
J. Aust. Math. Soc.79 (2005), 95–112

BOUNDS AND QUOTIENT ACTIONS OF INNATELY TRANSITIVE
GROUPS

JOHN BAMBERG

(Received 17 December 2003; revised 31 March 2004)

Communicated by E. A. O’Brien

Abstract

Finite innately transitive permutation groups include all finite quasiprimitive and primitive permutation
groups. In this paper, results in the theory of quasiprimitive and primitive groups are generalised to
innately transitive groups, and in particular, we extend results of Praeger and Shalev. Thus we show that
innately transitive groups possess parameter bounds which are similar to those for primitive groups. We
also classify the innately transitive types of quotient actions of innately transitive groups.

2000Mathematics subject classification: primary 20B05, 20B14; secondary 20B35.

1. Introduction

A finite permutation groupG acting on a set� is said to beinnately transitiveif
it contains a transitive minimal normal subgroup. We call such a subgroup aplinth
for G. Now G can have at most two transitive minimal normal subgroups (see [1,
Lemma 5.1]), and if it has two, then there is an element in the normaliser ofG that
interchanges them. So up to permutational isomorphism, any of the at most two
minimal normal subgroups ofG can be taken to betheplinth of G. Innately transitive
groups have been studied in depth by the author in work coauthored with Praeger [1],
and their interest and application is outlined in the introduction of [1].

Let G be a group acting on a set�, and supposeB is a G-invariant partition
of �. Then the action ofG onB is called aquotient actionof G. A quotient action
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is essentially the image of apermutational transformation, which is an ‘intertwiner’
between two group actions and exists categorically as the natural weakening of a
permutational isomorphism. Similar objects have been widely studied in homological
algebra and representation theory, and they provide a more general context for results
on quotient actions.

A transitive permutation groupG on a finite set� is imprimitive if there exists
a nontrivial G-invariant partitionB of � (that is, 1< |B| < |�|). A transitive
permutation group isprimitive if it is not imprimitive. Every nontrivial normal
subgroup of a primitive group is transitive (see [3, Theorem 1.6A]), but the converse
is not true. A finite permutation groupG is calledquasiprimitiveif every non-trivial
normal subgroup ofG is transitive. Every primitive group is quasiprimitive, and every
quasiprimitive group is innately transitive. The similarity in the structure theorems
for primitive groups (see [5]), quasiprimitive groups (see [6]), and innately transitive
groups (see [1]) indicate that results on the properties of primitive groups might also
be true for quasiprimitive and innately transitive groups. However, a quasiprimitive
group has at most two minimal normal subgroups, but for an arbitrary integerk,
there exist innately transitive groups which have at leastk minimal normal subgroups.
Recently, Heath-Brown, Praeger, and Shalev [4] have proved that for most positive
integersn, the only finite innately transitive permutation groups of degreen are An

andSn in their natural action (which are primitive groups).
It was the study of properties of quasiprimitive groups by Praeger and Shalev

(see [10]) that motivated this paper. Their goal was to generalise classical results about
finite primitive permutation groups to quasiprimitive ones. Our goal is similar, in that
we lift results on quasiprimitive groups to the context of innately transitive groups.
Given an imprimitive quasiprimitive groupG acting on a finite set�, there exists a
maximal G-invariant partitionB of �. The finite permutation groupGB induced
by the action ofG onB is primitive and isomorphic toG. Praeger and Shalev’s
technique, in almost all of their results, was to analyse this special type of quotient
action and transfer classical results about primitive groups to quasiprimitive groups
via this natural correspondence. In this paper, we find that a similar technique can be
used for innately transitive groups. IfG is innately transitive but non-quasiprimitive,
the permutation group induced by the action ofG on the orbits of the centraliser of the
plinth is quasiprimitive. Hence we can transfer some results on quasiprimitive groups
to innately transitive groups via this correspondence.

In this paper, we analyse bounds, innately transitive types, and other properties
of innately transitive groups. We already know from [1] some useful properties of
innately transitive groups.

LEMMA 1.1. Let G be an innately transitive group on a set� with plinth K , and
let Þ ∈ �. Then we have the following:
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(1) G is quasiprimitive if and only ifCG.K / = 1 or CG.K / is transitive.
(2) KÞ is a normal subgroup of the setwise stabiliserK1 in K of theCG.K /-orbit
1 = ÞCG.K /, andK1=KÞ

∼= CG.K /.
(3) If KÞ is a subdirect subgroup ofK , andK is nonabelian and nonsimple, thenG

is quasiprimitive.
(4) The groupGC induced by the action ofG on the set ofCG.K /-orbits in� is

quasiprimitive with kernelCG.K /, K acts faithfully, and the permutation groupKC

induced by the action ofK is the plinth ofGC .
(5) CG.K / is semiregular.

It is also true that if CG.K / is transitive, thenG is primitive (see [1, Lemma 5.1]).
The above properties are essentially properties of the quotient action ofG on the orbits
of the centraliser of the plinth. Similar results also hold for abstract permutational
transformations (see Section5).

In the subsequent three sections, we give a brief account of the structure of innately
transitive groups, we revise some background theory and conventions, and provide
some examples of innately transitive groups which we use to prove later results. In
Section5, we give an expository summary of the definitions and elementary properties
of permutational transformations. Our goal in Sections5–8 is to state and prove a
theorem which encapsulates seven generalisations of results from [10]. Finally, in
Section9, we give a complete account of the innately transitive types of quotient
actions of innately transitive groups, in a similar manner to that of Praeger’s [7]
investigation of quotient actions of quasiprimitive groups.

2. The structure of innately transitive groups

The O’Nan-Scott Theorem (see [5]) is a result that partitions the finite primitive
groups into eight disjoint types (see also [8]). Praeger’s theorem for quasiprimitive
groups is analogous to the O’Nan-Scott Theorem and partitions the finite quasiprimi-
tive groups in a similar way to the case subdivision of finite primitive groups (see [8]).
However the case subdivision used to describe innately transitive groups in [1] has
more parts to the partition. The quasiprimitive type known traditionally asProduct
Action type, is generalised to contain innately transitive groups that are possibly not
quasiprimitive. On top of this, there are three extra types defined:Almost Simple
Quotient type, Product Quotient typeandDiagonal Quotient type. Table1 gives a
summary of the subdivision of finite innately transitive groups.

