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Abstract

Let F’ be the commutator subgroup Bfand letl'y be the cyclic group generated by the first generator
of F. We continue the study of the central sequences of the fagtef), and we prove that the abelian
von Neumann algebra(I'p) is a strongly singular MASA i (F). We also prove that the natural action
of F on[0, 1] is ergodic and that its ratio set{i8} U {2%; k € Z).

2000Mathematics subject classificatioprimary 37A10; secondary 43A07.

1. Introduction

Thompson’s groupF is a countable group with infinite conjugacy classes which
has remarkable properties, discovered in 1965 and rediscovered later by homotopy
theorists. It is known thaF contains no non abelian free subgroup, and it is still
unknown whether it is amenable or not. However, it shares many properties with
amenable groups; for instance, it is inner amenable: &e@.[

We recall the two most commonly known descriptionsFof On the one hand, as
an abstract group, it has the following presentation:

F = (Xo, X1, ... | X XX = Xny1, 0<i <n).

On the other hand, it is the group of homeomorphisms of the int¢@vall that are
piecewise linear, differentiable except at finitely many dyadic rational numbers and
such that on intervals of differentiability the derivatives are integral powers of 2. To
each of these descriptions corresponds a tool that we present below. We réfé] to [
for more details on Thompson’s groups T andV, and for some results that will be
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used here. The first one is the existence of a unimrenal formfor every non trivial
element off; it is Corollary-Definition 2.7 of P].

LEmmA 1.1. Every non trivial element oF can be expressed in unique normal
formx;, - - %, %"+ - - x;,*, where
(1) 0<ih <+ <l j1 =<+ < jmandix # jm;
(2) if x, andx* appear explicitly in the expression for somehen also does;

or X3

The second lemma that will be needed is related to the actiéhaf [0, 1]: see
[2, Lemma 4.2].

LEMMA 1.2.If 0= <a <---<a,=1land0=by<b <--- <b, =1
are partitions of{0, 1] consisting of dyadic rational numbers, then there exists F
such thatg(a;) = b; for everyi =0, ..., n. If moreovera,_; = b_; anda, = b, for
some > 0, theng can be chosen so thg(t) =t for everyt € [a_1, &].

In [7], we studied the von Neumann algebras associated Fviind with some of
its subgroups: we proved not only that the fadtdiF) is a McDuff factor (that is,
that L (F) is *-isomorphic to the tensor product factb(F) ® R where R denotes
the hyperfinite 1} factor), but that the pait (F’) ¢ L(F) has the relative McDuff
property: there is a *-isomorphisd : L(F) ® R — L(F) such that its restriction to
L(F") ® Ris still an isomorphism onto the subfacto¢F’) associated to the derived
subgroupF’ = [F, F] of F.

In Section2, we present further properties of central sequenceas(bf) : on the
one hand, we prove that there exists a sequence of unitary opef@atprs L(F’)
such that(u,xu?) is a central sequence for evexye L(F’), and on the other hand,
we show thal (F’) is approximately normain L (F) in the sense ofd].

Section3 is devoted to the study of the von Neumann subalgéliig) wherel'y
is the cyclic subgroup df generated by the generatqr L (I"y) is astrongly singular
MASA of L(F) (see B]) and we show that its Pukanszky invarian{is}.

Finally, we prove in Sectiod that the natural action df on [0, 1] is ergodic and
we show that its ratio set {9} U {2; k € Z}.

Notation Forg € F viewed as a homeomorphism @, 1], we denote by5(g) the
set of numberg € [0, 1] such thatg(t) # t. We will use the following properties
which are very easy to prove:

(S1) S(g™h) = S(g) for everyg € F;

(S2) ift € S(g) theng(t) € S(g) for everyg € F;

(S3) S(ghg™) = g(S(h)) forall g, h € F;

(S4) if S(g) N S(h) = @, thengh = hg.
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Let M be a finite von Neumann algebra and tebe a normal, normalized, faithful
trace onM. We denote byja|, = r(a*a)¥/? the associated Hilbertian norm.
If I" is a countable group, letdenote its left regular representation3a") defined

by:
M(@E€)(h) = £(g*h)

for all g,h € I andé € ¢*(I"). The bicommutant.(I")” in the algebra of linear,
bounded operators aif(I") is a von Neumann algebra denotedlbyl). It is a finite
von Neumann algebra with natural tracalefined byz (X) = (X&e, 8e), Whereée is
the characteristic function dfe}. L(I") is a type I} factor if and only ifT" is an
icc group. Every operatox € L(T") is expressed as a serigs, . X(g)A(g) where
x(9) = t(xa(@™) andy_ . IX(g)|? = ||IX||3. If H is a subgroup of, thenL(H) is
identified in a natural way as a von Neumann subalgebita(bh: it is the subset of
elements< such thatx(g) = O for everyg ¢ H.

