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Abstract

For a permutation groupH on an infinite setX and a transformationf of X, let 〈 f : H〉 = 〈{h f h−1 :
h ∈ H}〉 be a group closure off . We find necessary and sufficient conditions for distinct normal
subgroups of the symmetric group onX and a one-to-one transformationf of X to generate distinct
group closures off . Amongst these group closures we characterize those that are left simple, left
cancellative, idempotent-free semigroups, whose congruence lattice forms a chain and whose congruences
are preserved under automorphisms.
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1. Introduction

Let X be a nonempty set, and letH be a subgroup of the symmetric groupGX on X.
Denote the alternating subgroup ofGX by AX. Given a transformationf of X, the
semigroup

〈 f : H〉 := 〈{h f h−1 : h ∈ H}〉
is the H -closureof f (or agroup-closure). For any semigroupS of transformations
of X, let GS = {h ∈ GX : hSh−1 ⊆ S} and say thatS is H -normal if GS = H .

If X is finite, then for a transformationf of X we have that〈 f : AX〉 and〈 f : GX〉
differ if and only if f is a partial one-to-one nilpotent having the union of its image
and domain equal toX ([5, 8, 7]). In particular, if f is a total transformation, then
〈 f : AX〉 = 〈 f : GX〉, and the semigroup〈 f : AX〉 is aGX-normal semigroup. The
papers cited above address the following problem for a finite setX:
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PROBLEM 1. Let H1; H2 be subgroups ofGX, and let f be a transformation ofX.
Find necessary and sufficient conditions for equality of the group closures〈 f : H1〉
and〈 f : H2〉.

The case of an infinite setX is much more complex than that of a finiteX. Here
Problem1 is addressed in the particular case whenX is infinite and the subgroups
of GX are normal. We establish necessary and sufficient conditions for two distinct
normal subgroupsH1 and H2 of GX to produce equal group closures〈 f : H1〉 and
〈 f : H2〉 of a one-to-one total transformationf of X.

A semigroupS is said to be a1-semigroupif its congruence lattice Con.S/ forms a
chain. A congruence� on a semigroupSis said to beinvariant under an automorphism
 of S if whenever. f; g/ ∈ � we also have. . f /;  .g// ∈ � . For a transformation
f of X, let thedefectof f be the cardinality of the complement of its image im. f /,

def. f / = |X − im. f /|:
The subset of all the points ofX shifted by f is S. f / = {x ∈ X : f .x/ 6= x} and

shift. f / = |S. f /|; fix. f / = |X − S. f /|:
Given an infinite cardinal ≤ |X|, the Baer-Levi semigroupBL.|X|;  / is the
semigroup of all total one-to-one transformations ofX with defect [1]. Baer-Levi
semigroups are idempotent-free left simple, left cancellative1-semigroups whose
congruences are preserved under automorphisms ([9, 10, 11]). The following problem
was raised in [10].

PROBLEM 2. Characterize all idempotent-free left simple, left cancellative1-semi-
groups whose congruences are preserved under automorphisms.

Let f be a total one-to-one transformation ofX such that = def. f / is infinite. If
shift. f / = |X|, then〈 f : GX〉 is a Baer-Levi semigroupBL.|X|;  /. It was shown
in [10] that for anyg ∈ BL.|X|;  /, the semigroup〈g : GX〉 satisfies the conditions
stated in Problem2. In this paper, for a normal subgroupH of GX, we characterize the
H -closures off that satisfy the conditions stated in Problem2, thereby generalizing
the result of [10] and providing a contribution towards a solution of Problem2.

2. Background and main results

Let WX denote the semigroup of all the total one-to-one transformations of an
infinite setX. For any infinite cardinalÞ not exceeding the cardinal successor|X|+
of |X|, and any cardinal ≤ |X|, let

S.X; Þ;  / = { f ∈ WX : shift. f / < Þ; def. f / =  }:
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If ℵo ≤  < Þ, then S.X; Þ;  / is a GX-normal subsemigroup ofWX. If  = 0,
then S.X; Þ;  / is a normal subgroup of the symmetric groupGX, and these groups
together with the alternating groupAX constitute the set of all the non-trivial normal
subgroups ofGX ([12]). For brevity, we writeS.X; Þ; 0/ asS.X; Þ/.

2.1. Decomposition of one-to-one transformations The elements ofWX − GX

are referred to asnon-permutationsin WX. Just as any permutation may be written
as a formal product of disjoint finite and infinite cycles, any non-permutation inWX

may be written (essentially uniquely) as a formal product of disjoint cycles (finite or
infinite) and chains [3] (see Proposition2.1below). As usual, transformationsf and
g aredisjoint if S. f / ∩ S.g/ = ∅. Let A be a set of pairwise disjoint transformations
of X. The formal product ofA is a transformation ofX, denoted by

∏{ f : f ∈ A},
defined by the following formula:

∏
{ f : f ∈ A}.x/ =

{
f .x/; if f ∈ A and x ∈ S. f /;

x; if x ∈ X − ∪{S. f / : f ∈ A};

wherex ∈ X. If A ⊆ WX then
∏{ f : f ∈ A} is also inWX. For a countable ordered

subsetY = {y1; y2; y3; : : : } of X, let [y1y2y3 · · · / denote the transformationf ∈ WX

such that f .yi / = yi +1 for i = 1; 2; 3; : : : , and f .x/ = x for all x ∈ X − Y. The
transformationf = [y1y2y3 · · · / is called achain. Note thatX − im. f / = {y1} and
def. f / = 1. The following result has been proved in [3]:

PROPOSITION2.1. Let f be a non-identity transformation inWX . Then f is a formal
product of pairwise disjoint cycles and chains,f = ∏{g : g ∈ A}, with nog ∈ A
being a1-cycle. The number of chains inA is equal todef. f /. If f = ∏{g : g ∈ A′}
is another such product thenA = A′.

We refer to the form
∏{ f : f ∈ A} of f as thecyclic-chain decompositionof f . Let

ChX ⊆ WX be the set of all formal products of disjoint chains. Proposition2.1assures
that every transformationf ∈ WX can be written as a product of two unique disjoint
transformationsf p ∈ GX and fc ∈ C hX (the subscriptsp andc stand for permutation
and chain correspondingly). We let'n. f / denote the set of all then-cycles in the
cyclic decomposition off , wheren is either a positive integer or∞.

