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Abstract

A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness
condition. We describe several cyclic grading of the modular Hamiltonian Lie algebrasH.2: n;!2/ (of
dimension one less than a power ofp) from which we construct infinite-dimensional thin Lie algebras. In
the process we provide an explicit identification ofH.2: n;!2/ with a Block algebra. We also compute
its second cohomology group and its derivation algebra (in arbitrary prime characteristic).
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1. Introduction

In the last three decades the interest of researchers in finitep-groups has increasingly
extended to pro-p-groups. This trend was initiated by Leedham-Green and Newman
in 1980, who proposed in [45] one way of getting around the universally believed
impossibility of a classification ofp-groups up to isomorphism. One of their intuitions
was that of using thecoclassrather than the (nilpotency) class ofp-group as a
fundamental invariant. Since the coclass of a group of orderpn is defined as the
difference betweenn and the class of the group, this change has no real effect unless
one focuses on families ofp-groups rather than singlep-groups. A special role is
then played by pro-p-groups, to which the definition of coclass extends naturally, and
which represent entire families of finitep-groups as the sets of their finite quotients.
In particular, having finite coclass for a pro-p-groupG means that all lower central
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quotients
i .G/=
i +1.G/ have order at mostp from some point on. The fivecoclass
conjecturesadvanced in [45] are now theorems thanks to the efforts of several authors,
culminating in [42] and [51]. They give information on pro-p-groups of finite coclass
(Conjecture C, the simplest to state, claiming that every pro-p-group of finite coclass
is soluble), but also asymptotic information on families of finitep-groups of fixed
coclass.

Lie-theoretic methods occupy an important place in the theory ofp-groups, and
also in the proofs of the coclass conjectures. The oldest and simplest such method
is associating the graded Lie ring

⊕∞
i =1 
i .G/=
i +1.G/ with the lower central series

of a (pro-)p-group. In many interesting cases the Lie ring is actually a Lie algebra
over the field ofp elementsFp. This approach was already present in disguise in the
pioneering work of Blackburn onp-groups of coclass one (better known asp-groups
of maximal class) and the subsequent work of Leedham-Green and McKay (see [43]
and the references therein), which inspired the formulation of the coclass conjectures.
Lie rings or algebras associated with pro-p-groups in this way are graded over the
positive integers, and are generated by their component of degree one. The coclass
conjectures have natural analogues for graded Lie algebras over an arbitrary field
defined by these properties, independently of the connection with pro-p-groups, but
in this new context all the conjectures turn out to be false. This already occurs in
the simplest case of coclass one, as Shalev constructed in [50] the first examples of
insoluble graded Lie algebras of maximal class. Here, by a graded Lie algebra of
maximal class we mean a Lie algebraL which is graded over the positive integers,

L =
∞⊕

k=1

Lk;(1.1)

whereL1 has dimension 2,Lk has dimension 1 fork > 1, andLk+1 = [Lk; L1] for all
k ≥ 1.

Shalev’s construction starts from certain finite-dimensional simple modular Lie
algebras, originally introduced by Albert and Frank [1], and applies aloop algebra
construction (strictly speaking, taking the positive part of a twisted loop algebra, see
Subsection5.1 for details). As a consequence, the resulting graded Lie algebras of
maximal class, despite being insoluble, have a kind of periodic structure, in a precise
sense. Therefore, one could still hope that each of them is uniquely determined by a
suitable finite-dimensional quotient, as is the case with pro-p-groups of finite coclass
(because eachp-group of finite coclassr and class large enough, depending onp
andr , is a quotient of a unique infinite pro-p-group of coclassr ). The investigation
carried out in [22] showed that this is not the case. In fact, it turned out that most
graded Lie algebras of maximal class are not periodic. Nevertheless, Shalev’s algebras
occupy a unique place in the description of the graded Lie algebras of maximal class
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over fields of odd characteristic, which have been completely classified in [24]. An
analogous classification over fields of characteristic two will soon appear in [33].

After the coclass conjectures for pro-p-groups were proved, other invariants have
been suggested, which may possibly lead to a finer classification ofp-groups than the
rough one provided by the coclass theorems. We do not need the precise definitions
of these invariants, which are calledwidth, obliquity and rank, and we refer the
interested reader to Chapter 12 of the book [44] by Leedham-Green and McKay.
The simplest nontrivial case in terms of these invariants consists of the pro-p-groups
of width two and obliquity zero. These groups, which do not have finite coclass
in general, have also been given the namethin in [15, 14] (originally in the finite
case) because of a narrowness characterization in terms of their lattice of (closed)
normal subgroups. Some of our terminology, like thediamondsintroduced in the next
paragraph, originates from that point of view.

An approach to thin groups via the associated graded Lie algebra was taken in [23].
The lower central factors in a thin group are elementary abelian of rank at most two.
Those of rank two, in the group or in its associated graded Lie algebra, are called
diamonds. There is of course a diamondG=
2.G/ on top of a thin groupG, and if this
is the only diamond thenG has maximal class. Otherwise, it follows from the theory
of p-groups of maximal class that in a thin group the second diamond occurs in class
at mostp. In [23] we proved that the associated Lie algebra has bounded dimension,
except when the second diamond occurs in class (or degree) 3, 5 orp. Each of
these cases occurs for certain infinite pro-p-groups, bothp-adic analytic and not. For
example, Sylow pro-p-subgroups of SL.2;Zp/ or SL.2; Fp[[t]]/, or certain ‘nonsplit’
versions of them, are thin pro-p-groups with second diamond in class 3. A detailed
description of these groups in thep-adic analytic cases is given in [44, Section 12.2].
Thin pro-p-groups with second diamond in class 5 can be realized similarly starting
with certain linear groups of typeA2 over local fields, see [36] or [47]. Finally, the
second diamond in classp occurs for one of the wildest known pro-p-groups, the
Nottingham group (which is thin forp > 2), described in [44, Section 12.4], for
example.

A crucial fact for the investigation carried out in [23] was that the condition of
a pro-p-groupG having obliquity zero can be verified on the associated graded Lie
ring, which in this case is a Lie algebra overFp. In this context a more convenient
formulation of the condition is thecovering property. A graded Lie algebraL as
in (1.1), over an arbitrary field and thus not necessarily associated with a group, is
calledthin if L1 has dimension 2 and the followingcovering propertyholds:

for all k ≥ 1, and all u ∈ Lk, with u 6= 0, we haveLk+1 = [u; L1].(1.2)

It follows that L is generated byL1 as a Lie algebra and that all homogeneous
components have dimension at most two. (See Definition5.4and the comments that
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follow for more details.) The arguments of [23] have been extended in [4, 20] to
show that the second diamond in an infinite-dimensional thin Lie algebra (or one of
finite dimension large enough) can only occur in degree 3, 5,q or 2q − 1, for some
powerq of the characteristicp of the underlying field. It follows from [23] that there
are, up to isomorphism and with the possible exception of very small characteristics,
one or two (depending on the ground field) infinite-dimensional thin Lie algebras
with second diamond in degree 3 and no diamond in degree 4, and one with second
diamond in degree 5. Thus, they are the graded Lie algebras associated with some
of the thin pro-p-groups mentioned earlier. Machine computations have shown that
each of the cases where the second diamond is in degreeq or 2q − 1 splits into a
number of subcases, depending on the location of the further diamonds and theirtypes
(see Subsection5.2). Several of these subcases have been investigated in various
papers, having in mind a classification of all infinite-dimensional thin Lie algebras
as a distant goal. We refer to the paper [21], and to the references mentioned there,
for a discussion of thin Lie algebras with second diamond in degreeq, and to [20, 5]
for those with second diamond in degree 2q − 1. Here we restrict ourselves to some
general and informal comments on the type of results which have been proved so far.

The results in this subject typically come in pairs, of rather different flavour:
namely, a uniqueness theorem and an existence theorem. The former states that
a certain initial structure of an infinite-dimensional thin Lie algebra (formulated in
terms of the location of the first few diamonds and theirtypes), determines the algebra
completely (within the class of thin Lie algebras). More precisely, a certain specified
finite-dimensional thin Lie algebra is a quotient of a unique infinite-dimensional
thin Lie algebraL. This is proved by producing a finite presentation for a central
extensionM (broadly speaking, the universal central extension ofL). UsuallyL itself
is not finitely presented, see Remark5.2 for a specific instance of this phenomenon.
The existence result consists in the explicit construction ofL, as a loop algebra of
some finite-dimensional Lie algebraS, with respect to a suitable cyclic grading, and
sometimes with the intervention of an outer derivation ofS.

The latter type of result brings in an interesting connection with (usually simple)
finite-dimensional modular Lie algebras, certain cyclic gradings of them, and their
derivations. Their second cohomology group (with values in the trivial module) also
plays a role, being closely related with the centre ofM . Apart from the classical
algebras of typesA1 andA2 used in the construction of thin Lie algebras with second
diamond in degree 3 and 5 (see [17, 23]), all the remaining cases involve (non-
classical) simple modular Lie algebras of Cartan type, namely Zassenhaus algebras
and Hamiltonian algebras of various types. We recall the definitions of these algebras
in Sections2 and 3, and point out in Remark3.1 other notations in use for them.
In particular, infinite-dimensional thin Lie algebras with second diamond in degreeq
have been constructed as loop algebras of Zassenhaus algebras (which have dimension
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a power ofp, see [16, 17, 18]), and Hamiltonian algebras of the typesH.2 : n;!0/ =
H.2 : n/ (the graded simple Hamiltonian algebras, of dimension two less than a
power ofp, see [3]) andH.2 : n;!1/ (which are Albert-Zassenhaus algebras and have
dimension a power ofp, see [6]).

A preliminary version of the present paper, which predated and inspired some of
the other papers cited here, had as its main goal the construction of some infinite-
dimensional thin Lie algebras with second diamond in degree 2q − 1 as loop algebras
of Hamiltonian algebrasH.2 : n;!2/, which have dimension one less than a power of
p. (In fact, a construction for those thin Lie algebras had already been given in [20],
but as loop algebras of certain finite-dimensional Lie algebras defined ‘ad hoc’.) The
paper has somehow expanded after we have realised that some of our result may be
of interest independently of their application to thin Lie algebras.

Now we describe the contents of this paper in some detail. Our results are presented
in Sections4–8. Sections2 and 3 are expository and include information on low
characteristics which is not easily accessible in the literature. Since much motivation
for studying Lie algebras of maximal class and related classes of ‘narrow’ Lie algebras
like thin Lie algebras comes from analogous classes of (pro-)p-groups, we have written
the expository sections with the aim of making the paper accessible to the group theorist
with little knowledge of modular Lie algebras.

We have mentioned earlier the relevance of the second cohomology group (with
values in the trivial module) of a finite-dimensional Lie algebra with presentations
of the corresponding loop algebra. Therefore, we determine in Section4 the second
cohomology group of the algebrasH.2: n;!2/. We do this according to the classical
method used in Farnsteiner [29], which relates the group to the derivations of the
algebra, exploiting the presence of a nonsingular associative form. The result is surely
well known to experts, but we have been unable to find a suitable reference in the
literature. We have also collected in Section4 known information about derivations
and the second cohomology group ofH.2: n;!0/, in all positive characteristics.

In Section5, we show how various cyclic gradings ofH.2 : n;!2/ way, and how
they relate to graded Lie algebras of maximal class and to certain thin algebras closely
connected to them, which were also studied in [20]. Note that H.2 : n;!2/ has
a natural filtration, thestandardfiltration, inherited by the naturalZ-grading of the
divided power algebra on which it acts. The filtration is not induced by a grading,
however, in contrast toH.2 : n;!0/, which is agradedLie algebra of Cartan type.
(Hence the cheap pun in the title.)

The first manifestation of a connection between ‘narrow’ infinite-dimensional
graded Lie algebras and certain finite-dimensional simple Lie algebras was in Shalev’s
construction in [50] of insoluble graded Lie algebras of maximal class, which we have
mentioned earlier. The finite-dimensional simple algebras of Albert and Frank used
by Shalev belong to the larger class of Block algebras, introduced in [11]. It is known
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that Block algebras are Lie algebras of Hamiltonian Cartan type and, in particular, that
the algebras of Albert and Frank are Hamiltonian algebrasH.2: n;!2/, at least for
p > 3. (We discuss this further and provide appropriate references towards the end
of Section3.) In Theorem6.1 we give an explicit isomorphism of the Hamiltonian
algebrasH.2: n;!2/ with the algebras of Albert and Frank which is valid in every
positive characteristic.

