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Abstract

Let F ′ be the commutator subgroup ofF and let00 be the cyclic group generated by the first generator
of F . We continue the study of the central sequences of the factorL.F ′/, and we prove that the abelian
von Neumann algebraL.00/ is a strongly singular MASA inL.F/. We also prove that the natural action
of F on [0; 1] is ergodic and that its ratio set is{0} ∪ {2k; k ∈ Z}.
2000Mathematics subject classification: primary 37A10; secondary 43A07.

1. Introduction

Thompson’s groupF is a countable group with infinite conjugacy classes which
has remarkable properties, discovered in 1965 and rediscovered later by homotopy
theorists. It is known thatF contains no non abelian free subgroup, and it is still
unknown whether it is amenable or not. However, it shares many properties with
amenable groups; for instance, it is inner amenable: see [6, 7].

We recall the two most commonly known descriptions ofF . On the one hand, as
an abstract group, it has the following presentation:

F = 〈x0; x1; : : : | x−1
i xnxi = xn+1; 0 ≤ i < n〉:

On the other hand, it is the group of homeomorphisms of the interval[0; 1] that are
piecewise linear, differentiable except at finitely many dyadic rational numbers and
such that on intervals of differentiability the derivatives are integral powers of 2. To
each of these descriptions corresponds a tool that we present below. We refer to [1, 2]
for more details on Thompson’s groupsF , T andV , and for some results that will be
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used here. The first one is the existence of a uniquenormal formfor every non trivial
element ofF ; it is Corollary-Definition 2.7 of [2].

LEMMA 1.1. Every non trivial element ofF can be expressed in unique normal
form xi1 · · · xik x−1

jm · · · x−1
j1 , where

(1) 0 ≤ i1 ≤ · · · ≤ i k, j1 ≤ · · · ≤ jm andik 6= jm;
(2) if xi andx−1

i appear explicitly in the expression for somei , then also doesxi +1

or x−1
i +1.

The second lemma that will be needed is related to the action ofF on [0; 1]: see
[2, Lemma 4.2].

LEMMA 1.2. If 0 = a0 < a1 < · · · < an = 1 and0 = b0 < b1 < · · · < bn = 1
are partitions of[0; 1] consisting of dyadic rational numbers, then there existsg ∈ F
such thatg.ai / = bi for everyi = 0; : : : ; n. If moreoverai −1 = bi −1 andai = bi for
somei > 0, theng can be chosen so thatg.t/ = t for everyt ∈ [ai −1; ai ].

In [7], we studied the von Neumann algebras associated withF and with some of
its subgroups: we proved not only that the factorL.F/ is a McDuff factor (that is,
that L.F/ is *-isomorphic to the tensor product factorL.F/ ⊗ R whereR denotes
the hyperfinite II1 factor), but that the pairL.F ′/ ⊂ L.F/ has the relative McDuff
property: there is a *-isomorphism8 : L.F/⊗ R → L.F/ such that its restriction to
L.F ′/⊗ R is still an isomorphism onto the subfactorL.F ′/ associated to the derived
subgroupF ′ = [F; F] of F .

In Section2, we present further properties of central sequences ofL.F ′/ : on the
one hand, we prove that there exists a sequence of unitary operators.un/ ⊂ L.F ′/
such that.unxu∗

n/ is a central sequence for everyx ∈ L.F ′/, and on the other hand,
we show thatL.F ′/ is approximately normalin L.F/ in the sense of [3].

Section3 is devoted to the study of the von Neumann subalgebraL.00/ where00

is the cyclic subgroup ofF generated by the generatorx0: L.00/ is astrongly singular
MASA of L.F/ (see [8]) and we show that its Pukanszky invariant is{∞}.

Finally, we prove in Section4 that the natural action ofF on [0; 1] is ergodic and
we show that its ratio set is{0} ∪ {2k; k ∈ Z}.
Notation For g ∈ F viewed as a homeomorphism of[0; 1], we denote byS.g/ the
set of numberst ∈ [0; 1] such thatg.t/ 6= t . We will use the following properties
which are very easy to prove:

(S1) S.g−1/ = S.g/ for everyg ∈ F ;
(S2) if t ∈ S.g/ theng.t/ ∈ S.g/ for everyg ∈ F ;
(S3) S.ghg−1/ = g.S.h// for all g; h ∈ F ;
(S4) if S.g/ ∩ S.h/ = ∅, thengh = hg.
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Let M be a finite von Neumann algebra and let− be a normal, normalized, faithful
trace onM . We denote by‖a‖2 = − .a∗a/1=2 the associated Hilbertian norm.