2.2. Main results The main results of this paper are stated in Theorems2.2–2.4
below. The remainder of the paper is concerned with the proof of these results.

THEOREM2.2. Let f be a non-identity transformation inWX, and letH be a normal
subgroup ofGX. Then〈 f : H〉 is left simple if and only if

(1) def. f / =  is infinite,
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(2) H = S.X; Þ/ for someÞ >  ,
(3) there exists a positive integerm such thatshift. f m/ < Þ.

Lemma3.10presents conditions in terms of the cyclic-chain decomposition off
that are equivalent to Theorem2.2(3).

THEOREM2.3. Let f be a non-permutation inWX, and letH be a normal subgroup
of GX. Then〈 f : H〉 is a left cancellative, idempotent-free semigroup. If〈 f : H〉
is left simple, then it is a1-semigroup whose congruences are preserved under
automorphisms.

THEOREM2.4. Letℵo ≤ Þ ≤ þ ≤ |X|+ and let f be a non-identity transformation
in WX.

(1) If Þ < þ, then〈 f : S.X; Þ/〉 = 〈 f : S.X; þ/〉 if and only ifshift. f / < Þ.
(2) 〈 f : AX〉 = 〈 f : S.X; þ/〉 if and only if either

(a) f is a finite permutation, or
(b) þ = ℵo and for some integerk ≥ 1 either |'2k. f /| ≥ 1 or |'2k−1. f /| ≥ 2.

2.3. Properties of one-to-one transformations The first three statements of the
following lemma are easily derived from elementary properties of one-to-one trans-
formations, while the fourth statement presents a well-known result for permutations
(see, for example, [12]), and has been proved for non-permutations inWX in [3].

LEMMA 2.5. Let f; g ∈ WX. Then the following hold:

(1) def. f g/ = def. f /+ def.g/.
(2) S.hgh−1/ = h.S.g// for all h ∈ GX.
(3) If g =∈ GX, thenshift.g/ is infinite andshift. f g/ ≤ shift. f /+ shift.g/, equality

holding whenshift. f / 6= shift.g/.
(4) f = hgh−1 for someh ∈ GX if and only if def. f / = def.g/, and |'n. f /| =
|'n.g/| for all n = 1; 2; : : : ;∞.

For transformationsf; g ∈ WX, let D. f; g/ = {x ∈ X : f .x/ 6= g.x/}.

LEMMA 2.6. For f; g; t ∈ WX, if t f = g then

|D. f; g/| ≤ shift.t/ ≤ |D. f; g/| + def. f /:

PROOF. If t f = g, then f .D. f; g// ⊆ S.t/ ⊆ f .D. f; g// ∪ .X − im. f //.

For a transformationf of X, let CGX . f / = {h ∈ GX : h f = f h} denote the
centralizer of f in GX. The next two results, proved in [6], describe centralizers of
transformations inWX.
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PROPOSITION 2.7. Take f ∈ WX and write it as a product of disjoint transfor-
mations f = f p fc, where f p ∈ GX, fc ∈ ChX. A permutationh ∈ CGX . f / if
and only ifh ∈ CGX . f p/, h.S. fc// = S. fc/, and for each chain[x1x2x3 · · · / in fc,
[h.x1/h.x2/h.x3/ · · · / is also a chain infc.

LEMMA 2.8. Let g ∈ GX. ThenCGX .g/ ≤ AX if and only if fix.g/ ≤ 1 andg is a
product of disjoint finite cycles of distinct odd lengths.

Let ℵo ≤ Þ < þ ≤ |X|+ and let S.X; Þ/ and S.X; þ/ be two distinct normal
subgroups ofGX, so S.X; Þ/ < S.X; þ/. Lemma2.10gives a sufficient condition
for equality of〈 f : S.X; Þ/〉 and 〈 f : S.X; þ/〉 for f ∈ WX. The lemma assures
equality of these group closures wheneverf shifts fewer thanÞ elements ofX by
demonstrating that both are just the minimalGX-normal semigroups containingf .
These semigroups were described in [3], where the following has been proved.

PROPOSITION2.9. Let f ∈ WX with shift. f / = ¦ anddef. f / =  .

(1) If  ≥ ℵo, then〈 f : GX〉 = S.X; ¦+;  /.
(2) If  is a positive integer, then

〈 f : GX〉 ⊇ {g ∈ WX : shift.g/ ≤ ¦; def.g/ = k; for all integersk ≥ 4}:
Properties ofGX-normal semigroups have been studied in a number of publications,

see, for example, [9, 2, 3, 11, 13, 14].

LEMMA 2.10. Let f ∈ WX with shift. f / = ¦ and letÞ be an infinite cardinal
greater than¦ . Then〈 f : S.X; Þ/〉 = 〈 f : GX〉.

PROOF. We only need to prove thath f h−1 ∈ 〈 f : S.X; Þ/〉 for any h ∈ GX. Let
Y = S. f / ∪ S.h f h−1/ = S. f / ∪ h.S. f //. Then|Y| ≤ 2¦ < Þ, and the restrictions
f|Y, h f h−1

|Y are total transformations ofY. Also, def. f / = def.h f h−1/ and|'n. f /| =
|'n.h f h−1/| for all n = 1; : : : ;∞ (by Lemma2.5 (4)), so |Y − im.h f h−1

|Y /| =
|Y− im. f|Y/| = def. f / and|'n. f|Y/| = |'n.h f h−1

|Y /| for all n = 1; : : : ;∞. Therefore,
by Lemma2.5 (4) again, there is a permutationg ∈ GY such thath f h−1

|Y = g f|Yg−1.
Define a permutatioñh ∈ GX such thath̃.x/ = g.x/, if x ∈ Y, and h̃.x/ = x, if
x ∈ X − Y. Thenh̃ ∈ S.X; Þ/ andh f h−1 = h̃ f h̃−1 ∈ 〈 f : S.X; Þ/〉.