Let G be an innately transitive group with plinthK acting on a set�, letÞ ∈ �, and
let1 = ÞCG.K /. Note thatK = T k for some simple groupT and positive integerk.
ThenG is of Abelian Plinth(AP), Holomorph of a Simple Group(HS), Almost Simple
(AS), Almost Simple Quotient(ASQ), Holomorph of a Compound Group(HC), Twisted
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TABLE 1. A summary of the partition of finite innately transitive groups defined by certain properties.

Property AP HS AS ASQ HC TW PQ DQ PA DT
K is abelian X × × × × × × × × ×
K is simple X X X × × × × × ×
K is regular X X X X X X × ×
CG.K / = 1 × × X × × X × × X

CG.K / is transitive X X × × X × × × × ×
KÞ is subdirect inK × × × × × × X

K1 is subdirect inK X X × × X × X

Wreath(TW), Product Quotient(PQ), Diagonal Quotient(DQ), Product Action(PA),
or Diagonal(DT) type. Certain properties of these types are summarised in Table1,
and complete descriptions of the types are given in [1, Section 3]. We say that an
innately transitive groupG with plinth K is of ASQreg type if K is a nonabelian simple
group acting regularly and CG.K / is nontrivial and intransitive. We may sometimes
refer to two subcases of the Diagonal type known asSimple Diagonal(SD) type and
Compound Diagonal(CD) type, which occur respectively whenKÞ is or is not a full
diagonal subgroup ofK . If G is of Abelian Plinth, Holomorph of a Simple Group, or
Holomorph of a Compound Grouptype, thenG is primitive.

3. Some background theory

In this section, we revise some standard background material. We will assume
that the reader is familiar with the basics of permutation group theory, such as the
well known fact that ifG acts transitively on a set�, Þ is a point of�, andK is a
transitive subgroup ofG, thenG = K GÞ (see Dixon and Mortimer’s book [3] for
an introduction to permutation group theory). Throughout this paper, we will use the
standard notationG6 to mean the permutation group induced by the action ofG on6.

Theholomorphof a groupX is the semidirect productXoAut.X/ and is denoted
Hol.X/. Furthermore, the normaliser ofX in Sym.X/ is isomorphic to Hol.X/, and
Hol.X/ acts naturally onX in that X acts on itself by right multiplication (see [1,
Section 2]). LetG be a finite innately transitive permutation group on a set� with
plinth K , and supposeK is regular. Then it is well-known (see [1, Section 2]) thatG
is permutationally isomorphic to a subgroup of Hol.K / in its natural action onK .

Let
∏

i ∈I Hi be a direct product of groups. Givenj ∈ I , we denote the natural
projection map from

∏
i ∈I Hi to Hj by ³ j . A group G is a subdirect productof∏

i ∈I Hi if there is an embedding� : G → ∏
i ∈I Hi such that� ◦ ³ j : G → Hj is an

epimorphism for eachj ∈ I . In the case thatG is a subgroup of
∏

i ∈I Hi and� is the
inclusion map, we say thatG is asubdirect subgroupof

∏
i ∈I Hi . If G is a subgroup
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of
∏

i ∈I Hi , we say thatG is adiagonalsubgroup of
∏

i ∈I Hi if the restriction of³ j to
G is injective for eachj ∈ I . We say thatG is a full diagonalsubgroup of

∏
i ∈I Hi

if G is both a subdirect and diagonal subgroup of
∏

i ∈I Hi . In this case, whenG is a
full diagonal subgroup of

∏
i ∈I Hi , the direct factorsHi are isomorphic to a common

group H and G ∼= H . If I = {1; : : : ; n}, then each full diagonal subgroupG of∏
i ∈I Hi is of the form{..g/1; .g/2; : : : ; .g/n/ : g ∈ G} where for eachi ∈ I ,

i is an isomorphism fromG onto Hi . For every groupH and integern, the set
{.h; h; : : : ; h/ : h ∈ H} is a full diagonal subgroup ofHn called the thestraight
diagonalsubgroup ofHn, which we will denote by Diag.Hn/.

A baseof a permutation groupG ≤ Sym.�/ of degreen, is a subset of� that
has a trivial pointwise stabiliser inG. Let b6.G/ denote the minimal base size ofG
acting on6. Theminimal degreem�.G/ of a permutation groupG ≤ Sym.�/ is the
minimum number of points moved by a nontrivial element ofG.

4. Some examples

Here we give some examples of innately transitive groups which are not only useful
in understanding the nature of innately transitive groups, but which will also serve as
constructions for the proof of a result (Theorem9.2) on the quotient actions of innately
transitive groups.

EXAMPLE 1 (Product Quotient type (PQ)).Let H be an innately transitive group of
Almost Simple Quotient type with regular plinthM , and letk > 1. ThenG = H wr Sk

is innately transitive in product action with regular plinthK = Mk. Moreover,
CG.K / = .CH.M//k and |CH .M/| < |M|, and hence CG.K / is not a subdirect
subgroup of the left regular representation ofK . Therefore,G is of Product Quotient
type by [1, Remarks 10.2 and Proposition 10.3].

EXAMPLE 2 (Diagonal Quotient type (DQ)).Let T be a nonabelian simple group,
let k > 1, let K = Tk, let m be a proper divisor ofk, let A be the straight diagonal
subgroup of Aut.T/k=m, and letG = K o [.A × Sk=m/wr Sm] whereK acts regularly
on itself and.A× Sk=m/wr Sm acts naturally as a subgroup of Aut.K / = Aut.T/wr Sk.
ThenG is innately transitive with regular plinthK , and CG.K / = Cm whereC is the
straight diagonal subgroup of the left regular representation ofTk=m. Since CG.K /
is a subdirect product ofK , we have thatG is of Diagonal Quotient type by [1,
Remarks 10.2 and Proposition 10.3].

EXAMPLE 3 (Almost Simple Quotient type (ASQ)).Let K be a nonabelian simple
group and letK0=K1 be a section ofK whereK1 is corefree inK0 andK0 < K . Let
� = [K : K1] and letK act by right coset multiplication on�. Let G be the direct
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product.K0=K1/× K and define the action ofK0=K1 on� by .K1u/K1v = K1v
−1u,

for all u ∈ K andv ∈ K0. It turns out thatG is innately transitive on� of Almost
Simple Quotient type.

