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Abstract

Finite innately transitive permutation groups include all finite quasiprimitive and primitive permutation
groups. In this paper, results in the theory of quasiprimitive and primitive groups are generalised to
innately transitive groups, and in particular, we extend results of Praeger and Shalev. Thus we show tha
innately transitive groups possess parameter bounds which are similar to those for primitive groups. We
also classify the innately transitive types of quotient actions of innately transitive groups.

2000Mathematics subject classificatioprimary 20B05, 20B14; secondary 20B35.

1. Introduction

A finite permutation grougs acting on a sef2 is said to beinnately transitiveif
it contains a transitive minimal normal subgroup. We call such a subgrqlipta
for G. Now G can have at most two transitive minimal normal subgroups (see [
Lemma 5.1]), and if it has two, then there is an element in the normalisértbét
interchanges them. So up to permutational isomorphism, any of the at most two
minimal normal subgroups @ can be taken to bideplinth of G. Innately transitive
groups have been studied in depth by the author in work coauthored with Prakger [
and their interest and application is outlined in the introductionlpf [

Let G be a group acting on a sé€t, and supposeZ is a G-invariant partition
of Q. Then the action o6 on % is called aguotient actionof G. A quotient action
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is essentially the image of@ermutational transformationwhich is an ‘intertwiner’
between two group actions and exists categorically as the natural weakening of a
permutational isomorphism. Similar objects have been widely studied in homological
algebra and representation theory, and they provide a more general context for result:
on quotient actions.

A transitive permutation grouf on a finite setQ is imprimitive if there exists
a nontrivial G-invariant partitionZ of Q (that is, 1 < |%4| < ||). A transitive
permutation group irimitive if it is not imprimitive. Every nontrivial normal
subgroup of a primitive group is transitive (seg Theorem 1.6A]), but the converse
is not true. A finite permutation group is calledquasiprimitiveif every non-trivial
normal subgroup o is transitive. Every primitive group is quasiprimitive, and every
quasiprimitive group is innately transitive. The similarity in the structure theorems
for primitive groups (see])), quasiprimitive groups (seé&]), and innately transitive
groups (seel]]) indicate that results on the properties of primitive groups might also
be true for quasiprimitive and innately transitive groups. However, a quasiprimitive
group has at most two minimal normal subgroups, but for an arbitrary integer
there exist innately transitive groups which have at lgasinimal normal subgroups.
Recently, Heath-Brown, Praeger, and Shalgvhlave proved that for most positive
integersn, the only finite innately transitive permutation groups of degrese A,
and$, in their natural action (which are primitive groups).

It was the study of properties of quasiprimitive groups by Praeger and Shalev
(see [LO)) that motivated this paper. Their goal was to generalise classical results about
finite primitive permutation groups to quasiprimitive ones. Our goal is similar, in that
we lift results on quasiprimitive groups to the context of innately transitive groups.
Given an imprimitive quasiprimitive grou@ acting on a finite se®, there exists a
maximal G-invariant partition% of Q. The finite permutation grou@” induced
by the action ofG on % is primitive and isomorphic t@&. Praeger and Shalev’'s
technique, in almost all of their results, was to analyse this special type of quotient
action and transfer classical results about primitive groups to quasiprimitive groups
via this natural correspondence. In this paper, we find that a similar technique can be
used for innately transitive groups. & is innately transitive but non-quasiprimitive,
the permutation group induced by the actiorbn the orbits of the centraliser of the
plinth is quasiprimitive. Hence we can transfer some results on quasiprimitive groups
to innately transitive groups via this correspondence.

In this paper, we analyse bounds, innately transitive types, and other properties
of innately transitive groups. We already know froffj fome useful properties of
innately transitive groups.

LEMMA 1.1. Let G be an innately transitive group on a setwith plinth K, and
leta € Q. Then we have the following:



[3] Bounds and quotient actions of innately transitive groups 97

(1) G is quasiprimitive if and only iCs(K) = 1 or Cg(K) is transitive.

(2) K, is a normal subgroup of the setwise stabiliséx in K of theCg (K)-orbit
A =a%® andK, /K, = Cs(K).

(3) If K, is asubdirect subgroup @€, andK is nonabelian and nonsimple, thén
is quasiprimitive.

(4) The groupG? induced by the action dB on the set ofcg(K)-orbits in Q is
quasiprimitive with kerneCs(K), K acts faithfully, and the permutation group?
induced by the action df is the plinth ofG®.

(5) Co(K) is semiregular.

Itis also true that if G(K) is transitive, therG is primitive (see [, Lemma 5.1]).
The above properties are essentially properties of the quotient acti®ownthe orbits
of the centraliser of the plinth. Similar results also hold for abstract permutational
transformations (see Sectiéh

In the subsequent three sections, we give a brief account of the structure of innately
transitive groups, we revise some background theory and conventions, and provide
some examples of innately transitive groups which we use to prove later results. In
Sectionb, we give an expository summary of the definitions and elementary properties
of permutational transformations. Our goal in Sectiér8 is to state and prove a
theorem which encapsulates seven generalisations of results ft@m Finally, in
Section9, we give a complete account of the innately transitive types of quotient
actions of innately transitive groups, in a similar manner to that of Praeg@r's [
investigation of quotient actions of quasiprimitive groups.

2. The structure of innately transitive groups

The O’Nan-Scott Theorem (seB]] is a result that partitions the finite primitive
groups into eight disjoint types (see alst))[ Praeger’s theorem for quasiprimitive
groups is analogous to the O’'Nan-Scott Theorem and partitions the finite quasiprimi-
tive groups in a similar way to the case subdivision of finite primitive groups &ge [
However the case subdivision used to describe innately transitive groufif hiag
more parts to the partition. The quasiprimitive type known traditionallPrasluct
Actiontype, is generalised to contain innately transitive groups that are possibly not
guasiprimitive. On top of this, there are three extra types defimdthost Simple
Quotient type Product Quotient typand Diagonal Quotient type Table 1 gives a
summary of the subdivision of finite innately transitive groups.

