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Abstract

For a permutation groupl on an infinite sefX and a transformatiori of X, let (f : H) = ({(hfh™:

h € H}) be a group closure of. We find necessary and sufficient conditions for distinct normal
subgroups of the symmetric group ohand a one-to-one transformatidnof X to generate distinct

group closures off.  Amongst these group closures we characterize those that are left simple, left
cancellative, idempotent-free semigroups, whose congruence lattice forms a chain and whose congruence
are preserved under automorphisms.
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1. Introduction

Let X be a nonempty set, and let be a subgroup of the symmetric groép on X.
Denote the alternating subgroup éf by .«/x. Given a transformatiorf of X, the
semigroup

(f :H) :=({hfh™t:heH})

is the H-closureof f (or agroup-closurg. For any semigroufs of transformations
of X, letGs = {h € ¥ : hSh! C S} and say thaSis H-normalif Gs = H.

If X is finite, then for a transformatioh of X we have that f : «7x) and({f : %)
differ if and only if f is a partial one-to-one nilpotent having the union of its image
and domain equal tX ([5, 8, 7]). In particular, if f is a total transformation, then
(f :.oy) = (f : 9), and the semigroupf : /) is a¥yx-normal semigroup. The
papers cited above address the following problem for a finitXset
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ProOBLEM 1. Let H;, H, be subgroups af’x, and letf be a transformation oX.
Find necessary and sufficient conditions for equality of the group clogdresH;)
and(f : H,).

The case of an infinite set is much more complex than that of a finkke Here
Problem1 is addressed in the particular case whéis infinite and the subgroups
of ¥y are normal. We establish necessary and sufficient conditions for two distinct
normal subgroup$l; and H, of ¥x to produce equal group closuré$ : H;) and
(f : H,) of a one-to-one total transformatidnof X.

A semigroupSis said to be a\-semigrougf its congruence lattice C@$) forms a
chain. A congruencgon a semigrouf®is said to bénvariant under an automorphism
Y of Sif whenever(f, g) € 6 we also havey (), ¥ (g)) € 6. For a transformation
f of X, let thedefectof f be the cardinality of the complement of its image( iim,

def(f) = |X —im(f)|.
The subset of all the points of shifted by f is S(f) = {x € X : f(X) # x} and
shift(f) = |S(f)], fix(f) = |X — S(f)|.

Given an infinite cardinaly < |X|, the Baer-Levi semigroudBL(|X], y) is the
semigroup of all total one-to-one transformationsxoWith defecty [1]. Baer-Levi
semigroups are idempotent-free left simple, left cancellativeemigroups whose
congruences are preserved under automorphigins@[11]). The following problem
was raised in10].

PrOBLEM 2. Characterize all idempotent-free left simple, left cancellativeemi-
groups whose congruences are preserved under automorphisms.

Let f be a total one-to-one transformationXfsuch thaty = def( f) is infinite. If
shift(f) = |X|, then(f : %) is a Baer-Levi semigrouBL(|X], ). It was shown
in [10] that for anyg € BL(|X]|, v), the semigroufdg : ¥x) satisfies the conditions
stated in Probler@. In this paper, for a normal subgrottpof %y, we characterize the
H-closures off that satisfy the conditions stated in Probl&mhereby generalizing
the result of L0] and providing a contribution towards a solution of Problm

2. Background and main results

Let #% denote the semigroup of all the total one-to-one transformations of an
infinite setX. For any infinite cardinak not exceeding the cardinal succesp¥tt
of | X], and any cardingl < |X]|, let

SX,a,y) ={f € #x :shift(f) < «, def(f) = y}.
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If R < v < «, thenS(X, a, y) is a¥x-normal subsemigroup o#’x. If y = 0,
then S(X, «, y) is a normal subgroup of the symmetric gra#ip, and these groups
together with the alternating grougy constitute the set of all the non-trivial normal
subgroups o ([12]). For brevity, we writeS(X, «, 0) asS(X, «).

2.1. Decomposition of one-to-one transformations The elements of#yx — %

are referred to amon-permutationsn #%. Just as any permutation may be written
as a formal product of disjoint finite and infinite cycles, any non-permutatiofiiin
may be written (essentially uniquely) as a formal product of disjoint cycles (finite or
infinite) and chainsd] (see Propositior2.1 below). As usual, transformationfsand

g aredisjointif S(f) N S(g) = ¥. Let A be a set of pairwise disjoint transformations
of X. The formal product ofA is a transformation oK, denoted by [{f : f € A},
defined by the following formula:

f(x), if feAandxe S(f);

[Tif: feAx= _
X, if xeX—U{S(f): feA}

wherex € X. If A C #5 then[]{f : f € A}is also in#%. For a countable ordered

subsety = {y1, V2, ¥3, ...} Of X, let[y1y2y3- - -) denote the transformatioh € #%

such thatf (y)) =y fori =1,2,3,...,andf(x) = xforall x e X —Y. The

transformationf = [y1y,ys---) is called achain Note thatX — im(f) = {y;} and

def(f) = 1. The following result has been proved Bj:[

PrOPOSITION2.1. Let f be a non-identity transformation itfy. Thenf is aformal
product of pairwise disjoint cycles and chaink,= [[{g : g € A}, with nog € A
being al-cycle. The number of chains his equal todef(f). If f =[[{g:g e A’}
is another such product thefy = A'.

