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Abstract

In this paper we investigate when negative definite functions on commutative hypergroups satisfy the
Schoenberg criterion.
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About sixty years ago Schoenberg contributed a range of fundamental results to the
theory of positive definite and related functions which were subsequently generalized
in many directions. One basic observation was that a funatids negative definite

if and only if exp(—ty) is positive definite for each > 0. While this result holds

for all semigroups (in fact it is true for arbitrary negative definite kernels) it is not
clear how to prove the ‘only if’ part for hypergroups since the usual techniques do not
apply (the ‘if’ part always holds provided that Reis locally lower bounded). The
problem is that except whenor y belong to the maximal subgroup of the hypergroup
exp(—ty (X * y)) and exg—ty)(X = y) are usually not equal so that other methods
have to be used to overcome this. However no counterexample is known so far.

In this paper we closely analyze the negative definite functions on commutative
hypergroups, in particular the Sturm-Liouville hypergroup structures on the half-
line R,. This is achieved through a study of théuy-Khinchin representation with
the key component being the non-negative quadratic forms. It should be pointed out
that sinceR, carries the identity involution the quadratic forms are none other than
the additive functions on these spaces.

Part of the work for this paper was carried out while the first author was visiting the University of

Eichsttt.
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As it turns out the non-negative additive functions ®n have been completely
characterized (se@][7.3.1]) but they appear not to have a simple form. However we
do have areasonable catalogue of negative definite functions on many Sturm-Liouville
hypergroups including the well-known Bessel-Kingman, Naimark, cosh and square
hypergroups.

The paper is divided into two sections. We commence by introducing positive
definite and negative definite functions together with quadratic forms on hypergroups,
presenting the &vy-Khinchin representation for negative definite functions with lower
bounded real part, and then introduce Schoenberg functions. In the second sectiol
we consider the problem of showing that negative definite functior®_ ogatisfy a
strong version of negative definiteness (that is, are Schoenberg).

Unless otherwise stated the notation will be that@ffhich is our main reference
for harmonic analysis on these spaces.

1. Positive and negative definite functions on hypergroups

Let (K, x) be a commutative hypergroup with neutral elemgnitivolution — and
Haar measure. A locally bounded measurable functign: K — C is called a
semicharacteif

() x@©=1

(i) x(xxy)=xx(y) forallx,yeK,

(i) x(x7) = xx) forall x € K.
Every bounded semicharacter is callecharacter If the character is not locally null
then (see?, Proposition 1.4.33]) it must be continuous. The dkialof K is just the
set of continuous characters with the compact-open topology in whichkcaseust
be locally compact. In this paper we will be concerned with continuous characters on
hypergroups.

A locally bounded measurable functign: K — C is said to bepositive definitef

D> agigxixx) =0
i=1 j=1

forall choices ofky, Xz, ..., %, € K, €1, G, ..., G, € Candn € N. Alocally bounded
measurable functioly : K — Cis said to benegative definitéf 1 (x~) = ¥ (x) and

Xn:iqéjw(xi #%7) <0

i=1 j=1

whenever the,, c,, . . ., ¢, further satisfyzi”:1 ¢ =0.
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A range of properties of positive definite and negative definite functions can be
found in [2, Chapter 4]. In particular, it should be noted that

(1.2) if ¥ is negative definite thetr + c is negative definite for alt € R,
(1.2) if ¢ is positive definite thegp (e) — ¢ is negative definite

We denote byP(K) the space of bounded continuous positive definite functions
on K and byN (K) the space of continuous negative definite functignsith lower
bounded real part (in which case @ > v (e)). Observe thayy € P(K) for all
x € K*sothatby (.2),1— x € N(K).

A locally bounded measurable functigns called aguadratic formif

gx*xy) +qx*y ) = 2q(X) + 29(y)

for all x,y € K andadditiveif q(x *y) = q(x) + q(y) for all x,y € K. In the

case thaK is hermitian, that is wheiK carries the identity involution, then every

quadratic form is an additive function and every negative definite function is real.
We have the following extension a2 [ Theorem 1.4.35].

PropPOsITION1.1. Every quadratic formg on a (commutative hypergroupK is
continuous everywhere.