The crucial property of the algebras of Albert and Frank exploited by Shalev
in [50] is that they admit a cyclic grading with one-dimensional components, and
a nonsingular derivation which permutes them transitively. Benkart, Kostrikin and
Kuznetsov proved in [7] and [39] that the only finite-dimensional simple Lie algebras
with this property, over an algebraically closed field of characteristicp > 7, are the
Hamiltonian algebrasH.2: n;!2/. The proof rests on the classification of simple
modular Lie algebras, which causes the restriction onp, but now a classification-free
proof of this result forp > 2 is a consequence of [24]. A more thorough discussion,
which includes the case of characteristic two, will be found in Section6. The cyclic
grading of H.2: n;!2/ and the nonsingular derivation are also the ingredients for
discovering the isomorphism with a Block algebra exhibited in Theorem6.1.

The determination of the second cohomology group ofH.2: n;!2/ in Section4
depends on a knowledge of its derivation algebra. Since this piece of information
is not easily available in low characteristics, we fill this gap by exploiting the other
incarnation ofH.2: n;!2/, as originally defined by Albert and Frank. Thus, in
Theorem6.2 we compute the derivation algebra of the algebras of Albert and Frank
in arbitrary positive characteristic, by suitably modifying Block’s original proof [11],
which was valid forp > 3 only (although for a larger class of algebras).

In [20] we constructed various thin Lie algebras with second diamond in degree
2q − 1. One can assign atypeto each diamond of such algebras, taking values in the
underlying field plus∞, in such a way that the locations and types of the diamonds
determine the isomorphism type of the algebra (see Subsection5.2 for more details).
The thin Lie algebras with all diamonds of type∞ turn out to be closely connected
with graded Lie algebras of maximal class. In particular, there is such a thin Lie
algebra associated with each of the graded Lie algebras of maximal class constructed
by Shalev in [50]. We describe that in Subsection5.2as a loop algebra ofH.2: n;!2/

with respect to a suitable grading. In [20] we also constructed thin Lie algebras with
second diamond in degree 2q − 1 and all diamonds of finite types, as loop algebras
of certain Block algebras. The Block algebras used in [20] are actually isomorphic
with algebras of Albert and Frank (being simple Block algebras withG = G0, see
Section3, and according to known results, for example [13, Lemma 1.8.3]), but
were presented there in a different basis. As we have mentioned earlier, the original
motivation for the present paper was finding an explicit identification of those algebras
with Hamiltonian algebrasH.2 : n;!2/ and describing a corresponding cyclic grading
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of the latter. We realize these two tasks in Sections8 and7, respectively. We should
mention that coexistence of diamonds of both finite and infinite types is possible in
the same thin Lie algebra. Such algebras are constructed in [5], as loop algebras of
Hamiltonian algebrasH.2 : n;!2/ with respect to yet another grading.

2. Generalities about some Lie algebras of Cartan type

The Hamiltonian Lie algebras form one of the four families of Lie algebras of
Cartan typeW, S, H , K . Definitions of these families can be found in the recent
book of Strade [57]. Here we will limit ourselves to a discussion of the general Lie
algebra of Cartan typeW.m : n/, with a special attention for the Zassenhaus algebra
W.1 : n/, and of two types of Hamiltonian algebras in the next section.

Let F be a field of prime characteristicp, let n = .n1; : : : ; nm/ be anm-tuple of
positive integers, and putn = n1+· · ·+nm. The algebra ofmdivided powers truncated
atn, denoted byF[x1; : : : ; xm; n1; : : : ; nm] orF[m : n] for brevity, is theF-vector space
of formal F-linear combinations of monomialsx.i1/

1 · · · x.im/
m with 0 ≤ i j < pnj , with

multiplication defined byx.k/j x.l /j = (
k+l

k

)
x.k+l /

j , and extended by linearity and by
postulating commutativity and associativity of the multiplication.

Note that, as an algebra,F[m : n] is determined up to isomorphism by its dimension
pn, wheren = n1 + · · · + nm. In fact, it coincides (up to notation) with the free

associative and commutative algebra on the generatorsx.p
kj /

j , for 0 ≤ j ≤ m, 0 ≤
kj < nj , subject to the lawx p = 0 (that is, withF[x1; : : : ; xn]=.xp

1 ; : : : ; xp
n /); this is

easily seen by using Lucas’ theorem [46] to compute the binomial coefficient
(k+l

k

)
.

In particular, a derivation ofF[m : n] can be defined by sending the given free
generators to arbitrarily chosen elements ofF[m : n] and extending by the Leibniz
rule; furthermore, every derivation is obtained in this way.

However,F[m : n] comes equipped with an additional structure, namely a set of
divided power maps, which tie the variousp-(divided) powers of the same variable
together [35]. We will not need to know any detail about the divided power maps,
except that the definition ofspecialderivations given in [35] or [58] singles out exactly
those derivations ofF[m : n] which are compatible with the divided power maps in a
natural sense. It turns out that the special derivations ofF[m : n] are those of the form
D = f1 @=@x1 + · · · + fm @=@xm with f j ∈ F[m : n], thus acting asDx.k/j = f j x

.k−1/
j

(wherex.−1/
j = 0).

The Lie algebra of special derivations ofF[m : n] (which coincides with the full
derivation algebra ofF[m : n] only whenn1 = · · · = nm = 1) is denoted byW.m : n/
and is called thegeneral Lie algebra of Cartan type(or generalized Jacobson-Witt
algebra). It is simple of dimensionmpn, unlessm = 1 andp = 2. A grading ofW.m :
n/ overZm is inherited from the naturalZm-grading ofF[m : n], but it is the grading
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of F[m : n] given by total degree of monomials which induces the most important
grading ofW.m : n/, called thestandard grading:W.m : n/ = ⊕r

i =−1 Li , whereLi

is the subspace spanned by the derivationsx.i1/

1 · · · x.im/
m @=@xj with i1+· · ·+ im = i +1

and j = 1; : : : ;m (wherer = pn1 + · · · + pnm − m − 1).

REMARK 2.1. What we have described is the unique generalized Jacobson-Witt
algebra, for fixedm and n, provided the fieldF is algebraically closed; since we
have takenF arbitrary of prime characteristic,W.m : n/ is just one of possibly many
F-forms of the generalized Jacobson-Witt algebra, see [60], for example. A similar
proviso applies to the Hamiltonian algebras which we will describe in the next section,
see [49] for a determination of the forms in the restricted case.

In this paper, we will actually only need the Zassenhaus algebrasW.1 : n/, as
they occur as distinguished subalgebras of the Hamiltonian algebras which we will
consider. In this case, the components of the standard grading are one-dimensional,Li

being generated byEi = x.i +1/d=dx, for i = −1; : : : ; r (wherer = pn − 2). Direct
computation shows that

[Ei ; Ej ] =
((

i + j + 1

j

)
−

(
i + j + 1

i

))
Ei + j :

In particular, we have[E−1; Ej ] = Ej −1, and[E0; Ej ] = j E j .
The Zassenhaus algebra has also a grading over (the additive group of)Fpn , with

graded basis consisting of the elementseÞ, for Þ ∈ Fpn , which satisfy

[eÞ; eþ] = .þ − Þ/eÞ+þ:

In particular, note that[e0; eÞ] = ÞeÞ. The bases{Ei } and{eÞ} of W.1;n/ are some-
times referred to in the literature (at least whenn = 1) as aproper basisand agroup
basis, respectively. One way to obtain the group basis from the proper basis is noting
thatE−1+ Er spans a Cartan subalgebra ofW.1;n/, and computing the corresponding
Cartan decomposition. Since ad.E−1+Er /permutesEr −1; Er −2; : : : E1; E0; E−1+2Er

cyclically, one quickly finds the formulas{
e0 = E−1 + Er

eÞ = Er + ∑r
i =−1Þ

i +1Ei for Þ ∈ F∗
pn;

wherer = pn − 2. Note that the first formula is a special case of the second formula
if we stipulate that 00 = 1.

The inverse formulas are{
E−1 = e0 + ∑

Þ
eÞ

Ei = − ∑
Þ
Þr −i eÞ for i = 0; : : : ; r ;
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where the summations are forÞ ∈ Fpn , and again for the casei = r we understand
Þ0 = 1 for anyÞ ∈ Fpn , whenceEr = − ∑

Þ eÞ.
We note in passing that the Zassenhaus algebra is not simple whenp = 2, but has

a unique non-trivial ideal, namely〈Ei | i 6= r 〉 = 〈eÞ | Þ 6= 0〉, which we will refer to
asthe simple Zassenhaus algebra. The above transition formulas are clearly valid in
this case, too. As we will point out in the next section, a simple Zassenhaus algebra
in characteristic two can also be regarded as a Hamiltonian algebra (and, in turn, as a
Block algebra).

Since the problem of inverting formulas similar to those which relate the bases
{eÞ} and{Ei } of the Zassenhaus algebra will occur repeatedly in this paper, we record
the solution explicitly. To simplify notation and computations it will be useful to set
00 = 1 once and for all. The customary rulesÞiþ i = .Þþ/i andÞiÞ j = Þi + j now hold
for Þ; þ in a field andi; j non-negative integers. Note that with this convention the
expression

∑
Þ∈Fq

Þ j , whereFq is the finite field ofq elements, becomes meaningful
for every non-negative integerj ; its value is−1 if j is a positive multiple ofq − 1,
and 0 otherwise.

LEMMA 2.2. The linear relationsaÞ = ∑q−1
j =0 Þ

j bj , for Þ ∈ Fq, between elements
aÞ .Þ ∈ Fq/ andbj . j = 0; : : : ;q − 1/ of any vector space overFq, are equivalent to
the relations {

b0 = a0;

bj = − ∑
Þ∈Fq

Þq−1− j aÞ; for j = 1; : : : ;q − 1.

PROOF. If ! is a primitiven-th root of unity in any field, then the sets of formulas

ai =
n∑

j =1

!i j bj and bj = 1

n

n∑
i =1

!−i j ai ;

relating subsets{ai | i = 1; : : : ; n} and{bj | j = 1; : : : ; n} of any vector space over
that field, are inverse of each other. This is an instance of a Fourier transform and its
inverse over a cyclic group of ordern, and can be easily proved using the fact that∑n

j =1!
i j equalsn if i is a multiple ofn, and 0 otherwise.

In particular, taking as! a generator ofF∗
q, we obtain that the sets of formulas

aÞ =
q−1∑
j =1

Þ j bj and bj = −
∑
Þ∈F∗

q

Þ− j aÞ;

which relate elementsaÞ (Þ ∈ Fq) andbj ( j = 0; : : : ; q − 1) of any vector space
overFq, are inverse of each other.
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Now consider the formulasaÞ = ∑q−1
j =0 Þ

j bj for Þ ∈ Fq, note that one of them is

a0 = b0, and write the remaining ones in the formaÞ − a0 = ∑q−1
j =1 Þ

j bj . As we have
seen above, these formulas can be inverted, and yield

bj = −
∑
Þ∈F∗

q

Þ− j .aÞ − a0/ = −Ž j;q−1 a0 −
∑
Þ∈F∗

q

Þ− j aÞ = −
∑
Þ∈Fq

Þq−1− j aÞ;

for j = 1; : : : ; q − 1.

3. Hamiltonian algebras and Block algebras

The Lie algebras of Cartan typeS, H and K are defined as subalgebras of the
generalized Jacobson-Witt algebraW.m : n/, and depend on a choice of a certain
differential form! (or, equivalently, of a certain automorphism ofW.m : n/). For this
to make sense in general one must complete the algebra of divided powersF[m : n] to
an algebra of divided power series. However, this will not be necessary to define the
only Hamiltonian algebras which we will consider in this paper, namelyH.2 : n;! j /

for j = 0 or 2. Note that the Hamiltonian algebras in two variables can also be
considered as belonging to the Cartan series of special algebras (and thus be denoted
by S.2 : n;! j /). A rather condensed description of all four classes of Lie algebras
of Cartan type, but complete with all the relevant references, can be found in [7], to
which we also conform our notation. (See Remark3.1concerning our notation.) For
a more extensive discussion see [57].

As in the previous section, we assume only thatF is a field of prime character-
istic p, and point out which statements need restrictions onF as we go along. Let
F[2 : n] = F[x; y; n1; n2] be the algebra of divided powers in two variablesx; y of
heightsn = .n1; n2/. It will be convenient to put̄x = x.p

n1−1/, ȳ = y.p
n2−1/, and

e = x̄ ȳ. ThenH.2 : n;! j / can be defined as the second derived algebra of

H̃ .2 : n;! j / = {D ∈ W.2 : n/ | D! j = 0};
where!0 = dx ∧ dy and!2 = .1 − e/ dx ∧ dy. Note that the (formal) differential
forms here are simply elements of the exterior algebra on the set{dx; dy} overF[2 : n].
In particular, the space of differential 2-forms is the freeF[2 : n]-module on the basis
{dx ∧ dy}, and is aW.2 : n/-module via

D. f dx ∧ dy/ = .D f / dx ∧ dy + f d.Dx/ ∧ dy + f dx ∧ d.Dy/

for D ∈ W.2 : n/, whered f = .@ f=@x/ dx + .@ f=@y/ dy. When dealing with
derivations ofH.2 : n;! j / it will be useful to consider the larger algebra

CH̃ .2 : n;! j / = {D ∈ W.2 : n/ | D! j = c! j ; c ∈ F};
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which containsH̃ .2 : n;! j / as an ideal of codimension one and zero forj = 0; 2,
respectively.