EXAMPLE 4 (Product Action type (PA)).Now let T be a nonabelian simple group,
let R be a proper subgroup ofT , let k > 1, let A be a cyclic subgroup ofSk of order
k, let S be a proper normal subgroup of the straight diagonal subgroup Diag.Rk/ of
Rk, and letC = Diag.Rk/=S. ConsiderG = C × .T wr A/, G0 = S× A < T wr A,
and� = [G : G0]. If S is nontrivial, thenG is innately transitive on� of Product
Action type with plinthK = Tk. (Note: If S = 1, thenG is innately transitive on�
of Product Quotient type with plinthK = Tk.)

5. Permutational transformations

LetG be a group acting on a set�and letH be a group acting on a set0. Then.�; ¼/
is apermutational transformationfrom G on� to H on0 if � : G → H is a group
homomorphism and¼ : � → 0 is a function such that for allg ∈ G and! ∈ �, we
have the intertwining relation.!g/¼ = .!/¼.g/� . We say that.�; ¼/ is apermutational
isomorphismif � and¼ are both bijections. Note that in the above definition, ifG acts
faithfully on�, it may not be true that.G/� acts faithfully on.�/¼. The kernel of the
action of.G/� on.�/¼ is the image ofE = {g ∈ G : .!g/¼ = .!/¼; for all ! ∈ �}
under� . We say that.�; ¼/ is a faithful permutational transformation ifE = ker� ;
that is,.G/� acts faithfully on.�/¼. Recall that if f is a function with domain�,
then afibreof f is a preimage of a point in the image off . If ! ∈ �, then we denote
the f -preimage of.!/ f by [!] f .

Now if B is a G-invariant partition of�, then there is an induced action ofG
onB. This is called aquotient actionof G. We can reframe this concept in terms
of permutational transformations. LetE be the kernel of the action ofG onB, and
consider the faithful projective action ofG=E onB. (If G acts on a set6 and N
is a normal subgroup ofG contained in the kernel of the action ofG on 6, then
the projective actionof G=N on 6 is defined by¦ Ng := ¦ g for all ¦ ∈ 6 and
Ng ∈ G=N.) Let � : G → G=E be the canonical projection homomorphism and
let ¼ : � → B be the map which selects for each element of�, the unique part
of B it belongs to. Then.�; ¼/ is a faithful permutational transformation from the
action ofG on� to the quotient action ofG onB. Conversely, given a permutational
transformation.�; ¼/ with domainG acting on�, the fibres of¼ form aG-invariant
partitionB of�, and it follows from the proposition below that the permutation group
induced by the action ofG onB is permutationally isomorphic to the action of.G/�
on .�/¼.



[7] Bounds and quotient actions of innately transitive groups 101

PROPOSITION5.1 (The First ‘Permutational’ Isomorphism Theorem).Let G be a
group acting on a set� and let H be a group acting on a set0, and suppose that
.�; ¼/ is a permutational transformation fromG on� to H on0. Then there is an
action ofG= ker� on the fibres of¼ defined by[!].ker�/g

¼ := [!g]¼, for all g ∈ G and
! ∈ �, and this action is permutationally isomorphic to the action of.G/� on .�/¼.

PROOF. Let F¼ be the set of fibres{[!]¼ : ! ∈ �} of ¼. The First Isomorphism
Theorem in Group Theory states that the map8 : G= ker� → .G/� defined by
..ker�/g/8 = .g/� is a well-defined isomorphism. Similarly, the First Isomorphism
Theorem for sets states that the map¹ : F¼ → .�/¼ defined by.[!]¼/¹ = .!/¼ is a
well-defined bijection. So.8−1; ¹−1/ and the intertwining relation, induce an action
of G= ker� on F¼ as illustrated below. Letg ∈ G and! ∈ �. Then,

[!].ker�/g
¼ = (

..!/¼/¹−1
)..g/�/8−1 = (

.!/¼.g/�
)
¹−1 = ..!g/¼/¹−1 = [!g]¼;

which is precisely the action given above. So we see that.8; ¹/ is a permutational
isomorphism from the action ofG= ker� on F¼ (given above) to the action of.G/�
on .�/¼.

The following lemma lists some basic results on faithful permutational transforma-
tions.

LEMMA 5.2. Let G be a group acting on a set� and letH be a group acting on a
set0, and suppose that.�; ¼/ is a faithful permutational transformation fromG on�
to H on0. Then we have the following:

(1) If G is transitive on�, then.G/� is transitive on.�/¼.
(2) If .G/� is semiregular, thenG= ker� is semiregular on� (in its projective

action).
(3) If G is faithful and innately transitive on� and � is nontrivial, then.G/� is

innately transitive on.�/¼.
(4) If G is faithful and primitive on� and� is nontrivial, then.G/� .�/¼ is permu-

tationally isomorphic toG�.

PROOF. (1) SupposeG is transitive and let!1; !2 ∈ �. SinceG is transitive, there
existsg ∈ G such that!g

1 = !2. Hence.!1/¼
.g/� = .!

g
1/¼ = .!2/¼ and.G/� is

transitive on.�/¼.

(2) Suppose.G/� is semiregular and suppose!.ker�/g = ! for someg ∈ G and! ∈ �.
Then!g = ! and hence.!g/¼ = .!/¼. So.!/¼.g/� = .!/¼ and therefore.g/� = 1.
Thusg ∈ ker� andG= ker� is semiregular on�.

(3) SupposeG is innately transitive on� with plinth K . Assume that.K /� = 1 and
fix a point! ∈ �. SinceK is transitive, every element of� is of the form!y for some
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y ∈ K . Hence every element of.�/¼ is of the form.!y/¼ = .!/¼.y/� = .!/¼ and
thus.�/¼ has only one element. This implies that.G/� is the trivial group (as it acts
faithfully on .�/¼), which is a contradiction. Therefore.K /� is a nontrivial normal
subgroup of.G/� (as K is a normal subgroup ofG). If M is a normal subgroup
of .G/� contained in.K /� , then the preimage ofM under� is a normal subgroup
of G contained inK . It then follows that.K /� is a minimal normal subgroup of.G/� .
By (1), .K /� is transitive on.�/¼ and hence.G/� is innately transitive on.�/¼ with
plinth .K /� .

