E(T). Therefore

t.Pig,t =es'fses'f =e’s'fss'f —eslssifi=es'f =t.

This implies by Propositior.4(i) that w is an idempotent. Now let us choose an
inverseu’ of u. By Propositiord.1, we have

= (k, p;qu);(]-. p‘;klgflafl. p‘;klgflp;lql:i , p;klgflpl;]-’ K),
wherek € | andx € A such that
) a=a- Y = " (q;lgq)a.

Then a straightforward calculation shows thatw = w: equality of the components
in C is obvious; for the component ifh of the left hand side, we see by)that

1 a! e
a- - - Pgt - Pyt
B -1 pt -1 piiy—1 pth i -1
=a- %kk . %)\k a . P in . P in -aa . pmq/j,i . Pui (b b)
-1 1
=aataa - Pig;- P (b ) =t.
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Therefore we obtain that < u. Routine checking similarly gives <, v. Finally,
we can check thabwu = vu. Again it is enough to show the equality of the
components ifT. On the left hand side, we have

b, -"(@a ) -t b by, - "a
=b-"f, - thml -b*b-Tg,; - "i@a) - "Pa

= bb_lb . I—qui rq;ll . rqll«i . hpma — b . I—qui . hp“ia’
which is just the component ifi of the right hand side. The proof is complete.[]

Now letl/ be a variety of inverse semigroups avié variety of completely simple
semigroups witlRB < V. Let X be a non-empty set. Consider the bifree object
C = BFV(X) presented in Section 2. Now I€ be anX x X matrix such that
Qyz # Gu, Provided(y, 2) # (u,v) in X x X, and putQ = {q, : y. z € X}. Suppose
also thatx N Q = ¢. DefineA = Gy, x (X U Q), and let us ‘double’ it in the usual
way. PutA = AU A%, whereA! is disjoint from A and a bijectiom™ : A — A%,

a — alis fixed. Consider the free obje&l/(A) = I(A)/py, and, for brevity,
denote it byT.

The groupGy acts onA by g, ¢) = (hg, £), h € Gy, (g,¢) € A, and this
action can be extended to an action@§f, on T in the usual way. Now we define
an X x X matrix Qa = ((qa)y,) over T by (da)y. = (1, dy2) ((Y,2) € X x X).
The action ofGy, on T and the sandwich matriQ , define a Pastijn-Rees product
T o C (= FU(A) ¢ BFV(X)) and a regular Pastijn-Rees prodiict, C. Consider
the following elements i ¢ C: for anyx € X, let

X = (rypu; ) and X' = (rypu; Cx),
where

My = (l X)(X qxx)(x qxx) (1 X) (pxxaqu) (pXXaQX’x)(lv X)7

Ne = (Pors Gox) T (Por X5 X)) H(Pe X Pross Chox)

We now check by applying PropositiegnlthatX’ € V (X). The equality
M = Txpu - (L Oee) o (L, G o20) )
holds, since idempotents commute in an inverse semigroup. Similarly, we can see tha
Fpu = P(((Ls Ghe) 20) (L, Ghes) Pua) P x s
Finally, we have, by the definitions and routine cancellation in an inverse semigroup,
PA(L, G o) P ) PP, G o) = o

This verifies, by Propositiod.1, thatX’ € V(X). HenceX, X' € T ¢, C for every
X e X.
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THEOREM 4.3. LetU/ be a variety of inverse semigroups avida variety of com-
pletely simple semigroups witRB C V. For any non-empty seX, consider the
regular Pastijn-Rees produdtl{/(A) o, BFV(X) defined above. Then the regular
subsemigroup ifr/ (A) o, BFV(X) generated by the s¢k, X’ : x € X} is the bifree
object ini/ ¢, V on the sefX.