3. On algebraic properties of group closures

Throughout suppose thatÞ is an infinite cardinal. Letf be a non-permutation inWX ,
and letH be a normal subgroup ofGX. Since the semigroup〈 f : H〉 consists of one-
to-one transformations, it is left cancellative. Since any idempotent transformation of
X is the identity on its image, the semigroup〈 f : H〉 is idempotent-free.
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3.1. Left simplicity of 〈 f : H 〉 The following result shows that for anyf ∈ WX,
〈 f : S.X; Þ/〉 is a subsemigroup ofS.X; Þ/〈 f 〉 where 〈 f 〉 is the subsemigroup
generated byf .

LEMMA 3.1. Let f ∈ WX and g = h1 f h1
−1h2 f h2

−1 · · · hk f hk
−1 for somehi ∈

S.X; Þ/, i = 1; 2; : : : ; k. Then there existsh ∈ S.X; Þ/ such thatg = h f k, and
| im.g/− im. f /| < Þ.

PROOF. It suffices to show that given anyp ∈ S.X; Þ/ there existsq ∈ S.X; Þ/
such that f p = q f . For this, defineq so thatq.x/ = f p f −1.x/ if x ∈ im. f / and
q.x/ = x otherwise. Thenq is a permutation ofX that maps im. f / onto itself with
S.q/ ⊆ f .S.p//, so that shift.q/ ≤ shift.p/ < Þ.

Now if g = h f k for anh ∈ S.X; Þ/, then

| im.g/− im. f /| ≤ |h.im. f //− im. f /| ≤ shift.h/ < Þ.

Recall that if H = S.X; Þ/ and shift. f / < Þ then 〈 f : H〉 is a GX-normal
semigroup (Lemma2.10). Such semigroups are left simple when def. f / is infinite.
So we assume that shift. f / ≥ Þ.

OBSERVATION3.2. If def. f / =  is a positive integer, the semigroup〈 f : H〉 is not
simple, so it is not left simple. Indeed, in this case〈 f : H〉 contains transformations
with distinct finite defects (Lemma2.5). For each positive integerk ≥ 2 the set
{g ∈ 〈 f : H〉 : def.g/ ≥ k } is a proper ideal of〈 f : H〉.

LEMMA 3.3. Let f ∈ WX with def. f / =  ≥ ℵo, and letH E GX. If 〈 f : H〉 is
left simple thenH = S.X; Þ/ for some cardinalÞ with  < Þ ≤ |X|+.

PROOF. Since〈 f : H〉 is left simple, there existsg ∈ 〈 f : H〉 such thatg f 2 = f .
In this caseg.X − im. f // ⊆ X − im. f /, so X − im. f / ⊆ im.g/. By Lemma3.1,
Þ > | im.g/− im. f /| ≥  .

COROLLARY 3.4. If def. f / = |X| and H E GX, then〈 f : H〉 is left simple if and
only if H = GX.

LEMMA 3.5. Let f be a non-permutation inWX with def. f / =  < Þ ≤ shift. f /.
Suppose that〈 f : S.X; Þ/〉 is left simple. Then

(1) there existsg ∈ 〈 f : S.X; Þ/〉 with . g/ =  ;
(2) there exists a positive integerk such thatshift. f k/ < Þ.

PROOF. To prove (1) take a non-identity permutationh ∈ S.X;ℵo/ ⊆ S.X; Þ/ such
thatS.h/ ⊆ S. fc/, where fc is the product of the chains inf . ThenD. f; h f h−1/ is a
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finite nonempty set. Since〈 f : S.X; Þ/〉 is left simple there existsg ∈ 〈 f : S.X; Þ/〉
such thatg f = h f h−1. By Lemma2.6shift.g/ ≤  . Also g ∈ 〈 f : S.X; Þ/〉 implies
that def.g/ =  , so shift.g/ ≥  , and hence shift.g/ =  .

To prove (2), takeg ∈ 〈 f : S.X; Þ/〉 with shift.g/ =  , as constructed above,
and write, using Lemma3.1, g = h f k for someh ∈ S.X; Þ/, so  = shift.g/ =
shift.h f k/ = max.shift.h/; shift. f k//. Since shift.h/ < Þ, and < Þ we have that
shift. f k/ < Þ.

NOTATION 3.6. Let f ∈ WX be such thatℵo ≤ def. f / < Þ ≤ shift. f / and
shift. f k/ < Þ for some positive integerk. Usem to denote

m = min{k ≥ 2 : k is an integer,f k ∈ S.X; Þ;  /}:

We will use the permutation as constructed below.

NOTATION 3.7. Given a setA of disjoint n-cycles,n = 2; 3; : : : ; ∞, with |A| =
� ≥ ℵo, let ³A be a permutation ofX defined as follows. Choose a subsetB of A
with |B| = |A − B| = � together with a bijection½ from B onto A − B. For each
cycle u in A choose a pointxu in S.u/ and lethu be the two-cycle.xu; x½.u//. Let
³A = ∏{hu : u ∈ B}, and note that shift.³A/ = �:

If 〈 f : S.X; Þ/〉 is left simple, then, as the next lemma shows, it contains the
semigroupS.X; Þ;  /.

LEMMA 3.8. Suppose thatf ∈ WX such thatℵo ≤ def. f / < Þ ≤ shift. f /.

(1) For any cardinal� with def. f / ≤ � < Þ, there exists ag ∈ 〈 f : S.X; Þ/〉 such
that |D. f; g/| = �.
(2) If 〈 f : S.X; Þ/〉 is left simple, then

(a) S.X; Þ;  / ⊆ 〈 f : S.X; Þ/〉,
(b) if t ∈ 〈 f : S.X; Þ/〉 ands ∈ S.X; |X|+;  / with |D.s; t/| < Þ, then

s ∈ 〈 f : S.X; Þ/〉,
(c) 〈 f : S.X; Þ/〉 = 〈S.X; Þ/; f 〉.