REMARK 3.1. We should mention that the notation for the Lie algebras of Cartan
type is not uniform in the literature. In particular,H.−/ sometimes denotes what we
have indicated withH̃ .−/ here, and so one has to take the (first or) second derived
algebraH.−/.2/ to obtain the simple algebra. Furthermore, special, Hamiltonian and
contact algebras can also be obtained as subalgebras of the generalized Jacobson-
Witt algebra (on an algebra of divided power series, in general) by means of certain
automorphisms8, instead of differential forms!. For example, ourH.2 : n;!0/

and H.2 : n;!2/ are denoted byH.2;n/.2/ = H.2;n; id/.2/ and H.2;n;8.−//.1/ in
the book [57], and similarly in many papers. We also note that, strictly speaking, the
notationH.2 : n;!i / which we use here would be only justified when working over
an algebraically closed field (and of characteristic large enough). This is because only
in that case it can be shown that any form! defining a Hamiltonian algebra can be
assumed to have certain specific forms!0,!1,!2 (see [7] and the reference therein for
the most general results, but [61, Corollary 2] suffices for the Hamiltonian algebras
H.2 : n;!i / under consideration here). Whenever we considerH.2 : n;!i / over an
arbitrary field in this paper, we refer to the specific form defined above.

Since the space of differential 2-forms onF[2 : n] has a natural structure of graded
module for theZ2-graded Lie algebraW.2 : n/, and!0 is a homogeneous element
with respect to this grading,̃H .2 : n;!0/ andCH̃.2 : n;!0/ are graded subalgebras of
W.2 : n/with respect to theZ2-grading. In particular, they are also graded subalgebras
with respect to the standard grading ofW.2 : n/, and thus they acquire what is called
their standard grading. They are usually referred to as thegradedLie algebras of
Hamiltonian type, in contrast to their relatives with respect to forms of type!1 and!2,
which are onlyfiltered.

Thus, in determining an explicit expression for the generic elementD of these
subalgebras one may assume thatD is homogeneous with respect to theZ2-grading
of W.2 : n/. A simple computation as in [40, pages 255–257], or [58, page 162ff.]
(where the assumption thatp > 2 is not used before Theorem 4.5) shows thatH̃.2 :
n;!0/ consists of the derivations ofF[2 : n] of the formDH. f / = fy@=@x − fx@=@y
for some f ∈ P̃.2 : n;!0/ = F[2 : n] ⊕ 〈x.pn1 /; y.p

n2/〉 (where fx and fy stand for
@ f=@x and@ f=@y, respectively), and thatCH̃ .2 : n;!0/ = H̃.2 : n;!0/⊕ 〈x@=@x〉.
The latter can be written in the more symmetric form̃H .2 : n;!0/⊕〈x@=@x + y@=@y〉
if p > 2. Since

[DH . f /;DH.g/] = . fygx − fxgy/y
@

@x
− . fygx − fxgy/x

@

@y

= DH .DH . f /.g//;
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the mapDH is a homomorphism from thẽH .2 : n;!0/-moduleP̃.2 : n;!0/ onto the
adjoint module forH̃ .2 : n;!0/, with kernel〈1〉. The associative (and commutative)
algebraP̃.2 : n;!0/ can be endowed with an additional structure of Lie algebra with
respect to thePoisson bracket{ f; g} = DH . f /.g/ = fygx − fxgy, and the mapDH

yields a Lie algebra isomorphism from̃P.2 : n;!0/=〈1〉 onto H̃ .2 : n;!0/. (Note that
our notation for the mapDH and, consequently, for the Poisson bracket, differs in sign
from that of [58], and agrees with [37] or [8] instead.) Under this isomorphism, the
second derived subalgebraH.2 : n;!0/ of H̃.2 : n;!0/ corresponds to the subalgebra

P.2 : n;!0/=〈1〉 = 〈
x.i /y. j / ∈ F[2 : n] | x.i /y. j / 6= e

〉
=〈1〉;

of dimensionpn − 2, wheren = n1 + n2. This is a simple Lie algebra ifp > 2,
see [40] or [58]. In characteristic two it is simple providedn1 > 1 andn2 > 1, as
one can prove along the lines of [58, Theorem 3.5 or Theorem 4.5 of Chapter 4].
However,P.2 : .1; n2/;!0/=〈1〉 has〈y. j / | 0 ≤ j < 2n2〉=〈1〉 as an ideal. In fact, it is
the split extension of a simple Zassenhaus algebra by its adjoint module. It can also
be viewed as the tensor product of a simple Zassenhaus algebra with the algebra of
divided powersF[z : 1].

Since the Lie algebra homomorphismDH is also a homomorphism of̃H .2 :
n;!0/-modules, the action of adDH. f / as an inner derivation of the Lie algebra
structure ofP̃.2 : n;!0/ coincides with the action ofDH . f / as a derivation of the
associative algebra structure ofP̃.2 : n;!0/. This will be useful when computing
with derivations ofH.2 : n;!0/ in Sections4 and5. For this reason we will simply
regardDH . f / as a derivation of the Lie algebrãH .2 : n;!0/ (rather than the more
cumbersome notation adDH . f /). A word of caution, however: this does not extend
to derivations ofP̃.2 : n;!0/which are not inner. In fact,DH is not a homomorphism
of CH̃ .2 : n;!0/-modules, because[D;DH .x.i /y. j //] = .i + j −2/DH.x.i /y. j //while
D.x.i /y. j // = .i + j /x.i /y. j /, for D = x @=@x + y @=@y.

In this paper, we will find convenient to always talk aboutH̃.2 : n;!0/ while
actually carrying out explicit computations insidẽP.2 : n;!0/=〈1〉 with the Poisson
bracket (and similarly forH̃ .2 : n;!2/, later). Writingx.i /y. j / for x.i /y. j / + 〈1〉, we
have

{x.i /y. j /; x.k/y.l /} = x.i /y. j −1/x.k−1/y.l / − x.i −1/y. j /x.k/y.l−1/

= N.i; j ; k; l / x.i +k−1/y. j +l−1/;

where

N.i; j ; k; l / =
(

i + k − 1

i

)(
j + l − 1

j − 1

)
−

(
i + k − 1

i − 1

)(
j + l − 1

j

)
:

TheZ2-grading ofL = H̃ .2 : n;!0/ is L = ⊕
.i; j /∈Z2 Li; j , whereLi; j = 〈x.i +1/y. j +1/〉

in the Poisson bracket notation, and the standard grading isL = ⊕
k∈Z L̄k, where
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L̄k = ∑
i + j =k Li; j consists of all homogeneous polynomials of degreek + 2. Note

that L̄k is trivial unless−1 ≤ k ≤ pn1 + pn2 − 4 (or unless−1 ≤ k ≤ pn1 + pn2 − 5,
if we restrict our attention toH.2 : n;!0/).

We consider nowCH̃ .2 : n;!2/. Although the form!2 is not homogeneous with
respect to theZ2-grading, it becomes so with respect to the grading obtained by viewing
it modulo.pn1 − 1; pn2 − 1/. Thus,CH̃ .2 : n;!2/ is a graded subalgebra ofW.2 : n/
with respect to itsA-grading, whereA = Z2=〈.pn1 − 1; pn2 − 1/〉. We will examine
some specializations of this grading in Section5. Consideration ofA-homogeneous
elements makes it straightforward to determine an explicit form for the elements of
CH̃.2 : n;!2/. One finds thatH̃ .2 : n;!2/ coincides withCH̃ .2 : n;!2/, and can be
identified with P̃.2 : n;!2/=〈1〉 = .F[2 : n] ⊕ 〈x.pn1/; y.p

n2/〉/=〈1〉 with the Poisson
bracket{ f; g} = .1+ e/. fygx − fxgy/: The derived subalgebraH.2 : n;!2/ of H̃ .2 :
n;!2/ has dimensionpn −1 and corresponds toF[2 : n]=〈1〉 with the Poisson bracket.
It is simple (in every characteristic), as will follow from its identification, given in
Section6, with a certain Block algebra, whose simplicity was proved in [11]. In
characteristic twoH.2 : .1; n/;!2/ is isomorphic with the simple Zassenhaus algebra
of dimension 2n+1 −1, an isomorphism being obtained by mappingxy. j / 7→ Ej −1 and
y. j / 7→ Ej +2n−2. A curious consequence of this isomorphism is that in characteristic
two H.2 : .1; n/;!2/ can be embedded inH.2 : .1; n + 1/;!2/ as a subalgebra,
namely as the simple Zassenhaus subalgebra〈xy. j / : j = 0; : : : ; pn+1 − 2〉.

The Poisson bracket of monomials

{x.i /y. j /; x.k/y.l /} = .1 + e/N.i; j ; k; l /x.i +k−1/y. j +l−1/

for H̃ .2 : n;!2/ coincides with that forH̃ .2 : n;!0/ except for the products{y; x} =
−{x; y} = e. This shows that theA-grading of H̃ .2 : n;!2/ cannot be lifted to a
Z2-grading. For the same reason,H̃ .2 : n;!2/ is notZ-graded by the subspacesL̄k =∑

i + j =k Li; j defined as before. However, it is filtered by the subspacesL̄k = ∑
h≥k L̄h,

that is, L = L̄−1 ⊇ L̄0 ⊇ L̄1 ⊇ · · · (where L̄k = 0 for k > pn1 + pn2 − 4), and
[L̄h; L̄k] ⊆ L̄h+k. This is called thestandard filtrationof H̃.2 : n;!2/, and the graded
Lie algebra associated with it is̃H.2 : n;!0/.

We should note here that both Hamiltonian algebrasH.2 : n;!0/ andH.2 : n;!2/

were originally constructed in a different way. In fact, after being introduced first in [1]
among other examples, they became special cases of a more general construction due
to Block [11]. We briefly recall only a special case of Block’s construction which is
relevant to the present paper, and we refer to [11] or [48, page 110] for full generality.

Let G be an elementary abelianp-group of orderpn, written additively, letŽ ∈ G,
and let f : G × G → G be a non-singular biadditive function of the formf .Þ; þ/ =
g.Þ/ h.þ/− g.þ/ h.Þ/ for some additive functionsg; h : G → G. A vector spaceL
over a fieldF of characteristicp, with basis{uÞ | Þ ∈ G} in bijective correspondence
with the elements ofG, becomes a Lie algebra by defining a multiplication on the
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basis elements via[uÞ; uþ] = f .Þ; þ/ uÞ+þ−Ž and extending linearly. The elementu0

is central inL, and the elementsuÞ with Þ 6= Ž span an ideal ofL. If Ž = 0 the ideal
〈uÞ | Þ 6= 0〉 is a simple Lie algebra, and ifŽ 6= 0 the quotient〈uÞ | Þ 6= Ž〉=〈u0〉
is simple. In both cases the simple algebra is called aBlock algebra. (These special
cases of Block’s construction had already been introduced by Albert and Frank in [1],
and denoted byL0 andLŽ there; in this paper we refer to the algebrasLŽ with Ž 6= 0
asalgebras of Albert and Frank, conforming to [22, 24, 50].)

It is known that ifF is algebraically closed of characteristicp > 3, the above special
cases of Block’s construction yield exactly the Hamiltonian algebrasH.2 : n;!2/ if
Ž = 0, and the algebrasH.2 : n;!0/ if Ž 6= 0. For example, this is stated in [13,
Lemma 1.8.3] under the blanket assumption of that paper thatp > 7, but the proof
given there is seen to be valid forp > 3. (In particular, one ingredient of that proof,
namely [61, Corollary 2], was originally proved forp > 5; however, it is now a special
case of more general results in [9] or [54] which assume onlyp > 3.)

Note that the method of proof of [13, Lemma 1.8.3] does not easily produce explicit
realizations ofH.2 : n;!0/ andH.2 : n;!2/ (with respect to the given forms) as Block
algebras. In fact, in essence (using automorphisms8 rather than forms!), it shows
that for appropriate choices of the form! the Hamiltonian algebraH.2 : n;!/ is a
Block algebra of dimensionpn −2 or pn −1, and then appeals to [13, Theorem 1.8.1]
(which quotes [61, Corollary 2]) to conclude thatH.2 : n;!/ ∼= H.2 : n;!i / for i = 0
or 2, respectively. In Section6 of the present paper we do give an explicit realization
of H.2 : n;!2/ as a Block algebra, and we do that for arbitrary prime characteristicp
(thus including 2 and 3). We mention that, more generally, it was announced in [38]
and proved in [39] that every algebraH.m : n;!2/ is a Block algebra.