Let G be an innately transitive group with plini acting on a se, leta € 2, and
let A = a®® . Note thatk = Tk for some simple grouf and positive integek.
ThenG is of Abelian Plinth(AP), Holomorph of a Simple GroufHS), Aimost Simple
(A9, Almost Simple QuotietidSQ, Holomorph of a Compound GroyplC), Twisted
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TABLE 1. A summary of the partition of finite innately transitive groups defined by certain properties.

Property AP[HS|[AS|TASQ|[HC|[TW [ PQ[DQ [ PA] DT

K is abelian v X X X X X X X X X

K is simple v |V v X X X X X X

K is regular v |V v v v |V X X
Ce(K)y=1 X X v X X v X X v
Cs(K) is transitive | v v X X v X X X X X
K, is subdirect inK X X X X X X v
K, is subdirect iRk | v X X v X v

Wreath(TW), Product Quotien{PQ), Diagonal Quotien{DQ), Product Action(PA),

or Diagonal (DT) type. Certain properties of these types are summarised in Table
and complete descriptions of the types are givenlinJection 3]. We say that an
innately transitive groufs with plinth K is of ASQ,, type if K is a nonabelian simple
group acting regularly and&K) is nontrivial and intransitive. We may sometimes
refer to two subcases of the Diagonal type knowisasple Diagona(SD) type and
Compound DiagonglCD) type, which occur respectively whe€, is or is not a full
diagonal subgroup df. If G is of Abelian Plinth Holomorph of a Simple Groypr
Holomorph of a Compound Grougpe, thenG is primitive.

3. Some background theory

In this section, we revise some standard background material. We will assume
that the reader is familiar with the basics of permutation group theory, such as the
well known fact that ifG acts transitively on a sé®, « is a point of2, andK is a
transitive subgroup o5, thenG = KG, (see Dixon and Mortimer's bool3] for
an introduction to permutation group theory). Throughout this paper, we will use the
standard notatio6* to mean the permutation group induced by the actid® of =.

Theholomorphof a groupX is the semidirect product x Aut(X) and is denoted
Hol(X). Furthermore, the normaliser &f in Sym(X) is isomorphic to HalX), and
Hol(X) acts naturally onX in that X acts on itself by right multiplication (sed.,
Section 2]). LetG be a finite innately transitive permutation group on asgetith
plinth K, and suppos& is regular. Then it is well-known (seé,[Section 2]) thats
is permutationally isomorphic to a subgroup of H6) in its natural action oK.

Let [[,., Hi be a direct product of groups. Givgne |, we denote the natural
projection map from[[,_, H; to H; by 7;. A group G is a subdirect produciof
[ i, Hi if there is an embedding : G — [],_, Hi suchthaip o 7; : G — H; is an
epimorphism for eaclj € |. In the case thaB is a subgroup of [;., Hi and¢ is the
inclusion map, we say th& is asubdirect subgroupf [ [,_, Hi. If G is a subgroup
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of [],, Hi, we say thaG is adiagonalsubgroup of [;_, H; if the restriction ofr; to
G is injective for eachj € 1. We say thats is afull diagonal subgroup of( [, Hi

if G is both a subdirect and diagonal subgroug hf, H;. In this case, whe is a
full diagonal subgroup of[,_, Hi, the direct factordd; are isomorphic to a common
groupH andG = H. If | = {1,...,n}, then each full diagonal subgroup of
[1i., Hi is of the form{((Q)y1, (@) ¥2. ..., (@¥n) : g € G} where for each € I,
y, Is an isomorphism fronG onto H;. For every groupH and integem, the set
{(h,h,...,h) : h € H} is a full diagonal subgroup ofi" called the thestraight
diagonalsubgroup ofH", which we will denote by DiagH").

A baseof a permutation grous < Sym(2) of degreen, is a subset of2 that
has a trivial pointwise stabiliser iB. Let by (G) denote the minimal base size Gf
acting onz. Theminimal degreem,(G) of a permutation grou@ < Sym(Q2) is the
minimum number of points moved by a nontrivial elemenGof

4. Some examples

Here we give some examples of innately transitive groups which are not only useful
in understanding the nature of innately transitive groups, but which will also serve as
constructions for the proof of a result (Theor@r) on the quotient actions of innately
transitive groups.

ExampLE 1 (Product Quotient type (PQ)Let H be an innately transitive group of
Almost Simple Quotient type with regular plinf, and letk > 1. ThenG = H wr &
is innately transitive in product action with regular plinkh = M. Moreover,
Cs(K) = (C4(M)X and |Cx(M)| < |M], and hence €K) is not a subdirect
subgroup of the left regular representatiorkaf Therefore G is of Product Quotient
type by [L, Remarks 10.2 and Proposition 10.3].

ExamPLE 2 (Diagonal Quotient type (DQ)Let T be a nonabelian simple group,
letk > 1, letK = TX, letm be a proper divisor ok, let A be the straight diagonal
subgroup of AutT)¥/™, and letG = K x [(A x Sym) Wr Sy] whereK acts regularly
onitself and A x §;m) wr S, acts naturally as a subgroup of AKt) = Aut(T) wr S..
ThenG is innately transitive with regular plint, and G;(K) = C™ whereC is the
straight diagonal subgroup of the left regular representatiof*6f. Since G (K)
is a subdirect product oK, we have thatG is of Diagonal Quotient type byl]
Remarks 10.2 and Proposition 10.3].