Werefertotheformp[{f : f € A}of f asthecyclic-chain decompositioof f . Let
“hy C #% be the set of all formal products of disjoint chains. Proposifidrassures
that every transformatiorfi € #% can be written as a product of two unique disjoint
transformationsf, € ¥« and f. € ¥’hx (the subscript$ andc stand for permutation
and chain correspondingly). We lgf(f) denote the set of all the-cycles in the
cyclic decomposition off , wheren is either a positive integer ax.

2.2. Main results The main results of this paper are stated in Theor2ras?.4
below. The remainder of the paper is concerned with the proof of these results.

THEOREMZ2.2. Let f be a non-identity transformation iy, and letH be a normal
subgroup of%x. Then(f : H) is left simple if and only if

(1) def(f) = y is infinite,
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(2) H = S(X, ) for somex > y,
(3) there exists a positive integar such thatshift(f™) < «.

Lemma3.10presents conditions in terms of the cyclic-chain decompositiof of
that are equivalent to Theored? (3).

THEOREMZ2.3. Let f be a non-permutation iy, and letH be a normal subgroup
of 9. Then(f : H) is a left cancellative, idempotent-free semigroupfif: H)
is left simple, then it is aA-semigroup whose congruences are preserved under
automorphisms.

THEOREM2.4. LetR, < o < 8 < |X|" and let f be a non-identity transformation
in #x.
(1) fa < B,then(f : S(X,®)) = (f : S(X, B)) if and only ifshift(f) < «.
(2) (f ) =(f:S(X, pB)) ifand only if either
(@) f isafinite permutation, or
(b) B =R, and for some integek > 1 either g ()| > 1 or |px_1(f)| > 2.

2.3. Properties of one-to-one transformations The first three statements of the
following lemma are easily derived from elementary properties of one-to-one trans-
formations, while the fourth statement presents a well-known result for permutations
(see, for example 1P]), and has been proved for non-permutation®jnin [3].

LEMMA 2.5. Let f, g € #. Then the following hold
(1) def(fg) = def(f) + def(g).
(2) S(thgh™) = h(S(g)) for all h € ¥.
(3) If g ¢ Y, thenshift(g) is infinite andshift( fg) < shift(f) + shift(g), equality
holding whershift(f) # shift(g).
(4) f = hgh for someh ¢ % if and only ifdef(f) = def(g), and |p,(f)| =
lpn(@)| foralln=1,2, ..., oco.

For transformationd, g € #%, letD(f,g) = {x € X : f(X) # g(X)}.
LEMMA 2.6. For f,g,t € #%, if tf = gthen
ID(f, @)| < shiftt) < [D(f, g)| + def(f).

PrOOF If tf = g,thenf(D(f, g)) C S(t) € f(D(f,g)) U (X —im(f)). O

For a transformationf of X, let Cg, (f) = {h € ¥ : hf = fh} denote the
centralizer off in ¥. The next two results, proved ][ describe centralizers of
transformations ir#x.
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PROPOSITION2.7. Take f € #% and write it as a product of disjoint transfor-
mations f = f,f;, where f, € 9, f. € €hx. A permutationh € Cg (f) if
and only ifth € Cg, (f,), h(S(fc)) = S(fc), and for each chairix;x;Xz - --) in fe,
[h(x))h(X2)h(X3) - - -) is also a chain infe.

LEMMA 2.8. Letg € 9x. ThenCg, () < o/ if and only if fix(g) < 1andgis a
product of disjoint finite cycles of distinct odd lengths.

LetR, < o < B < |X]|t and letS(X, «) and S(X, B) be two distinct normal
subgroups of%x, so S(X, a) < S(X, ). Lemma2.10gives a sufficient condition
for equality of (f : S(X, «)) and(f : S(X, B)) for f € #%. The lemma assures
equality of these group closures wheneveshifts fewer thany elements ofX by
demonstrating that both are just the mininggd-normal semigroups containing.
These semigroups were describeddh yvhere the following has been proved.

PROPOSITION2.9. Let f € #% with shift(f) = o anddef(f) = y.

(1) Ify =R, then(f : 9x) = S(X, 0", ).
(2) If y is a positive integer, then

(f :9%) D {g € #% : shift(g) < o, def(g) = ky, for all integersk > 4}.

Properties of/x-normal semigroups have been studied in a number of publications,
see, for exampleg] 2, 3, 11, 13, 14].

LEMMA 2.10.Let f e #x with shift(f) = o and leta be an infinite cardinal
greater thano. Then(f : S(X, a)) = (f : ¥).