Let M be a type I} factor. A central sequencén M is a bounded sequence
(Xn) € M such that||x,y — yX.|l — 0 asn — oo for everyy € M. We write
sometimega, b] for ab — ba.

2. The subfactorL (F’) of L(F)

Let F’ denote the commutator subgroup efas in the preceding section. It is
known that it is a simple group, and it is the subgroug-adf elements that coincide
with the identity in neighbourhoods of 0 and 1. Ouir first result stateslthgt) is
inner asymptotically commutative the sense ofl[0].

PrROPOSITION2.1. There exists a sequen@e,),-; C U (L(F’)) such that
lim [ [unxuy, il = 0

for all X,y € L(F’). In other words, for everx € L(F’), (u,xu’) is a central
sequence of (F’).

We don’'t know if L (F) itself is inner asymptotically commutative.
The proof rests on the following lemma of Zeller-Meyer:

LEMMA 2.2. Let G be an icc group. If there exists an increasing sequeltg
of subsets of5 and a sequencég,) of elements of5 such that| JE, = G and
099, *h = hg,gg;* for all g, h € E, and for everyn, then the factolL (G) is inner
asymptotically commutative.
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ProoF oFProOPOSITION2.1L Set, forn > 1,
E.={geF’; S(g) c(1/2",1—-1/2")},

so thatE, C E,;; and{J, E, = F'.
Fix n > 1 and consider the following dyadic partitions[6f 1]:

1 1 1
0:a0<a1:2n+1<a2:§<a3:1—§ <a.4:1—2n+1<a5:1
and
1 1 3 1
0:b0<b1:ﬁ<b2:1_5<b3:l_ﬁ<b4:l_ﬁ<b5:l

so thatbs is the mean value of + 1/2" and 1— 1/2"+1. By Lemmal.2, one can find
On € Fsuchthag,(a) = b fori =0, ..., 5andthat,(t) = tfort € [0, a;]U[a4, 1].
Thusg, € F'.

Finally, if x, y € E,, Property §3 of Sectionl gives

S(GnXG, ) = Gn(S(X)) C Gn((@2, A3)) C (b, bs),

and asS(y) C (a, ag), Property 64) yieldsg,xg,'y = yg.xg,*. Lemma2.2implies
thatL (F’) is inner asymptotically commutative. O

Before stating the next proposition, I8 be a type I} factor and letN be a
subalgebra oM. N is callednormalin M if (N'NM)" N M = N. Following [3], we
say thatN is approximately normaih M if

N ={x € M; |lyaX — XWl|l2 — O for all bounded sequences
(Yn) C M such that|y,y — yyu|l. — O forally € N}.

PrOPOSITION2.3. The subfactot (F") is approximately normal it (F).

For future use, denote by the set of sequencés,).-1 C F’ such that, for every
¢ > 0, there exists an integér> 0 such thatS(g,) N [e, 1 — ¢] = @ for everyn > |.
In fact, if (g,) € .7, then the sequend&(g,)) C L(F’) is a central sequence (see for
instance the proof of7, Proposition 2.4]).

The proof of Propositio2.3rests on the following lemma:

LEMMA 2.4.Leth € F \ F'. Then there existsg,) € 7 such that the set
{gnhg;?; n > 1} is infinite.

PrROOF. Sinceh ¢ F, its right derivative at O or its left derivative at 1 is equal to 2
for some non zero integ&r Assume to begin with that there exist- 0 and a positive
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integerk such thath(t) = 2t fort € [0, ¢]. Choose an integér> 1 big enough so
that 32+2 < ¢. Forn > |, seta, = 1/2¢"* b, = 3/2K+"+2 ¢, = 1/2" and

3 1 5

/
< — = < by.
& b Oktnt2  Dk+n+3 k4n+3 by

There existyy, € F’ such thatg,(t) =t for t € [0, a,] U [cy, 1] andgn(b,) = by,
Thus, settingg, = eforn < |, we get that(g,) € 7. Finally, let us check that if
m > k + n, thengnhg,' # gahg, . As S(gp) C (1/2¢FP+ 1/2+P), we get, on the
one hand,

onhg, (b)) = g.h(b,) = g.(2b},) =

2m+3

since 52™3 < 1/2<*1  On the other hand, the same kind of argument using
3/2™3 < ¢ shows that

gmhg, ' (by) =

# gahg,(0]).

2m+3

If h(t) = 27*t near 0 withk > 0, then apply the above argumentshtd. Finally, if

h(t) =t near 0, we reduce to the above cases in using the order two automogphism
of F defined byo(g)(t) = 1 — g(1 —t): apply the above argumentsagh) and take

the sequencé®(g,)) € 7. This ends the proof of the lemma. O

PROOF OFPROPOSITION2.3. We only need to show that K € L(F) is such that
I[X, 2(gn)]ll2 = 0 asn — oo for every sequencéy,) € 7, thenx € L(F').