ExampLE 3 (Almost Simple Quotient type (ASQ)Let K be a nonabelian simple
group and letK,/K; be a section oK whereK; is corefree inKg andK, < K. Let
Q = [K : K{] and letK act by right coset multiplication of. Let G be the direct
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product(Ky/K;) x K and define the action d€,/K; on by (K u)X* = Kyv1u,
forallu € K andv € Ko. It turns out thaiG is innately transitive orf2 of AlImost
Simple Quotient type.

ExamPLE 4 (Product Action type (PA))Now let T be a nonabelian simple group,
let R be a proper subgroup df, letk > 1, let A be a cyclic subgroup of, of order
k, let Sbe a proper normal subgroup of the straight diagonal subgroup Riagf
R¥, and letC = Diag(R¥)/S. ConsideiG = C x (TwrA), Go = Sx A < TwrA,
andQ = [G : Gy]. If Sis nontrivial, thenG is innately transitive orf2 of Product
Action type with plinthK = Tk, (Note: If S= 1, thenG is innately transitive o2
of Product Quotient type with plintk = TX.)

5. Permutational transformations

LetG be agroup acting on a setand letH be a group acting ona dét Then(9, )
is apermutational transformatiofrom GonQto HonT if 6 : G — H is a group
homomorphism angt : @ — T is a function such that for ali € G andw € 2, we
have the intertwining relatiow?) u = (0)'9?. We say thaté, w) is apermutational
isomorphisnif & andu are both bijections. Note that in the above definitiol; écts
faithfully on €2, it may not be true thaiG)0 acts faithfully on(2) . The kernel of the
action of(G)0 on () istheimage oE = {g € G : (w¥)u = (w)u, forall w € Q}
underd. We say that@, u) is afaithful permutational transformation E = kero;
that is, (G)6 acts faithfully on(2)u. Recall that if f is a function with domairg2,
then afibre of f is a preimage of a point in the image of If w € 2, then we denote
the f-preimage ofw) f by [w];.

Now if # is a G-invariant partition ofQ, then there is an induced action Gf
on %. This is called aguotient actionof G. We can reframe this concept in terms
of permutational transformations. LEtbe the kernel of the action @& on %4, and
consider the faithful projective action &/E on %. (If G acts on a seE andN
is a normal subgroup o& contained in the kernel of the action & on X, then
the projective actionof G/N on X is defined byoN9 := o9 for all 0 € ¥ and
Ng € G/N.) Letd : G — G/E be the canonical projection homomorphism and
let u : @ — 2 be the map which selects for each element2ofthe unique part
of 4 it belongs to. Then@, ) is a faithful permutational transformation from the
action ofG on Q2 to the quotient action o on %. Conversely, given a permutational
transformation®, i) with domainG acting ong, the fibres ofu form a G-invariant
partition % of 2, and it follows from the proposition below that the permutation group
induced by the action d& on % is permutationally isomorphic to the action @)6
on (2) .
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PrROPOSITIONS.1 (The First ‘Permutational’ Isomorphism Theorerbgt G be a
group acting on a sef2 and letH be a group acting on a sdt, and suppose that
(0, n) is a permutational transformation frof® on 2 to H onT". Then there is an
action of G/ ker6 on the fibres of: defined byw] "9 := [w?],, for all g € G and
w € 2, and this action is permutationally isomorphic to the actiof®@§6 on (2)u.

PROOF. Let F, be the set of fibre§lw], : @ € ©} of u. The First Isomorphism
Theorem in Group Theory states that the mbp G/keréd — (G)0 defined by
((ker6)g)® = (g)0 is a well-defined isomorphism. Similarly, the First Isomorphism
Theorem for sets states that the mapF, — (2)u defined by([w],)v = (w)un is a
well-defined bijection. Se® 1, v—1) and the intertwining relation, induce an action
of G/ kerf on F, as illustrated below. Lag € G andw € Q. Then,

(0169 = (@) ) D" = (@p@)v " = @)y = [09],,

which is precisely the action given above. So we see (hav) is a permutational
isomorphism from the action d&/ keré on F, (given above) to the action ¢{5)0
on () u. |

The following lemma lists some basic results on faithful permutational transforma-
tions.

LEMMA 5.2. Let G be a group acting on a s&€ and letH be a group acting on a
setl”, and suppose thab, w) is a faithful permutational transformation fro@ on
to H onT". Then we have the following

(1) If Gis transitive on<, then(G)# is transitive on(2) .

(2) If (G)0 is semiregular, therG/ker6 is semiregular onQ2 (in its projective
action).

(3) If G is faithful and innately transitive o® and 9 is nontrivial, then(G)# is
innately transitive on(2) .

(4) If G is faithful and primitive or©2 andé is nontrivial, then(G)8* is permu-
tationally isomorphic taG*.

PROOF. (1) Supposés is transitive and let;, w, € Q. SinceG is transitive, there
existsg € G such thaiw] = w,. Hence(w)u'9’ = (0))u = (w2)u and(G)6 is
transitive on(2) i«.

(2) Suppos&G)6 is semiregular and supposée™®9 = o for someg € G andw € Q.
Thenw? = w and hencéw®)u = (). So(w)u'?’ = (w)u and thereforég)d = 1.
Thusg € kergd andG/ ker6 is semiregular oiR2.

(3) Supposés is innately transitive oi®2 with plinth K. Assume thatK )6 = 1 and
fix a pointw € Q. SinceK is transitive, every element 6f is of the formw? for some
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y € K. Hence every element ¢f2)u is of the form(e)u = (0)u™? = (w)u and
thus(2) i« has only one element. This implies th{&)0 is the trivial group (as it acts
faithfully on (2) ), which is a contradiction. Therefo(& )6 is a nontrivial normal
subgroup of(G)6 (as K is a normal subgroup o). If M is a normal subgroup
of (G)# contained in(K)#, then the preimage dfl undero is a normal subgroup
of G contained irK.. It then follows thai K )6 is a minimal normal subgroup 06)6.
By (1), (K)# is transitive on(2) « and henc€G)6 is innately transitive o1i€2) .« with
plinth (K)6.