PrROOF. We only need to prove thdtfh™! € (f : S(X, «)) for anyh € ¥. Let
Y =S(f)uSthfh?) = S(f)uh(S(f)). Then|Y| < 20 < «, and the restrictions
fiv, hf hl’Yl are total transformations of. Also, def( f) = def(hfh=1) and|¢,(f)| =
lon(hfh Y| for all n = 1,...,00 (by Lemma2.5 (4)), so|Y — im(hfh‘;l)| =
Y —im(fy)| = def(f)and|p,(fy)| = |(pn(hfh‘}l)| foralln =1, ..., co. Therefore,
by Lemma2.5 (4) again, there is a permutatiagne % such thath f thl =gfyg™
Define a permutatioft € % such thath(x) = g(x), if x € Y, andh(x) = x, if
x € X —Y. Thenh € S(X, ) andhfh -t =hfht e (f : S(X, a)). O

3. On algebraic properties of group closures

Throughout suppose thais an infinite cardinal. Lef be a non-permutation i#5,
and letH be a normal subgroup &f;. Since the semigrouff : H) consists of one-
to-one transformations, it is left cancellative. Since any idempotent transformation of
X is the identity on its image, the semigroup : H) is idempotent-free.



218 Inessa Levi [6]

3.1. Left simplicity of (f : H) The following result shows that for anfy € #%,
(f : S(X,a)) is a subsemigroup 08(X, «)(f) where (f) is the subsemigroup
generated byf .

LEMMA 3.1.Let f € #x andg = h,fhy *h,fh,™t-..hfh,* for someh;
S(X,a),i = 1,2,...,k. Then there existh € S(X, «) such thatg = hfk, and
[im(g) —im(f)| < a.

PrROOF It suffices to show that given any € S(X, «) there existgy € S(X, «)
such thatfp = gqf. For this, defingy so thatq(x) = fpf-1(x) if x € im(f) and
gq(x) = x otherwise. Them is a permutation oK that maps inaf) onto itself with

S(@) <€ f(S(p)), so that shiftq) < shift(p) < «.
Now if g = hfk for anh € S(X, «), then

[im(g) — im(f)| < |h{im(f)) —im(f)| < shift(h) < a. O

Recall that if H = S(X, «) and shifff) < « then(f : H) is a %-normal
semigroup (Lemma.10. Such semigroups are left simple when defis infinite.
So we assume that shift) > «.

OBSERVATION 3.2. If def(f) = y is a positive integer, the semigroup : H) is not
simple, so it is not left simple. Indeed, in this cgde: H) contains transformations
with distinct finite defects (Lemma.5). For each positive integée > 2 the set
{ge (f : H):def(g) > ky}is a proper ideal of f : H).

LEMMA 3.3. Let f € #x withdef(f) =y > Ry, and letH < %x. If (f : H) is
left simple therH = S(X, «) for some cardinal with y < o < | X|*.

PrROOF. Since(f : H) is left simple, there existg € (f : H) such thaigf? = f.
In this caseg(X — im(f)) € X —im(f), soX —im(f) € im(g). By Lemma3.1,
a > [im(g) —im(f)| > y. O

COROLLARY 3.4. If def(f) = |X|andH < %, then(f : H) is left simple if and
only if H = 9.

LEMMA 3.5. Let f be a non-permutation it#5 with def(f) = y < « < shift(f).
Suppose thatf : S(X, «)) is left simple. Then
(1) there existg € (f : S(X, @)) with (g) = y;
(2) there exists a positive integkrsuch thatshift(f*) < .

PROOF. To prove (1) take a non-identity permutatiore S(X, X,) € S(X, «) such
thatS(h) € S(f.), wheref. is the product of the chains ifi. ThenD(f, hfh ) isa
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finite nonempty set. Sincef : S(X, o)) is left simple there existg € (f : S(X, «))
such thagf = hfh=1. By Lemma2.6shift(g) < y. Alsog € (f : S(X, «)) implies
that defg) = y, so shif{g) > y, and hence shifg) = y.

To prove (2), takeg € (f : S(X, )) with shift(g) = y, as constructed above,
and write, using Lemma.1, g = hf* for someh € S(X, a), soy = shift(g) =
shift(hf¥) = max(shift(h), shift(f*)). Since shifth) < «, andy < « we have that
shift(f*) < «. O

NOTATION 3.6. Let f € #% be such that, < def(f) < « < shift(f) and
shift(f*) < o for some positive integek. Usem to denote

m = min{k > 2: k is aninteger,f* € S(X, «, )}.
We will use the permutation as constructed below.

NOTATION 3.7. Given a setA of disjoint n-cycles,n = 2,3, ...; 00, with |A| =
n > R, let 15 be a permutation oK defined as follows. Choose a sub&bf A
with |B| = |A — B| = n together with a bijectiori from B onto A — B. For each
cycleu in A choose a poink, in S(u) and leth, be the two-cyclaxy, X,«,). Let
a = [[{hy : u € B}, and note that shiftrp) = 7.

If (f : S(X,«a)) is left simple, then, as the next lemma shows, it contains the
semigroupS(X, «, ).

LEMMA 3.8. Suppose that € #4 such thaty, < def(f) < o < shift(f).

(1) For any cardinaln with def(f) < n < «, there exists @ € (f : S(X, «)) such
that|D(f, 9)| = .
(2) If (f:S(X,a))is left simple, then
@ S(X.a,y) S (f:S(X,a)),
(b) ifte (f:S(X, a))ands e S(X, |X|T, y) with|D(s,t)| < «, then
se (f:S(X, a)),
() (f:S(X,a))=(S(X,a), f).