4. The second cohomology group ofH (2 : n; ω2)

In this section we appeal to some results which were formulated under the assump-
tion that the ground field is algebraically closed, or at least perfect; since derivations
and cohomology are essentially independent of the ground field, these assumptions
are immaterial here in view of Remark3.1. We assume that the ground field has
odd characteristic. At some stage in the discussion we also need to assume that the
characteristicp is greater than three (see Remark4.3 for the casep = 3), but our
main result, Theorem4.2, does not depend on this assumption. Finally, we deal with
the case of characteristic two in Remarks4.4and4.5.

The dimensions of the second cohomology groupsH2.L ; F/ of some graded Lie
algebras of Cartan type with values in the trivial module were computed in [29] (but
see also [26]). In particular, according to [29, Theorem 2.4],H2.L ; F/ has dimension
n1 + n2 + 1 for the graded Hamiltonian algebraL = H.2 : n;!0/. Here we compute
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H2.L ; F/ for L = H.2 : n;!2/ and show that it has dimensionn1 +n2. (In the special
casen = .1; 1/ this can essentially be found in [55, Theorem 6.3].)

Following [29], we briefly recall the classical method (see [48, page 102]) employed
there to computeH2.L ; F/ from the space of outer derivations ofL, in presence of
a nondegenerate associative form onL. In addition, we exhibit a basis ofH2.L ; F/
for L = H.2 : n;!0/. According to [29, Proposition 1.3], for any Lie algebraL
over a fieldF there is an injective homomorphismH2.L ; F/ → H1.L ; L∗/, whereL∗

denotes the dual of the adjoint module ofL. This monomorphism is induced by the
map' 7→ D' which sends a 2-cocycle' ∈ Z2.L ; F/ to the derivationD' : L → L∗

with D'.¾/ = '.¾; ·/. Furthermore, the image of the monomorphism consists of
the cohomology classes represented byskewderivations, that is to say, derivations
D : L → L∗ which satisfyD.¾/.�/ = −D.�/.¾/, for all ¾; � ∈ L.

Now assume thatL possesses a nondegenerateassociative form½, that is, a sym-
metric bilinear form½ : L × L → F satisfying½.[¾; �]; �/ = ½.¾; [�; � ]/ for all
¾; �; � ∈ L. (Note that the latter condition together with anticommutativity of the
Lie bracket easily implies that½.[¾; �]; �/ = ½.�; [¾; �]/, hence the symmetry of½
is automatic ifL is perfect. In particular, in view of the interpretation of associa-
tivity which we are about to give, there are non nonzeroL-module homomorphisms
L ∧ L → F if L is perfect, in odd characteristic.) Since the associativity condition
can be written in the equivalent form½.[�; ¾ ]; �/+ ½.¾; [�; � ]/ = 0, it simply means
that the corresponding linear map½ : L ⊗ L → F is a homomorphism ofL-modules
into the trivial module. Consequently, the adjoint module ofL is self-dual; this con-
dition is, in fact, equivalent with the existence of a nondegenerate bilinear form onL
satisfying associativity but not necessarily symmetric.

By composition with the inverse of theL-module isomorphismL → L∗ given
by ¾ 7→ ½.¾; ·/, the monomorphismH2.L ; F/ → H1.L ; L∗/ turns into a monomor-
phism H2.L ; F/ → H1.L ; L/ = Der.L/= ad.L/, where ad.L/ is the space of in-
ner derivations ofL. Its image is SkDer.L/= ad.L/, where SkDer.L/ denotes the
space of all derivationsD : L → L which areskewwith respect to the associa-
tive form ½, that is, which satisfy½.D.¾/; �/ = −½.D.�/; ¾/ for all ¾; � ∈ L (see
[29, Remark after Proposition 1.3]). Writing this condition in the equivalent form
½.D.¾/; �/ + ½.¾; D.�// = 0 shows that a derivationD of L is skew exactly ifD
annihilates the form½ viewed as an element of.L ⊗ L/∗, the dual of the tensor square
of the adjoint module ofL; it follows, in particular, that SkDer.L/ is a p-subalgebra
of Der.L/ containing all inner derivations ofL.

The isomorphismH2.L ; F/ → SkDer.L/= ad.L/ is actually induced by an iso-
morphismZ2.L ; F/ → SkDer.L/, which we describe here for convenience. Because
of the nondegeneracy of½, for each cocycle' ∈ Z2.L ; F/ there is a unique derivation
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D' : L → L, necessarily skew, such that

½.D'.¾/; �/ = '.¾; �/ for all ¾; � ∈ L.

Conversely, the 2-cocycle associated with the skew derivationD : L → L is given by

'.D/.¾; �/ = ½.D.¾/; �/ for all ¾; � ∈ L.

Now we apply these well-known facts to the Hamiltonian algebras under consider-
ation (the case ofH.2 : n;!0/ being already dealt with in [29]). It is known from [28,
Theorem 4.4] or [58, Chapter 4, Theorem 6.5] that the graded algebraH.2 : n;!0/

has a non-degenerate associative form½, which in our notation becomes

½.x.i /y. j /; x.k/y.l // = .−1/i + j Ž.i + k; pn1 − 1/ Ž. j + l ; pn2 − 1/:

Thus the dual basis of{x.i /y. j /} with respect to the nondegenerate form½ is given by
.x.i /y. j //∗ = .−1/i + j x.p

n1−1−i /y.p
n2−1− j /.

We assume now thatp > 3. The derivation algebras of the simple Lie algebras of
Cartan type are known and are summarized in [7, pages 903–905]. (Alternatively, the
derivation algebras of Block algebras, which include the Hamiltonian algebras under
consideration here, were already computed in [11, Theorem 14], again forp > 3.) In
particular, it is known that

DerH.2 : n;!i / = CH̃.2 : n;!i /;

the p-closure ofCH̃ .2 : n;!i / in DerF[2 : n], for i = 0; 2. More explicitly, a
basis for the space of outer derivationsL = H.2 : n;!0/ (or, more precisely, a set of
representatives for a basis ofH1.L ; L/ = Der.L/= ad.L/) consisting of homogeneous
derivations with respect to theZ2-grading is as follows:

(1) .adx/pr
, of degree.0;−pr /, for 0< r < n2;

(2) .ady/ps
, of degree.−ps; 0/, for 0< s< n1;

(3) ad.x.p
n1//, of degree.pn1 − 1;−1/;

(4) ad.y.p
n2//, of degree.−1; pn2 − 1/;

(5) ad.x̄ ȳ/ = [ad.x.p
n1//; ad.y.p

n2//], of degree.pn1 − 2; pn2 − 2/;
(6) thedegree derivationadh, which has degree.0; 0/ and acts as.adh/.x.i /y. j // =
.i + j − 2/x.i /y. j /.

Note that the derivations under (1) and (2) are powers of inner derivations of
H.2 : n;!0/; together with the inner derivations, they span itsp-closureH.2 : n;!0/.
We have denoted the derivations under (3), (4) and (5) as restrictions of inner deriva-
tions of H̃ .2 : n;!0/. Finally, the degree derivation is the restriction of the inner
derivation adh of W.2 : n/, where the elementh = x @=@x + y @=@y has no analogue
in the Poisson bracket notation which we have adopted.
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All derivations listed above except the degree derivation (becausep > 3, but see
Remark4.3for p = 3) are skew with respect to½ (by direct verification, or from [29,
Proposition 2.2]), and hence dim.H2.L ; F// = dim.Der.L/= ad.L//−1 = n1+n2+1
for L andp > 3 (see, for example, [29, Theorem. 2.4] and [26]). A set ofn1 + n2 + 1
cocycles ofL = H.2 : n;!0/ which form a basis ofH2.L ; F/ can be obtained from
the skew derivations described above according to the procedure described earlier.
Note that since½ : L ⊗ L → F is a graded map of degree.−pn1 + 3;−pn2 + 3/
(where the trivial moduleF is assigned degree zero), the cocycles thus obtained are
homogeneous with respect to the grading ofZ2.L ; F/ inherited by theZ2-grading
of L. A conclusion which is more relevant for us is that the universal central extension
M of L (see Remark5.2) inherits aZ2-grading fromL, and the central elements
corresponding(see Remark4.1) to the cocycles obtained are homogeneous. We
record the degrees explicitly: ifD is a homogeneous skew derivation of degree.i; j /,
then the central elements of the universal central extensionM of L corresponding to
the cocycle'.D/ acquires degree.pn1 − 3 − i; pn2 − 3 − j /.

REMARK 4.1. Strictly speaking, central elements ofM correspond naturally to
elements of the second homology groupH2.L ; F/, and not of its dualH 2.L ; F/.
There is, however, a natural correspondence between the homogeneous components
in the A-gradings ofH2.L ; F/ and its dualH 2.L ; F/, reversing the sign of the degrees.
The fact that all these components are one-dimensional in the present case (and in the
case ofL = H.2 : n;!2/ below) justifies our abuse of language.

Now we turn our attention to the filtered algebraH.2 : n;!2/. This algebra has a
non-degenerate associative form½ (see [11, Theorem 7]), defined by the same formula
given above forH.2 : n;!0/ with, in addition,½.x̄ ȳ; x̄ ȳ/ = 1 and½.·; ·/ = 0 in all
remaining cases. Again from [7] (or the original source [41, Theorem 3.2]), all outer
derivations ofH.2 : n;!2/ are lifted from part of those of its associated graded
algebra, which isH.2 : n;!0/ ⊕ 〈x̄ ȳ〉. Specifically, a basis for the space of outer
derivations ofH.2 : n;!2/ is given by

.adx/pr

for 0< r ≤ n2 and .ady/ps

for 0< s ≤ n1:

(Note that.adx/pn2 and.ady/pn1 induce the derivations ad.x.p
n1// and ad.y.p

n2// on the
associated graded algebra.) In particular, all derivations ofL = H.2 : n;!2/ belong
to its p-closure in Der.L/ and, consequently, they are all skew.

So far our assumption thatp > 3 was in force. However, then1 + n2 derivations
of L = H.2 : n;!2/ which we have described clearly remain linearly independent
in Der.L/= ad.L/ also for smaller characteristics, provided in characteristic two we
replace the degree derivation (which coincides with the inner derivation ad.x @=@x −
y @=@y/ = ad.D.xy// in that case) with ad.x @=@x/. In Section6, we will identify
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H.2 : n;!2/ with an algebra of Albert and Frank (a special type of Block algebra,
see Section3), and we will prove (extending results obtained in [11] for characteristic
p > 3) that its space of outer derivations has dimensionn1 + n2, in every positive
characteristic. Consequently, the derivations ofH.2 : n;!2/ described above, but
with ad.x @=@x/ replacing the degree derivation (a change which is only relevant in
characteristic two), form a basis for its space of outer derivations regardless of the
characteristic.

Setting'r = '..adx/pr
/ and s = '..ady/ps

/, the following result follows by
direct computation.

THEOREM 4.2. A basis for the second cohomology groupH2.L ; F/ of the Hamil-
tonian Lie algebraL = H.2 : n;!2/ over a fieldF of odd characteristic is given by
the classes of the cocycles'r and s, for 0 < r ≤ n2 and0 < s ≤ n1, as defined by
the following formulas:

'r .x
.i /y. j /; x.k/y.l // =



.−1/i + j if .i + k; j + l / ≡ .0; pr /

.mod .pn1 − 1; pn2 − 1//

0 otherwise;

 s.x
.i /y. j /; x.k/y.l // =



.−1/i + j +1 if .i + k; j + l / ≡ .ps; 0/

.mod .pn1 − 1; pn2 − 1//

0 otherwise.

The A-degrees of the cocycles'r and s are .2;−pr + 2/ and .−ps + 2; 2/,
respectively. The central elements of the universal central extensionM of L =
H.2 : n;!2/ (see Remark5.2) corresponding to them acquireA-degree.−2; pr − 2/
and.ps − 2;−2/, respectively.

REMARK 4.3. It is easy to verify that the degree derivation ofH.2 : n;!0/ acts
on ½, considered as an element of.L ⊗ L/∗, as multiplication by 6. In particular,
when the characteristic is three (or two, but see Remark4.5concerning this case) the
degree derivation is skew (see, for example, [29, Proposition 2.2]), and the second
cohomology group ofH.2 : n;!0/ becomes larger. Also, the derivation algebra ofL
can be larger (see [58, page 197]). In particular, the graded Hamiltonian algebraL =
H.2 : .1; 1/;!0/ in characteristic three is a classical Lie algebra of typeA2, namely,
L is isomorphic to the quotient of sl3 modulo its one-dimensional center, see [53,
Lemma 6.4]. According to [11, Corollary 3] and the identification of Hamiltonian
algebras with Block algebras, this is the only instance forp > 2 where an algebra
H.2 : n;!0/ or H.2 : n;!2/ is isomorphic with a classical algebra. It is well known
that Der.L/ is a fourteen-dimensional classical algebra of typeG2 (cf. [53, page 678]),
hence dim.Der.L/= ad.L// = 7. The additional three derivations with respect to those
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described earlier can be obtained from adx.3/, ady.3/ and adx̄ ȳ by conjugation under
the automorphismx.i /y. j / 7→ .−1/i j x.2−i /y.2− j / of L. Since all derivations are skew
in this case, we conclude thatH2.L ; F/ has dimension 7 (but see [59, page 38] for
another proof of this fact).