(4) Supposé&s is primitive. Then the fibres qf are trivial as they form &-invariant
partition of 2 and (0, ) is faithful. Sinced is nontrivial, it follows thatjw],, = {w}
for all w € Q. Hencep is injective and thus ke&r = 1 (as(9, w) is faithful). By
Theorenmb.1, we have thaG* is permutationally isomorphic t6G)0 <+, O

Similarly, one can prove that 2-transitivity and quasiprimitivity are preserved by
permutational transformations and we leave this as an exercise for the reader. Now
suppose a grouf® acts transitively on a se&®, and(#, ) is a faithful permutational
transformation fronts on 2 to the action of a groupd on a setA. Recall that ifK
is a transitive normal subgroup @ anda € Q, thenG = KG,. Suppose that
we have another homomorphisth: G — H such that(9’, 1) is a permutational
transformation where the restriction @fto K is equal to the restriction df to K.

Then for ally € K andg € G,, we have

(@0'(gHo ()0 = (9)0'(g Y9 (g He = (9)6'(g 'yg)d' (g He
= (Y)O(@O'(gHe = ()8(9)8'(g™H6.

Therefore(g)0'(g=10 € C)p((K)9) N (G,)0. Note that for allh € G,, we have
(@) = (@M = () and hence every element @&, )6 fixes (a)u. Similarly
(G,)0' fixes (x)u. By Lemmab.2, (K)6 is innately transitive or{Q2)x and hence
Ce0((K)0) is semiregular (by Lemma.1 (5)). So it follows that Gs) ((K)8) N
(G)0 = 1 and(g)0 = (9)0'. Therefored = ¢’ asG = KG,. Hence every
faithful permutational transformation with domai acting on<, is determined by
its action on a transitive normal subgrokip So we see that the faithful permutational
transformations whose domais innately transitive, are completely determined by
the plinth of G.

6. Generalising Praeger and Shalev’s results

In Praeger and Shalev’s papéf)], they extend classical results of primitive groups
to quasiprimitive groups. These results include bounds on the order of a quasiprimitive
group in terms of its degree, a bound on the number of fixed points of a quasiprimitive
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group containing special permutations, a bound on the base size of a quasiprimitive
group, and a bound on the minimal degree of a quasiprimitive group. Praeger and
Shalev also give a nice exposition of the literature ][ which we do not repeat
here.

Below we generalise the following results of Praeger and Shalev: Theorems 2.1,
2.2,41,42,44,43,7.2.

THEOREM6.1. Let G be an innately transitive permutation group on a etvith
plinth K, and letn = |2]. Then

(1) if G contains ap-cycle, for some prime, thenG is primitive;
(2) if for some primep, there is an element i® of order p with g cycles of length
pin 2, where2 < q < p. Then either,
(i) n—qgqp<5q/2—2,0r
(i) G is quasiprimitive
(3) either|G| < n!/((n+1)/2)! or G containsA,;
(4) either|G| < 4" or G containsA;
(5) there exist constants andd’ such that either
(i) 1G] < e, or
(i) for positive integersn, k, | such thatk < d’,| < d andm > 4d’, we have
G/Cs(K) < Spwr § with K = Al and (An )" < K, < (Shk x S)'NK
whereq is a point inQ. Also,|Cs(K)| < (k) < (d')9;
(6) eitherb(G) < 4./nlog(n) or G containsA,;
(7) eitherm(G) > (/n — 1)/2 or G containsA,,.

REMARKS. The bound in (3), which was originally found by Bochét} for primi-
tive groups, is reasonably accurate for small degrees and was the best bound of its tim
(circa 1889). The bound in (4), found by Praeger and S&]ddr primitive groups,
has the advantage that it has a simple algebraic expression and holds for all innately
transitive groups. Cameron’s bound, which is generalised as (5) above, is asymptot-
ically the best of the bounds above on the orders of primitive groups. However, its
proof depends on the Classification of Finite Simple Groups.

7. Preliminary results

In order to prove Theorerfi.1, we will need some basic facts first. The lemma
below generalises (2) and (5) of Lemrhd, and to some extent, (4) as well.

LEMMA 7.1. Let G be a finite innately transitive permutation group acting on a
setQ with plinth K, let H be a group acting on a sét, and suppose tha, u) is
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a faithful permutational transformation fror® on @ to H onI". Then the action
of (G)# on () is permutationally isomorphic to the action @/ kerd on the orbits
of kerd in Q, defined byw*e?)*e™9 = (p9)ke for all g € G andw € Q. Moreover,
kerd < Cg(K) and if A is thekerg-orbit of a pointa in 2, thenK,, is a normal
subgroup oK, andkerd = K, /K,.

PrROOF. Let F, be the set of fibres gt and letX be the set of ke#-orbits in 2.
Then the map : F, — X defined by([w],)v = «**" is a bijection and it induces
a natural action o6/ keré on F, which is permutationally isomorphic to the action
of G/ ker6 on T given above. Therefore, by the First Permutational Isomorphism
Theorem, the action iG)0 on (2)u is permutationally isomorphic to the action of
G/ ker6 on the orbits of kef.

SinceK is transitive, we have thaK )6 is transitive by Lemm&.2 SoK is not
contained in kef (as(K)6 is nontrivial) and hence by the minimality &f, we see
that ke is a normal subgroup db that intersectK trivially. It then follows that
kero centraliseX.