PROOF. Choose f € C.(K) satisfying [, fdw = 1. Now using P, Theo-
rem 1.3.21]

ffa—nmmw+my»www=/ﬂmea*w+qa*r»www
K K
:/ f(y)(29(x) + 2q(y)) w(dy)
K
zzmm+2/meMWwww
K

andq € C(K) by [2, Proposition 1.4.27]. O

For hypergroups we have that if exptt) is positive definite for alt > 0 then
exp(—ty (e)) — exp(—ty) is negative definite and provided Reis locally lower
bounded

im SR (€) — exp—ty)

t—0 t

=y —vy(e

is also negative definite in which case sajis For abelian semigroups the converse
statement also holds. However this result is not available for hypergroups which
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hinges on deciding whether expy) is positive definite (which is only known for
bounded negative definitg¢ or more generally for thos¢: which are the uniform
limits on compact sets of bounded negative definite functions; for a discussion of
these and related results séeCorollary 3.6 and Remark 3.8]).

A key result in the study of negative definite functions on hypergroups is the
following Lévy-Khinchin representation (se2 [Theorem 4.5.2]).

THEOREM1.2. Every real-valued and lower boundgde N(K) has the represen-
tation

v (X) =v(©+ax) + / (1 — Re(x(x))) n(dx)

KA\{1}

for all x € K whereq is a non-negative quadratic form df andn € M (K" \ {1}).
Both g and the integral party — v (e) — q belong toN(K) and the pair(q, n) is
uniquely determined by with g being given by

Y (x*") Y ((X % X)*")
n2 '

(1.3) q(x) = lim on

+ lim
n—o00
It is worth spending a moment analyzing thévy-Khinchin theorem. First the

Lévy measure) is usually not bounded and the only bounded quadratic fqrm

is the function identically zero. Secondky — Re(x(x)) is positive definite so

that 1— Re(x (X)) is negative definite. In general, it is not true thate) — v is

positive definite when) is negative definite. However if the product of characters is

positive definite (which is necessary fér' to be a so-called weak hypergroup; sée [

Proposition 1]), in which case the product of continuous positive definite functions is

again positive definite, then the power series expansion of the exponential shows tha

exp(—ty) = exp(—ty (e)) expt(y (e) — v)) € P(K)

forallt > 0 whenevery(e) — ¢ is positive definite.

Finally it should be observed that there exist unbounded negative definite functions
with zero quadratic form part. For example on the gr&u@vhich is also a hypergroup
with the usual involution)x — x? is negative definite and hence soxis— |x|*,

0 < @ < 2. The uniquely determined quadratic form part is easily seen to be zero
(see (.3)) and indeed there exists uniggg e M, (K" \ {1}) with

X[ = / (1 — exp(—iyx)) n.(dy)
R

(all non-negative quadratic forms on the grdi@re given byx — ax? with a > 0).
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1.1. Schoenberg functions A continuous functiony on K is called aSchoenberg
functionif exp(—ty) € P(K) for all t > 0, in which case) is necessarily negative
definite. We write¥ (K) for the set of all Schoenberg functions Kn

As we have already observed every bounded continuous negative definite function
is Schoenberg and hence the uniform limit on compact sets of bounded negative
definite functions is again Schoenberg. We can use &wy{Khinchin representation
to identify further Schoenberg functions.

THEOREM 1.3.If ¥ € N(K) is real-valued and has zero quadratic part then
Y e W(K).

PrOOF. We apply Theoreni.2to obtain immediately

v(X) =v(e +/ (1 — Re(x(x))) n(dx),

KA\
wheren € M, (K" \ {1}). The result will now follow by appealing ta2[ Theo-
rem 4.4.16] once we know thgt(x) — ¥ (e) satisfies the following version of nega-
tive definiteness: Denote the Fourier transfornuof M°(K) (the space of bounded
complex-valued Radon measures Ky by i(x) := [, x du. If © € MP(K) has
compact support > 0 and/, du = 0 then

/(w(x)—w(e))u(dX)Z// (1 — Re(x (x))) n(dx) (dx)
K K JKM\(1)

_ f [ f (l—Re(X(X)))M(dX)}n(dX)
Ky LJk

_ / [ / RG(X(X))M(dX)}n(dX)
KA\{1} K

1

-3 / () + A00) n(dy)
K\ {1}

<0
as required. O

In the classical case the composition dernstein functiorfthat is, a continuous
non-negative negative definite function on the semigrd@®ip +)) and a non-negative
negative definite function is again negative definite. While this might be true for
hypergroups we only have an analogue for Schoenberg functions. We first consider
the following type of convergence.