Leth € F\ F’'; we will prove thatx(h) = 0. By the previous lemma, one can find
a sequenceg,) € 7 such thag,hg,* # gnhg,* for all n = m.

Fix ¢ > 0. There exists an integer> 1 such that|x — A(g;)XA(g) |2 < &/2 for
n > |. Moreover, the series

o0

> Ix(ghg,HI?

n=1
converges. Hence one can find an intdger | such thatx(g,hg,")| < ¢/2 for every
n > |’. Then we have, for any > I,
x(h)| = [z (xah™)|
< [t(xr(h™) = xA(gh g, )| + [T (xA(gh g, )|
= [t(xA(h™) — TG, HXA(G)A(h™))[ + [T (XA (gah T g, )]
< [IX = A(gy HXA(Gn)ll2 + [X(Gahgy D < &.

Thusx(h) = 0. O
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3. Asstrongly singular MASA in L(F)

Let I' be an icc countable group and Ief be an abelian subgroup ©f. When
I' = F, I'o denotes exclusively the cyclic subgroup generategby F.

Recall from B] that an abelian von Neumann subalgeBraf a type I} factorM is
strongly singularif the following inequality is true for every unitary elemant M:

|Euaw — Ealloo2 = U — Ea(W)]|2,

whereEg denotes the trace-preserving conditional expectation fvbionto the von
Neumann algebr8, and, forg : M — M linear,

[@llco2 = SURllP () l2; [IX]] < 1}.

Observe that such an algebra is automatically a MASMofWhenM = L(T") is a
factor associated to an icc grolipand A = L(I"g) wherel', is an abelian subgroup
of I', [8, Lemma 4.1] gives a sufficient condition in order tielbe a strongly singular
MASA in M; we recall its statement for convenience.

LEMMA 3.1 ([8]). LetI" be anicc group with an abelian subgrolip. Assume that
they satisfy the following condition

(SS) Ifg1,..., Om, 1, ..., hyeT"\ Ty, then there existg, € I'p such thag; goh; ¢ I'o
foralli=1,...,mandallj=1,...,n.

ThenA = L(I'p) is a strongly singular MASA i ().

It turns out that the abelian subgrolipof F satisfies a stronger condition that will
be also used to prove an ergodic property for the conditional expectatiorn. origp.

LEMMA 3.2. The pair (T, F) satisfies the following condition

(ST) If g, ..., Gm hy1, ..., hy € F\ Ty, then there exists a finite subdedf I'y such
thatg goh; ¢ I'oforalli =1,...,m,all j =1,...,nand for everyg, € I'y \ E.

PROOF. FiX Q1, ..., Om, D1, ..., Ny € F\ To. We writeg = x0'g/%,* andh; =
x{; h/j ngJ foralli, j, wherep;, g, r; ands; are non negative integers, and whg{r,eh/j
all belong toF; \ {e}, whereF; is the subgroup oF generated byx;, X, ...}. Itis
the range of the ‘shift mapp : F — F defined by¢(x,) = X,.1 for everyn > 0.
See [, page 369]. Hence *gxt = ¢*(g) for every positive integek and every
g € Fi. Using normal forms oy andh’, observe that if is a sufficiently large
integer, theny' (g)h; ¢ I'oforalli, j. Thus, ifk > O'is large enough and if we put
;= k—q +r;, we getgixsh; = x0 g/xg"h\x,* = x5 "¢l (g)h;x,*, and we
deduce thag x5h; does not belong t&.



[7] Operator algebras related to Thompson'’s gréup 237

Whenk = —k' is negative, we havg x,“h, = g/¢* (h)x;* for all i, j, which
gives the same conclusion. O

Similarly, it is easy to see that If is the free groug=y of rank N > 2 on free
generatorsy, ..., ay and if Iy is the subgroup generated by somethen the pair
(To, T') satisfies conditionqT).