Leta be a pointin2 and letA = o*®". Lety € K, and suppose there are elements
c, d of kerf such thatyY = « anda’ = «®. Since kep is a subgroup of €(K), by
Lemmal.1(5), kerd is semiregular and hen&, Nkerd = 1. Nowcd™* € G, Nkerd
and hence = d. So there isamap : K, — kerd where for each elemente K,,
(Y)¢ is the unique element of kérsuch thaty(y)p € G,. We prove now thap is
a group homomorphism. Lek, Yy, € kerf. ThengY:0wet2e — (ayl(yl)‘*’)yzww as
ker6 centraliseK. Thereforen¥:00¢¥2¢ — ¢ and so by uniquenesgy:)p(Y.)g =
(Y1¥2)¢ andg is a homomorphism. Clearly ker= K,. Therefore,K, is a normal
subgroup ofK, and ke = K, /K,. O

We will frequently make use of the following lemma in the proof of Theofen

LEMMA 7.2. Let G be an innately transitive permutation group on a Setvith
plinth K, let H be a group acting on a sét, let (¢, 1) be a faithful permutational
transformation fromG*® to H', and letm = [(Q)u| > 1. If (G)# containsA,,, then
one of the following holds

(1) G containsA.

(2) Gisof ASQeqtype,G = Ap 1 x Apor G = (An_1 X Ap).2, andK = A,
(3) G has degred5, G is of AlImost Simple Quotient typk, = As, ker6 is cyclic
of order3, and|G : (kerf x K)| =1, 2.

PrROOF. First, if G* is primitive, then by Lemm&.2, (G)§“* is permutationally
isomorphic toG* and (1) holds. This is also true in the general case whea kel
(by Theoremb.1). Suppose ki > 1 (so necessarily\G is imprimitive). If keré is
transitive, then g(K) is transitive, as ket < Cg(K) by Lemma7.1, and hencés
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is primitive (see I, Lemma 5.1])—a contradiction. So k&is an intransitive normal
subgroup ofG. ThereforeG* is not quasiprimitive and hend€ is nonabelian. Let
a € QandletA = «*". Then by Lemm&.1, K, is a proper normal subgroup &f,
and ke = K, /K,. Letc = | kerf| and letn = || = mc

SinceK is nonabelian, we must have that> 5. SoA,, is a simple group and
henceK = (K)0 = A, asA, is the unique minimal normal subgroup of b&hand
itself. Them fibres of . are simple the orbits of kérin Q. SoK, = A,_; andK,
is normal inK,. We have two subcasem = 5 orm # 5. In the latter caseK , is
simple, and sinc&,, is a proper normal subgroup &f,, we have thak, = 1. Thus
kero = K, = An_; andG is of ASQ.q type. Note that the only subgroups &f
that intersect, in A,_; areS,_1 andA,_;. SinceA, < (G)6 = G/ kero < S, and
G > kerd x K = A, _1 x Ay, itfollows thatG € {An_1 x An, (An_1 X An).2}, and
we are in case (2).

Finally, letm = 5. ThenK, = A; andK, € {1, V,4} asK, is a proper normal
subgroup ofK,. If K, = 1, thenG is of Almost Simple Quotient type with a
regular plinthK, ker6 = K,/K, = A4, and by a similar argument as before,
G € {An_1 x An, (An_1 X An).2} wherem = 5, and we are in case (2). So suppose
that K, = A;. Then ke = K,/K, = Z5; andn = 5K, : K,| = 15. Since
(G)0 = G/kerf < SandG > kerf x K = Z3 x As, case (3) holds. O

Notice that for the case where the permutational transformdtion) is just the
quotient action ofG on &, the orbits of G(K), we have that it = |%| andG?
containsA., then Lemma/.2implies that one of the following holds:

(1) G containsA;
(2) Gisof ASQegtype,G = Ac 1 x AcorG = (A1 x Ag).2, andK = A
(3) G has degree 15.

The only innately transitive groups of degree 15 that are not quasiprimitive, are
isomorphic to one of the two grous x As or (Z3 x As).2. One can construct the
latter groupG as follows. Note that AuZ; x As) = (a : a> = 1) x S and let
c=(a (1, 2) € Aut(Zz x As). Itturns out thaiG = (Z3 x As) x (c). The point
stabiliser for this group i$1 x (c) = §,;, whereH = A,.

Praeger and Shalev showed thd®ifs a quasiprimitive group on a s@t and# is a
G-invariant partition foiG in €2, thenb,(G) < bz(G). They used the fact th& acts
faithfully on %, which does not necessarily hold for an arbitrary innately transitive
group. Similarly, they showed that the the minimal base sizg oh Q2 is no less than
s-mg(G) wheres is the size of a block i4. A more general result can be achieved
in the context of faithful permutational transformations.

LEMMA 7.3. Let G be an innately transitive permutation group on a Setvith
plinth K, let H be a finite transitive permutation group on a dg&tlet (¢, u) be a
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faithful permutational transformation fro@ on2 to H onI", and letc = |2]/|(£2)].
Then

(1) ba(G) < b ((G)I);
(2) mu(G) > c- M), ((G)I).

PROOF. (1) Let Ay, ..., Ay be a base fokG)# in (Q)u, and letay, ..., a, be
elements of2 such that(o;)u € A; for all i. Supposey € G fixes each of they;.
Hence(g)0 fixes theA;, and thereforey € kerf asAg, ..., Ay is a base. But ket
is semiregular o2 and hencey = 1 anday, ..., ay is a base foG in Q. Therefore
bo(G) < b)), ((G)6).

(2) First note that the ke orbits have a common cardinality (@sis transitive) which
is equal to the constait(by Lemma7.1). Let g be a non-identity element & and
setm = m,,,((G)0). If g ¢ kerd, then(g)# acts nontrivially on(2) i« and hence
moves at leastm points of Q2. If g € ker6, then since kef is semiregularg must
move every point irf2. Thereforemg(G) > ¢-m. O

The following result will be used to settle a case in the proof of Thed¥€ifT).