It is easily checked that exactly one of those three ‘exceptional derivations’ of
H.2 : .1; 1/;!0/ extends to a derivation ofH.2 : .1; n2/;!0/ for n2 > 1. These
additional derivations account for all the exceptions in characteristic three with respect
to the description of outer derivations ofH.2 : n;!0/ in higher characteristic given
earlier in this section. This follows from [53, Proposition 4.3] and a general fact about
derivations of nonnegative degree (in the standard grading) of graded Lie algebras of
Cartan type, see [58, Chapter 4, Proposition 8.3]. The derivations ofL = H.2 : n;!0/

in characteristic three can be summarized as follows: dim.Der.L/= ad.L// equals
n1 + n2 + 2 if n1; n2 > 1 (like in higher characteristic), it equalsn1 + n2 + 3 if
n1 = 1 < n2, and it equals 7 ifn1 = n2 = 1. Since all derivations ofL are skew in
characteristic three, we have dim.H2.L ; F// = dim.Der.L/= ad.L//.

REMARK 4.4. Again according to [53, Proposition 4.3] and [58, Chapter 4, Proposi-
tion 8.3], the derivations of a simple algebraH.2 : n;!0/ in characteristic two (hence
with n1; n2 > 1) allow the same description as in characteristic greater than three, by
the list given earlier in this section, except that the degree derivation in item (6) (which
is inner in characteristic two, as it coincides with adxy) should be replaced with the
derivation acting asD.x.i /y. j // = .i − 1/ x.i /y. j /. In particular, Der.L/= ad.L/ has
dimensionn1 + n2 + 2.

The algebraH.2 : .1; n2/;!0/ in characteristic two has more derivations than
usual. Since it is a semidirect product of a simple Zassenhaus algebra by its adjoint
module, its derivations can be easily calculated from those of the Zassenhaus algebra
(see Remark4.6). In fact, if L is a semidirect product of a simple algebraS by its
adjoint module, then dim.Der.L// = 2 dim.Der.S// + 2 in characteristic two, and
dim.Der.L// = 2 dim.Der.S// + 1 otherwise. Consequently, Der.L/= ad.L/ has
dimension 2n2 + 2 for L = H.2 : .1; n2/;!0/. Alternatively, sinceH.2 : .1; n2/;!0/

is the tensor product of a simple Zassenhaus algebra with a ring of divided powers
F[z : 1], the conclusion follows from [12, Theorem 7.1].

REMARK 4.5. In characteristic two the argument which relates derivations ofL into
L∗ and the second cohomology group ofL needs to be modified as follows.

The image of the mapZ2.L ; F/ → Z1.L ; L∗/ consists of all derivations which
are alternating, in the sense thatD.¾/.¾/ = 0 for all ¾ ∈ L. This condition is
equivalent to being skew in odd characteristic, but is stronger in characteristic two. (It
is convenient to reserve the termskewfor the weaker condition, as it applies in slightly
greater generality; see [29], where Lemma 1.1 remains valid for skew derivations, but
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not for alternating derivations, in characteristic two.) In presence of a nondegenerate
associative form½, a derivationD of L will be calledalternatingwith respect to½ if
½.D.¾/; ¾/ = 0 for all ¾ ∈ L. Since inner derivations ofL are alternating, there is an
isomorphism ofH2.L ; F/ with the quotient of the space of alternating derivations by
the space of inner derivations ofL. Note that while the space of skew derivations is a
p-subalgebra of Der.L/ (in every characteristic), the space of alternating derivations
is a Lie subalgebra but need not be ap-subalgebra in characteristic two (as shown by
the examples below).

In order to verify that a skew derivation is alternating it suffices to check that
D.¾/.¾/ = 0 for all elements¾ of some basis ofL. Also, if L is graded and
its associative form is homogeneous with respect to the grading (as is the case for
theZ2-grading of H.2 : n;!0/ and theA-grading ofH.2 : n;!2/) it is enough to
check derivations which are homogeneous with respect to the grading, because the
alternating derivations form a graded subalgebra (as well as the skew derivations).

For L = H.2 : n;!0/ with n1; n2 > 1, all derivations described earlier in this
section (taking Remark4.4into account) are alternating, except adx.p

n1/ and ady.p
n2/,

which are only skew. Therefore,H2.L ; F/ has dimensionn1 + n2. An examination of
L = H.2 : .1; n2/;!0/ shows that the alternating derivations are exactly those which
normalize the Zassenhaus subalgebra〈xy. j / : j = 0; : : : ; 2n2 − 2〉 (together with the
inner derivations). These correspond to the derivations described under items (1), (5)
and (6) in the list given earlier in this section, and we conclude thatH2.L ; F/ has
dimensionn1 + n2 in this case, too.

In the case ofL = H.2 : n;!2/ all alternating derivations are inner. As a
consequence, in characteristic two we haveH2.L ; F/ = 0.

REMARK 4.6. Recalling from Section3 that the simple Zassenhaus algebraL =
W.1 : n/.1/ in characteristic two is isomorphic withL = H.2 : .1; n − 1/;!2/, the
previous remark shows that its second cohomology groupH2.L ; F/ vanishes. By
contrast, the second cohomology group of the Zassenhaus algebraW.1 : n/ in odd
characteristic has dimension one ifp > 3, and dimensionn − 1 if p = 3 (as a special
case of [30, Theorem. 3.2] or [26]). The second cohomology group of the simple
Zassenhaus algebra was also computed in [27, Theorem 2]; however, note that the
central extensions ofW.1 : n/.1/ in characteristic two which are exhibited there are not
Lie algebras in the common sense, because their multiplication is (skew-)symmetric
but not alternating. For the sake of completeness we mention that the algebra of outer
derivations of the simple Zassenhaus algebraW.1 : n/.1/ has dimensionn − 1 if p
is odd andn if p = 2. This is well known, but the case wherep = 2 is also a
consequence of Theorem6.2.

REMARK 4.7. The last sentence in [11] claims that there is no isomorphism between
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a Block algebra and an exceptional (classical) simple algebra except whenp = 2 and
the algebra has dimension 14, since otherwise their dimensions are distinct. This
may leave some doubt on whether in characteristic twoH.2 : .2; 2/;!0/ might be
isomorphic with a simple algebra of typeG2 (which, in turn, is isomorphic with
the quotient of sl4 by its one-dimensional center). However, according to [59] the
second cohomology group of the latter has dimension 7, and this fact together with
Remark4.5excludes the possibility of an isomorphism.

5. Some cyclic gradings ofH (2 : n; ω2)

The A-grading of H.2 : n;!2/ defined in Section3 leads in a natural way
to several gradings (here calledspecializations) over cyclic quotientsĀ of A =
Z2=〈.pn1 − 1; pn2 − 1/〉. More precisely, for any pair of integers.R; S/ and any
divisor N of R.pn1 − 1/ + S.pn2 − 1/ we have a group homomorphism¼ : A →
Ā = Z=NZ given by¼.i; j / = Ri + Sj + NZ. Correspondingly, we obtain an
Ā grading L = ⊕

k∈Ā Lk by settingLk = ∑
¼.i; j /=k Li; j . In what follows we set

N = |R.pn1 − 1/ + S.pn2 − 1/|, since the remaining cases can be obtained from
these gradings through a further specialization. Also, it is no loss to assume that the
homomorphism is surjective, which amounts to choosingR and S relatively prime
(because of our choice ofN). To help visualizing the grading thus obtained, it may
be convenient to arrange the monomials inH.2 : n;!2/ in a.pn1 × pn2/-array accord-
ing to the degrees ofx and y, and think of the specialization process asslicing the
A-grading according to some specified direction.

The simplest specialization where.R; S/ = .0;−1/ will be useful in Section7.
This is aZ=NZ-grading withN = pn2 − 1, every component has dimensionpn1 and
is spanned by all monomials wherey has a given degree 1≤ j ≤ pn2 − 2, except
the component of degree 1, which has dimension 2pn1 − 1 and is spanned by all
monomials wherey has degree 0 orpn2 −1. The component of degree 0 is isomorphic
with a Zassenhaus algebraW.1 : n1/.

The following two specializations of theA-grading of H.2 : n;!2/ are more
interesting.

5.1. A grading related to graded Lie algebras of maximal class Let .R; S/ =
.−pn2;−1/. ThenN = pn − 1, and all componentsLk are one-dimensional. In fact,
Lipn2+ j = 〈x.pn1−i /y.p

n2− j /〉, for 0< i ≤ pn1 and 0< j ≤ pn2 with .i; j / 6= .pn1; pn2/.
Furthermore,L has an outer derivation

D = ȳ
@

@x
+ .1 + e/

@

@y
;(5.1)
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which is non-singular and homogeneous of degree one (with respect to the grading
under consideration). HenceD permutes the components of the grading cyclically,
namelyDLk = Lk+1 for all i . (Recall from Section3 that we writeD for adD, since
the latter acts the same way as a Lie algebra derivation ofP.2 : n;!2/ asD acts as a
derivation of the associative structure.) In fact, we have

Dx.i /y. j / = ȳx.i −1/y. j / + .1 + e/x.i /y. j −1/ =
{

x.i −1/ ȳ if j = 0,

.1 + e/x.i /y. j −1/ if j > 0.

In particular, the derivationD is periodic of periodpn−1. Note thatD is the derivation
denoted byD2 in [7, p. 911], viewing the Hamiltonian algebraH.2 : n;!2/ as the
special algebraS.2 : n;!2/.

We quote from [37] the following definition.

DEFINITION 5.1. We say that a finite-dimensional Lie algebraL admits a nonsin-
gular derivationD agreeing with aZ=NZ-grading L = ⊕

k∈Z=NZ Lk if DLk = Lk+1

for all k ∈ Z=NZ.

It will be convenient to allow any finite cyclic group to replaceZ=NZ in the
definition, provided we specify a distinguished generator of it (to play the role of 1).
The situation described in Definition5.1 where all componentsLk have dimension
one played a crucial role in [52] and [51].

SupposeL is a finite-dimensional Lie algebra possessing a nonsingular derivation
which agrees with aZ=NZ-grading with one-dimensional components. We build
the correspondingtwisted loop algebra

⊕
k∈Z Lk̄ ⊗ tk inside L ⊗F F[t; t−1], wherek̄

denotes the residue class ofk moduloN. The Lie algebra spanned by its positive part⊕
k>0 Lk̄ ⊗ tk together with its derivationD ⊗ t is a graded Lie algebra of maximal

class in the sense of [22]. With a harmless abuse of language we will call the latter
the loop algebraof L.

In particular, the loop algebra ofH.2 : n;!2/ with respect to the derivationD and
the grading which we have just constructed is a graded Lie algebra of maximal class,
and precisely one of those which we have named after Albert-Frank-Shalev in [22].
We will come back to this grading in Section6.

REMARK 5.2. We comment briefly on the relevance of the second cohomology
group ofH.2 : n;!2/, which we have discussed in Section4, to presentations of the
algebras of Albert-Frank-ShalevAF S.a; b; n; p/ (see Section6 for their definition).
Although these algebras are not finitely presented, it is proved in [25] that they
are quotients of certain finitely presented Lie algebras modulo their second centers.
Knowledge of the second cohomology group ofH.2 : n;!2/ sheds light on these
particular extensions of the algebras of Albert-Frank-Shalev, as we illustrate below.
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The second cohomology group ofH.2 : n;!0/ plays a similar role in [3] and [21,
Section 4].

Recall that every perfect Lie algebraL has a universal central extension 0→ Z →
M → L → 0 (see [59, Section 1]). In particular,M=Z ∼= L, so we may viewL as a
quotient ofM , andZ ∼= H2.L ; F/ ∼= H2.L ; F/∗ as vector spaces. According to [10,
Theorem 2.2], every derivation ofL lifts to a derivation ofM ; if L is centerless, the lift
is unique, therefore Der.M/ ∼= Der.L/, andM is a Der.L/-module in a natural way. In
the case ofL = H.2 : n;!2/, we claim that Der.L/ acts trivially onZ, which coincides
with the center�.M/ of M here. In fact, for a perfect and centerless Lie algebraL, the
dual module�.M/∗ andH2.L ; F/ are easily seen to be isomorphic not only as vector
spaces, but as Der.L/-modules. Now assume, in addition, that the characteristic is odd
and thatL has a nonsingular associative form½. Then the isomorphism ofH2.L ; F/
with SkDer.L/= ad.L/ described in Section4 is also an isomorphism of Der.L/-
modules (with respect to the adjoint action of Der.L/ on itself). Since Der.L/= ad.L/
is abelian forL = H.2 : n;!2/, our claim follows. Therefore, the center of the
extension ofM by 〈D〉, whereD is the nonsingular derivation (5.1), coincides with
�.M/ and, in particular, is nonzero according to Theorem4.2, in odd characteristic.
It follows that the loop algebrãM of M with respect toD has an infinite-dimensional
center. The quotient of̃M by its center is isomorphic with̃L. A standard result of
B. H. Neumann recalled in [20] as Theorem 6 implies that the quotient of a finitely
generated Lie algebra modulo an infinite-dimensional central ideal cannot be finitely
presented; in particular,̃L ∼= M̃=�.M̃/ is not finitely presented.