PrROOF. Let def(f) = y, shift(f) = o. To prove statement (1) above, write
f = f,f. as a product of disjoint transformatiorfg € ¥x and f. € “hx. Since
shift(f) = ¥ < o < o = shift(f), we have that shiftf,) = 0. So there exists an
n > 2 (finite or infinite) such thalty,(f)| = o. Choose a subse of ¢,(f) with
|A| = n and leth = 75 (Notation3.7), g = hfh='. To show thaf is the required
transformation, it suffices to see that

@D =ISM0I=D(f,9l = |S([Tu:ue A))| = wn=n
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For this, takex € S(h), leth=1(x) = y # X, and SUPPOSEXX,---), (Yy;---) are
the corresponding-cycles inA. Theng(x) = hfh™i(x) = hf(y) = h(yy) = y; =
f(y) # f(x), soSth) € D(f,g). Now, if x € X — S([[{u : u € A}), then
also f(x) € X — S([T{u : u € A}), sog(x) = hfh™*(x) = hf(x) = f(x), thus
D(f,g) € S([{u:u e A}), and so0 8.1) follows.

To prove statement (2)(a) of the lemma, we first show that fonamigh y < n < «
there existd € (f : S(X, «)) such that shift) = . Takeg € (f : S(X, «)) with
ID(f, g)] = n as constructed in the first part of the lemma. Sih€e S(X, «)) is
left simple, there exists € (f : S(X, «)) such thatf = g. But then by Lemm&.6
shift(t) = n, and the semigroupf : S(X, «)) contains(t : S(X, «)) = S(X, n*, y)
(Proposition2.9).

To prove (2) (b) note that sincet € (f : %), aleft simple semigroup, there exists
u e (f : ¥9) such thas = ut. Since shiftu) < « (Lemma2.6),u € S(X, a, y) C
(f : S(X,a)), sos € (f : S(X, a)) also. Now (2) (c) follows from (2) (b) and an
observation that for anly € S(X, «), we have thatD (hf, f)|, |ID(fh, f)] <«a. O

The next result presents sufficient conditions for the left simplicityfof S(X, «)).

LEMMA 3.9. Let f € #x with R, < def(f) < o < shift(f). Suppose that
shift(f™) = n < « for an integerm > 2. Then
(1) foranyg e (f : S(X, «@)) there exists € (f : S(X, «)) with shift(tg) < n,
(2) ifv,we (f:S(X,a))andshift(w) = n, then|D(vw, v)| < n,
(3) (f : S(X,a)) is left simple.

PrOOF. To prove (1), writeg = h;fhy *h,fh,™t...hfh,?* for someh; €
SX,a), 1 = 1,2,...,k. We prove the result by induction ok If k = 1,
g = h;fh,t and shiftg™) = shift(h, f™h; ') = shift(f™) = 5, since S(g™) =
hi(S(f™)). In this case we let = g™ .

Assume the result is true for any product of at most 1 conjugates off, where
k > 2, and writeg = uhfh,*, whereu = hyfh;th,fh,™---h; fh_, . By
inductive assumption there exisis € (f : S(X, «)) such that shifwu) < 5. Let
t= (hk f hk—l)m—lw. Then

S(tg) = S(h ™ *hy twuhe fh ™) € S(h f ™™ U hy £ thH(S(wu)),

so shifitg) < shift(f™) + shift(wu) < 7.

To prove (2), ifv, w € #x thenD (vw, v) € S(w), so|D(vw, v)| < shift(w).

To prove (3) note that, by LemnfalOand Propositior2.9, (f : S(X, @)) contains
a left simple semigrougpf™ : S(X, a)) = (f™: %) = S(X, n™, y). We show that
foranys,t € (f : S(X, «@)) there existal € (f : S(X, @)) such thaus =t. Assume
first that|D(s,t)| < n. Since(f : Y) is left simple there exista € (f : ¥x) such
thatus =t. By Lemma2.6shift(u) < n, and hencel € (f™: %) C (f : S(X, @)).



[9] On properties of group closures of one-to-one transformations 221

Now supposeéD(s, t)| > n. By statement (1) of this lemma, there exigts (f :
S(X, a)) suchthat shiftws) < n, and so, by statement (2P (tws, t)| < n. Therefore
by the previous paragraph there is & (f : S(X, «)) such thautws = t. O

PROOF OFTHEOREM 2.2 Assume that f : H) is left simple. By Observatioi.2,
def(f) is an infinite cardinaly. By Lemma3.3, the groupH = S(X, «) for some
a > y. By Lemma3.5there exists a positive integer such that shiftf™) < «.
Conversely, if conditions (1)—(3) of Theorel2 hold, then by Lemma&.9, we have
that(f : S(X, «)) is a left simple semigroup. O

We describe the cyclic-chain structure 6fin %5 satisfying the conditions of
Lemma3.9. Letdef(f) =y > R,, and letx, n be cardinals witly < n < «a < |X]|*.
Set 4" ={n:|gn(f)| > n, nis anintegern > 2}. Note that if the set#;" # @, the
least common multiple Ic#;") of the integers in4;” may or may not exist, and set

0 it A =0,
(3.2) wi = {lem(4") if lem(4;") is a positive integer
-1 otherwise.