PrOOF. We shall use the notation introduced before the theorem. Sinmed
X' are inverses of each other in the locally inverse semigroup C, the regular
subsemigroupN generated by{X, X' : x € X} is well defined, and the mapping
X = T, C,x+— X, X > X (x € X)is matched. By definition, the e-varidifo, V
is generated by the clagsof all regular Pastijn-Rees produdiiso, D whereU e U
andD e V. ltis routine to see that is closed under forming direct products. Thus,
by [9, Lemma 7.2], it suffices to prove that each matched mapping into a member of
C can be extended to a homomorphism/éf

Consider a membed o, D € C, whereD = M(l, H, A; R) and the regular
Pastijn-Rees product is defined by means of an actiot adn U and aA x |
sandwich matrixS = (s,;) overU. Furthermore, leX — U o, D, y > (uy;dy)
(y € X) be a matched mapping whedg = (iy, hy, A,). By Proposition4.1, we have

(8) Ux = Uy - (S0, ST )

—1
) Ux = rkx"x(s;xflixSAxfix) “ U

[P T ol | e S N o Sy |
(10) Uy = S 5 20U T e,

in U. In particular, the mapping — D, y > d, (y € X) is matched, and therefore
it can be uniquely extended to a homomorphigmC — D.

Due to Propositior8.2, we can assume without loss of generality that the Rees
matrix representatioM (I, H, A; R) of D is chosen in the way th& is normalized
at(iy,, Ax,). In this case, there exists a group homomorphjstG,, — H such that
Pyzy =i, (¥, Z € X) and(y. 9, 2)¢ = (iy. gy. A,) for every(y, g, 2) € C.

Now let us define a mapping — U in the following manner:

(9, X) = YUy, (0,0y) > 95, (e Gy, xeX, gy e Q).

This mapping can be uniquely extended to an inverse semigroup homomorphism
¢: T — U. In particular, we havel, q,,)¢ = s, for everyy, z € X, and ()¢ =
9t for everyg € Gy andt € T. By means of these properties, it is straightforward
to see that the mapping x ¥ : T o, C — U o, D, (t;0) (¢ x ¥) = (tg;cy) is a
homomorphism. In particular, we have

(¢ x U) = (U - ™50, 2 UL (ST S i, Uy d)

= (UyUtUy; dy) = (Uy; dy)
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by (8) and @), and

—1.-1
T

h -1

o -1 i -l N
(@ x ) = (s ], e ut B es ) = (U dy)

Xy

by (10), that is,¢ x v extends the matched mappiXg— U o, D we started with.
This completes the proof. O

The bifree object obtained in this proposition has a transparent graphical interpre-
tation. Consider the directed graphwith set of verticess, and set of edges. For
any edg€g, ) € A, its initial vertex isg and its terminal vertex ig¢ provided? € X
and isgp,, provided?¢ = q., € Q. We term¢ the label of the edgeg, £). When
‘doubling’ A, itis convenient to choosa™* in a special form. First let us ‘doubl®
in the following way: putQ = Q U Q!, whereQ!is a disjoint copy ofQ together
with a fixed bijection*: Q - Q°%, gy, > g, 1. Let Al ={al:a e A}, where
gl {(gx, x if a=(g,x) € Gy x X;A
9Pz Gy;) if a=(g,ay2) € Gy x Q.

Notice that, for each edgec A, the edgea! can be interpreted as the reversepf
since the initial vertex o~ is just the terminal vertex dd, the terminal vertex of
a1is just the initial vertex of, and the label o&! is the inverse of the label .
Finally, observe thak’ can be obtained from the Cayley graph®j by adding loop
edges to it at each vertex with labejs wherey or z is X,.

As it was mentioned above, the elementsToére p,,-classes of words over the
alphabetA. Observe that the wordg andr, chosen to represent the first components
of X and X, respectively, label paths on the graphfrom 1 to the respectivé&,, -
componentsn(x) andm(x’) (see Sectior).