ProPOSITION3.3. Assume thaly is an abelian subgroup of an icc group and
that the pair(T'y, I') satisfies conditiofST). SetA = L(I'g) andM = L(T"). Then
A'is a strongly singular MASA iiM and the conditional expectatiof, satisfies

Ea() = w — lim_1(go)x2(g")
for everyx € M.

PrROOF. The first assertion follows from Lemn®l In order to prove the second
one, fixx andy € M such thatg € I'; x(g) # 0} and{g € T'; y(g) # 0} are finite.
We will prove that there exists a finite subg&ebf I'y such that

T(EA(X)Y") = T(A(Go)XA (Do YY)

for everygy € To \ E. We writeC ={g e I' \ I'g; X(g) # 0} andD = {g € T\ T'g;
y(9) # 0}, which are finite sets, and we decompasandy asx = Ex(x) + x’ and

y = Ea(Y) + VY so thatx’ = dec X(@)r(g) andy’ = deD y(9)A(g) are orthogonal
to A

It is easy to see that conditio®) implies the existence of a finite subgef I’y
such thatg()Cgo‘1 N D = ¢ for everygy, € Ty \ E. Takegy € ' \ E; sincely is
abelian, we have (go) Ea(X)A(gy ") = Ea(x) and similarly fory. Thus

T(MG)XA (G HY") = T(EA(X)Y") + T(A(G)X'A(GyHY")
= T(EA()Y") + T(XEa(Y")) + T(X'A(Io Y *A(Go))
=1(EA(X)Y")

sincet (X'EA(y*)) = 0 by orthogonality, and

T(XA(G Y M(Go)) = T ( > x(h)Wthalk‘lgo))

h.kel'\I'y

=Y x(h)y(ghg") =0

heC

becaus@,Cg,' N D = @. O
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Our last result about (I'y) ¢ L(F) is the computation of its Pukanszky invariant
which was suggested to us by G. Robertson. Abe a MASA of some type ]Ifactor
M. Denote bye the type | von Neumann algebra generateddy A’ in the algebra
B(L?(M)), whereA' is the commutant oA. The orthogonal projectiog, of L2(M)
onto L2(A) lies in the centre ofz’ and the reduced algebra’e, is abelian. The
reduced von Neumann algebsé (1 — e,) decomposes as a direct sufi(1 — ey) =
m/n/l ® @7,{2 @ ... of homogeneous typg, lalgebras, where ¥ n; < n, < --- < co.
Then thePukanszky invariandf the pairA c M is the sefny, n,, ...}.

Letus recall §, Proposition 3.6] which gives a way to compute Pukanszky invariant
for pairsL(I'y) € L(I") as above.

PrROPOSITION3.4 ([9]). Suppose thall is an abelian subgroup of an icc group
such thatl (I'p) is a MASA inL(T"). If g~I'hg N T’y = {€} for everyg € I" \ I'y, then
the Pukanszky invariant of the pdinT’y) C L(T") is the set reduced to the numlrer
of double classeE,gT.

ProOPOSITION3.5. The Pukanszky invariant of the paiT"y) C L(F) is {oo}.

PROOF. There exists a homomorphisgn: F — Z such thaty(x,) = 1 for every
n > 0 because the defining relations Bfare homogeneous. If there would exist
g € F\T'pandk,| € Z such thagxig— = xi, then, applyingy on both sides gives
k = | which can be assumed positive. Let us wdte= xJg'%,* with g’ € F; \ {€}
as in the proof of Lemma.4. We would gety'xg = x§g/, thus¢*(g)) = g/, but this
would imply thatg’ = e, hence thag € Ty, but this is a contradiction.

Finally, set, for every integar > 0: g, = X; - - - X,. Then itis easy to see that the
double classeBqg,I'y are pairwise distinct. O

4. The natural action of F and the associated Krieger factor

LetT" be agroup acting (on the left) in a measure class preserving way on a standarc
probability spacé<2, w). Recall that théull group [I"] of the action ofl” onQ is the
group of all automorphisms of 2 such thaffw € T'w for u-a.e.w € Q. We also set

[Tlo={T €[I'l; poT =pu},

which is the subgroup of elements[df] that preserveg:.. Theratio setof the action
of I on Q is the setr (I") of all numbersh > 0 such that, for every > 0 and for
every Borel subsef with positive measure, there exists a sutizef A with positive
measure and € I' such thagB c A and

duog
du

(a))—)»‘<5 Yo € B.
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Thenr (T") is a closed subset @b, oco) andr (I") \ {0} is a closed subgroup of the
multiplicative groupR* . Moreover, one has:(I') = r ([T']).