LEMMA 3.10.Let f be in #x with y = def(f) > R,, and letn be such that
y < n < shift(f). The following are equivalent

(1) There exists a positive integer such thashift(f™) < n;
(2) leo(F)l <nandut > 0.

PROOF. Lets = [[{u: u € ¢ ()}, if o (f) is nonempty, and letbe the identity
permutation otherwise. Similarly, let= [J{u : u € ¢,(f), nis an integern > 2},
if ¢,(f) is nonempty for some integer > 2, and lett be the identity permutation
otherwise. Thernf = stf;, and sinces, t and f; are disjoint, for any positive integer
m we have thatf ™ = s™t™ " with S(f™) being the union of three disjoint subsets:
S(s™), S(t™ and S(f"). Also S(s™) = S(s), S(t™) < S(t), S(f.") = S(fe) ([3]).
Since shift f,) = def(f)X, = def(f), we have that shiftf ") < » if and only if
shift(s™) = shift(s) < n, and shiftt™) < n. But shift(s) = |¢,|R,, SO shif{s) < 5 if
and only if|p« ()| < n, and shiftt™) < n if and only if 4" = ¢ or n dividesm for
alln e 47", thatisu} > 0. Hence (1) and (2) are equivalent. O

3.2. Congruences on left simple group closuresGiven any subsemigroupof #x
and an infinite cardinak, the relationA, = {(s,t) € Sx S: |[D(s,t)] < n}is a
congruence ors. Let A denote the diagonal congruence®n

SupposeS is the Baer-Levi semigrouBL(|X]|, y) = S(X, |X|T, y) for some
infinite cardinaly. It was shown in 11] that the interval[A, A,+] is a chain in
the congruence lattice C68) of S consisting ofA and the set of congruences of



222 Inessa Levi [10]

the form A, whereX, < n < y* with A,, < A,, if and only if n; < n,. It was
noted in [LO] that the arguments ofL[l], based in part on the left cancellativity and
left simplicity of BL(]X|, y) may be adopted virtually unchanged to show that the
interval[A, A,+]is a chain in the congruence lattice of &fy-normal subsemigroup

of BL(|X], y). In[10] this result was extended further as follows.

ProPOSITION3.11. LetR, < y < 0. ThenCon(S(X, o, y)) is a chain consisting
of A and the sefA, : X, < n < o}. Moreover,A,- is a minimal group congruence
on3(X, o, y).

Now let (f : S(X, «)) be a left simple semigroup. In view of the above proposition
we may assume that it is not%-normal semigroup, so (in light of Theore??2 and
Lemma2.10 R, < def(f) < @ < o = shift(f), and shiftf™) < « for the least
positive integem > 2. Certain congruences dri : S(X, «)) may be described in
terms of congruences on the gro@plefined below. Note that shift,) = o > «, so
fp ¢ S(X, a), and let

(3.3) G = (fy, S(X, o))
be the subgroup of'x generated by5(X, «) and f,. Then
(3.4) G={hf:heSX,a), k=0,12....m-1},

and because of the minimality af this representation of elements @fis unique.
Moreover

hfie S(X,a) k=0 modm and |D(hfl qf)| <o < k=1 modm.
The next result follows from3.3)—(3.4), Lemma3.1and LemmeB.8(2) (c).

LEMMA 3.12.Let f € #% be such thatt, < y = def(f) < « < shift(f) and
shift(f™) < «. Then(f : S(X,a)) ={ht:he G,t € ¥hy N S(X,y*,y), h, tare
disjoint}.

OBSERVATION 3.13 (Normal subgroups @). Let H be a non-trivial normal sub-
group of G. If H < S(X, ), thenH = S(X, n), for some infinite cardina} < «, or
H = & [12]. SupposeH containsg = hf,‘; ¢ S(X, o). We show thatH contains
S(X, «). LetR, < & < a. Since shiftg) > «, choose a subsat of S(g) of cardi-
nality £ such thag(Y) = Y. There exists a sek of disjointn-cycles ofg,y for some
ne{23,...}U{oco}suchthaiAl = &. Form a seB of n-cycles ofX by extending
the cycles ofA to X by fixing elements ofX — Y. Now form zg (Notation 3.7)
somg € S(X,£*). Consider the commutator = g~'nggng’ € H. Theny is a
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product of 2 = & disjoint 2-cycles, so shifyy) = £é*. HenceS(X, &), the normal
closure ofy in S(X, @), is contained irH. Buté¢ is arbitrary, soS(X, &) € H. Since
G/S(X, a) = Z, such normal subgrougds correspond to normal subgroupsy:

H = {hf¥ e G : k € (n) < Z,,} wheren is a divisor ofm.