The regular subsemigroug/ in T ¢, C generated by{X, X' : x € X} can be
obtained recursively with respect to the complexity of the termiB(iK). This leads
to the following definition. As usual, for any € T(X), we denote the element &f
corresponding tav by (h(w), m(w), t(w)).

Now we define an element(w) of I (A) for any termw € T(X) as follows: for
x e X, letw(X) =r, andw (X)) = ry. Moreover, ifw(u) andw (v) are defined for
someu, v € T(X), then let

o (Uv) = oU)(MU), Guwhw) - "P"w ()  and
o U A V) = oW W) P Gonw) ™ - Forom™ (@) o ).

It is easy to see by induction that, for everye T (X), the wordw (w) € I (A) is a
path onX’ from 1 tom(w). For any termw € T(X), let us define

wt = (h(w), o (w)py, Mw),t(w)) € T oC.
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In particular, we have: = X andx’t = X’ for any x € X. An induction on
the complexity of terms shows thais a (-, A)-homomorphism. For, it is clear by
definition thatuc - v = (uv)¢, and Lemmat.2implies thatuc A vt = (U A v)e. Denote
the image oft by Rx (U, V). SinceRx(U, V) is just the regular subsemigroup of
T o, C generated byX, X' : x € X}, Theoremd4.3implies that, in this way, we have a
model of the bifree object itf o, V on X.

THEOREM 4.4. LetU/ be a variety of inverse semigroups a¥vica variety of com-
pletely simple semigroups wifR3 C V. For any non-empty sef, the subsemigroup

RxU, V) = {(h(w), (W) py, Mw), t(w)) : w € T(X)}

of FU(A) o, BFV(X) together with the matched mapping — Rx(U, V), y —
(h(y), o (Y) pu, m(Y), t(y)) (y € X) is a bifree object irif o, V on the seiX.

Combining Theoremt.4 with Theorem3.9 and TheorenB3.10 we deduce the
following corollary.

COROLLARY 4.5. Let U be a variety of inverse semigroups aida variety of
completely simple semigroups. Letbe a non-empty set.

(i) If RB <V then the semigrouRx (U4, V) is a bifree object irif % V' on the
setX.

(i) If U is non-trivial andV is a variety of right groups such thdt Z G then the
semigroupRx U, LZ v V) is a bifree object ifif *, V on the seiX.

The arguments of this section apply with slight modifications to Pastijn products.
Thus, ifi/ is a variety of inverse semigroups aida variety of completely simple
semigroups withR B < V then we obtain a model of a bifree object in the Pastijn
producti/ © V of U by V, which coincides with the restricted regular semidirect
productl/ ., V of U by V, in the following way. For anyw € T(X), definey (w)
to be the word inA obtained fromw (w) by deleting all factorgg, q) with labels
q € Q. Notice thaty(w) does not label a path any more. Insteadthfwe can
work with the subgraph of the Cayley graph@f; consisting of the edges with labels
in X. In particular,x (x) = (1, x)(1, x)~1(1, x)—which can be clearly changed for
x(X) = (1, x)—andx (X') = (px 1, X)~1. Thus we obtain the following result.

THEOREM 4.6. LetU/ be a variety of inverse semigroups a¥vica variety of com-
pletely simple semigroups wifR3 € V. For any non-empty set, the subsemigroup
PxU, V) = {(h(w), x (w) prr, M(w), t(w)) : w € T(X)}

is a regular subsemigroup of the Pastijn prod&d (A) © BFV(X), and Px(U, V)
together with the matched mappiXg— Px (U, V), y — (h(Y), x (Y) pu, M(Y), t(y))
(y e X) is the bifree objectiif x, V =U ©V on the sefX.
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This construction was introduced it in the special case &f being the varietys
of semilattices to give models of bifree objects in the e-varieties of locally inverse
semigroups generated by Malcev produsts ).