We consider here the natural actionfobn the interval0, 1] gifted with Lebesgue
measurew. Our goal is to prove that the action 8f is ergodic and to compute its
ratio set.

PrROPOSITION4.1. The action ofF on [0, 1] is ergodic and its ratio set is
r(F)={0}u {2 k e Z}.

Let Rr be the equivalence relation ¢6, 1] defined by the action of: if s,t €
[0, 1], then the pair(s, t) belongs toRr if and only if s andt are in the saméd--
orbit. Let M(Rg) be the associated Feldman-Moore factdy; it generalizes the
group measure space construction of Murray and von Neumann for not necessarily
free actions. Then the next result follows immediately from Proposii@and from
[5, Proposition 2.11].

COROLLARY 4.2. M(Rg) is a factor of typdll ;».

The proof of Propositiod. 1is inspired by i, Section 2].

Let K be the following group of bijections @D, 1] : a bijectiong from [0, 1] to
itself belongs toK if and only if there exists a partition @ a; < --- < a, < 1 of
[0, 1] into dyadic rational numbers such that

(K1) ¢(t) =t foreveryt € [0, &) U [ay, 1];
(K2) forevery 1< j < n— 1, there exists a dyadic rational numhgrsuch that
@(t) =t +«; for everyt € [a;, aj;1).

LEMMA 4.3. K is a subgroup ofF],. In particular, u o ¢ = i for everyp € K.

PrOOF It suffices to prove that, i, b andw are rational dyadic numbers such that
O<a<b<landO< a+a < b+« < 1, then there exists§ € F such that
f(t) =t + « foreverya <t < b. We apply Lemmal.2with &y = a, a, = b and
by =a+a,b,=b+a (anday = by = 0,a3 = b; = 1): there existg € F such that
g(@j)) =bjforj=0,...,3. Ifg(t) =t+afort € [a, b), then setf = g. If not, set
f)=gi)fort e[0,a)U[b,1l]andf(t)=t+afora<t <b. Thenf e F. O

PrROOF OF PROPOSITION4.L In order to prove that the action &f is ergodic, it
suffices to show that the action &f is. Indeed, Lemmal.3 implies thus that the
action of the full groug F] is ergodic, and4, Lemma 2.8] applies to show that the
action of F is, too. We argue as in the proof &f Lemma 2.1]. Thus, leX, C [0, 1]
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be a Borel set such thatX, = X, for everyp € K and thatu(Xo) > 0. Define a
measure on [0, 1] by

u(B N Xo)
pn(Xo)
for every Borel seB. We have for every € K and every Borel seB

1((eB) N Xo)  u(BNge*Xo)

v(B) =

B) = =
Vs 1(Xo) 1(Xo)
- n(BNXo)  w(BN(ptXo\ Xo))
T u(Xo) 1(Xo)
_ u(BN Xo) »(B).
m(Xo)

Hencev(¢B) = v(B) for everygp. In particular, one has([a+«, b+a)) = v([a, b))
for all dyadic rational numbera, b anda such thafa, bju [a 4+ «, b+ «] C [0, 1],

and this gives
I IT+1 1
v | =, — = -
2n 2n n

for every positive integem and every integer & | < n. Uniqueness oft implies that
v = u, and thatu(X,) = 1. This proves ergodicity of the action K.

It remains to compute(F). Denote byl" the group generated by andK. One
has[I"] = [F], sinceK c [F], andr (I") =r (F).

As (du o g)(t)/du € {2% k € 7} for u-a.e.t € [0, 1] and for everyg € F, one
hasr (F) c {0} U {2%; k € Z}. Asr(F) is closed, the proof will be complete if we
show that 2 € r (F) for every integek. Then fix such & and choose € F and
dyadic rational numbers & a < b < 1 such that

duog

(n——m—?

for everyt € (a,b). Let A c [0, 1] be a Borel set with positive measure. As the
action ofK is ergodic, there exigt andy, € K such that the Borel set

B={te A ¥() e (ab)andpgy(t) € A}
has positive measure (see the proof4fffroposition 3.3]). Set = ¢gy € T'. One

hasBuhB c Aand

duoh duog

du © = du

(W(t) =2

for everyt € B sincey(t) € (a, b). Hence 2 e r (F). O
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REMARK. In fact, condition K1) shows that is a subgroup of the full group of
the commutator subgroup’. Hence the latter acts ergodically @ 1] as well, and it
has the same ratio set Bs However, it gives the same equivalence relatioriGri],
and thus the same factdt (Rg).
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