DEFINITION. A sequence of functiongg,) is termedlocally bounded convergent
with limit g if sup{|g.(X)| : n =1, 2, ..., x € C}is finite for each compact s€&t c K
and lim_ . g, = g pointwise onkK.
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Itis easy to see that local uniform convergence implies local bounded convergence.
For the rest of this section we will assume that products of characters are positive
definite. We now present two easy lemmas.

LEMMA 1.4. Each of the sets of continuous positive definite functions and con-
tinuous negative definite functions &his closed under sequential local bounded
convergence.

LEMMA 1.5. The set¥(K) of all Schoenberg functions oK is a convex cone
closed under sequential local bounded convergence.

PROPOSITIONL1.6. If ¥ € W(K) andt > Othenl — exp(—ty) € W(K).

PROOF. Putg, := exp(—ty) and lets > 0. Then
o0 Sn
S n
exp{—s[1 - exp(—ty)]) = e 2; 9
n=

is again positive definite. O

COROLLARY 1.7. For every Bernstein functiof : R, — R, the composition
f o ¢ with a non-negative Schoenberg functigrs again a Schoenberg function.

PROOF. It needs only to be observed that Bernstein functions are of the form
f(t)y =a+ bt + / 1—e™™) u(dx),
0

where . € M,(]0, ool) satisfiesfow(x/(l + X)) u(dx) < oo anda,b > 0 are
constants (seel]| Remark, page 114]) and then apply Propositich O

To apply Corollaryl.7 we need a catalogue of Bernstein functions. Two well-
known ones give immediately that for@ s < 1, if ¢ € W (K) theny® € W(K)
and likewise logl + ¢) € W(K). Further examples can be easily obtained from
the criterion that a continuous functioh : R, — R, is Bernstein if and only if
f € C*(]0,00[) and(—=)"f ™D > Oforalln =0,1,... (see [, page 141)).

In Theoreml.3the integral part

/ (1 —Re(x (X)) n(dx)
K~\(2)
has been shown to be a Schoenberg function. Thus to prove that a general lowe

bounded negative definite function is Schoenberg we need only consider its quadratic
form part.
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2. Quadratic forms on commutative hypergroups

Additive functions on a Sturm-Liouville hypergroup, are given as ing, Sec-
tions 7.2-7.3] as first and second order moment functions. In particular, Zsee [
Example 7.3.1]) the canonical first order moment function

gives an additive function oR, and to within a multiplicative constant this additive
function is unique. Herd\ is the Sturm-Liouville function defining the hypergroup
andp := (1/2) lim,_ ., A (X)/A(X) is its index. Ifp = 0, so thatm; = 0, then the
canonical second order moment function

(Z)

gives an additive function oR, and once again to within a multiplicative constant
this additive function is unique.

For any commutative hypergroul let xy; € K” for all t € [0, 1]. Suppose that
the mapping — x; is differentiable orf0, 1] with xo = 1k and write

X

1 -

ot |_o

(see R, page 469]), where we assume that the limit defining the derivative holds locally
boundedly orK. Thenm; is additive (hence a quadratic form) #hwhich we can
see from

0
ml(X*Y):—/ ox
K _

0
o tOd(gx>|<gy):— at/xld(sx*sy)

t=0

= My (X) xo(Y) + xo(X)My(Y)
t=0

0
=— ﬁXt(X)Xt(y)
= My (X) + My (y).
Now from Theorenl.3we see that each1 x; € ¥(K) and

0
mlz_i
ot |i_o

o 1-
— |im —X
t10

e ¥ (K)

as the limit is locally bounded oK. If m; = 0 (which by P, 7.3.1 and Proposi-
tion 3.5.55] holds for Sturm-Liouville hypergroups of sub-exponential growth) then
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we consider the second moment

92 a (.. —
m, = — Xt —— 2 (iim Xt+s — Xt
ot2 | ot \s=0 s =0
— _lim Iims—>0(Xt+s+h — Xt+h)/S — Iims—>o(Xt+s - X)/S
h—0 h t=0
— — Iim lim Xt+sth — Xt+h — Xt+s T Xt
h—0s—0 sh =0
L —xn—xs+1 L —
— _lim lim X T XD T X T2 iy Jjm XX
h—05s—0 sh tJ0 sl0 st

sincem; = limg_o(1 — xs)/s = 0. Furthermore (as shown above foy) m;, is easily
seen to be additive but it is not obvious that this limit function should belodg #6).