The main result of [25] shows that a suitable central extension ofM̃ is finitely
presented. (The need to take a further central extension to obtain a finitely presented
algebra is due to the fact that the second cohomology group of a loop algebra, besides
depending on the second cohomology group of the underlying finite-dimensional
algebra, includes a component arising from associative forms of the latter and the cyclic
homology of the polynomial ringF[t] which we are tensoring with. We will not discuss
this point further here, but see [62].) According to our identification in Theorem6.1
of the algebras of Albert and Frank with Hamiltonian algebrasH.2 : n;!2/, the
second cohomology group of the latter discussed in Theorem4.2 can be recognized
in (part of) the central elements of the finitely presented central extensions of the
Albert-Frank-Shalev algebras considered in [25]. More precisely, theĀ-grading of
L = H.2 : n;!2/ (like any other grading) extends uniquely to a grading of its
universal central extensionM . The central elements of the latter corresponding
(recall Remark4.1) to the cocycles'r and s of Theorem4.2 (in odd characteristic)
occur in degrees 2q − pr + 2 and 2q − qps + 2, respectively, and give rise to central
elements ofM̃ , the loop algebra ofM with respect toD, in all degrees congruent to
these modulo dim.L/ = pn1+n2 − 1. These central elements can be recognized in the
list given in [25, pages 399–400], in the special case of the algebraAF S.a; n; n; p/.
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(Additional complications arise in the case of characteristic two, which we have
neglected here for simplicity.)

By symmetry, the case.R; S/ = .−1;−pn1/ is completely analogous. In this case

D pn2 = .1 + e/
@

@x
+ x̄

@

@y

is a non-singular derivation which permutes the components cyclically. This latter
grading is just one instance of a whole set ofĀ-gradings which can be obtained from
the formerĀ-grading by an application of an automorphism of the grading groupĀ.
More precisely,L is also graded by the subspacesL̃ i = Lki , wherek is any integer
with .k; pn − 1/ = 1. In general, a derivatioñD such thatD̃ L̃ i = L̃ i +1 need not
exist. However, it certainly does ifk is a power ofp, because thenD pt

L̃ i = L̃ i +1, if
L̃ i = L pt i . This way of obtaining new gradings is related to the process ofdeflation
for graded Lie algebras of maximal class introduced in [22]. In fact, the loop algebra
of L with respect to its grading given by the subspacesL̃ i = L pi and its derivation
D p is the deflation of the loop algebra ofL with respect to its grading given by the
subspacesLi and its derivationD.

5.2. A thin grading Let .R; S/ = .−pn2 + 1;−1/. This is aZ=NZ-grading with
N = pn1.pn2 − 1/, and the components have dimension one or two. In the present
grading, the two-dimensional components are those of degreei .pn2 − 1/ + 1 for
1< i ≤ pn1. In particular,L1 = 〈x; ȳ〉. This grading fits the following definition.

DEFINITION 5.3. A gradingL = ⊕
k∈Z=NZ Lk of a (finite-dimensional) Lie algebra

L over a fieldF is calledthin if L1 is two-dimensional, and the followingcovering
propertyholds

for all k ∈ Z=NZ, and allu ∈ Lk, u 6= 0, we haveLk+1 = [u; L1]:

Again, the definition is motivated by an analogous one for positively graded,
possibly infinite-dimensional Lie algebras. In fact, given a thinZ=NZ-grading of
a finite-dimensional Lie algebraL, the (positive part of the twisted) loop algebra⊕

k>0 Lk̄ ⊗ Ftk is a thin Lie algebra in the sense of the following definition (see [20]
for background).

DEFINITION 5.4. A graded Lie algebraL = ⊕∞
k=1 Lk is calledthin if L1 is two-

dimensional, and the followingcovering propertyholds

for all k ≥ 1, and allu ∈ Lk, u 6= 0, we haveLk+1 = [u; L1]:
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With both definitions, it follows from the covering property thatL is generated
by L1, and that dim.Lk/ ≤ 2 for all k. We call a homogeneous componentLk of
dimension 2 adiamond. The diamonds will be numbered in the natural order of
occurrence (cyclic starting fromL1 in case of Definition5.3). Therefore,L1 is the
first diamond. If there are no other diamonds in case of Definition5.4, thenL is an
algebra of maximal class (see [22]). We refer to the finite sequence of one-dimensional
homogeneous components between two consecutive diamonds as achain.

We must point out that there are also instances where a thin Lie algebra in the sense
of Definition 5.4 is constructed as a loop algebra from a suitable grading of a finite
dimensional simple (Hamiltonian) Lie algebra which does not quite fit Definition5.3,
but requires the intervention of a nonsingular outer derivation, very much like in the
construction of Lie algebras of maximal class described in the previous subsection
(see [3, 2]). These algebras are not needed in this paper, however.

The fact that an algebra with a thin grading in the sense of Definition5.3gives rise
to a thin Lie algebra in the sense of Definition5.4 via the loop algebra construction
allows one to apply to the former setting arguments and results originally formulated
for the latter. For example, results from [23], extended in [4], imply that in a finite-
dimensional Lie algebraL over a field of arbitrary characteristic with a thin grading,
the second diamond can only occur in degree 3, 5,q, or 2q − 1, whereq is a power of
the characteristic. Some care is needed in carrying definitions over from the infinite-
dimensional setting to the present one, where the degree of a homogeneous element is
an integer defined only modulo the orderN of the grading group: when speaking of
the degree where the second diamond occurs,we actually refer to the smallest integer
greater than one in which degree a diamond occurs.

Suppose now thatL is a finite-dimensional Lie algebra with a thin grading, and
suppose that the second diamond occurs in degree 2q − 1, whereq is a power of the
characteristic. According to [19], we have

CL1.L2/ = CL1.L3/ = · · · = CL1.L2q−3/ = 〈Y〉;
provided the characteristic is odd; this fails in characteristic two, as is shown in
[31, 34]. We let X ∈ L1 \ 〈Y〉, so thatX andY generateL. (Note that with respect to
the analogous situation in [20] we have switched to capital letters for the generators
X andY, to avoid conflict of meaning with the variables we use for divided powers.)

Suppose thatLk is any diamond ofL, and letLk−1 = 〈V〉. It is not difficult to
show, as in [20], that [V; X;Y] + [V;Y; X] = [V;Y;Y] = 0, and to deduce that

[V;Y; X] = ½[V; X; X]

for some½ ∈ F ∪ {∞}, to be read as[V; X; X] = 0 when½ = ∞. As in the
infinite-dimensional setting of [20] we will say that the diamond in degreek has
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type½. Note that½ depends on the choice made for the generatorsX andY, but the
type being finite, or infinite, does not. Strictly speaking,½ = 0 cannot occur here,
because the covering property would imply that[V;Y] = 0 and soLk = 〈[V X]〉,
contradicting the assumption thatLk is a diamond. However, there are situations
(here and in other papers, like [20], [3] and [21]) where we have found natural and
convenient to informally callfakediamonds certain one-dimensional componentsLk,
which thus may be assigned type 0. This usually happens when the diamonds of some
algebra with a thin grading (or some infinite-dimensional thin algebra) occur at regular
intervals provided we include somefakediamonds. Unfortunately, which cocycle of
the algebra gives rise to the central element in a fake diamond depends on the grading
under consideration, and appears not to admit an intrinsic characterization, in terms
of the algebra alone.

TheZ=NZ-grading ofH.2 : n;!2/ under consideration in this subsection is a thin
grading, with diamonds in all degrees congruent to 1 moduloq−1, with the exception
of degreeq, where we have setq = pn2. In fact, here we may takeY = ȳ andX = x,
and the following computations show both the validity of the covering property and
the location of the diamonds:

{x.i /y. j /; x} = .1 + e/x.i /y. j −1/;

{x.i /y. j /; ȳ} = −x.i −1/y. j /y.p
n2−2/ =




−x.i −1/y.p
n2−2/ if j = 0,

x.i −1/ ȳ if j = 1,

0 otherwise.

TakingV = x.i /y, for 0< i < pn1, we see that all diamonds have type∞. Note that
the elementsx.i /y with 0 ≤ i < pn1, that is, the elementsjust above(in the sense of
immediately preceding) the diamonds, if we include afakediamondL pn2 = 〈y〉, span
a subalgebra ofH.2 : n;!2/ isomorphic with a Zassenhaus algebraW.1 : n1/. This
feature will reappear in the different grading which we will consider in Section7.

According to [20], the loop algebra ofH.2 : n;!2/ with respect to this grading is
the only thin maximal subalgebra of the algebra of maximal classAF S.0; n2; n; p/,
which is the loop algebra ofH.2 : n;!2/ with respect to the grading seen in the
previous subsection. The grading ofH.2 : n;!2/ extends uniquely to a grading of
its universal central extension. The central elements of the latter corresponding to the
cocycles'r and s of Theorem4.2 (in odd characteristic) occur in degrees 2q − pr

and 2q − ps.q − 1/, respectively.

6. The Hamiltonian algebra H (2 : n; ω2) as a Block algebra

Benkart, Kostrikin and Kuznetsov proved in [7, Theorem 4.9] (using the classifi-
cation of the modular simple Lie algebras of characteristicp > 7 completed in [56])
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that the only simple Lie algebras over an algebraically closed field of characteristic
p > 7 which admit a nonsingular derivation agreeing with aZ=NZ-grading with one-
dimensional components (in the terminology introduced in Definition5.1) are of type
H.m : n;!2/. (In [7, Theorem 4.9]N had the formpn − 1, but this was immaterial.)
Later it was proved in [39] that m necessarily equals two.

Simple Lie algebras with this property were considered earlier by Shalev in [50],
who noted that certain Lie algebras introduced by Albert and Frank in [1] can be
defined over the prime fieldFp and enjoy the property. Shalev used them to build the
first examples of insoluble graded Lie algebras of maximal class, as loop algebras of
the algebras of Albert and Frank. The algebras of Albert and Frank and their loop
algebras have been further discussed in [22], to which we conform our notation, as
starting points for the construction of more graded Lie algebras of maximal class.
A byproduct of the classification of graded Lie algebras of maximal class achieved
in [24] and [33] (for odd and even characteristic, respectively) is a proof, independent
of the classification of modular simple Lie algebras, that the only finite-dimensional
Lie algebras which admit a nonsingular derivation agreeing with aZ=NZ-grading
with one-dimensional components, whereN is any integer prime to the characteristic,
are the algebras of Albert and Frank. If we drop the condition onN but assume the
simplicity of the algebra the result remains true in odd characteristic (extending the
cited result of [7]), while in characteristic two there is exactly one further class of
algebras joining the algebras of Albert and Frank and consists of the Lie algebras
constructed in [32] and namedBi-Zassenhaus algebras(for which N is two less
than a power of two). Note that in characteristic two the simple Zassenhaus algebra
of dimension 2n − 1 has this property, the nonsingular derivation being given by
ad.e0/ = ad.E−1 + E2n−2/ in the notation introduced in Section2. In fact, with
respect to its basis{eÞ} the simple Zassenhaus algebra coincides with the algebra of
Albert and FrankAF.0; 1; n; 2/ defined below. (As we have mentioned in Section3,
it also coincides withH.2 : n;!2/.)