PROOF. Let def. f / =  , shift. f / = ¦ . To prove statement (1) above, write
f = f p fc as a product of disjoint transformationsf p ∈ GX and fc ∈ ChX. Since
shift. fc/ =  < Þ ≤ ¦ = shift. f /; we have that shift. f p/ = ¦ . So there exists an
n ≥ 2 (finite or infinite) such that|'n. f /| = ¦ . Choose a subsetA of 'n. f / with
|A| = � and leth = ³A (Notation3.7), g = h f h−1. To show thatg is the required
transformation, it suffices to see that

(3.1) � = |S.h/| ≤ |D. f; g/| ≤
∣∣∣S(∏

{u : u ∈ A}
)∣∣∣ ≤ ℵo� = �:
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For this, takex ∈ S.h/, let h−1.x/ = y 6= x, and suppose.xx1 · · · /; .yy1 · · · / are
the correspondingn-cycles inA. Theng.x/ = h f h−1.x/ = h f .y/ = h.y1/ = y1 =
f .y/ 6= f .x/, so S.h/ ⊆ D. f; g/. Now, if x ∈ X − S

( ∏{u : u ∈ A}), then
also f .x/ ∈ X − S

( ∏{u : u ∈ A}), so g.x/ = h f h−1.x/ = h f .x/ = f .x/, thus
D. f; g/ ⊆ S

(∏{u : u ∈ A}), and so (3.1) follows.
To prove statement (2)(a) of the lemma, we first show that for any�with  ≤ � < Þ

there existst ∈ 〈 f : S.X; Þ/〉 such that shift.t/ = �. Takeg ∈ 〈 f : S.X; Þ/〉 with
|D. f; g/| = � as constructed in the first part of the lemma. Since〈 f : S.X; Þ/〉 is
left simple, there existst ∈ 〈 f : S.X; Þ/〉 such thatt f = g. But then by Lemma2.6
shift.t/ = �, and the semigroup〈 f : S.X; Þ/〉 contains〈t : S.X; Þ/〉 = S.X; �+;  /
(Proposition2.9).

To prove (2) (b) note that sinces; t ∈ 〈 f : GX〉, a left simple semigroup, there exists
u ∈ 〈 f : GX〉 such thats = ut. Since shift.u/ < Þ (Lemma2.6), u ∈ S.X; Þ;  / ⊆
〈 f : S.X; Þ/〉, sos ∈ 〈 f : S.X; Þ/〉 also. Now (2) (c) follows from (2) (b) and an
observation that for anyh ∈ S.X; Þ/, we have that|D.h f; f /|; |D. f h; f /| < Þ.

The next result presents sufficient conditions for the left simplicity of〈 f : S.X; Þ/〉.
LEMMA 3.9. Let f ∈ WX with ℵo ≤ def. f / < Þ ≤ shift. f /. Suppose that

shift. f m/ = � < Þ for an integerm ≥ 2. Then

(1) for anyg ∈ 〈 f : S.X; Þ/〉 there existst ∈ 〈 f : S.X; Þ/〉 with shift.tg/ ≤ �,
(2) if v;w ∈ 〈 f : S.X; Þ/〉 andshift.w/ = �, then|D.vw; v/| ≤ �,
(3) 〈 f : S.X; Þ/〉 is left simple.

PROOF. To prove (1), writeg = h1 f h1
−1h2 f h2

−1 · · · hk f hk
−1 for some hi ∈

S.X; Þ/, i = 1; 2; : : : ; k. We prove the result by induction onk. If k = 1,
g = h1 f h1

−1 and shift.gm/ = shift.h1 f mh1
−1/ = shift. f m/ = �, sinceS.gm/ =

h1.S. f m//. In this case we lett = gm−1.
Assume the result is true for any product of at mostk − 1 conjugates off , where

k ≥ 2, and writeg = uhk f hk
−1, whereu = h1 f h1

−1h2 f h2
−1 · · · hk−1 f hk−1

−1. By
inductive assumption there existsw ∈ 〈 f : S.X; Þ/〉 such that shift.wu/ ≤ �. Let
t = .hk f hk

−1/m−1w. Then

S.tg/ = S.hk f m−1hk
−1wuhk f hk

−1/ ⊆ S.hk f mhk
−1/ ∪ hk f −1hk

−1.S.wu//;

so shift.tg/ ≤ shift. f m/+ shift.wu/ ≤ �.
To prove (2), ifv;w ∈ WX thenD.vw; v/ ⊆ S.w/, so|D.vw; v/| ≤ shift.w/.
To prove (3) note that, by Lemma2.10and Proposition2.9, 〈 f : S.X; Þ/〉 contains

a left simple semigroup〈 f m : S.X; Þ/〉 = 〈 f m : GX〉 = S.X; �+;  /. We show that
for anys; t ∈ 〈 f : S.X; Þ/〉 there existsu ∈ 〈 f : S.X; Þ/〉 such thatus = t . Assume
first that|D.s; t/| ≤ �. Since〈 f : GX〉 is left simple there existsu ∈ 〈 f : GX〉 such
thatus = t . By Lemma2.6shift.u/ ≤ �, and henceu ∈ 〈 f m : GX〉 ⊆ 〈 f : S.X; Þ/〉.
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Now suppose|D.s; t/| > �. By statement (1) of this lemma, there existsw ∈ 〈 f :
S.X; Þ/〉such that shift.ws/ ≤ �, and so, by statement (2),|D.tws; t/| ≤ �. Therefore
by the previous paragraph there is au ∈ 〈 f : S.X; Þ/〉 such thatutws = t .

PROOF OFTHEOREM2.2. Assume that〈 f : H〉 is left simple. By Observation3.2,
def. f / is an infinite cardinal . By Lemma3.3, the groupH = S.X; Þ/ for some
Þ >  . By Lemma3.5 there exists a positive integerm such that shift. f m/ < Þ.
Conversely, if conditions (1)–(3) of Theorem2.2hold, then by Lemma3.9, we have
that〈 f : S.X; Þ/〉 is a left simple semigroup.

We describe the cyclic-chain structure off in WX satisfying the conditions of
Lemma3.9. Let def. f / =  ≥ ℵo, and letÞ; � be cardinals with ≤ � < Þ ≤ |X|+.
SetN �

f = {n : |'n. f /| > �; n is an integer,n ≥ 2}. Note that if the setN �

f 6= ∅, the
least common multiple lcm.N �

f / of the integers inN �

f may or may not exist, and set

(3.2) ¼
�

f =




0 if N �

f = ∅;
lcm.N �

f / if lcm.N �

f / is a positive integer;

−1 otherwise.