If 0 is a countable group, let½ denote its left regular representation on`2.0/ defined
by:

.½.g/¾/.h/ = ¾.g−1h/

for all g; h ∈ 0 and ¾ ∈ `2.0/. The bicommutant½.0/′′ in the algebra of linear,
bounded operators oǹ2.0/ is a von Neumann algebra denoted byL.0/. It is a finite
von Neumann algebra with natural trace− defined by− .x/ = 〈xŽe; Že〉, whereŽe is
the characteristic function of{e}. L.0/ is a type II1 factor if and only if0 is an
icc group. Every operatorx ∈ L.0/ is expressed as a series

∑
g∈0 x.g/½.g/ where

x.g/ = − .x½.g−1// and
∑

g∈0 |x.g/|2 = ‖x‖2
2. If H is a subgroup of0, thenL.H/ is

identified in a natural way as a von Neumann subalgebra ofL.0/: it is the subset of
elementsx such thatx.g/ = 0 for everyg =∈ H .

Let M be a type II1 factor. A central sequencein M is a bounded sequence
.xn/ ⊂ M such that‖xn y − yxn‖2 → 0 asn → ∞ for every y ∈ M . We write
sometimes[a; b] for ab− ba.

2. The subfactorL (F ′) of L (F)

Let F ′ denote the commutator subgroup ofF as in the preceding section. It is
known that it is a simple group, and it is the subgroup ofF of elements that coincide
with the identity in neighbourhoods of 0 and 1. Our first result states thatL.F ′/ is
inner asymptotically commutativein the sense of [10].

PROPOSITION2.1. There exists a sequence.un/n≥1 ⊂ U .L.F ′// such that

lim
n→∞

‖[unxu∗
n; y]‖2 = 0

for all x; y ∈ L.F ′/. In other words, for everyx ∈ L.F ′/, .unxu∗
n/ is a central

sequence ofL.F ′/.

We don’t know if L.F/ itself is inner asymptotically commutative.
The proof rests on the following lemma of Zeller-Meyer:

LEMMA 2.2. Let G be an icc group. If there exists an increasing sequence.En/

of subsets ofG and a sequence.gn/ of elements ofG such that
⋃

En = G and
gngg−1

n h = hgngg−1
n for all g; h ∈ En and for everyn, then the factorL.G/ is inner

asymptotically commutative.
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PROOF OFPROPOSITION2.1. Set, forn ≥ 1,

En = {g ∈ F ′; S.g/ ⊂ .1=2n; 1 − 1=2n/};

so thatEn ⊂ En+1 and
⋃

n En = F ′.
Fix n ≥ 1 and consider the following dyadic partitions of[0; 1]:

0= a0<a1 = 1

2n+1
<a2 = 1

2n
<a3 =1− 1

2n
<a4 =1− 1

2n+1
<a5 =1

and

0= b0<b1 = 1

2n+1
<b2 =1− 1

2n
<b3 =1− 3

2n+2
<b4 =1− 1

2n+1
<b5 =1

so thatb3 is the mean value of 1− 1=2n and 1− 1=2n+1. By Lemma1.2, one can find
gn ∈ F such thatgn.ai / = bi for i = 0; : : : ; 5 and thatgn.t/ = t for t ∈ [0; a1]∪[a4; 1].
Thusgn ∈ F ′.

Finally, if x; y ∈ En, Property (S3) of Section1 gives

S.gnxg−1
n / = gn.S.x// ⊂ gn..a2; a3// ⊂ .b2; b3/;

and asS.y/ ⊂ .a2; a3/, Property (S4) yieldsgnxg−1
n y = ygnxg−1

n . Lemma2.2implies
that L.F ′/ is inner asymptotically commutative.

Before stating the next proposition, letM be a type II1 factor and letN be a
subalgebra ofM . N is callednormal in M if .N ′ ∩ M/′ ∩ M = N. Following [3], we
say thatN is approximately normalin M if

N = {x ∈ M ; ‖ynx − xyn‖2 → 0 for all bounded sequences
.yn/ ⊂ M such that‖yny − yyn‖2 → 0 for all y ∈ N}.

PROPOSITION2.3. The subfactorL.F ′/ is approximately normal inL.F/.