The above results indirectly imply that forp > 7 the class of algebras of Albert
and Frank considered by Shalev coincides with the class of Hamiltonian algebras
H.2 : n;!2/. In fact, since the algebras of Albert and Frank are Block algebras this
result holds forp > 3 according to [13, Lemma 1.8.3] together with the remarks on
the characteristic which we have made at the end of Section3. In Theorem6.1 we
use the cyclic grading and the nonsingular derivation of the algebras of Albert and
Frank employed by Shalev to find an explicit isomorphism of the latter with Hamil-
tonian algebrasH.2 : n;!2/, in arbitrary (positive) characteristic. We compute the
derivations of the algebras of Albert and Frank in Theorem6.2, extending to arbitrary
characteristic a result obtained by Block in [11] for p > 3; in view of Theorem6.1,
the description of derivations of algebrasH.2 : n;!2/ quoted in Section4 for p > 3
is also extended to arbitrary characteristic.
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For integers 0≤ a < b < n (the choice made in [22], or for the equivalent choice
0< a < b ≤ n made later in [24]), the algebra of Albert and FrankAF.a; b; n; p/ is
the Lie algebra overFpn with basis{e¾ | ¾ ∈ F∗

pn} and multiplication given by

[e¾ ; e�] =
(
¾ pa

�pb − ¾ pb

�pa
)

e¾+�(6.1)

(where the right-hand side is interpreted as zero when¾ + � = 0, for example by
settinge0 = 0). Thus, an algebra of Albert and Frank is a special instance of a Block
algebra (see Section3). It was shown in [50] that the algebra of Albert and Frank
S = AF.a; b; n; p/ is defined over the prime fieldFp. Moreover, it has a graded
basisu0; : : : ; upn−2 over Fp, and a derivationD such thatDui = ui +1 for all i , to
be read modulopn − 1. Explicitly, this basis is related to the original basis by the
formulasui = ∑

¾∈Fpn
¾ i −pa−pb

e¾ . Part of the multiplication table with respect to
the new basis, namely, a description of the adjoint action of the elementupa+pb, was
computed in [50, Proposition 2.4] (but see also [22]). If we include the derivationD
into consideration we obtain the following statement: the split extension ofS by
Fp D has a finite presentation on the generatorsu0; : : : ; upn−2 (with subscripts viewed
modulo pn − 1) andD, with relations



Dui = ui +1

[upa+pb; upa] = −u2pa+pb;

[upa+pb; upb] = upa+2pb;

[upa+pb; u j ] = 0 otherwise.

This implies at once thatS is defined over the prime field. Note that the above
formulas differ in sign from those given in [22, page 4028], which were incorrectly
quoted from [50, Proposition 2.4]. That mistake amounts to using the algebra with
the opposite multiplication, and caused no serious consequence in [22]. Note also that
here we have written the derivationD on the left, differently from [22], and hence
[ui ; D] = −[D; ui ] = −Dui .

In the terminology introduced in Definition5.1, the nonsingular derivationD agrees
with theZ=NZ-gradingS = ⊕

k∈Z=NZ Sk, whereN = pn − 1 andSk = 〈uk〉. We will
take advantage of the similar grading ofH.2 : n;!2/ defined in Subsection5.1 to
construct an isomorphism betweenS = AF.a; b; n; p/ andH.2 : n;!2/, wheren =
.n − b+ a; b− a/. Since the mape¾ 7→ e¾ pa gives an isomorphism ofAF.a; b; n; p/
with AF.0; b−a; n; p/we may restrict ourselves to the casea = 0. We will construct
a Lie algebra isomorphism¦ from the extension ofS by 〈D〉 to the extension ofL
by 〈D〉, whereD = ȳ@=@x + .1+ e/@=@y. (Using the same symbol for the derivation
D of both algebras should create no confusion.) If we set

¦.uipn2+ j / = −x.p
n1−i /y.p

n2− j /
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for 0 < i ≤ pn1 and 0 < j ≤ pn2 with .i; j / 6= .pn1; pn2/, we clearly have
D.¦ .uk// = ¦.uk+1/ = ¦.Duk/ for all k. In order to conclude that the bijective
linear map determined by¦ is a Lie algebra isomorphism it suffices to check that the
defining relations ofS are satisfied inH.2 : n;!2/. In fact, we have


[¦.u1+pn2/; ¦ .u1/] = {x̄ ȳ; x} = x̄ y.p

n2−2/ = −¦.u2+pn2/;

[¦.u1+pn2/; ¦ .upn2/] = {x̄ ȳ; y} = −x.p
n1−2/ ȳ = ¦.u1+2pn2/;

[¦.u1+pn2/; ¦ .u j /] = 0 in all other cases,

where the last formula holds because{x̄ ȳ; x.k/y.l /} = 0 unlessk; l ≤ 1, and also
{x̄ ȳ; xy} = x̄ y.p

n2−2/y − x.p
n1−2/xȳ = 0.

Incidentally, the sequence of the constituent lengths in the graded Lie algebra of
maximal classAF S.0; b; n; p/, which was computed in [22] and utilized in [24], can
now be more easily deduced from the isomorphism¦ . In fact, viewing the two-step
centralizers in the corresponding (twisted) loop algebra ofH.2 : n;!2/ and setting
q = pn2 we see at once that all componentsLk are centralized byY = .D + u1/⊗ t =
.D + x/ ⊗ t , except whenk ≡ 1 .mod q − 1/ andq 6≡ 1 .mod pn − 1/, in which
casesLk is centralized byX = u1 ⊗ t = x ⊗ t (in the usual notation of [22] but with
capital letters instead).

Another consequence of the isomorphism¦ is a formula for carrying out explicit
computations in the Lie algebra of maximal classAF S.0; b; n; p/. In fact, setting

[uiq+ j ; ukq+l ] = c.i; j ; k; l / · u.i +k/q+. j +l /

for 0< i; k ≤ pn1 and 0< j ; l ≤ pn2, with .i; j / and.k; l / 6= .pn1; pn2/, we have

c.i; j ; k; l / = −
(

2pn1 − i − k − 1

pn1 − i

)(
2pn2 − j − l − 1

pn2 − j − 1

)

+
(

2pn1 − i − k − 1

pn1 − i − 1

)(
2pn2 − j − l − 1

pn2 − j

)
:

This rather unpleasant formula can be put into the slightly simpler form

.−1/i + j · c.i; j ; k; l / =
(

k

pn1 − i

)(
l − 1

pn2 − j − 1

)
−

(
k − 1

pn1 − i − 1

)(
l

pn2 − j

)
by means of standard binomial coefficient manipulations and the less standard but
easily proved fact that the value of

(
n
k

)
modulo p (for n; k ∈ Z) is periodic inn

with period the smallest power ofp which is greater thank. Since any nonzero
homogeneous element of weightk ≥ 2 of AF S.0; b; n; p/ (realized as a loop algebra
of H.2 : .n − n2; n2/;!2/ as above) can be uniquely written as a scalar multiple of

[Y; X; Z3; Z4; : : : ; Zk] = uk ⊗ t
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with Zi ∈ {X;−Y}, the above formula allows one to multiply homogeneous elements
in AF S.0; b; n; p/without any need for commutator expansions. Finally, the method
of iterated deflation described in [22] reduces computations inAF S.a; b; n; p/ to
computations inAF S.0; b − a; n; p/.

The isomorphism which we have seen above between the algebra of Albert and
Frank AF.0; b; n; p/ and the Hamiltonian algebraH.2 : n;!2/ is perhaps better
expressed in terms of the basis{e¾ } of AF.0; b; n; p/. As we have mentioned above,
the general case ofAF.a; b; n; p/ can be reduced to that ofAF.0; b − a; n; p/ as
in [22], and we record the more general case in the following theorem (which can, of
course, also be proved by direct but rather tedious computation).

THEOREM 6.1. The algebra of Albert and FrankAF.a; b; n; p/ with Lie bracket
given by(6.1) (in arbitrary prime characteristicp) is isomorphic with the Hamiltonian
algebraH.2 : n;!2/, wheren = .n − b + a; b − a/. An isomorphism is given by the
linear map¦ : AF.a; b; n; p/ → H.2 : n;!2/ defined by the formula

¦.e¾ / =
∑

¾ ipb+ j pa

x.i /y. j /;

where the summation is over all pairs.i; j / with 0 ≤ i < n − b + a, 0 ≤ j < b − a
and.i; j / 6= .0; 0/. The inverse map is given by

¦−1.x.i /y. j // = −
∑
¾∈F∗

pn

¾−ipb− j pa

e¾ :

This result gives an explicit realization ofH.2 : n;!2/ as a Block algebra. Note
that the subalgebra ofAF.a; b; n; p/ which corresponds to the soluble subalgebra
〈x.i /y. j / : i + j > 0〉 of H.2 : n;!2/ under the isomorphism¦ consists of all elements∑

¾ c¾ e¾ with
∑

¾ c¾ ¾ pa = ∑
¾ c¾ ¾ pb = 0. Because of this isomorphism (or by

direct verification) this subalgebra ofAF.a; b; n; p/ is maximal whenever the latter
is simple (that is, except whenp = 2 and eitherb − a = 1 or n − b + a = 1). It is
known that forp > 3 this is the only maximal subalgebra of codimension two, see [8,
Theorem 2.16].

Now we compute the derivation algebra of an algebra of Albert and Frank. Accord-
ing to the identification of the algebras of Albert and Frank with suitable Hamiltonian
algebras given in Theorem6.1, we may consider their derivation algebras as known
from the general results on algebras of Cartan type quoted in Section4, but only for
p > 3. Also, the derivation algebras of all Block algebras (thus including the algebras
of Albert and Frank) were computed already in [11], again under the assumption that
p > 3. The reason for this assumption in [11] was that genuine exceptions occur
for p = 2; 3 in the more general case of Block algebras. In particular, additional
derivations may occur for algebrasH.2 : n;!0/ in low characteristics, as we have
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illustrated in Remarks4.3 and4.4. Such exceptions do not arise for the algebras of
Albert and Frank, that is, for Hamiltonian algebrasH.2 : n;!2/. However, Block’s
proof in [11] (in particular, Lemma 12) was not devised to deal with low characteristics
in this special case, and we offer a variation of it which works in every characteristic.

Every specialization of the definingFpn-grading of the algebra of Albert and
Frank AF.a; b; n; p/ to an Fp-grading (this terminology was explained in Sec-
tion 5) gives rise to a derivation which multiplies each basis elemente¾ by its Fp-
degree. These derivations turn out to be a basis for the space of outer derivations of
L = AF.a; b; n; p/. (In fact, these derivations span a maximal torusT in Der.L/,
and the given grading is the corresponding decomposition ofL into root spaces.)

THEOREM6.2. The outer derivation algebraDer.L/= ad.L/ of the algebra of Albert
and FrankAF.a; b; n; p/ has dimensionn. More precisely, every derivation of degree
zero with respect to theFpn-grading ofL acts asD³e¾ = c¾ ·e¾ , for some additive map
³ : ¾ 7→ c¾ of Fpn to itself; all derivations of nonzero degree are inner. Thus a basis
for the space of outer derivations is given by the derivations.Did/

ps
e¾ = ¾ ps · e¾ , for

0 ≤ s< n.

PROOF. Clearly Der.L/ inherits anFpn-grading fromL, and the maps described are
derivations of degree zero. Conversely, letD be a derivation of degree zero. Then
we haveDe¾ = c¾ · e¾ for ¾ ∈ F∗

pn , for suitable scalarsc¾ ∈ Fpn , and we may set
c0 = 0. The Leibniz ruleD[e¾ ; e�] = [De¾ ; e�] + [e¾ ; De�] for ¾; � ∈ F∗

pn yields that
c¾+� = c¾ + c� provided[e¾ ; e�] 6= 0. The latter amounts to¾ pa

�pb − ¾ pb
�pa 6= 0,

which is satisfied as long as¾ and� do not span the sameFpc-subspace ofFpn , where
c = .b − a; n/. But if ¾ and� do span the sameFpc-subspace ofFpn , we may choose
� outside this subspace and obtain thatc¾+� + c� = c¾+�+� = c¾+� + c� = c¾ + c� + c�
(which also settles the case where¾+� = 0). Thus the mapc : Fpn → Fpn is additive.
These maps form ann-dimensionalFpn-space.

To simplify the calculations which follow we assumea = 0, as we may, and set
q = pb. Let D be a derivation of degree− ∈ F∗

pn , henceDe¾ = c¾ · e¾+− for ¾ ∈ F∗
pn

(recalling our convention thate0 = 0), wherec¾ ∈ Fpn , and we may setc0 = c−− = 0.
Then the conditionD[e¾ ; e�] = [De¾ ; e�] + [e¾ ; De�] translates into the equation

.¾�q − ¾q�/ · c¾+� = ..¾ + − /�q − .¾ + − /q�/ · c¾ + .¾.� + − /q − ¾q.� + − // · c�

for ¾; � ∈ F∗
pn with ¾ + � 6= −− . However, this equation is trivially satisfied also if

¾ = 0 or� = 0 or ¾ + � = −− , hence it holds for all¾; � ∈ Fpn .
For the sake of clarity, we only solve the equation in the case where− = 1. This is

no loss because in general the equation can be reduced to this case by settingc′
¾ = c¾− .

The condition forD being a derivation can be written as

.¾�q − ¾q�/.c¾+� − c¾ − c�/ = .�q − �/ · c¾ + .¾ − ¾q/ · c� for ¾; � ∈ Fpn .(6.2)
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One solution isc¾ = ¾q − ¾ , which corresponds to the inner derivation ade1. We will
prove that this is the only solution, up to scalars.