Finally, let us note that Theorenfs4 and 4.6 have the following consequence.
Given a (regular) Rees matrix semigro8pg= (R)M (I, U % G, A; P) over a semidi-
rect product of an inverse semigroup by a group, we can associate to it a completely
simple semigrougsncs as follows: Stes = M(I, G, A; P’), where the(), i) entry
of P’ is the component fron® of the (A, i) entry of P.

COROLLARY 4.7. Let U be a variety of inverse semigroups aida variety of
completely simple semigroups withs € V.

() The e-varietyd x V = U <, V is generated by the class of all regular Rees
matrix semigroups = RM(l,U % G, A; P), whereU € U/ and Srcs € V.

(i) The e-variety/ =, V = U © V is generated by the class of all Rees matrix
semigroupss = M(l,U x G, A; P), whereU € U, Srcs € V and the entries oP
are in the group of units df ! x G.

References

[1] K. Auinger, ‘The bifree locally inverse semigroup on a sét’Algebral66(1994), 630-650.
[2] K. Auinger and L. Pahk, ‘A semidirect product for locally inverse semigroupstta Sci. Math.
63(1997), 405-435.
[3] K. Auinger and M. B. Szendrei, ‘Comparing the regular and the restricted regular semidirect
products’ Algebra Universali$1 (2004), 9-28.
[4] B. Billhardt and M. B. Szendrei, ‘Associativity of the regular semidirect product of existence
varieties’,J. Austral. Math. Soc. Ser. 89 (2000), 85-115.
[5] ——, ‘Weakly E-unitary locally inverse semigroupsl, Algebra267(2003), 559-576.
[6] T. E. Hall, ‘Identities for existence varieties of regular semigroupsill. Austral. Math. Soc40
(1989), 59-77.
[7]1 J. M. Howie,Fundamentals of semigroup thed@larendon Press, Oxford, 1995).
[8] P. R. Jones, ‘Rees matrix covers and semidirect products of regular semigrhuplgiebra218
(1999), 287-306.
[9] P.R.Jones and P. G. Trotter, ‘Semidirect products of regular semigrdugss. Amer. Math. Soc.
349(1997), 4265-4310.
[10] J. Kadourek, ‘On some existence varieties of locally inverse semigrotgsinat. J. Algebra
Comput6 (1996), 761-788.
[11] —, ‘Onsome existence varieties of locally orthodox semigroup&rnat. J. Algebra Comput.
7(1997), 93-131.
[12] J.Kadourek and M. B. Szendrei, ‘On existence varietieBfolid semigroups'Semigroup Forum
59(1999), 470-521.
[13] T. A. Khan and M. V. Lawson, ‘Variants of regular semigrougS8&migroup Forun62 (2001),
358-374.



60 K. Auinger and M. B. Szendrei [22]

[14] M. V. Lawson,Inverse semigroups: the theory of partial symmet(srld Scientific, Singapore,
1998).

[15] D. B. McAlister, ‘Rees matrix semigroups and regular Dubreil-Jacotin semigrodipAuistral.
Math. Soc. Ser. 81(1981), 325—-336.

[16] ——, ‘Rees matrix covers for locally inverse semigroudsans. Amer. Math. So277(1983),
727-738.

[17] F. Pastijn, ‘The structure of pseudo-inverse semigroupsins. Amer. Math. So@73 (1982),
631-655.

[18] M. Petrich,Inverse semigroup@Viley & Sons, New York, 1984).
[19] Y.T. Yeh, ‘The existence of e-free objects in e-varieties of regular semigrdafesnat. J. Algebra
Comput.2 (1992), 471-484.

Fakultat fur Mathematik Bolyai Institute
Universitat Wien University of Szeged
Nordbergstrasse 15 Aradi vertaruk tere 1
A-1090 Wien H-6720 Szeged
Austria Hungary

e-mail: karl.auinger@univie.ac.at e-mail: m.szendrei@math.u-szeged.hu


mailto:karl.auinger@univie.ac.at
mailto:m.szendrei@math.u-szeged.hu