LEMMA 7.4. Letn > 5and consider the natural action 8ut(A,) on A,. Consider
Hol(A,) = A, x Aut(A,) in its natural action onA,,. Then

() m(Hol(A,)) = m(Aut(A,)) =n!/2—(n—2)!.

PrROOF. First we assume that # 6 and identify the action of Ag#,) with
the conjugation action of, on A,. Since AutA,) < Hol(A,), it is clear that
m(Hol(An)) < m(Aut(A,)). Letg € Hol(A,) such thatg # 1 andg permutes
m(Hol(A,)) points. Since HdA,) is transitive, we may assume thgtfixes the
identity of A, and hencey € Aut(A,). Som(Hol(A,)) > m(Aut(A,)) and therefore
m(Hol(A,)) = m(Aut(A,)). By the definition of the actiorg fixes exactly|Ca,(9)]
points and san(Hol(A,)) = |An| — |Cx,(9)]. By the definition of minimal degree,
|Ca, (9)] is the maximum number of fixed points over glle Aut(A,) with g # 1.
Let T be the automorphism induced by the transpositior- 1, n). Since(n — 1, n)
centralises itself and,,_,, we have that has(n — 2)! fixed points. San(Aut(A,)) <
n!/2 — (n— 2)!. Itis clear that the transpositions §f centralise the most number of
elements ofA,. Thereforem(Aut(A,)) =n!/2 — (n—2)!.

It can be calculated using a computer program such as GAP,thai(ds for
n = 6. Therefore £) holds for alln > 5. O

8. Proof of Theorem6.1

We can finally prove Theorei®. L
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PrROOF. We prove the parts of Theorefnl consecutively. LeK be the plinth ofG,
letc = |Cs(K)|, and let¥ be the set of g(K)-orbits in Q.

(1) Letg € G be ap-cycle of Q. Letay, ay,...,a, € Q be such that] =

az,...,a&l = op andoz,g) = ;. Foralli =1,...p, letA; = oziCG(K). Now if

|| = p, thenG is clearly primitive (since the size of a block f@ divides the
size of ). SupposdQ2] > p. Since G(K) is semiregularg ¢ Cs(K) and hence
G # Cs(K). ByLemmal.1(4), K acts faithfully on¢” and hencé& acts nontrivially
on¥%. Also, Gs(K) is the kernel of the action d& on ¥ (by Lemmal.1 (4)) and
henceg induces ap-cycleA,, ..., Ayon%.

Now the points in the union of th&; must consist wholly of elements of the
p-cycle,aq, . .., ap, otherwiseg would fix a point in one of the\; and hence fix an
orbit in its action org” (and theA; would not be pairwise distinct). So the size of the
orbits must dividep. Since theA; are distinct, the orbits i must be singleton sets,
and hence g(K) = 1. ThereforeG is quasiprimitive by Lemma.1 (1) and soG is
primitive by the proof of Praeger and Shalev’s resiilt,[Theorem 2.1].

(2) Suppose thab is not quasiprimitive, so by Lemnfal(1l),1<c < n. Letge G
be an element of ordgy with g cycles of lengthp in Q (where 2< q < p), and letf
be the number of fixed points gfin @, thatis,f =n—qp. If f =0, thatisn = qgp,
then (i) holds. Supposé > 0. Theng ¢ Cgs(K) since G(K) is semiregular and
fixes at least one point. So by Lemrhédl (4), G acts nontrivially ong” with kernel
Cs(K) and henceg # 1 and each cycle af of length p in 4 corresponds te cycles
of length p of g in Q. Sinceq < p, it follows thatg hasq’ = gq/c < p cycles of
lengthpin ¢, and f’ = f/cfixed points ing’. Now G acts quasiprimitively or¢’,
and so by Praeger and Shalev’s result, one of the following holds:

(@ f'<5q/2-2,

(b) G = Anc Or Sy,

(c) G¢ = Aqor S onordered pairgn/c = (4),d > p,g =d — (p+1)/2).

In the first case,f/c < 59/2c — 2 and hencef < 5q/2 — 2c < 5q/2 — 2, so (i)
holds. Suppose now that (b) holds. By Lemiha either G is of Almost Simple
Quotient type and\,_1 X An < G < (An_1 X An).2wherem =n/c > 5,orn = 15
andc = 3. In the latter case, computer calculations (in GAP) show that)) €
{(3,5), (3,7), (5, 3)} and hence (i) holds. In the former cage> ¢ = |An_1|, and
sincem > p we havep > (p — 1)!/2 which is impossible fop > 5. Hencep = 3,
but in this casen > 6 and again this is not true.

Finally, consider case (¢). Hege=d—(p+1)/2> (p—1)/2andag| = cq < p,

it follows thatc = 2, = p — 1, andd = p. In this caseg has no fixed points o,
and hence no fixed points @®, and (i) holds.

(3) If G contains a 3-cycle, then by Theoré&ni (1), G is primitive and the conclusion
follows from Bochert’s result. I1G does not contain a 3-cycle, then by Bochert’'s
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original argument (se€] or [3, Theorem 3.3B]), we have thgB| < n!/((n+1)/2)!.
(The author would like to thank Dr. Peter M. Neumann for suggesting the proof of
this result.)

(4) Recall thatG? acts faithfully and quasiprimitively of#’, and so by Praeger and
Shalev’s result10, Theorem 4.2], ifG* does not contaim, ¢, then|G| = ¢|G?| <
c4"c. Now if c4™¢ < 4™ for somem > ¢, thenc4d™ /¢ = c4m/eql/c < gm4l/c < gm+1,
The smallest cas@n = c, holds sincec4' = 4c < 4°. So by induction, we see that
c4™e < 4" for all m > c. ThereforgG| < 4".