LEMMA 3.10. Let f be inWX with  = def. f / ≥ ℵo, and let� be such that
 ≤ � < shift. f /. The following are equivalent:

(1) There exists a positive integerm such thatshift. f m/ ≤ � ;
(2) |'∞. f /| ≤ � and¼�f ≥ 0.

PROOF. Let s = ∏{u : u ∈ '∞. f /}, if '∞. f / is nonempty, and lets be the identity
permutation otherwise. Similarly, lett = ∏{u : u ∈ 'n. f /; n is an integer; n ≥ 2},
if 'n. f / is nonempty for some integern ≥ 2, and lett be the identity permutation
otherwise. Thenf = st fc, and sinces; t and fc are disjoint, for any positive integer
m we have thatf m = smtm f m

c with S. f m/ being the union of three disjoint subsets:
S.sm/; S.tm/ and S. f m

c /. Also S.sm/ = S.s/, S.tm/ ⊆ S.t/, S. fc
m/ = S. fc/ ([3]).

Since shift. fc/ = def. f /ℵo = def. f /, we have that shift. f m/ ≤ � if and only if
shift.sm/ = shift.s/ ≤ �, and shift.tm/ ≤ �. But shift.s/ = |'∞|ℵo, so shift.s/ ≤ � if
and only if |'∞. f /| ≤ �, and shift.tm/ ≤ � if and only ifN �

f = ∅ or n dividesm for
all n ∈ N �

f , that is¼�f ≥ 0. Hence (1) and (2) are equivalent.

3.2. Congruences on left simple group closuresGiven any subsemigroupSofWX

and an infinite cardinal¼, the relation1¼ = {.s; t/ ∈ S × S : |D.s; t/| < ¼} is a
congruence onS. Let1 denote the diagonal congruence onS.

SupposeS is the Baer-Levi semigroupBL.|X|;  / = S.X; |X|+;  / for some
infinite cardinal . It was shown in [11] that the interval[1;1+] is a chain in
the congruence lattice Con.S/ of S consisting of1 and the set of congruences of
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the form1� whereℵo ≤ � ≤  + with 1�1 ≤ 1�2 if and only if �1 ≤ �2. It was
noted in [10] that the arguments of [11], based in part on the left cancellativity and
left simplicity of BL.|X|;  / may be adopted virtually unchanged to show that the
interval[1;1+] is a chain in the congruence lattice of anyGX-normal subsemigroup
of BL.|X|;  /. In [10] this result was extended further as follows.

PROPOSITION3.11. Let ℵo ≤  < ¦ . ThenCon.S.X; ¦;  // is a chain consisting
of1 and the set{1� : ℵo ≤ � ≤ ¦ }. Moreover,1+ is a minimal group congruence
on S.X; ¦;  /.

Now let〈 f : S.X; Þ/〉 be a left simple semigroup. In view of the above proposition
we may assume that it is not aGX-normal semigroup, so (in light of Theorem2.2and
Lemma2.10) ℵo ≤ def. f / < Þ ≤ ¦ = shift. f /, and shift. f m/ < Þ for the least
positive integerm ≥ 2. Certain congruences on〈 f : S.X; Þ/〉 may be described in
terms of congruences on the groupG defined below. Note that shift. f p/ = ¦ ≥ Þ, so
f p =∈ S.X; Þ/, and let

(3.3) G = 〈 f p; S.X; Þ/〉

be the subgroup ofGX generated byS.X; Þ/ and f p. Then

(3.4) G = {h f k
p : h ∈ S.X; Þ/; k = 0; 1; 2; : : : ;m − 1};

and because of the minimality ofm this representation of elements ofG is unique.
Moreover

h f k
p ∈ S.X; Þ/ ⇔ k ≡ 0 modm and |D.h f k

p ;q f l
p/| < Þ ⇔ k ≡ l mod m:

The next result follows from (3.3)–(3.4), Lemma3.1and Lemma3.8(2) (c).

LEMMA 3.12. Let f ∈ WX be such thatℵo ≤  = def. f / < Þ ≤ shift. f / and
shift. f m/ < Þ. Then〈 f : S.X; Þ/〉 = {ht : h ∈ G; t ∈ ChX ∩ S.X;  +;  /, h, t are
disjoint}.

OBSERVATION 3.13 (Normal subgroups ofG). Let H be a non-trivial normal sub-
group ofG. If H ≤ S.X; Þ/, thenH = S.X; �/, for some infinite cardinal� ≤ Þ, or
H = AX [12]. SupposeH containsg = h f k

p =∈ S.X; Þ/. We show thatH contains
S.X; Þ/. Let ℵo ≤ ¾ < Þ. Since shift.g/ ≥ Þ, choose a subsetY of S.g/ of cardi-
nality ¾ such thatg.Y/ = Y. There exists a setA of disjoint n-cycles ofg|Y for some
n ∈ {2; 3; : : : } ∪ {∞} such that|A| = ¾ . Form a setB of n-cycles ofX by extending
the cycles ofA to X by fixing elements ofX − Y. Now form ³B (Notation 3.7)
so³B ∈ S.X; ¾+/. Consider the commutatory = g−1³Bg³−1

B ∈ H . Then y is a
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product of 2¾ = ¾ disjoint 2-cycles, so shift.y/ = ¾+. HenceS.X; ¾+/, the normal
closure ofy in S.X; Þ/, is contained inH . But ¾ is arbitrary, soS.X; Þ/ ⊆ H . Since
G=S.X; Þ/ ∼= Zm, such normal subgroupsH correspond to normal subgroups ofZm:
H = {h f k

p ∈ G : k ∈ 〈n〉 E Zm} wheren is a divisor ofm.

We may easily adapt the arguments of [11] to show that the interval[1;1+] is a
chain in Con.〈 f : S.X; Þ/〉/ consisting of1 and the set of congruences of the form
1� whereℵo ≤ � ≤  +. The proof may be accomplished using the elements of the
GX-normal subsemigroupS.X; Þ;  / of 〈 f : S.X; Þ/〉 with the aid of Lemma3.8(2).
The consequence of this is stated below.