2.1. Moment functions and semicharacters on Sturm-Liouville hypergroups of
exponential growth (o > 0) By [2, Theorem 3.5.58] we have, for eaghe R,
the existence of, € M*([—x, x]) satisfying the Laplace representation

(2.1) 6, () = / e P+ (db)

forall » € C, where{g, : A € C} denotes the set of semicharacteri&of\We observe
from [2, 7.2.2] that

0
my(X) = £¢i (o+0) (X)

o=0
Now appealing to4.1) we have

¢i(p+a)(x)=/ e(p+ii(p+rr))tux(dt)=/ e"‘vx(dt)

X —X

and

my(X) = Pys

::t/m jz_ept
o=0 —X do
mon =2 [ [ 57 a2

is an increasing function witm;(0) = 0

Ux(dt)=/ tu, (dt).
o=0 —X

We also observe that
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Now for x € [0, a] ando € (0, 1), consider (recall thap;, = 1)

¢ip(x)_¢i(p—0)(x) _ l—f_xx e—atvx(dt) S/X l—e’rrt tvx(dt)
o o —X
< 1293/ tvedt) < 1+ ¢

since\(l — e*“)/u] < (1+ ée*/aforall u € [—a, a] and this takes care of the local
boundedness for Sturm-Liouville hypergroups of exponential growth.

2.2. Moment functions on Sturm-Liouville hypergroups of exponential growth
(p > 0) are Schoenberg We have
Xt

m =—- -
! at

’
t=0

wherey; = ¢i,av. If © € M°(R.) has compact suppoif, > 0 and/, du = 0 then
writing f(t) := a(ip(l —1)) = flR+ xt(X) u(dx) we have (assuming that the limit
defining the derivative holds locally boundedly &)

9 xt (X)
(0 =—/
() Lot

M(dX)=/ My (X) p2(dX).
t=0 R,

Now the conditions ont: guarantee thaf’(0) > 0 (for if f’(0) < O then since
f(0) = a(ip) = 0 we would havef < 0 on some interval0, §)) so that

/ my(X) n(dx) <0
R,

and appealing to, Theorem 4.4.16] we see thay € W(K).

The following Sturm-Liouville hypergroups are of exponential growth and hence
all real-valued lower bounded continuous negative definite functions on these are
Schoenberg.

(@) cosh hypergroup([2, 3.5.72]) A(x) = coslt X, p = 1, m;(x) = x tanhx;
(b) Jacobi hypergroup of non-compact type([2, 3.5.64])

A(X) = sintP** x cost? 1 x;

(c) Hyperbolic hypergroups ([2, 3.5.65]) A(x) = sintf*™ x, p = 2o + 1;
(d) Naimark hypergroup ([2, 3.5.65])

AX) =sinffx, p=2, m(X)=xcothx —1
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2.3. Moment functions and semicharacters on Sturm-Liouville hypergroups of
sub-exponential growth(p = 0) Assuming that the limits defining both derivatives
hold locally boundedly oK we have

0 92
X o and mp=— X
ot

m; = _
t—0 ot?

’

t=0

wherey; = ¢. Again, if © € M°(R) has compact support, > 0 andf, du =0
then writing f (t) := a(t) = fD§+ Xt (X) n(dx) we have

9 xt(X)
_/0 =_/
0 ST

2
_f//(o)z_/ a Xt(x)
Ry

pu(dx) = / my(X) u(dx) =0
t=0 R,

and

at?

pu(dx) = / My(X) u(dX).
t=0 R
As before the conditions ofa guarantee that”(0) > 0 so that we have
‘/numuwmso
R,

and once again appealing t®, [Theorem 4.4.16] we see tha, € W(K). But note
that this deduction is made assuming a certain local boundedness of the limits defining
the first and second order derivatives.

We have the following examples for which every real-valued lower bounded con-
tinuous negative definite function being Schoenberg can be shown directly.

(e) Bessel-Kingman hypergroup(R ., *,)

a>-1/2, AX)=x*T1, p=0, qx) =X
[(a+1)
1/ (o + 1/2)22«-1
x / @~ (X = V(X Y)? = P
Ix—y] (Xy2>
A special case of the Bessel Kingman hypergroup is the motion hypergroup obtained
by puttingee = d/2 — 1, whered is an integer withtd > 2. In particular, takingl = 3
we have the motion hypergroup.
() Motion hypergroup (R, *y)

Ex *k &y =

8222a+l dz

X+y

1
Ex * &y = m/u—w te,dt, AX)=x% p=0, qX) =x%

Another example is obtained by letting — —1/2 in which case we obtain the
symmetric hypergroup.
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(g) Symmetric hypergroup (R, *,)
ex* &y = (Ex_y + &xsy)/2, AX) =1 p=0, qx) =x.