For future use, denote byT the set of sequences.gn/n≥1 ⊂ F ′ such that, for every
" > 0, there exists an integerl > 0 such thatS.gn/ ∩ ["; 1 − "] = ∅ for everyn > l .
In fact, if .gn/ ∈ T , then the sequence.½.gn// ⊂ L.F ′/ is a central sequence (see for
instance the proof of [7, Proposition 2.4]).

The proof of Proposition2.3rests on the following lemma:

LEMMA 2.4. Let h ∈ F \ F ′. Then there exists.gn/ ∈ T such that the set
{gnhg−1

n ; n ≥ 1} is infinite.

PROOF. Sinceh =∈ F , its right derivative at 0 or its left derivative at 1 is equal to 2k

for some non zero integerk. Assume to begin with that there exist" > 0 and a positive
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integerk such thath.t/ = 2kt for t ∈ [0; "]. Choose an integerl ≥ 1 big enough so
that 3=2l+2 ≤ ". Forn ≥ l , setan = 1=2k+n+1, bn = 3=2k+n+2, cn = 1=2k+n and

an < b′
n = 3

2k+n+2
− 1

2k+n+3
= 5

2k+n+3
< bn:

There existsgn ∈ F ′ such thatgn.t/ = t for t ∈ [0; an] ∪ [cn; 1] andgn.bn/ = b′
n.

Thus, settinggn = e for n ≤ l , we get that.gn/ ∈ T . Finally, let us check that if
m > k + n, thengmhg−1

m 6= gnhg−1
n . As S.gp/ ⊂ .1=2k+p+1; 1=2k+p/, we get, on the

one hand,

gnhg−1
n .b

′
m/ = gnh.b′

m/ = gn.2kb′
m/ = 5

2m+3

since 5=2m+3 < 1=2k+n+1. On the other hand, the same kind of argument using
3=2m+3 ≤ " shows that

gmhg−1
m .b

′
m/ = 3

2m+3
6= gnhg−1

n .b
′
m/:

If h.t/ = 2−kt near 0 withk > 0, then apply the above arguments toh−1. Finally, if
h.t/ = t near 0, we reduce to the above cases in using the order two automorphism�

of F defined by�.g/.t/ = 1 − g.1− t/: apply the above arguments to�.h/ and take
the sequence.�.gn// ∈ T . This ends the proof of the lemma.

PROOF OFPROPOSITION2.3. We only need to show that ifx ∈ L.F/ is such that
‖[x; ½.gn/]‖2 → 0 asn → ∞ for every sequence.gn/ ∈ T , thenx ∈ L.F ′/.

Let h ∈ F \ F ′ ; we will prove thatx.h/ = 0. By the previous lemma, one can find
a sequence.gn/ ∈ T such thatgnhg−1

n 6= gmhg−1
m for all n 6= m.

Fix " > 0. There exists an integerl ≥ 1 such that‖x − ½.g−1
n /x½.gn/‖2 < "=2 for

n ≥ l . Moreover, the series

∞∑
n=1

|x.gnhg−1
n /|2

converges. Hence one can find an integerl ′ ≥ l such that|x.gnhg−1
n /| < "=2 for every

n ≥ l ′. Then we have, for anyn ≥ l ′,

|x.h/| = |− .x½.h−1//|
≤ |− .x½.h−1/− x½.gnh−1g−1

n //| + |− .x½.gnh−1g−1
n //|

= |− .x½.h−1//− − .½.g−1
n /x½.gn/½.h

−1//| + |− .x½.gnh−1g−1
n //|

≤ ‖x − ½.g−1
n /x½.gn/‖2 + |x.gnhg−1

n /| < ":
Thusx.h/ = 0.
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3. A strongly singular MASA in L (F)

Let 0 be an icc countable group and let00 be an abelian subgroup of0. When
0 = F , 00 denotes exclusively the cyclic subgroup generated byx0 ∈ F .

Recall from [8] that an abelian von Neumann subalgebraA of a type II1 factorM is
strongly singularif the following inequality is true for every unitary elementu ∈ M :

‖Eu Au∗ − EA‖∞;2 ≥ ‖u − EA.u/‖2;

whereEB denotes the trace-preserving conditional expectation fromM onto the von
Neumann algebraB, and, for� : M → M linear,

‖�‖∞;2 = sup{‖�.x/‖2; ‖x‖ ≤ 1}:
Observe that such an algebra is automatically a MASA ofM . WhenM = L.0/ is a
factor associated to an icc group0 and A = L.00/ where00 is an abelian subgroup
of 0, [8, Lemma 4.1] gives a sufficient condition in order thatA be a strongly singular
MASA in M ; we recall its statement for convenience.