LEMMA 3.14. Let f ∈ WX with ℵo ≤  = def. f / < Þ ≤ ¦ = shift. f /, and
shift. f m/ < Þ for some positive integerm. Then the interval[1;1+] is a chain
in Con.〈 f : S.X; Þ/〉/ consisting of1 and the set{1� : ℵo ≤ � ≤  +}. Moreover,
1+ is a minimal group congruence on〈 f : S.X; Þ/〉, and if� is a congruence not in
[1;1+] then1+ ⊆ � .

For each divisorn of m, 1 ≤ n < m, define the relation

0′
n = {.h f k

p ;q f l
p/ : h;q ∈ S.X; Þ/; k ≡ l mod n}

on G. Then the relation

0n = {.s; t/ : s; t ∈ 〈 f : S.X; Þ/〉; .sp; tp/ ∈ 0′
n}

is a congruence on〈 f : S.X; Þ/〉 that contains1Þ. The next lemma describes
the congruences of〈 f : S.X; Þ/〉 that contain1+ . Let ∇ denote the universal
congruence.

LEMMA 3.15. Let f ∈ WX withℵo ≤  =def. f /<Þ≤shift. f /, andshift. f m/<Þ

for some positive integerm.

(1) 〈 f : S.X; Þ/〉=1+ ∼= G=1+ .
(2) The interval[1+ ;1Þ] in Con.〈 f : S.X; Þ/〉/ is a chain consisting of{1� :
 + ≤ � ≤ Þ}.
(3) The interval[1Þ;∇] is a chain consisting of∇ and {0n : n is a divisor ofm,

1 ≤ n < m}.
(4) The interval [1+;∇] in Con.〈 f : S.X; Þ/〉/ is a chain with [1+;∇] =
[1+;1Þ] ∪ [1Þ;∇].

PROOF. Observe that statements (2) and (3) follow from (1) and Observation3.13,
while statement (4) follows from (2), (3) and the last sentence of the statement of
Lemma3.14. To prove (1), letg ∈ 〈 f : S.X; Þ/〉. By Lemma3.12, gp ∈ G. Let g
be the class ofg in 〈 f : S.X; Þ/〉=1+ , and letgp be the class ofgp in G=1+ . Let
 : 〈 f : S.X; Þ/〉=1+ → G=1+ be defined by : g 7→ gp.
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To show that is well-defined and one-to-one, takeg = gpgc; t = tptc ∈ 〈 f :
S.X; Þ/〉. Since shift.gc/, shift.tc/ =  , we have that|D.g; t/| ≤  if and only
if |D.gp; tp/| ≤  , so t = g if and only if tp = gp. To see that is onto, take
any h f k

p ∈ G, then u = h f k
p f k

c ∈ S.X; Þ/〈 f 〉 = 〈 f : S.X; Þ/〉 (Lemma 3.8).
Let u = upuc. Since shift. f k

c /; shift.uc/ =  , we have that|D.h f k
p ; up/| ≤  , so

h f k
p = up =  .u/.
To see that is a homomorphism, takeg = gpgc; t = tptc ∈ 〈 f : S.X; Þ/〉,

and letgt = u = upuc. Again since the shift of the chainsgc, tc, uc is  , and
upuc = u = gt = gptp.t−1

p gctp/tc, we have that

|D.up; gptp/| ≤ |D.up; upuc/| + |D.upuc; gptp/| ≤  + S.t−1
p gctptc/|

≤  + |S.t−1
p gctp/| + |S.tc/| ≤  +  +  = ;

and so .u/ = up = gptp =  .g/ .t/.

3.3. Automorphisms Recall that given any semigroupS of transformations ofX,
GS = {h ∈ GX : hSh−1 ⊆ S}. An automorphism# of S is said to beinner if there
exists a permutationh of X such that# : f 7→ h f h−1, for each f ∈ S. A description
of automorphisms of〈 f : H〉, presented below, may be found in [5].

PROPOSITION3.16. Let f be a non-permutation inWX, and letH be a non-identity
normal subgroup ofGX. Then each automorphism of〈 f : H〉 is inner, and the
automorphism group of〈 f : H〉 is isomorphic toG〈 f :H〉.

PROOF OFTHEOREM 2.3. The non-trivial congruences of a left simple semigroup
S = 〈 f : S.X; Þ/〉 have the form1� = {.s; t/ : s; t ∈ 〈 f : S.X; Þ/〉; |D.s; t/| < �}
for ℵo ≤ � ≤ Þ, or

0n = {.s; t/ : s; t ∈ 〈 f : S.X; Þ/〉, sp = h f k
p , tp = q f l

p, h;q ∈ S.X; Þ/,
k ≡ l mod n},

for a divisor n of m, 1 ≤ n < m (Lemma 3.14, Lemma3.15). Since for any
permutationr ∈ GX, and any transformationss; t of X, |D.hsh−1; hth−1/| = |D.s; t/|,
and all the automorphisms of〈 f : S.X; Þ/〉 are inner, its congruences of the form1¼

are preserved under automorphisms. Similarly, conjugation by permutations preserves
the congruences0n.

4. Equality of group closures

We start by consideringH -closures of f ∈ WX with H = S.X; Þ/. In view
of Lemma2.10, we may concentrate on transformations with a ‘large’ shift, that is
shift. f / ≥ Þ.
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LEMMA 4.1. Let ℵo ≤ Þ < þ ≤ |X|+ and take f ∈ WX with a finite non-zero
defect andshift. f / ≥ Þ. Then〈 f : S.X; Þ/〉 6= 〈 f : S.X; þ/〉.

PROOF. To show that〈 f : S.X; Þ/〉 and 〈 f : S.X; þ/〉 are distinct, it suffices
to find anh in S.X; þ/ such thath f h−1 =∈ 〈 f : S.X; Þ/〉. Since def. f / is finite,
h f h−1 ∈ 〈 f : S.X; Þ/〉 if and only if h f h−1 = q f q−1 for someq ∈ S.X; Þ/
(Lemma2.5 (1)), that isq−1h ∈ CGX . f /. We will find an h ∈ S.X; þ/ such that
q−1h ∈ GX − CGX . f / for all q ∈ S.X; Þ/.