(4) SupposeG� is primitive. Then the fibres of¼ are trivial as they form aG-invariant
partition of� and.�; ¼/ is faithful. Since� is nontrivial, it follows that[!]¼ = {!}
for all ! ∈ �. Hence¼ is injective and thus ker� = 1 (as.�; ¼/ is faithful). By
Theorem5.1, we have thatG� is permutationally isomorphic to.G/� .�/¼.

Similarly, one can prove that 2-transitivity and quasiprimitivity are preserved by
permutational transformations and we leave this as an exercise for the reader. Now
suppose a groupG acts transitively on a set�, and.�; ¼/ is a faithful permutational
transformation fromG on� to the action of a groupH on a set1. Recall that ifK
is a transitive normal subgroup ofG andÞ ∈ �, then G = K GÞ. Suppose that
we have another homomorphism� ′ : G → H such that.� ′; ¼/ is a permutational
transformation where the restriction of� ′ to K is equal to the restriction of� to K .
Then for ally ∈ K andg ∈ GÞ, we have

.g/� ′.g−1/�.y/� = .g/� ′.g−1yg/�.g−1/� = .g/� ′.g−1yg/� ′.g−1/�

= .y/� ′.g/� ′.g−1/� = .y/�.g/� ′.g−1/�:

Therefore.g/� ′.g−1/� ∈ C.G/� ..K /�/ ∩ .GÞ/� . Note that for allh ∈ GÞ, we have
.Þ/¼.h/� = .Þh/¼ = .Þ/¼ and hence every element of.GÞ/� fixes .Þ/¼. Similarly
.GÞ/�

′ fixes .Þ/¼. By Lemma5.2, .K /� is innately transitive on.�/¼ and hence
C.G/� ..K /�/ is semiregular (by Lemma1.1 (5)). So it follows that C.G/� ..K /�/ ∩
.GÞ/� = 1 and .g/� = .g/� ′. Therefore� = � ′ as G = K GÞ. Hence every
faithful permutational transformation with domainG acting on�, is determined by
its action on a transitive normal subgroupK . So we see that the faithful permutational
transformations whose domainG is innately transitive, are completely determined by
the plinth ofG.

6. Generalising Praeger and Shalev’s results

In Praeger and Shalev’s paper [10], they extend classical results of primitive groups
to quasiprimitive groups. These results include bounds on the order of a quasiprimitive
group in terms of its degree, a bound on the number of fixed points of a quasiprimitive
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group containing special permutations, a bound on the base size of a quasiprimitive
group, and a bound on the minimal degree of a quasiprimitive group. Praeger and
Shalev also give a nice exposition of the literature in [10], which we do not repeat
here.

Below we generalise the following results of Praeger and Shalev: Theorems 2.1,
2.2, 4.1, 4.2, 4.4, 4.3, 7.2.

THEOREM 6.1. Let G be an innately transitive permutation group on a set� with
plinth K , and letn = |�|. Then

(1) if G contains ap-cycle, for some primep, thenG is primitive;
(2) if for some primep, there is an element inG of order p with q cycles of length
p in �, where2 ≤ q < p. Then either,

.i/ n − qp ≤ 5q=2 − 2, or
.ii/ G is quasiprimitive;

(3) either |G| ≤ n!=..n + 1/=2/! or G containsAn;
(4) either |G| < 4n or G containsAn;
(5) there exist constantsd andd′ such that either

.i/ |G| ≤ nd log.n/, or
.ii/ for positive integersm, k, l such thatk ≤ d′, l ≤ d′ and m > 4d′, we have

G=CG.K / ≤ Sm wr Sl with K ∼= Al
m and.Am−k/

l ≤ KÞ ≤ .Sm−k × Sk/
l ∩ K

whereÞ is a point in�. Also,|CG.K /| ≤ .k!/l ≤ .d′!/d′
;

(6) eitherb.G/ ≤ 4
√

n log.n/ or G containsAn;
(7) eitherm.G/ ≥ .

√
n − 1/=2 or G containsAn.

REMARKS. The bound in (3), which was originally found by Bochert [2] for primi-
tive groups, is reasonably accurate for small degrees and was the best bound of its time
(circa 1889). The bound in (4), found by Praeger and Saxl [9] for primitive groups,
has the advantage that it has a simple algebraic expression and holds for all innately
transitive groups. Cameron’s bound, which is generalised as (5) above, is asymptot-
ically the best of the bounds above on the orders of primitive groups. However, its
proof depends on the Classification of Finite Simple Groups.

7. Preliminary results

In order to prove Theorem6.1, we will need some basic facts first. The lemma
below generalises (2) and (5) of Lemma1.1, and to some extent, (4) as well.

LEMMA 7.1. Let G be a finite innately transitive permutation group acting on a
set� with plinth K , let H be a group acting on a set0, and suppose that.�; ¼/ is
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a faithful permutational transformation fromG on � to H on 0. Then the action
of .G/� on.�/¼ is permutationally isomorphic to the action ofG= ker� on the orbits
of ker� in �, defined by.!ker� /.ker�/g = .!g/ker� for all g ∈ G and! ∈ �. Moreover,
ker� ≤ CG.K / and if1 is theker� -orbit of a pointÞ in �, then KÞ is a normal
subgroup ofK1 andker� ∼= K1=KÞ.

PROOF. Let F¼ be the set of fibres of¼ and let6 be the set of ker� -orbits in�.
Then the map¹ : F¼ → 6 defined by.[!]¼/¹ = !ker� is a bijection and it induces
a natural action ofG= ker� on F¼ which is permutationally isomorphic to the action
of G= ker� on6 given above. Therefore, by the First Permutational Isomorphism
Theorem, the action of.G/� on .�/¼ is permutationally isomorphic to the action of
G= ker� on the orbits of ker� .

SinceK is transitive, we have that.K /� is transitive by Lemma5.2. So K is not
contained in ker� (as.K /� is nontrivial) and hence by the minimality ofK , we see
that ker� is a normal subgroup ofG that intersectsK trivially. It then follows that
ker� centralisesK .