LEMMA 3.1 ([8]). Let0 be an icc group with an abelian subgroup00. Assume that
they satisfy the following condition:

(SS) If g1; : : : ; gm; h1; : : : ; hn ∈0 \00, then there existsg0 ∈00 such thatgi g0hj =∈00

for all i = 1; : : : ;m and all j = 1; : : : ; n.

ThenA = L.00/ is a strongly singular MASA inL.0/.

It turns out that the abelian subgroup00 of F satisfies a stronger condition that will
be also used to prove an ergodic property for the conditional expectation ontoL.00/.

LEMMA 3.2. The pair.00; F/ satisfies the following condition:

(ST) If g1; : : : ; gm; h1; : : : ; hn ∈ F \00, then there exists a finite subsetE of00 such
that gi g0hj =∈ 00 for all i = 1; : : : ;m, all j = 1; : : : ; n and for everyg0 ∈ 00 \ E.

PROOF. Fix g1; : : : ; gm; h1; : : : ; hn ∈ F \ 00. We write gi = x pi

0 g′
i x

−qi

0 andhj =
x

r j

0 h′
j x

−sj

0 for all i; j , wherepi ;qi ; r j andsj are non negative integers, and whereg′
i ; h′

j

all belong toF1 \ {e}, whereF1 is the subgroup ofF generated by{x1; x2; : : :}. It is
the range of the ‘shift map’� : F → F defined by�.xn/ = xn+1 for everyn ≥ 0.
See [1, page 369]. Hencex−k

0 gxk
0 = �k.g/ for every positive integerk and every

g ∈ F1. Using normal forms ofg′
i and h′

j , observe that ifl is a sufficiently large
integer, then�l .g′

i /h
′
j =∈ 00 for all i; j . Thus, ifk > 0 is large enough and if we put

l i; j = k − qi + r j , we getgi xk
0hj = x pi

0 g′
i x

l i; j

0 h′
j x

−sj

0 = x
pi +l i; j

0 �l i; j .g′
i /h

′
j x

−sj

0 , and we
deduce thatgi xk

0hj does not belong to00.
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Whenk = −k′ is negative, we haveg′
i x

−k′
0 h′

j = g′
i�

k′
.h′

j /x
−k′
0 for all i; j , which

gives the same conclusion.

Similarly, it is easy to see that if0 is the free groupFN of rank N ≥ 2 on free
generatorsa1; : : : ; aN and if 00 is the subgroup generated by someai , then the pair
.00; 0/ satisfies condition (ST).

PROPOSITION3.3. Assume that00 is an abelian subgroup of an icc group0 and
that the pair.00; 0/ satisfies condition(ST). SetA = L.00/ and M = L.0/. Then
A is a strongly singular MASA inM and the conditional expectationEA satisfies:

EA.x/ = w − lim
g0→∞

½.g0/x½.g
−1
0 /

for everyx ∈ M.

PROOF. The first assertion follows from Lemma3.1. In order to prove the second
one, fixx andy ∈ M such that{g ∈ 0; x.g/ 6= 0} and{g ∈ 0; y.g/ 6= 0} are finite.
We will prove that there exists a finite subsetE of 00 such that

− .EA.x/y
∗/ = − .½.g0/x½.g

−1
0 /y

∗/

for everyg0 ∈ 00 \ E. We writeC = {g ∈ 0 \ 00; x.g/ 6= 0} andD = {g ∈ 0 \ 00;
y.g/ 6= 0}, which are finite sets, and we decomposex andy asx = EA.x/ + x′ and
y = EA.y/+ y′ so thatx′ = ∑

g∈C x.g/½.g/ andy′ = ∑
g∈D y.g/½.g/ are orthogonal

to A.
It is easy to see that condition (ST) implies the existence of a finite subsetE of 00

such thatg0Cg−1
0 ∩ D = ∅ for everyg0 ∈ 00 \ E. Takeg0 ∈ 00 \ E; since00 is

abelian, we have½.g0/EA.x/½.g
−1
0 / = EA.x/ and similarly fory. Thus

− .½.g0/x½.g
−1
0 /y

∗/ = − .EA.x/y
∗/+ − .½.g0/x

′½.g−1
0 /y

∗/

= − .EA.x/y
∗/+ − .x′EA.y

∗//+ − .x′½.g−1
0 /y

′∗½.g0//

= − .EA.x/y
∗/

since− .x′EA.y∗// = 0 by orthogonality, and

− .x′½.g−1
0 /y

′∗½.g0// = −

( ∑
h;k∈0\00

x.h/y.k/½.hg−1
0 k−1g0/

)