Since def. f / is finite, shift. fc/ = def. f /ℵo = ℵo. Suppose first that shift. f / =
¦ > ℵo. Then shift. f p/ = ¦ ≥ Þ, and there exists ann = 2; 3; 4; : : : ;∞ such
that |'n. f /| = ¦ . Choose a subsetA of 'n. f / of cardinalityÞ, and leth = ³A

(Notation3.7), so shift.h/ = Þ andh ∈ S.X; þ/ − S.X; Þ/. Suppose thatq ∈ GX

such thatq−1h ∈ CGX . f /. Thenq−1h ∈ CGX. f p/ andq−1h maps eachn-cycle of
f p onto ann-cycle of f p (by Proposition2.7), and so shift.q−1/ ≥ shift.h/ = Þ.
Thereforeq−1 =∈ S.X; Þ/.

Now suppose that shift. f / = ℵo, soS.X; Þ/ = S.X;ℵo/. Take a chain[x1x2 · · · /
in fc and leth be the product of disjoint transpositions,h = .x1x2/.x3x4/ · · · . The
permutationh shifts a countable number of points ofX, soh ∈ S.X; þ/− S.X; Þ/.
It follows from Proposition2.7that if q−1h ∈ CGX. f / then[q−1h.x1/q−1h.x2/ · · · / is
a chain in fc, so shift.q−1/ ≥ ℵo, and againq−1 =∈ 〈 f : S.X; Þ/〉.

Our aim now is to extend the above result to a transformationf with an infinite or
zero defect.

LEMMA 4.2. Let ℵo ≤ Þ < þ ≤ |X|+; and let f ∈ WX with def. f / ≥ Þ. Then
〈 f : S.X; Þ/〉 6= 〈 f : S.X; þ/〉.

PROOF. Choose a subsetA of im. f / with |A| = Þ, and a permutationh ∈ S.X; þ/
such thath.A/ ⊆ X − im. f /. Setg = h f h−1 ∈ 〈 f : S.X; þ/〉. Then im.g/ =
h.im. f //, and| im.g/− im. f /| ≥ Þ, sog =∈ 〈 f : S.X; Þ/〉 by Lemma3.1.

The next result is concerned withf ∈ WX that has both shift and fix at least as
large asÞ.

LEMMA 4.3. Let ℵo ≤ Þ < þ ≤ |X|+ and let f ∈ WX with shift. f / ≥ Þ and
fix. f / ≥ Þ. Then〈 f : S.X; Þ/〉 6= 〈 f : S.X; þ/〉.

PROOF. For anyt ∈ 〈 f : S.X; Þ/〉, we have that|S.t/ − S. f /| < Þ. Indeed, by
Lemma3.1, t = h f k for someh ∈ S.X; Þ/ and an integerk ≥ 1. ThenS.t/− S. f / ⊆
S.h/, so|S.t/− S. f /| ≤ shift.h/ < Þ.
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We construct a transformationg ∈ 〈 f : S.X; þ/〉 such that|S.g/ − S. f /| ≥ Þ.
For this choose setsA ⊆ X − S. f / and B ⊆ S. f / of cardinalityÞ each. Choose a
bijectionr from A onto B and define a permutationh of x as follows:

h.x/ =




r .x/ if x ∈ A;

r −1.x/ if x ∈ B;

x otherwise.

Then shift.h/ = |A ∪ B| = Þ < þ, soh ∈ S.X; þ/, andg = h f h−1 ∈ 〈 f : S.X; þ/〉
is the required transformation, sinceA ⊆ S.g/− S. f /.

LEMMA 4.4. Let ℵo < Þ < þ ≤ |X|+, f ∈ WX with def. f / < Þ, andfix. f / < Þ.
Then〈 f : S.X; Þ/〉 6= 〈 f : S.X; þ/〉.

PROOF. Observe that the sum of shift. f / and fix. f / is |X|. Since fix. f / is less
thanÞ we have that shift. f / = |X|. Since shift. fc/ = def. f /ℵo < Þℵo = Þ, we
have that shift. f p/ = |X|. Thus there exists a largestn ≥ 2 (finite or infinite) such
that |'n. f /| = |X|. Let C = S

( ∏{c : c ∈ 'n. f /}), then|C| = n|X| = |X|, sincen
is countable. We consider the following three cases.

Case 1. |X − C| ≥ α. For anyt ∈ 〈 f : S.X; Þ/〉, we have that|t .C/ − C| < Þ.
Indeed, using Lemma3.1, write t = h f k for someh ∈ S.X; Þ/ and an integerk ≥ 1.
Then|t .C/− C| = |h f k.C/− C| = |h.C/− C| ≤ shift.h/ < Þ. We show that there
existsg ∈ 〈 f : S.X; þ/〉 such that|g.C/− C| ≥ Þ. Choose a subsetB of 'n. f / of
cardinalityÞ. For each cyclec in B choose a point inS.c/ and letK be the set of all
the chosen points. SetN = S

( ∏{c : c ∈ B}) − K . Sincen ≥ 2 andÞ is infinite, we
have that|K | = |N| = Þ. The shift of fc is ℵo def. f / < Þ. Since|X − C| ≥ Þ, we
may choose a subsetL of X−C− S. fc/ of cardinalityÞ. Choose bijectionsr1 from K
onto N, r2 from N onto L, andr3 from L onto K . Take a permutationh ∈ S.X; þ/
defined as follows:

h.x/ =




r1.x/ if x ∈ K ;

r2.x/ if x ∈ N;

r3.x/ if x ∈ L;

x otherwise.

Then g = h f h−1 is the required transformation. Indeed, ifx ∈ N ⊆ C, then
h−1.x/ ∈ K , and sincen ≥ 2 we havef .h−1.x// ∈ N. Therefore,

g.N/ = h f h−1.N/ ⊆ h. f .K // ⊆ h.N/ ⊆ L ⊆ X − C;

sog.C/− C contains the setg.N/ of cardinalityÞ, as required.
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Case 2.|X − C| < α, n is an integer. In this case shift. f n/ ≤ |X − C| < Þ < þ,
so by Theorem2.2, 〈 f : S.X; Þ/〉 and 〈 f : S.X; þ/〉 are left simple semigroups.
Therefore〈 f : S.X; þ/〉 containsS.X; þ;  /, where = def. f / (Lemma3.8). Take
a set A of Þ disjoint infinite cycles and a setB of  disjoint chains so that the
cycles in A and the chains inB are also disjoint. Theng = ∏{c : c ∈ A ∪ B} ∈
S.X; þ;  /− 〈 f : S.X; Þ/〉 (Lemma3.12).