LetÞ be a point in� and let1 = Þker� . Let y ∈ K1 and suppose there are elements
c; d of ker� such thatÞy = Þc andÞy = Þd. Since ker� is a subgroup of CG.K /, by
Lemma1.1(5), ker� is semiregular and henceGÞ∩ker� = 1. Nowcd−1 ∈ GÞ∩ker�
and hencec = d. So there is a map' : K1 → ker� where for each elementy ∈ K1,
.y/' is the unique element of ker� such thaty.y/' ∈ GÞ. We prove now that' is
a group homomorphism. Lety1; y2 ∈ ker� . ThenÞy1y2.y1/'.y2/' = (

Þy1.y1/'
)y2.y2/' as

ker� centralisesK . ThereforeÞy1y2.y1/'.y2/' = Þ and so by uniqueness,.y1/'.y2/' =
.y1y2/' and' is a homomorphism. Clearly ker' = KÞ. Therefore,KÞ is a normal
subgroup ofK1 and ker� ∼= K1=KÞ.

We will frequently make use of the following lemma in the proof of Theorem6.1.

LEMMA 7.2. Let G be an innately transitive permutation group on a set� with
plinth K , let H be a group acting on a set0, let .�; ¼/ be a faithful permutational
transformation fromG� to H0, and letm = |.�/¼| > 1. If .G/� containsAm, then
one of the following holds:

(1) G containsAm.
(2) G is of ASQreg type,G = Am−1 × Am or G = .Am−1 × Am/:2, andK = Am.
(3) G has degree15, G is of Almost Simple Quotient type,K = A5, ker� is cyclic

of order3, and|G : .ker� × K /| = 1; 2.

PROOF. First, if G� is primitive, then by Lemma5.2, .G/� .�/¼ is permutationally
isomorphic toG� and (1) holds. This is also true in the general case when ker� = 1
(by Theorem5.1). Suppose ker� > 1 (so necessarily,G is imprimitive). If ker� is
transitive, then CG.K / is transitive, as ker� ≤ CG.K / by Lemma7.1, and henceG
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is primitive (see [1, Lemma 5.1])—a contradiction. So ker� is an intransitive normal
subgroup ofG. ThereforeG� is not quasiprimitive and henceK is nonabelian. Let
Þ ∈ � and let1 = Þker� . Then by Lemma7.1, KÞ is a proper normal subgroup ofK1

and ker� ∼= K1=KÞ. Let c = | ker� | and letn = |�| = mc.
SinceK is nonabelian, we must have thatm ≥ 5. So Am is a simple group and

henceK ∼= .K /� = Am asAm is the unique minimal normal subgroup of bothSm and
itself. Them fibres of¼ are simple the orbits of ker� in �. So K1 = Am−1 andKÞ

is normal inK1. We have two subcases:m = 5 or m 6= 5. In the latter case,K1 is
simple, and sinceKÞ is a proper normal subgroup ofK1, we have thatKÞ = 1. Thus
ker� ∼= K1 = Am−1 andG is of ASQreg type. Note that the only subgroups ofSm

that intersectAm in Am−1 areSm−1 andAm−1. SinceAm ≤ .G/� ∼= G= ker� ≤ Sm and
G ≥ ker� × K = Am−1 × Am, it follows thatG ∈ {Am−1 × Am; .Am−1 × Am/:2}, and
we are in case (2).

Finally, let m = 5. ThenK1 = A4 and KÞ ∈ {1;V4} as KÞ is a proper normal
subgroup ofK1. If KÞ = 1, thenG is of Almost Simple Quotient type with a
regular plinth K , ker� ∼= K1=KÞ

∼= A4, and by a similar argument as before,
G ∈ {Am−1 × Am; .Am−1 × Am/:2} wherem = 5, and we are in case (2). So suppose
that KÞ = A4. Then ker� ∼= K1=KÞ

∼= Z3 and n = 5|K1 : KÞ| = 15. Since
.G/� ∼= G= ker� ≤ S5 andG ≥ ker� × K = Z3 × A5, case (3) holds.

Notice that for the case where the permutational transformation.�; ¼/ is just the
quotient action ofG on C , the orbits of CG.K /, we have that ifc = |C | and GC

containsAc, then Lemma7.2 implies that one of the following holds:

(1) G containsAc;
(2) G is of ASQreg type,G = Ac−1 × Ac or G = .Ac−1 × Ac/:2, andK = Ac;
(3) G has degree 15.

The only innately transitive groups of degree 15 that are not quasiprimitive, are
isomorphic to one of the two groupsZ3 × A5 or .Z3 × A5/:2. One can construct the
latter groupG as follows. Note that Aut.Z3 × A5/ ∼= 〈a : a2 = 1〉 × S5 and let
c = .a; .1; 2// ∈ Aut.Z3 × A5/. It turns out thatG = .Z3 × A5/ o 〈c〉. The point
stabiliser for this group isH o 〈c〉 ∼= S4, whereH ∼= A4.

Praeger and Shalev showed that ifG is a quasiprimitive group on a set�, andB is a
G-invariant partition forG in�, thenb�.G/ ≤ bB.G/. They used the fact thatG acts
faithfully onB, which does not necessarily hold for an arbitrary innately transitive
group. Similarly, they showed that the the minimal base size ofG on� is no less than
s · mB.G/ wheres is the size of a block inB. A more general result can be achieved
in the context of faithful permutational transformations.

LEMMA 7.3. Let G be an innately transitive permutation group on a set� with
plinth K , let H be a finite transitive permutation group on a set0, let .�; ¼/ be a
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faithful permutational transformation fromG on� to H on0, and letc = |�|=|.�/¼|.
Then

(1) b�.G/ ≤ b.�/¼..G/�/;
(2) m�.G/ ≥ c · m.�/¼..G/�/.

PROOF. (1) Let 11; : : : ; 1b be a base for.G/� in .�/¼, and letÞ1; : : : ; Þb be
elements of� such that.Þi /¼ ∈ 1i for all i . Supposeg ∈ G fixes each of theÞi .
Hence.g/� fixes the1i , and thereforeg ∈ ker� as11; : : : ; 1b is a base. But ker�
is semiregular on� and henceg = 1 andÞ1; : : : ; Þb is a base forG in �. Therefore
b�.G/ ≤ b.�/¼..G/�/.

(2) First note that the ker� orbits have a common cardinality (asG is transitive) which
is equal to the constantc (by Lemma7.1). Let g be a non-identity element ofG and
setm = m.�/¼..G/�/. If g =∈ ker� , then.g/� acts nontrivially on.�/¼ and hence
moves at leastcm points of�. If g ∈ ker� , then since ker� is semiregular,g must
move every point in�. Thereforem�.G/ ≥ c · m.