=
∑
h∈C

x.h/y.g0hg−1
0 / = 0

becauseg0Cg−1
0 ∩ D = ∅.
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Our last result aboutL.00/ ⊂ L.F/ is the computation of its Pukanszky invariant
which was suggested to us by G. Robertson. LetA be a MASA of some type II1 factor
M . Denote byA the type I von Neumann algebra generated byA ∪ A′ in the algebra
B.L2.M//, whereA′ is the commutant ofA. The orthogonal projectioneA of L2.M/
onto L2.A/ lies in the centre ofA ′ and the reduced algebraA ′eA is abelian. The
reduced von Neumann algebraA ′.1− eA/ decomposes as a direct sumA ′.1− eA/ =
A ′

n1
⊕A ′

n2
⊕ : : : of homogeneous type Ini algebras, where 1≤ n1 < n2 < · · · ≤ ∞.

Then thePukanszky invariantof the pairA ⊂ M is the set{n1; n2; : : :}.
Let us recall [9, Proposition 3.6] which gives a way to compute Pukanszky invariant

for pairsL.00/ ⊂ L.0/ as above.

PROPOSITION3.4 ([9]). Suppose that00 is an abelian subgroup of an icc group0
such thatL.00/ is a MASA inL.0/. If g−100g ∩ 00 = {e} for everyg ∈ 0 \ 00, then
the Pukanszky invariant of the pairL.00/ ⊂ L.0/ is the set reduced to the numbern
of double classes00g00.

PROPOSITION3.5. The Pukanszky invariant of the pairL.00/ ⊂ L.F/ is {∞}.
PROOF. There exists a homomorphism : F → Z such that .xn/ = 1 for every

n ≥ 0 because the defining relations ofF are homogeneous. If there would exist
g ∈ F \ 00 andk; l ∈ Z such thatgxk

0g−1 = xl
0, then, applying on both sides gives

k = l which can be assumed positive. Let us writeg = x p
0 g′x−q

0 with g′ ∈ F1 \ {e}
as in the proof of Lemma2.4. We would getg′xk

0 = xk
0g′, thus�k.g′/ = g′, but this

would imply thatg′ = e, hence thatg ∈ 00, but this is a contradiction.
Finally, set, for every integern > 0 : gn = x1 · · · xn. Then it is easy to see that the

double classes00gn00 are pairwise distinct.

4. The natural action of F and the associated Krieger factor

Let0 be a group acting (on the left) in a measure class preserving way on a standard
probability space.�;¼/. Recall that thefull group [0] of the action of0 on� is the
group of all automorphismsT of� such thatT! ∈ 0! for ¼-a.e.! ∈ �. We also set

[0]0 = {T ∈ [0]; ¼ ◦ T = ¼};
which is the subgroup of elements of[0] that preserve¼. Theratio setof the action
of 0 on� is the setr .0/ of all numbers½ ≥ 0 such that, for every" > 0 and for
every Borel subsetA with positive measure, there exists a subsetB of A with positive
measure andg ∈ 0 such thatgB ⊂ A and∣∣∣∣d¼ ◦ g

d¼
.!/− ½

∣∣∣∣ < " ∀! ∈ B:
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Thenr .0/ is a closed subset of[0;∞/ and r .0/ \ {0} is a closed subgroup of the
multiplicative groupR∗

+. Moreover, one has:r .0/ = r .[0]/.
We consider here the natural action ofF on the interval[0; 1] gifted with Lebesgue

measure¼. Our goal is to prove that the action ofF is ergodic and to compute its
ratio set.

PROPOSITION4.1. The action ofF on [0; 1] is ergodic and its ratio set is

r .F/ = {0} ∪ {2k; k ∈ Z}:

Let RF be the equivalence relation on[0; 1] defined by the action ofF : if s; t ∈
[0; 1], then the pair.s; t/ belongs toRF if and only if s and t are in the sameF-
orbit. Let M.RF/ be the associated Feldman-Moore factor [5]; it generalizes the
group measure space construction of Murray and von Neumann for not necessarily
free actions. Then the next result follows immediately from Proposition4.1and from
[5, Proposition 2.11].

COROLLARY 4.2. M.RF/ is a factor of typeIII 1=2.