We may easily adapt the arguments bi][to show that the intervelA, A ] is a
chain in Coni(f : S(X, «))) consisting ofA and the set of congruences of the form
A, whereX, < n < y*. The proof may be accomplished using the elements of the
“x-normal subsemigrouf(X, «, y) of (f : S(X, «)) with the aid of Lemma3.8(2).

The consequence of this is stated below.

LEMMA 3.14.Let f € #x with &, < y = def(f) < a« < o = shift(f), and
shift(f™) < « for some positive integem. Then the intervalA, A,+] is a chain
in Con((f : S(X, a))) consisting ofA and the sefA, : 8, < n < y*}. Moreover,
A, -+ is a minimal group congruence drf : S(X, «)), and if0 is a congruence not in
[A, A,:]thenA,. C 6.

For each divison of m, 1 < n < m, define the relation

I, ={(hf,qf)):h,ge S(X,a), k=1 modn}
on G. Then the relation
Ch={(st):s1te(f:S(X a))), (Sp, tp) € F;}

is a congruence ofif : S(X, «)) that containsA,. The next lemma describes
the congruences off : S(X, «)) that containA,-. Let V denote the universal
congruence.

LEMMA 3.15. Let f € #x withR, < y =def(f) <a <shift(f), andshift(f™) <«
for some positive integam.
(1) (f:S(X,a))/A,« =G/A,-.
(2) The interval[A,+, A,] in Con((f : S(X, «))) is a chain consisting ofA, :
yT<n=<oa}
(3) The interval[A,, V] is a chain consisting oV and {T', : n is a divisor ofm,
1<n<m.
(4) The interval[A,+, V] in Con((f : S(X,«))) is a chain with[A ., V] =
[A,+, AgJU[A,, V.

PrROOF. Observe that statements (2) and (3) follow from (1) and Observatith
while statement (4) follows from (2), (3) and the last sentence of the statement of
Lemma3.14 To prove (1), leg € (f : S(X, @)). By Lemma3.12, g, € G. Letg
be the class of in (f : S(X, «))/A,+, and letg, be the class of, in G/A,-. Let
Vv (f:S(X,a))/A,+ — G/A,+ be defined by} : § — Gp.
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To show thaty is well-defined and one-to-one, tage= gy0..t = tptc € (f :
S(X, a)). Since shiftg,), shift(t,) = y, we have tha{D(g,t)| < y if and only
if |D(gp,tp)| < y, sot = gif and only if t, = g,. To see thaty is onto, take
any hfs e G, thenu = hfsf e S(X,a)(f) = (f : S(X,)) (Lemma3.9).
Letu = uyu.. Since shift f¥), shift(u;) = y, we have thatD(hf¥, u,)| < y, so
hfy =Tp =y (@,

To see thaty is a homomorphism, takg = gp0..t = tpte € (f : S(X, @)),
and letgt = u = upu.. Again since the shift of the chainsg,, tc, uc is y, and
Uple =U =gt = gptp(tglgctp)tc, we have that

[D(Up, 9ptp)| < [ID(Up, UpUc)| + [D(UpUc, gptp)| < ¥ + 5(t;19ctptc)|
<y+ISt o)+ ISt <y +y+y=v,

and soy (U) = U, = Gptp = v @y (D). O

3.3. Automorphisms Recall that given any semigroupof transformations ok,
Gs = {h € ¥ : hSh't € S}. An automorphismy of Sis said to benner if there
exists a permutatioh of X such that} : f — hfh=1, for eachf € S. A description
of automorphisms of f : H), presented below, may be found B].[

PROPOSITION3.16. Let f be a non-permutation it#y, and letH be a non-identity
normal subgroup of?x. Then each automorphism ¢f : H) is inner, and the
automorphism group off : H) is isomorphic taG .y, .

PROOF OFTHEOREM 2.3. The non-trivial congruences of a left simple semigroup
S=(f : S(X, @)) have the formA, = {(s,t) : s,t € (f : S(X, ®)), |D(s, )| < n}
forR, <n <a,or

Thn={(st):ste(f:SXa)s =hft,=af,hqgeSX a),
k=1 modn},
for a divisorn of m, 1 < n < m (Lemma3.14 Lemma3.15. Since for any
permutationr € ¥, and any transformatiorsst of X, |D(hsh™®, hth™!)| = |D(s, t)|,
and all the automorphisms 6f : S(X, «)) are inner, its congruences of the for)
are preserved under automorphisms. Similarly, conjugation by permutations preserve:
the congruenceg,,. O

4. Equality of group closures

We start by considerindd-closures off € #% with H = S(X, ). In view
of LemmaZ2.10 we may concentrate on transformations with a ‘large’ shift, that is
shift(f) > «.
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LEMMA 4.1. LetR, < o < B < |X|" and takef e #% with a finite non-zero
defect andshift(f) > «. Then(f : S(X, @)) # (f : S(X, B)).

PrOOF. To show that(f : S(X,«)) and (f : S(X, 8)) are distinct, it suffices
to find anh in S(X, B) such thathfh™* ¢ (f : S(X,«)). Since deff) is finite,
hfh=t € (f : S(X,«a)) if and only if hfh™* = qfqg™t for someq € S(X, )
(Lemma2.5 (1)), that isq~th € Cg, (). We will find anh € S(X, B) such that
gth e ¥ — Cq, (f)forallg € S(X, @).