The following result will be used to settle a case in the proof of Theorem6.1(7).

LEMMA 7.4. Letn ≥ 5and consider the natural action ofAut.An/ on An. Consider
Hol.An/ = An o Aut.An/ in its natural action onAn. Then

m.Hol.An// = m.Aut.An// = n!=2 − .n − 2/!:(∗)

PROOF. First we assume thatn 6= 6 and identify the action of Aut.An/ with
the conjugation action ofSn on An. Since Aut.An/ ≤ Hol.An/, it is clear that
m.Hol.An// ≤ m.Aut.An//. Let g ∈ Hol.An/ such thatg 6= 1 and g permutes
m.Hol.An// points. Since Hol.An/ is transitive, we may assume thatg fixes the
identity of An and henceg ∈ Aut.An/. Som.Hol.An// ≥ m.Aut.An// and therefore
m.Hol.An// = m.Aut.An//. By the definition of the action,g fixes exactly|CAn.g/|
points and som.Hol.An// = |An| − |CAn.g/|. By the definition of minimal degree,
|CAn.g/| is the maximum number of fixed points over allg ∈ Aut.An/ with g 6= 1.
Let − be the automorphism induced by the transposition.n − 1; n/. Since.n − 1; n/
centralises itself andAn−2, we have that− has.n−2/! fixed points. Som.Aut.An// ≤
n!=2 − .n − 2/!. It is clear that the transpositions ofSn centralise the most number of
elements ofAn. Thereforem.Aut.An// = n!=2 − .n − 2/!.

It can be calculated using a computer program such as GAP, that (∗) holds for
n = 6. Therefore (∗) holds for alln ≥ 5.

8. Proof of Theorem6.1

We can finally prove Theorem6.1.
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PROOF. We prove the parts of Theorem6.1consecutively. LetK be the plinth ofG,
let c = |CG.K /|, and letC be the set of CG.K /-orbits in�.

(1) Let g ∈ G be a p-cycle of �. Let Þ1; Þ2; : : : ; Þp ∈ � be such thatÞg
1 =

Þ2; : : : ; Þ
g
p−1 = Þp andÞg

p = Þ1. For all i = 1; : : : p, let 1i = Þ
CG.K /
i . Now if

|�| = p, then G is clearly primitive (since the size of a block forG divides the
size of�). Suppose|�| > p. Since CG.K / is semiregular,g =∈ CG.K / and hence
G 6= CG.K /. By Lemma1.1(4), K acts faithfully onC and henceG acts nontrivially
onC . Also, CG.K / is the kernel of the action ofG on C (by Lemma1.1 (4)) and
henceg induces ap-cycle11; : : : ; 1p onC .

Now the points in the union of the1i must consist wholly of elements of the
p-cycle,Þ1; : : : ; Þp, otherwiseg would fix a point in one of the1i and hence fix an
orbit in its action onC (and the1i would not be pairwise distinct). So the size of the
orbits must dividep. Since the1i are distinct, the orbits inC must be singleton sets,
and hence CG.K / = 1. ThereforeG is quasiprimitive by Lemma1.1(1) and soG is
primitive by the proof of Praeger and Shalev’s result [10, Theorem 2.1].

(2) Suppose thatG is not quasiprimitive, so by Lemma1.1(1), 1< c < n. Let g ∈ G
be an element of orderp with q cycles of lengthp in� (where 2≤ q < p), and let f
be the number of fixed points ofg in�, that is, f = n − qp. If f = 0, that isn = qp,
then (i) holds. Supposef > 0. Theng =∈ CG.K / since CG.K / is semiregular andg
fixes at least one point. So by Lemma1.1 (4), G acts nontrivially onC with kernel
CG.K / and henceg 6= 1 and each cycle ofg of length p in C corresponds toc cycles
of length p of g in �. Sinceq < p, it follows that g hasq′ = q=c < p cycles of
length p in C , and f ′ = f=c fixed points inC . Now GC acts quasiprimitively onC ,
and so by Praeger and Shalev’s result, one of the following holds:

(a) f ′ ≤ 5q′=2 − 2,
(b) GC = An=c or Sn=c,
(c) GC = Ad or Sd on ordered pairs

(
n=c = (

d
2

)
, d ≥ p, q′ = d − .p + 1/=2

)
.

In the first case,f=c ≤ 5q=2c − 2 and hencef ≤ 5q=2 − 2c ≤ 5q=2 − 2, so (i)
holds. Suppose now that (b) holds. By Lemma7.2 either G is of Almost Simple
Quotient type andAm−1 × Am ≤ G ≤ .Am−1 × Am/:2 wherem = n=c > 5, orn = 15
andc = 3. In the latter case, computer calculations (in GAP) show that.p;q/ ∈
{.3; 5/; .3; 7/; .5; 3/} and hence (i) holds. In the former case,p > c = |Am−1|, and
sincem ≥ p we havep > .p − 1/!=2 which is impossible forp ≥ 5. Hencep = 3,
but in this casem ≥ 6 and again this is not true.

Finally, consider case (c). Hereq′ = d−.p+1/=2 ≥ .p−1/=2 and asq = cq′ < p,
it follows thatc = 2, q = p − 1, andd = p. In this caseg has no fixed points onC ,
and hence no fixed points on�, and (i) holds.

(3) If G contains a 3-cycle, then by Theorem6.1(1), G is primitive and the conclusion
follows from Bochert’s result. IfG does not contain a 3-cycle, then by Bochert’s
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original argument (see [2] or [3, Theorem 3.3B]), we have that|G| ≤ n!=..n+1/=2/!.
(The author would like to thank Dr. Peter M. Neumann for suggesting the proof of
this result.)

(4) Recall thatGC acts faithfully and quasiprimitively onC , and so by Praeger and
Shalev’s result [10, Theorem 4.2], ifGC does not containAn=c, then|G| = c|GC | <
c4n=c. Now if c4m=c ≤ 4m for somem ≥ c, thenc4.m+1/=c = c4m=c41=c ≤ 4m41=c ≤ 4m+1.
The smallest case,m = c, holds sincec41 = 4c ≤ 4c. So by induction, we see that
c4m=c ≤ 4m for all m ≥ c. Therefore|G| < 4n.