So assume now thak,,. < G?. By Lemma7.2, one of the following holdsG
is quasiprimitive,G is isomorphic to a subgroup 0A,,._1 x Ayc).2, orn = 15 and
¢ = 3. In the first case, the result holds byO[ Theorem 4.2]. In the latter case,
|G| = ¢|G?| < 3-5! = 360 < 4*. Inthe case thab is embedded i0A,/c_1 X Anje)-2,
recall thatn = (n/c)!/2 since the plinthA, . is regular, and hend&| < n?/2. Now
n — 4" —n?is an increasing function on the natural numbers, and is equal to 3 when
n=1. So4 — n? > 0 for all positive integers and henceG| < 4".

(5) SinceG? is quasiprimitive or¥’, by Praeger and Shalev’s resulf] Theorem 4.4]
(which depends on Cameron’s result and hence the Classification of Finite Simple
Groups), there exist constardsandd’ such that eithefG?| < (n/c)?'°9™° or, for
positive integersn, k, | such thak < d’,| < d’andm > 4d’, we haveG? < S,wr §
with K€ = Al and (An )" < KZ < (Shk x S)' N K (for someA € %). In the
former case|G| = ¢|G?| < c(n/c)¥°9o < pdles™ and we have that (i) holds.

So assume that we are in the second case addcHetA,_x)' < K (noteK® = K).
SinceJ is a minimal normal subgroup &f,, we have two cases; namey K, =1
or J < K,. In the latter case|Cs(K)| = |KAl/IK,| (by Lemmal.l (1)) and
Ka = Nk(Ka) < Nk (A ) = (Snkx S)'NK and hencéCq (K)| < (kD! < (d').
So (ii) holds. So suppose thdtn K, = 1. Then|J]| divides|K, : K,| and hence
((m = k)!/2)" dividesc. Now

n(m)'l!

IG| =¢|G?| < c(m)'Il = ——— =n(YH K(m - k)

k

<ndHK)H'2c < nedH@H?2¥ = nc2? (d')¥** < n?b(d)

whereb(d’) = 29(d')4+1. (We could replace the constadit given by [LO, Theo-
rem 4.4], withb(d).) So we have thab satisfies (i).

(6) If Ay € G¥, then by Lemm&.3,
b(G) = ba(G) < by (G) = 4(n/c)?log(n/c) < 4/nlog(n).

On the other hand, i\,,c € G?, then by Lemm&.2one of the following holdsG is
quasiprimitive,G < Hol(A,,) for somem > 5, orn = 15. In the third cas&y(G) <
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15 < 415 log(15). If G < Hol(Ay) (wherem > 5), thenb(G) < b(Hol(An)).
Now Hol(Ay,) is primitive (as the point stabilizer of 1 in H@\,) is Aut(A.), which is
maximal in Hol A,,)), and so it follows from Babai's result thatG) < 4,/nlog(n).
If G is quasiprimitive, then by Praeger and Shalev’s resiflf Lemma 5.1], either
b(G) < 4,/nlog(n) or G containsA,.

(7) SupposeG® does not equal,c or S,.. Then by Theorem1[0, Theorem 7.2]
and Lemma7.3, mg > ¢c- my(G) > c(y/n/c —1)/2 > (/n — 1)/2. Suppose
now thatG? e {Avc. Syc}. Then by Lemmaér.2, one of the following holds:G
is quasiprimitive,G is of Almost Simple Quotient type and is regular, orc = 3
andn = 15. In the third casem(G) > 2 asG acts faithfully on$2, and hence
m(G) > (v/15— 1)/2. If G is quasiprimitive, then byl[0, Theorem 7.2], either
m(G) > (4/n — 1)/2 or G containsA,. Now we turn to the case whef@ is of
Almost Simple Quotient type with a regular plinth. Note tléats permutationally
isomorphic to a subgroup of HOA, ) acting naturally oA, and so by Theorem4,
m(G) > (n/0)!/2— (n/c—2)! = (/N — 1)/2. m

9. Quotient actions of innately transitive groups

If G acts quasiprimitively ore2, then the kernelE of the action ofG on a
G-invariant partition% of Q, is an intransitive normal subgroup &. So we must
have thatE = 1 and hencé? is quasiprimitive and isomorphic t6. However,
the quasiprimitive types fo® andG# may be different. The possible types faF
andG” were determined by Cheryl Praegerim Theorem 1], which we recast below.

THEOREM 9.1 (Praeger)Let G be an imprimitive quasiprimitive permutation
group of typeX on a finite set2, and let % be a non-trivial G-invariant parti-
tion of Q. ThenG?¥ is quasiprimitive of typeX?, whereX? e {AS SD, CD, PA},

X e {AS SD, CD, TW, PA}, and the(X, X#)-entry in the Quotient Action Matrix
in Table 2 is the symbol/. Conversely, if the symbefoccurs in the(X, Y)-entry,
then there exists a finite imprimitive quasiprimitive group of tyith a non-trivial
quotient action of typ#’.

TABLE 2. Quotient Action Matrix

AS SD CD PA

AS Vv x X X
SD x x Vv x
CD x x Vv x
™ x Vv v v
PA x v v Vv
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Now if insteadG is innately transitive 018, it is not necessarily true this time that
the kernel of the action d& on 4 is trivial. We generalise Praeger’s theorem below.

THEOREM 9.2. Let G be an imprimitive innately transitive permutation group of
type X on a finite set?, let H be a finite permutation group on sgt and let(9, )
be a faithful permutational transformation fro@* to H'. Then(G)# is innately
transitive on(Q2)u of typeY, where X, Y € {AS ASQ TQ, SD, CD, PA DQ, PQ},
and the (X, Y)-entry in the Quotient Action Matrix in Tabl@ is the symbolv/".
Conversely, if the symbetfoccurs in the(X, Y)-entry, then there exists an innately
transitive group of typeX with a quotient action of typ¥.