Case 3.|X − C| < α, n = ∞. For all t ∈ 〈 f : S.X; Þ/〉 we have that fix.t/ < Þ.
Indeed writet = h f k for someh ∈ S.X; Þ/ and an integerk ≥ 1, and note that
C ⊆ S. f k/. Then fix.t/ ≤ |S.h/ ∪ .X − C/| < Þ.

We show that there existsg ∈ 〈 f : S.X; þ/〉 such that fix.g/ ≥ Þ. Choose a subset
B of '∞. f / of cardinalityÞ, and letA = S.

∏{c : c ∈ B}/. Then f .A/ = A and
the restriction f|A of f to A is a product of disjoint infinite cycles. Therefore, there
exists a permutationr of A such thatr f |Ar −1 = f −1

|A. Define a permutationh of X
so thath.x/ = r .x/ if x ∈ A, and f .x/ = x otherwise. Then shift.h/ = Þ, soh ∈
S.X; þ/− S.X; Þ/, andg = h f h−1 f ∈ 〈 f : S.X; þ/〉 is the desired transformation.
IndeedA ⊆ X − S.g/ and so fix.g/ ≥ Þ.

PROOF OFTHEOREM 2.4. We first prove, under the assumptionÞ < þ, that 〈 f :
S.X; Þ/〉 = 〈 f : S.X; þ/〉 if and only if shift. f / < Þ. Indeed, if shift. f / < Þ, then
Lemma2.10ensures that〈 f : S.X; Þ/〉 = 〈 f : GX〉 = 〈 f : S.X; þ/〉. Suppose that
shift. f / ≥ Þ, we prove that〈 f : S.X; Þ/〉 6= 〈 f : S.X; þ/〉. Lemmas4.1 and4.2
prove the result if def. f / is either a positive integer or an infinite cardinal greater than
or equal toÞ. If fix . f / ≥ Þ, the result is proven in Lemma4.3, while if fix. f / < Þ

and def. f / < Þ, the result is proven in Lemma4.4.
We now turn to the second part of Theorem2.4, establishing the conditions for

equality

(4.1) 〈 f : AX〉 = 〈 f : S.X; þ/〉:

Since〈 f : AX〉 ⊆ 〈 f : S.X;ℵo/〉 ⊆ 〈 f : S.X; þ/〉, (4.1) is equivalent to

(4.2) 〈 f : AX〉 = 〈 f : S.X;ℵo/〉 and 〈 f : S.X;ℵo/〉 = 〈 f : S.X; þ/〉:

If f ∈ AX, then 〈 f : AX〉 is a normal subgroup ofAX, so 〈 f : AX〉 = AX =
〈 f : S.X;ℵo/〉 = 〈 f : GX〉. If f ∈ S.X;ℵo/ − AX then 〈 f : AX〉 ⊃ AX, and so
〈 f : AX〉 = S.X;ℵo/ = 〈 f : S.X;ℵo/〉 = 〈 f : GX〉.

We assume now that (4.1) holds and f is a non-permutation, so shift. f / ≥ ℵo.
Then it follows from the second equation of (4.2) and the first part of Theorem2.4
thatþ = ℵo. Let q be a finite odd permutation, and lett = q f q−1 ∈ 〈 f : S.X;ℵo/〉
= 〈 f : AX〉. We will show thatt = h f h−1 for someh ∈ AX. Indeed, there
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exist permutationsh1; : : : ; hk ∈ AX that t = h1 f h1
−1h2 f h2

−1 : : : hk f hk
−1. By

Lemma3.1, there existsq ∈ S.X;ℵo/ such thatt = q f k. If def. f / is finite, then
k = 1 by Lemma2.5 (1). Assume that def. f / is infinite. Since shift.q/ is finite,
| im. f / − im.t/| = | im. f / − q.im. f //| < ℵo. If k ≥ 2, | im. f / − im. f k/| ≥
| im. f /− im. f 2/| = def. f / ≥ ℵo, so| im. f / − im.t/| ≥ ℵo also. Therefore,k = 1
again. Thust = h f h−1 for someh ∈ AX.

The equalityq f q−1 = h f h−1 implies that the odd permutationq−1h is in CGX . f /.
HenceCGX . f / ∩ S.X;ℵo/ * AX. Let g be an identity transformation ofX if f p

has no infinite cycles, andg = ∏{c : c ∈ '∞. f /} otherwise. By Proposition2.7,
q−1h ∈ CGX . f p/ andq−1h is the identity onS. fcg/. SetY = X − S. fcg/. Then
the restrictionq−1h|Y of q−1h to Y is a finite odd permutation inCGY. f|Y/. Applying
Lemma2.8to . f p/|Y we deduce that. f p/|Y contains either a.2k/-cycle or at least two
.2k − 1/-cycles for some integerk ≥ 1 (so if k = 1 then. f p/|Y contains at least two
fixed points).

Conversely, assume thatþ = ℵo and f contains either a.2k/-cycle or at least
two .2k − 1/-cycles for some integerk ≥ 1. Since the index[S.X;ℵo/ : AX] = 2,
adopting the argument of [4], we deduce that to demonstrate the equality〈 f : AX〉 =
〈 f : S.X;ℵo/〉 we only need to constructh ∈ S.X;ℵo/−AX such thath f h−1 ∈ 〈 f :
AX〉. If '2k. f / 6= ∅ for some integerk ≥ 1, chooseh to be a cycle in'2k. f / and
then h f h−1 = f ∈ 〈 f : AX〉. If |'2k−1. f /| ≥ 2 for some integerk ≥ 1, choose
two distinct .2k − 1/-cycles.x1x2 · · · x2k−1/ and.y1y2 · · · y2k−1/ in '2k−1. f / and let
h = .x1y1/.x2y2/ : : : .x2k−1y2k−1/ be the indicated product of transpositions, so again
h f h−1 = f ∈< f : AX >. Finally, if f is a finite permutation then all conjugates
of f are also finite permutations and it follows quickly that〈 f : AX〉 = 〈 f : S.X; þ/〉,
completing the proof of the theorem.
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