So assume now thatAn=c ⊆ GC . By Lemma7.2, one of the following holds:G
is quasiprimitive,G is isomorphic to a subgroup of.An=c−1 × An=c/:2, orn = 15 and
c = 3. In the first case, the result holds by [10, Theorem 4.2]. In the latter case,
|G| = c|GC | ≤ 3·5! = 360< 415. In the case thatG is embedded in.An=c−1×An=c/:2,
recall thatn = .n=c/!=2 since the plinthAn=c is regular, and hence|G| ≤ n2=2. Now
n 7→ 4n − n2 is an increasing function on the natural numbers, and is equal to 3 when
n = 1. So 4n − n2 > 0 for all positive integersn and hence|G| < 4n.

(5) SinceGC is quasiprimitive onC , by Praeger and Shalev’s result [10, Theorem 4.4]
(which depends on Cameron’s result and hence the Classification of Finite Simple
Groups), there exist constantsd andd′ such that either|GC | ≤ .n=c/d log.n=c/ or, for
positive integersm, k, l such thatk ≤ d′, l ≤ d′ andm> 4d′, we haveGC ≤ Sm wr Sl

with KC = Al
m and.Am−k/

l ≤ KC

1 ≤ .Sm−k × Sk/
l ∩ K (for some1 ∈ C ). In the

former case,|G| = c|GC | ≤ c.n=c/d log.n=c/ ≤ nd log.n/, and we have that (i) holds.
So assume that we are in the second case and letJ = .Am−k/

l < K (noteKC ∼= K ).
SinceJ is a minimal normal subgroup ofK1, we have two cases; namelyJ ∩ KÞ = 1
or J ≤ KÞ. In the latter case,|CG.K /| = |K1|=|KÞ| (by Lemma1.1 (1)) and
K1 ≤ NK .KÞ/ ≤ NK .Al

m−k/ = .Sm−k×Sk/
l ∩K and hence|CG.K /| ≤ .k!/l ≤ .d′!/d′

.
So (ii) holds. So suppose thatJ ∩ KÞ = 1. Then|J| divides |K1 : KÞ| and hence
..m − k/!=2/l dividesc. Now

|G| = c|GC | ≤ c.m!/l l ! = n.m!/l l !
(

m
k

)l = n.l !/ .k!.m − k/!/l

≤ n.l !/.k!/l 2l c ≤ nc.d′!/.d′!/d′
2d′ = nc2d′

.d′!/d′+1 ≤ n2b.d′/

whereb.d′/ = 2d′
.d′!/d′+1. (We could replace the constantd′, given by [10, Theo-

rem 4.4], withb.d′/.) So we have thatG satisfies (i).

(6) If An=c * GC , then by Lemma7.3,

b.G/ = b�.G/ ≤ bC .G/ = 4.n=c/1=2 log.n=c/ ≤ 4
√

n log.n/:

On the other hand, ifAn=c ⊆ GC , then by Lemma7.2one of the following holds:G is
quasiprimitive,G ≤ Hol.Am/ for somem ≥ 5, orn = 15. In the third case,b.G/ ≤
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15 ≤ 4
√

15 log.15/. If G ≤ Hol.Am/ (wherem ≥ 5), thenb.G/ ≤ b.Hol.Am//.
Now Hol.Am/ is primitive (as the point stabilizer of 1 in Hol.Am/ is Aut.Am/, which is
maximal in Hol.Am/), and so it follows from Babai’s result thatb.G/ ≤ 4

√
n log.n/.

If G is quasiprimitive, then by Praeger and Shalev’s result [10, Lemma 5.1], either
b.G/ ≤ 4

√
n log.n/ or G containsAn.

(7) SupposeGC does not equalAn=c or Sn=c. Then by Theorem [10, Theorem 7.2]
and Lemma7.3, m� ≥ c · mC .G/ ≥ c.

√
n=c − 1/=2 ≥ .

√
n − 1/=2. Suppose

now thatGC ∈ {An=c; Sn=c}. Then by Lemma7.2, one of the following holds:G
is quasiprimitive,G is of Almost Simple Quotient type andK is regular, orc = 3
and n = 15. In the third case,m.G/ ≥ 2 asG acts faithfully on�, and hence
m.G/ ≥ .

√
15 − 1/=2. If G is quasiprimitive, then by [10, Theorem 7.2], either

m.G/ ≥ .
√

n − 1/=2 or G containsAn. Now we turn to the case whereG is of
Almost Simple Quotient type with a regular plinth. Note thatG is permutationally
isomorphic to a subgroup of Hol.An=c/acting naturally onAn=c , and so by Theorem7.4,
m.G/ ≥ .n=c/!=2 − .n=c − 2/! ≥ .

√
n − 1/=2.

9. Quotient actions of innately transitive groups

If G acts quasiprimitively on�, then the kernelE of the action ofG on a
G-invariant partitionB of �, is an intransitive normal subgroup ofG. So we must
have thatE = 1 and henceGB is quasiprimitive and isomorphic toG. However,
the quasiprimitive types forG� andGB may be different. The possible types forG�

andGB were determined by Cheryl Praeger in [7, Theorem 1], which we recast below.

THEOREM 9.1 (Praeger).Let G be an imprimitive quasiprimitive permutation
group of typeX on a finite set�, and letB be a non-trivial G-invariant parti-
tion of�. ThenGB is quasiprimitive of typeXB, whereXB ∈ {AS;SD;CD;PA},
X ∈ {AS;SD;CD;TW;PA}, and the.X; XB/-entry in the Quotient Action Matrix
in Table2 is the symbolX. Conversely, if the symbolXoccurs in the.X;Y/-entry,
then there exists a finite imprimitive quasiprimitive group of typeX with a non-trivial
quotient action of typeY.

TABLE 2. Quotient Action Matrix

AS SD CD PA
AS X × × ×
SD × × X ×
CD × × X ×
TW × X X X

PA × X X X
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Now if insteadG is innately transitive on�, it is not necessarily true this time that
the kernel of the action ofG onB is trivial. We generalise Praeger’s theorem below.

THEOREM 9.2. Let G be an imprimitive innately transitive permutation group of
type X on a finite set�, let H be a finite permutation group on set0, and let.�; ¼/
be a faithful permutational transformation fromG� to H0. Then.G/� is innately
transitive on.�/¼ of typeY, where X;Y ∈ {AS;ASQ;TQ;SD;CD;PA;DQ;PQ},
and the.X;Y/-entry in the Quotient Action Matrix in Table3 is the symbolX.
Conversely, if the symbolXoccurs in the.X;Y/-entry, then there exists an innately
transitive group of typeX with a quotient action of typeY.