Since detf) is finite, shift( f,) = def(f)X, = R,. Suppose first that shift) =
o > R,. Then shiftfy) = o0 > «, and there exists an = 2,3, 4, ..., co such
that |¢,(f)] = o. Choose a subseéi of ¢,(f) of cardinality«, and leth = 74
(Notation3.7), so shifth) = « andh € S(X, 8) — S(X, @). Suppose thay € ¥y
such thatgth € Cg, (). Thenqth € Cg (fp) andg—*h maps eactn-cycle of
f, onto ann-cycle of f, (by Proposition2.7), and so shiftg~) > shift(h) = «.
Thereforeq ¢ S(X, ).

Now suppose that shiff ) = 8, s0oS(X, a) = S(X, 8,). Take a chairix;x;---)
in f. and leth be the product of disjoint transpositionts,= (X;X2)(XsXs) ---. The
permutationh shifts a countable number of points ¥f soh € S(X, 8) — S(X, «).
It follows from Propositior2.7that if ~th € Cy, (f) then[q=th(x;) g *h(x) - - -) is
achaininf;, so shiffq) > ®,, and againg= ¢ (f : S(X, a)). O

Our aim now is to extend the above result to a transformatiovith an infinite or
zero defect.

LEMMA 4.2. LetR, < a < B < |X|", and let f € #% with def(f) > «. Then
(f:S(X, ) # (f : S(X, B)).

PROOF. Choose a subse of im( f) with |A] = «, and a permutatioh € S(X, )
such thath(A) € X —im(f). Setg = hfh™t ¢ (f : S(X,8)). Thenimg) =
h(@im(f)), and|im(g) — im(f)| > «,sog ¢ (f : S(X, «)) by Lemma3.L O

The next result is concerned with € #% that has both shift and fix at least as
large asx.

LEMMA 4.3. LetR, < o < B < |[X|T and let f € #% with shift(f) > « and
fix(f) > a. Then(f : S(X, a)) # (f : S(X, B)).

PrROOF. For anyt € (f : S(X, o)), we have thatS(t) — S(f)| < «. Indeed, by
Lemma3.1,t = hfXfor someh € S(X, @) and anintegek > 1. ThenS(t) — S(f) <
S(h), so|S(t) — S(f)| < shift(h) < «.
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We construct a transformatiog € (f : S(X, 8)) such that S(g) — S(f)| > «.
For this choose set8 € X — S(f) andB C S(f) of cardinalitya each. Choose a
bijectionr from A onto B and define a permutatidmof x as follows:

r(x) if xeA
h(x) = {r-Y(x) if x e B;
X otherwise.

Then shifth) = |[AUB| = o < 8, soh € S(X, B),andg = hfh™t e (f : S(X, B))
is the required transformation, sinéeC S(g) — S(f). O

LEMMA 4.4. LetR, < a < B < |X]|*T, f € #x withdef(f) < «, andfix(f) < a.
Then(f : S(X, @)) # (f : S(X, B)).

PrOOF. Observe that the sum of shift) and fix(f) is | X|. Since fix f) is less
thana we have that shiftf ) = |X|. Since shiftf.) = def(f)R, < aR, = o, we
have that shiftf,) = |X|. Thus there exists a largest> 2 (finite or infinite) such
that|gn(f)| = |X|. LetC = S([{c: ¢ € ga(f)}), then|C| = n|X| = |X], sincen
is countable. We consider the following three cases.

Case 1.|X = C| > a. Foranyt e (f : S(X, a)), we have thatt(C) — C| < «.
Indeed, using Lemma.1, writet = hf* for someh € S(X, @) and an integek > 1.
Then|t(C) — C| = |hfX(C) — C| = |h(C) — C| < shift(h) < «. We show that there
existsg € (f : S(X, B)) such thatg(C) — C| > «. Choose a subs& of ¢,(f) of
cardinalitye. For each cycle in B choose a point irs(c) and letK be the set of all
the chosen points. Sét = S(]_[{c :ce B}) — K. Sincen > 2 andu is infinite, we
have thatK| = |[N| = «. The shift of f; is R, def(f) < «. Since|X — C| > «, we
may choose a subsketof X — C — S( f.) of cardinalitye. Choose bijections, from K
ontoN, r, from N onto L, andr; from L onto K. Take a permutatioh € S(X, B)
defined as follows:

r{(x) if xek;
ho) = r>(X) ?f x € N;

ry(x) if xel;

X otherwise.

Theng = hfh™! is the required transformation. Indeed,xfe N < C, then
h—1(x) € K, and sincen > 2 we havef (h=1(x)) € N. Therefore,

g(N) =hfh™*(N) C h(f(K)) ch(N)c L < X-C,

s0g(C) — C contains the sej(N) of cardinality«, as required.
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Case 2.|X — C| < a, nis aninteger. In this case shiftf") < |[ X —C| <« < 8,
so by Theoren.2, (f : S(X,«)) and (f : S(X, B)) are left simple semigroups.
Therefore(f : S(X, 8)) containsS(X, B, y), wherey = def(f) (Lemma3.8). Take
a set A of « disjoint infinite cycles and a seéB of y disjoint chains so that the
cycles inA and the chains iB are also disjoint. Theg = [[{c:ce AUB} €
S(X, B,y) — (f : S(X, @)) (Lemma3.12.