The proof of Proposition4.1 is inspired by [4, Section 2].
Let K be the following group of bijections of[0; 1] : a bijection' from [0; 1] to

itself belongs toK if and only if there exists a partition 0< a1 < · · · < an < 1 of
[0; 1] into dyadic rational numbers such that

(K1) '.t/ = t for everyt ∈ [0; a1/ ∪ [an; 1];
(K2) for every 1≤ j ≤ n − 1, there exists a dyadic rational numberÞ j such that
'.t/ = t + Þ j for everyt ∈ [aj ; aj +1/.

LEMMA 4.3. K is a subgroup of[F]0. In particular,¼ ◦ ' = ¼ for every' ∈ K .

PROOF. It suffices to prove that, ifa; b andÞ are rational dyadic numbers such that
0 < a < b < 1 and 0< a + Þ < b + Þ < 1, then there existsf ∈ F such that
f .t/ = t + Þ for everya ≤ t < b. We apply Lemma1.2 with a1 = a, a2 = b and
b1 = a + Þ, b2 = b + Þ (anda0 = b0 = 0, a3 = b3 = 1): there existsg ∈ F such that
g.aj / = bj for j = 0; : : : ; 3. If g.t/ = t +Þ for t ∈ [a; b/, then setf = g. If not, set
f .t/ = g.t/ for t ∈ [0; a/∪ [b; 1] and f .t/ = t + Þ for a ≤ t < b. Then f ∈ F .

PROOF OFPROPOSITION4.1. In order to prove that the action ofF is ergodic, it
suffices to show that the action ofK is. Indeed, Lemma4.3 implies thus that the
action of the full group[F] is ergodic, and [4, Lemma 2.8] applies to show that the
action ofF is, too. We argue as in the proof of [4, Lemma 2.1]. Thus, letX0 ⊂ [0; 1]
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be a Borel set such that'X0 = X0 for every' ∈ K and that¼.X0/ > 0. Define a
measure¹ on [0; 1] by

¹.B/ = ¼.B ∩ X0/

¼.X0/

for every Borel setB. We have for every' ∈ K and every Borel setB

¹.'B/ = ¼..'B/ ∩ X0/

¼.X0/
= ¼.B ∩ '−1X0/

¼.X0/

≤ ¼.B ∩ X0/

¼.X0/
+ ¼.B ∩ .'−1X0 \ X0//

¼.X0/

= ¼.B ∩ X0/

¼.X0/
= ¹.B/:

Hence¹.'B/ = ¹.B/ for every'. In particular, one has¹.[a+Þ; b+Þ// = ¹.[a; b//
for all dyadic rational numbersa; b andÞ such that[a; b] ∪ [a + Þ; b + Þ] ⊂ [0; 1],
and this gives

¹

([
l

2n
;

l + 1

2n

))
= 1

2n

for every positive integern and every integer 0≤ l ≤ n. Uniqueness of¼ implies that
¹ = ¼, and that¼.X0/ = 1. This proves ergodicity of the action ofK .

It remains to computer .F/. Denote by0 the group generated byF andK . One
has[0] = [F], sinceK ⊂ [F], andr .0/ = r .F/.

As .d¼ ◦ g/.t/=d¼ ∈ {2k; k ∈ Z} for ¼-a.e.t ∈ [0; 1] and for everyg ∈ F , one
hasr .F/ ⊂ {0} ∪ {2k; k ∈ Z}. As r .F/ is closed, the proof will be complete if we
show that 2k ∈ r .F/ for every integerk. Then fix such ak and chooseg ∈ F and
dyadic rational numbers 0< a < b < 1 such that

d¼ ◦ g

d¼
.t/ = dg

dt
.t/ = 2k

for every t ∈ .a; b/. Let A ⊂ [0; 1] be a Borel set with positive measure. As the
action ofK is ergodic, there exist' and ∈ K such that the Borel set

B = {t ∈ A;  .t/ ∈ .a; b/ and'g .t/ ∈ A}
has positive measure (see the proof of [4, Proposition 3.3]). Seth = 'g ∈ 0. One
hasB ∪ h B ⊂ A and

d¼ ◦ h

d¼
.t/ = d¼ ◦ g

d¼
. .t// = 2k

for everyt ∈ B since .t/ ∈ .a; b/. Hence 2k ∈ r .F/.
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REMARK. In fact, condition (K1) shows thatK is a subgroup of the full group of
the commutator subgroupF ′. Hence the latter acts ergodically on[0; 1] as well, and it
has the same ratio set asF . However, it gives the same equivalence relation on[0; 1],
and thus the same factorM.RF/.
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