TABLE 3. Quotient Action Matrix

AS ASQ TW SD CD PA DQ PQ
AS X × × × × × × ×

ASQ X X × × × × × ×
TW × × X X X X × ×
SD × × × X X × × ×
CD × × × × X × × ×
PA × × × X X X × ×
DQ × × × X X X X ×
PQ × × × X X X × X

PROOF. First recall that.G/� is innately transitive with plinth.K /� and .K /�
is isomorphic toK . So .K /� is simple if and only if K is simple, and hence
X ∈ {AS;ASQ} if and only if Y ∈ {AS;ASQ}. By Lemma5.2, if .K /� is regular
then K is regular. Hence ifY ∈ {TW;DQ;PQ} then X ∈ {TW;DQ;PQ}. We also
know that if G� is primitive (respectively quasiprimitive) then.G/� .�/¼ is primitive
(respectively quasiprimitive). SinceG� is imprimitive, G� and.G/� .�/¼ are not of
Abelian Plinth, Holomorph of a Simple Group, or Holomorph of a Compound Group
type. So far we have ruled out values of.X;Y/ indicated in Table4.

So suppose now thatK is non-simple, and letÞ ∈ � and1 = Þker� . Note for
all x ∈ ker� , that.Þx/¼ = .Þ/¼.x/� = .Þ/¼ and hence.1/¼ = {.Þ/¼}. So for all
y ∈ K1, we have.Þ/¼.y/� = .Þy/¼ ∈ .1/¼ = {.Þ/¼} and hence.K /�.Þ/¼ contains
.K1/� . Now by comparing orders (and using Lemma7.1) we see that.K /�.Þ/¼ is
equal to.K1/� :

|.K /�.Þ/¼| = |.K /� |=|.�/¼| = |.K /� || ker� |=|�|
= |K | | |K1 : KÞ|=|K : KÞ| = |K1|:

In the case thatX ∈ {DQ;PQ}, we have thatG is not quasiprimitive and hence CG.K /
is nontrivial. ThusK1 is nontrivial and.K /� is not regular. So ifX ∈ {DQ;PQ}, then
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TABLE 4. Impossibilities thus far.

AS ASQ TW SD CD PA DQ PQ
AS X × × × × × × ×

ASQ X × × × × × ×
TW × × X × ×
SD × × × X × ×
CD × × × X × ×
PA × × × X × ×
DQ × × X

PQ × × X

Y =∈ {TW;DQ;PQ}. The only cases we must rule out now are.X;Y/ = .SD;PA/,
.X;Y/ = .CD;SD/, and.X;Y/ = .CD;PA/.

SupposeKÞ is a subdirect subgroup ofK . By the proof of [1, Proposition 5.5],
KÞ is self-normalising and henceKÞ = K1 (by Lemma7.1). Thus it follows that
.K /�.Þ/¼ is a subdirect subgroup of.K /� . So if X ∈ {SD;CD} thenY ∈ {SD;CD},
and .X;Y/ =∈ {.SD;PA/; .CD;PA/}. Finally, suppose.X;Y/ = .CD;SD/. Then
.K1/� is a full diagonal subgroup of.K /� . So in particular,.K1/� is isomorphic to
each simple direct factor of.K /� . This implies thatK1 is isomorphic to a simple
direct factor ofK , and henceK1 is simple. However,KÞ is a proper nontrivial normal
subgroup ofK1—a contradiction. Therefore.X;Y/ 6= .CD;SD/ in this case.

This analysis verifies that the crossed entries in Table3 are correct. Next we prove
that examples exist for each checked entry in Table3. By Praeger’s Theorem, we have
examples for most of our table except the casesX = ASQ;PQ;DQ. We complete the
table with the following examples.

X = ASQ. Let G be an innately transitive group of Almost Simple Quotient type
(for an example, see Example3) and letC be the set of orbits of the centraliser of the
plinth of G. ThenGC is quasiprimitive of Almost Simple type as the plinth ofGC is
isomorphic to the plinth ofG. So we have examples where.X;Y/ = .ASQ;AS/.

X = PQ. Let G be an innately transitive group on a set� with plinth K , and suppose
G is of Product Quotient type. LetC be the orbits of CG.K /. Then the stabiliserK1 of
an element1 ∈ C is not a subdirect subgroup ofK . ThereforeGC is quasiprimitive
of Product Action type. Now consider the example given in Example4 for X = P A.
If one choosesS = 1, thenG = Diag.Rk/ × .T wr A/ is innately transitive on�
of Product Quotient type. The centraliser ofK in G is C and GC is precisely the
quasiprimitive group of Product Action type given in [7, Example 5]. In this example,
Praeger shows thatGC has quasiprimitive quotient actions of Simple Diagonal and
Compound Diagonal type. Hence our groupG also has quotient actions of Simple
Diagonal and Compound Diagonal type.
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X = DQ. Let G be an innately transitive group on a set� with plinth K , and suppose
G is of Diagonal Quotient type. LetC be the orbits of CG.K /. Then by Lemma1.1(2)
(or Lemma7.1) the stabiliserK1 of an element1 ∈ C is a subdirect subgroup ofK .
ThereforeGC is quasiprimitive of Diagonal type. The innately transitive groupG in
Example2 is an example whereGC is of Diagonal type. In this example, ifm = 1 then
GC is of Simple Diagonal type, otherwiseGC is of Compound Diagonal type. We
will show now that there is an example where.X; XB/ = .DQ;PA/. Take Example2
whereG = K o [.A × Sk=m/wr Sm], C = Diag.Tk=m/, and CG.K / = Cm (in the left
regular representation ofK ). Let M be a proper nontrivial subgroup ofCm in the right
regular representation ofK . So M is a diagonal subgroup ofK , but is not subdirect.
Now G acts onB = [G : G1M], whereG1 is the stabiliser inG of the identity
element, and induces an innately transitive group onB with plinth K . SinceM is a
point stabiliser for the plinth in this action, andM is nontrivial and not subdirect, it
follows thatGB is of Product Action type.

Therefore, examples exist for each checked entry in Table3.
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