Case 3.|X =C| <a,n=00. Forallt e (f : S(X, «a)) we have that fig) < «.
Indeed writet = hfk for someh € S(X, «) and an integek > 1, and note that
C C S(f¥). Then fixt) < |S(h) U (X — C)| < a.

We show that there existse (f : S(X, 8)) such that fixg) > «. Choose a subset
B of ¢ (f) of cardinalitye, and letA = S(J[{c : c € B}). Thenf(A) = A and
the restrictionf|, of f to A is a product of disjoint infinite cycles. Therefore, there
exists a permutation of A such that fjar =t = f~%,. Define a permutatioh of X
so thath(x) =r(x) if x € A, and f (x) = x otherwise. Then shifh) = «, soh ¢
S(X, B) — S(X,a), andg = hfh™1f e (f : S(X, B)) is the desired transformation.
IndeedA C X — S(g) and so fiXg) > «. O

PROOF OF THEOREM 2.4. We first prove, under the assumption< g, that(f :
S(X, )y = (f : S(X, B)) if and only if shift(f) < «. Indeed, if shiftf) < «, then
Lemma2.10ensures thatf : S(X, a)) = (f : %) = (f : S(X, B)). Suppose that
shift(f) > «, we prove that f : S(X, «)) # (f : S(X, B)). Lemmas4.1and4.2
prove the result if dgff ) is either a positive integer or an infinite cardinal greater than
or equal tox. If fix(f) > «, the result is proven in Lemma3, while if fix(f) < «
and def f) < «, the result is proven in Lemma4.

We now turn to the second part of Theor@w, establishing the conditions for
equality

(4.1) (f . 2) = (f : S(X, B)).
Since(f : @) C (f : S(X,Rp)) C (f : S(X, B)), (4.1) is equivalent to
(4.2) (f o) = (f:S(X,Ry)) and (f :S(X,Ry)) = (f:S(X,pB)).

If f e &%, then(f : &) is a normal subgroup aofsy, so (f : &) = @x =
(f 1 S(X,Rp)) = (f :%). If f e S(X,Ry) — .y then(f : @) D %, and so
(f 1) = S(X, Ro) = (f 1 S(X, Ro)) = (f : ).

We assume now thati (1) holds andf is a non-permutation, so shift) > X,.
Then it follows from the second equation @f.%?) and the first part of Theore.4
thatg = R,. Letq be a finite odd permutation, and ket= qfq= € (f : S(X, R,))
= (f : ). We will show thatt = hfh! for someh e .%%. Indeed, there
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exist permutationdhy, ..., he € % thatt = h,fhy *h,fh,t.. . hfh t By
Lemma3.1, there exists] € S(X, 8,) such that = qf¥. If def(f) is finite, then
k = 1 by Lemma2.5 (1). Assume that déff) is infinite. Since shiftg) is finite,
lim(f) —im@)] = |im(f) — q(im(f))| < Ro. If k > 2, [im(f) —im(f¥)| >
lim(f) —im(f?)| = def(f) > R, so|im(f) —im(t)| > R, also. Thereforek = 1
again. Thug = hfh! for someh € ..

The equalityqfg—t = hfh=! implies that the odd permutatian*h is in Cy, ().
HenceCg, () N S(X, Ry) gz o/x. Let g be an identity transformation of if f,
has no infinite cycles, and = [[{c : ¢ € ¢ (f)} otherwise. By Propositio.7,
g *h € Cy(f,) andgth is the identity onS(f.g). SetY = X — S(f.g). Then
the restrictiong~h,y of g~*h to Y is a finite odd permutation i€, ( fy). Applying
Lemma2.8to ( f,)y we deduce thatf,),y contains either &2k)-cycle or at least two
(2k — 1)-cycles for some integde > 1 (so ifk = 1 then(f,)y contains at least two
fixed points).

Conversely, assume that = X, and f contains either &2k)-cycle or at least
two (2k — 1)-cycles for some integet > 1. Since the indeXS(X, R,) : @] = 2,
adopting the argument of], we deduce that to demonstrate the equdlity: .) =
(f : S(X, R,)) we only need to construtt € S(X, R,) — .k such thahfh e (f :
ay). If px(f) # @ for some integek > 1, chooseh to be a cycle inpy () and
thenhfh™t = f e (f : @%). If |pa_1(f)] > 2 for some integek > 1, choose
two distinct (2k — 1)-cycles(XiXo - - - Xox_1) and (Y1Yz - - - Ya_1) IN @a_1(F) and let
h = (X1y1) (X2Y2) . . . (Xk_1Y2x_1) be the indicated product of transpositions, so again
hfh-t = f e< f : @ >. Finally, if f is a finite permutation then all conjugates
of f are also finite permutations and it follows quickly thét: .o7y) = (f : S(X, B8)),
completing the proof of the theorem. O
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