TABLE 3. Quotient Action Matrix

AS ASQ TW SD CD PA DQ PQ

AS V X X X X X X X
ASQ v V X X X X X X
TW  x X v v v v x X
SD x X x v Vv x X X
CD «x X X x Vv % X X
PA x X x v vV Vv x X
DQ x X x v v v v X
PQ «x X x v v v x Y

PrROOF. First recall that(G)0 is innately transitive with plinth(K)0 and (K)é
is isomorphic toK. So (K)0 is simple if and only ifK is simple, and hence
X € {ASASQ ifand only if Y € {AS ASQ. By Lemmab.2, if (K)# is regular
thenK is regular. Hence itY € {TW, DQ, PQ} thenX € {TW, DQ, PQ}. We also
know that if G¢ is primitive (respectively quasiprimitive) thei@)o“»* is primitive
(respectively quasiprimitive). Sind8* is imprimitive, G® and (G)0* are not of
Abelian Plinth Holomorph of a Simple Groymr Holomorph of a Compound Group
type. So far we have ruled out values(®f, Y) indicated in Tablel.

So suppose now tha& is non-simple, and let € Q and A = «**". Note for
all x € kerd, that («* ) = (@)u™? = () and hencgA)u = {(x)p}. So for all
y € Ku, we have(a)u™? = (&) € (A = {(@)u} and henceK)é,,,, contains
(Ka)8. Now by comparing orders (and using Lemmad) we see thatK)0,, is
equal to(K,)#e:

|(K)O,e| = 1(K)OI/1( )] = [(K)O || kerf]/|€2
= K[ Ka Kol /IK 2 Ko | = [Kal.

In the case thaX € {DQ, PQ}, we have thaG is not quasiprimitive and hencesCK)
is nontrivial. ThusK, is nontrivial and'K )6 is not regular. SoiX € {DQ, PQ}, then
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TABLE 4. Impossibilities thus far.

AS ASQ TW SD CD PA DQ PQ
AS V X X X X
ASQ
T™W
SD
CD
PA
DQ
PQ

X X X X X X
X X X X X X NX
X X X N X
<
WX X X X X X
X X X X X X

(\

Y ¢ {TW,DQ, PQ}. The only cases we must rule out now &€ Y) = (SD, PA),
(X,Y) = (CD, SD), and(X, Y) = (CD, PA).

SupposeK,, is a subdirect subgroup d¢€. By the proof of [L, Proposition 5.5],
K, is self-normalising and hend¢, = K, (by Lemma7.1). Thus it follows that
(K)0),. is a subdirect subgroup ¢K)6. So if X € {SD, CD} thenY € {SD, CD},
and (X,Y) ¢ {(SD, PA), (CD, PA)}. Finally, suppos&X,Y) = (CD,SD). Then
(K,)@ is a full diagonal subgroup afK)6. So in particular(K )8 is isomorphic to
each simple direct factor afK)6. This implies thatk, is isomorphic to a simple
direct factor ofk , and hencé&, is simple. HoweverkK,, is a proper nontrivial normal
subgroup ofK ,—a contradiction. ThereforeX, Y) # (CD, SD) in this case.

This analysis verifies that the crossed entries in Talalee correct. Next we prove
that examples exist for each checked entry in T&8blBy Praeger’s Theorem, we have
examples for most of our table except the cases ASQ PQ, DQ. We complete the
table with the following examples.

X = ASQ Let G be an innately transitive group of Almost Simple Quotient type
(for an example, see Examp¥eand let% be the set of orbits of the centraliser of the
plinth of G. ThenG¥ is quasiprimitive of Almost Simple type as the plinth®f is
isomorphic to the plinth o65. So we have examples whei¥, Y) = (ASQ AS.

X = PQ. Let G be an innately transitive group on a setvith plinth K, and suppose

G is of Product Quotient type. L&t be the orbits of G(K). Then the stabiliseK , of

an elemeniA € ¢ is not a subdirect subgroup &f. ThereforeG? is quasiprimitive

of Product Action type. Now consider the example given in Examdgdler X = P A,

If one choosesS = 1, thenG = Diag(R¥) x (T wr A) is innately transitive orf2

of Product Quotient type. The centraliser Kfin G is C and G is precisely the
quasiprimitive group of Product Action type given iry Example 5]. In this example,
Praeger shows th&?“ has quasiprimitive quotient actions of Simple Diagonal and
Compound Diagonal type. Hence our groBpalso has quotient actions of Simple
Diagonal and Compound Diagonal type.
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X = DQ. Let G be an innately transitive group on a sewith plinth K, and suppose
G is of Diagonal Quotient type. Lé&f be the orbits of g(K). Then by Lemmd.1(2)
(or Lemmay7.1) the stabiliseiK, of an elementA € ¥ is a subdirect subgroup .
ThereforeG? is quasiprimitive of Diagonal type. The innately transitive grdgijn
Example2is an example wher@? is of Diagonal type. In this example,if = 1 then
G® is of Simple Diagonal type, otherwigg® is of Compound Diagonal type. We
will show now that there is an example whedé, X#) = (DQ, PA). Take Exampl&
whereG = K % [(A x Sym) Wr S;], C = Diag(T¥™), and Gs(K) = C™ (in the left
regular representation &f). Let M be a proper nontrivial subgroup 6f" in the right
regular representation &. SoM is a diagonal subgroup @, but is not subdirect.
Now G acts on%Z = [G : G;M], whereG; is the stabiliser inG of the identity
element, and induces an innately transitive groupdwith plinth K. SinceM is a
point stabiliser for the plinth in this action, ad is nontrivial and not subdirect, it
follows thatG¥ is of Product Action type.

Therefore, examples exist for each checked entry in Table O
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