We now show (Propositio@.1 and Propositior2.2 below) that for each of these
hypergroupP® is a Schoenberg function for gll € 10, 2].

PROPOSITION2.1. On the symmetric hypergrou ,, *,) the functiony, defined
by ¥,(x) = xP for p €10, 2] is Schoenberg.

PrROOF. Consider the kernel, (X, y) = exp(—t|x—y|P) +exp(—t(x+Yy)P). Now
exp(—t|ul®) =/exp(iuk) Up(dA)
R

for someuv,; € M1(R) using Schoenberg’s theorem for the real line and the fact that
[X|P is negative definite on the group for all p € ]0, 2] together with Bochner’s
theorem. Thus

Gpi(X, y) = /[GXIO(i (X = Y)A) + expli (X + y)A)] vp(dr)
R
= / [coS(X — Y)A) + COSX + Y)A)] v (dR)
R
= /[2 COSXA COSYA] vp(dA),
R

where in the second equality we have used the factdhaix, y) is real valued. But
this is just a positive mixture of positive definite kernels®and hencep, (X, y) is
a positive definite kernel oR and thus also ofR, ; this takes care of the result. (I

The above result is particularly surprising in view of the fact that it can be shown
that the kernelx, y) — exp(—(X + y)P) is positive definite on(R ., +) only for
p €10, 1] even though the kerngk, y) — exp(—|x — y|P) is positive definite orR
for all p €10, 2]. Indeed, to appreciate the difficulties that have been hidden consider
the direct approach in which to show that éx,) € P(R., *,) we would need to
compute

n n n n
D> acie i xx) =YY e (e e i) /2,
i=1 j=1 i=1 j=1

PROPOSITIONZ2.2. On the motion hypergrou(R ., xy) the functiony, defined by
Vp(x) = xP for p €10, 2] is Schoenberg.
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PrROOF. We first consider the cage= 2. As in Propositior2.1consider the kernel

1 Xty 2 4
H(X,Y) = 5— uexp(—tu®) du
Y 2XY Jix-yi X

_ %t(exp(—t(x +Y))) — exp—t(x — y)?)

_ %t /{R [XP(i (X + Y)A) — expli (X — Y)A)] v, (d2)
_ %t / [COS(X + Y)1) — COSX — Y)A)] vy (dR)

_ %yt /R [SiN(XL) SiN(YA)] va. (d2),

which again is a positive mixture of positive definite kernelsRoand hence; (X, y)

is a positive definite kernel oR and thus also of® .. The argument in the proof of
Proposition2.1gives thaty, € ¥(K) and for the remaining values gfwe just apply
Corollary 1.7 and the remarks immediately following it. O

In discussions with the first author Michael Voit has pointed out that Propogition
and Propositior2.2 when p = 2 can also be deduced frord, [Example 7.3.18]
which gives for every Bessel-Kingman hypergroup (including the limiting symmetric
hypergroup) an explicit representation of the Gauss distribution

(2.2) Or(h) 1= exp(—tA?),

wheret > 0 andx € R,. This works because the Bessel-Kingman hypergroups are
self-dual. In fact this representation can be used to give the following extension of the
previous examples.

PrOPOSITION2.3. Let (R, x,) denote the Bessel Kingman hypergroup with para-
metera > —1/2 (this includes the symmetric cgsd@ hen the functiony, defined by
Vp(x) = xP for p €10, 2] is Schoenberg.

PROOF. As above we just need to show that is Schoenberg. But this follows
immediately from 2.2) as we know that the Bessel Kingman hypergroup is self-dual;
see P, Theorem 3.6.5] and the remarks immediately preceding it. O

2.4. Other hypergroups The results of the preceding subsections carry over to
all hypergroups for which the first and second moment functions are given as at the
beginning of Sectio and the limits defining these hold locally boundedlytonWe
have shown that the Sturm-Liouville hypergroups of exponential growth constitute
one such class.
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We have also presented a range of examples of Sturm-Liouville hypergroups of sub-
exponential growth for which every real-valued lower bounded continuous negative
definite function is Schoenberg. There is one further well-known example of such
hypergroups on the half-line that could be considered namely the square hypergrour
([2, 3.5.70],A(x) = (X + 1)?, p = 0,g(X) = x2(x + 3)/(X + 1)). In this case the
corresponding quadratic form is Schoenberg as the defining double limit can be shown
directly to be locally bounded.
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