Setting� = −¾ in equation (6.2), we obtain that.¾ q − ¾/.c¾ + c−¾ / = 0, hence
c−¾ = −c¾ holds provided¾q − ¾ 6= 0. Our next goal is to show that the left-hand side
of (6.2) always vanishes. We may assume that¾ q − ¾ and�q − � do not both vanish,
otherwise the coefficient¾�q − ¾q� vanishes, too. Then the left-hand side of (6.2)
can also be written as−.¾�q − ¾q�/.c−¾−� + c¾ + c�/ if ¾ q + �q − ¾ − � 6= 0, and
as.¾�q − ¾q�/.c¾+� + c−¾ + c−�/ otherwise. Either expression is invariant under the
cyclic substitution¾ 7→ � 7→ −¾ − � 7→ ¾ . Hence the right-hand side of (6.2) is
invariant, too, implying that

.�q − �/ · c¾ − .¾ q − ¾/ · c� = .−¾ q − �q + ¾ + �/ · c� − .�q − �/ · c−¾−�
= .¾ q − ¾/ · c−¾−� − .−¾ q − �q + ¾ + �/ · c¾

or, equivalently,

.¾ q − ¾/.c−¾−� + c¾ + c�/ = .�q − �/.c−¾−� + c¾ + c�/ = 0:

(A more conceptual view of the computation is the following: invariance of the right-
hand side of (6.2) under the substitution implies that the (standard) vector product of the
two vectors.c¾ ; c�; c−¾−�/and.¾ q−¾; �q−�;−¾ q−�q+¾+�/ is a multiple of.1; 1; 1/;
since the vector product is orthogonal to both vectors we havec−¾−� + c¾ + c� = 0,
provided the second vector is nonzero.) Consequently, both sides of (6.2) vanish for
all ¾; � ∈ Fpn . Hence.�q − �/ · c¾ = .¾ q − ¾/ · c�, and fixing� such that�q − � 6= 0
we conclude thatc¾ = ..�q − �/−1c�/ · .¾ q − ¾/ for all ¾ .

We have already used Theorem6.2in Section4 to extend the scope of Theorem4.2
to characteristic three. We mention that a convenient basis for the second cohomology
group ofAF.a; b; n; p/ is obtained (in odd characteristic) from the outer derivations
given in Theorem6.2 by the method explained in Section4, and consists of the
cocycles'..Did/

ps
/.e¾ ; e�/ = Ž.¾ + �; 0/ · ¾ ps

for 0 ≤ s < n. In characteristic two
these functions are not cocycles because they are not alternating and, in fact, the
second cohomology group vanishes, see Remark4.5.

7. Another thin grading of H (2 : n; ω2)

In this section we introduce aZ=.pn2 −1/Z×.Z=pZ/n1-grading ofL = H.2 : n;!2/.
In the special casen1 = 1, the grading will be (cyclic and) thin, and the corresponding
loop algebra will be the thin Lie algebra with all the diamonds of finite type constructed
in [20]. In fact, the construction of the present grading is guided by the structure of
that thin Lie algebra. Unlike in [20], here we put no restriction on the (positive)
characteristic.
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To briefly outline the construction of the grading, we first note that such a grading
gives rise to aZ=.pn2 − 1/-grading and to a.Z=pZ/n1-grading by specialization.
Conversely, the original grading can be recovered from these two specializations. We
start with theZ=.pn2 − 1/Z-grading ofL mentioned at the beginning of Section5
where.R; S/ = .0;−1/. Its components are

L̄1 = 〈x.i / | i = 1; : : : ; pn1 − 1〉 + 〈x.i / ȳ | i = 0; : : : ; pn1 − 1〉;
and

L̄1− j = 〈x.i /y. j / | i = 0; : : : ; pn1 − 1〉
for j = 1; : : : ; pn2−2. The component of degree zero is isomorphic with a Zassenhaus
algebraW.1 : n1/. As we saw in Section2, the latter has a grading over the additive
group of the fieldFpn1 , which is simply the root space decomposition ofW.1 : n1/

with respect to an appropriate one-dimensional Cartan subalgebra, say〈e0〉. Viewing
W.1 : n1/ as a subalgebra ofL, the decomposition ofL into weight spaces with
respect to ade0 extends the grading ofW.1 : n1/ to a grading ofL, which turns out to
be over the same groupFpn1 . Sincee0 ∈ L̄0, it normalizes every componentL̄ j , and it
follows that thisFpn1 -grading ofL together with theZ=.pn2 − 1/Z-grading yield the
desiredZ=.pn2 − 1/Z× Fpn1 -grading.

As announced above, we identify the subalgebra

W = 〈x.i /y | i = 0; : : : ; pn1 − 1〉
of L with the Zassenhaus algebraW.1 : n1/ via Ei = x.i +1/y, for i = −1; : : : ; pn1 −2.
This is justified by

{x.i /y; x.k/y} =
((

i + k − 1

k − 1

)
−

(
i + k − 1

i − 1

))
x.i +k−1/y:

Recall from Section2 that anFpn1 -graded basis ofW is given by{
e0 = y + x̄ y

eÞ = x̄ y + ∑pn1−1
i =0 Þi x.i /y for Þ ∈ F∗

pn

(where the former formula can be seen as a special case of the latter, but we have kept
them separated for the sake of clarity, here and below).

It is a simple matter to find the weight spaces of ade0 on each component̄L j ,
starting from the formula

{e0; x.i /y. j /} = {y + x̄ y; x.i /y. j /} =

=




− j x .p
n1−2/y. j / if i = 0,

.1 + e/y. j / + .1 + j /x̄ y. j / if i = 1,

x.i −1/y. j / if i > 1.
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In particular, eigenvectors for ade0 on L̄1− j , for j = 1; : : : ; pn2 − 1, are{
e1− j;0 = y. j / + j x̄ y. j /

e1− j;Þ = j x̄ y. j / + ∑pn1−1
i =0 Þi x.i /y. j / for Þ ∈ F∗

pn1 ;

extending the complete set of eigenvectors for ade0 on W given by its basis elements
e0;Þ = eÞ. Our notation is chosen so thate1− j;Þ ∈ L̄1− j , and

{e0; e1− j;Þ} = Þe1− j;Þ:

Also, the subscript 1− j in e1− j;Þ will be read modulopn2 − 1, so that, for example,
e1;Þ will be the same ase2−pn2;Þ. However, beware thate1;Þ is not what one would
obtain by puttingj = 0 in the formulas.

The formulas above give complete sets of eigenvectors for ade0 on L̄1− j only for
j = 1; : : : ; pn2 − 2. In fact, ade0 acts onL̄2−pn2 as a sum of two-dimensional Jordan
blocks, say〈e1;Þ; ē1;Þ〉, one for each eigenvalueÞ ∈ F∗

pn1 . (These will be the diamonds
in the thin grading, in casen1 = 1.) It is convenient to assume that

{e0; ē1;Þ} = Þē1;Þ − Þe1;Þ;

which we may becauseÞ 6= 0. This determines̄e1;Þ ∈ L̄1 modulo 〈e1;Þ〉, and we
choose to set̄e1;Þ = ∑pn1−1

i =1 Þi .x.i / − i x .i / ȳ/ for Þ ∈ F∗
pn1 . It will be convenient to

allow also the valueÞ = 0 in the above formula, and thus setē1;0 = 0. (In casen1 = 1
the component〈e1;0; ē1;0〉 = 〈e1;0〉 corresponds to afakediamond in the thin grading.)

In the following lemma, we summarize what we have obtained so far, and we
include the inverse formulas which give the divided powers in terms of the elements
ej;Þ andēj;Þ.

LEMMA 7.1. The Hamiltonian algebraL = H.2 : n;!2/ admits aZ=.pn2 − 1/Z×
Fpn1 -grading given byL = ⊕

Lk;Þ, where Lk;Þ = 〈ek;Þ〉, or Lk;Þ = 〈ek;Þ; ēk;Þ〉
whenever the latter makes sense, and the basis elements involved are given by{

e1− j;Þ = j x̄ y. j / + ∑pn1−1
i =0 Þi x.i /y. j / for Þ ∈ Fpn1 and j = 1; : : : ; pn2 − 1;

ē1;Þ = ∑pn1−1
i =1 Þi .x.i / − i x .i / ȳ/ for Þ ∈ F∗

pn1 ;

where00 should be understood as1. Conversely, fori = 1; : : : ; pn1 − 1 and j =
1; : : : ; pn2 − 1 we have


x.i /y. j / = − ∑

Þ∈Fpn1
Þ pn1−1−i e1− j;Þ;

y. j / = e1− j;0 + j
∑

Þ∈Fpn1
e1− j;Þ;

x.i / = − ∑
Þ∈Fpn1

Þ pn1−1−i .ie1;Þ + ē1;Þ/;

where in the last formula it is understood thatē1;0 = 0.
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For later use, we record the products of the basis elements given in Lemma7.1.
We have

{e1− j;Þ; e1−l ;þ} =
(
þ

(
j + l − 1

l

)
− Þ

(
j + l − 1

j

))
e2− j −l ;Þ+þ(7.1)

for j ; l = 1; : : : ; pn2 − 1, provided 1≤ j + l − 1 ≤ pn2 − 1, and zero otherwise,

{e1− j;Þ; ē1;þ} = þe2− j;Þ+þ for j = 2; : : : ; pn2 − 1;(7.2)

{e0;Þ; ē1;þ} = −þe1;Þ+þ + þē1;Þ+þ;(7.3)

{ē1;Þ; ē1;þ} = 0:(7.4)

It is not necessary to carry out the computations in full in order to prove these formulas,
if we use the fact that the basis is graded, according to Lemma7.1. For example, the
result of the product in formula (7.1) must be a scalar multiple ofe2− j −l ;Þ+þ, and we
only have to find that scalar. Since the monomialy. j / appears ine1− j;Þ with coefficient
1, it is enough to compute the coefficient of the monomialy. j +l−1/ in the product
{e1− j;Þ; e1−l ;þ}. The products of the only relevant terms, namely

{y. j /; þxy.l /} + {Þxy. j /; y.l /} =
(
þ

(
j + l − 1

l

)
− Þ

(
j + l − 1

j

))
y. j +l−1/;

yield the desired conclusion. Formula (7.2) follows similarly by computing

{y. j /; þx} = þy. j −1/:

Formula (7.4) follows because the monomialy.p
n2−2/ does not appear in the result.

The proof of formula (7.3) is just slightly more involved because{e0;Þ; ē1;þ} must be a
linear combination ofe1;Þ+þ andē1;Þ+þ. Since the coefficients of̄y andx are 1 and 0
in the former, and 0 andÞ + þ in the latter, the conclusion follows by computing the
only relevant products, which are{y;−þxȳ} = −þ ȳ and

{y; þ2x.2/} + {Þxy; þx} = þ.Þ + þ/x:

(For the dubious case whereÞ + þ = 0, recall from Lemma7.1 that we have set
ē1;0 = 0.)

Now we restrict our attention to the case of main interest for us by lettingn1 = 1,
and introducing the shorthandq = pn2, so thatL has dimensionpq − 1. Then the
subspacesLk;Þ form a grading ofL over the cyclic groupZ=.q − 1/Z× Fp. Choosing
.1; 1/ as a generator of the latter, we will show that the grading is thin, according to
Definition5.3, and that all diamonds are of finite type.
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The diamonds occur in all degrees congruent to 1 moduloq −1, with the exception
of degreeq. We set

X = ē1;1 =
p−1∑
i =1

.x.i / − i x .i / ȳ/ and Y = e1;1 = −x̄ ȳ +
p−1∑
i =0

x.i / ȳ;

and check that the covering property is satisfied. Since

{ē1;Þ; X} = 0;

{e0;Þ; X} = ē1;Þ+1 − e1;Þ+1 (whereē1;0 = 0);

{e1− j;Þ; X} = e2− j;Þ+1 for j = 2; : : :q − 1;

{ē1;Þ;Y} = −Þe2;Þ+1;

{e0;Þ;Y} = .Þ + 1/e1;Þ+1;

{e1− j;Þ;Y} = 0 for j = 2; : : :q − 1;

we have{Lk;Þ; 〈X;Y〉} = Lk+1;Þ+1 for k 6≡ 1 .mod .q − 1//, which shows that the
covering property holds in these degrees, sinceLk;Þ is one-dimensional. To see that the
loop algebra is thin, it remains to check the covering property on the two-dimensional
components. At the same time we will check the diamond types (including thefake
diamondL1;0, which is in degreeq). Since

{e0;Þ; X; X} = {−e1;Þ+1; X} = −e2;Þ+2;

{e0;Þ; X;Y} = {ē1;Þ+1;Y} = −.Þ + 1/e2;Þ+2;

{e0;Þ;Y; X} = {.Þ + 1/e1;Þ+1; X} = .Þ + 1/e2;Þ+2;

{e0;Þ;Y;Y} = 0;

if a; b are scalars we have{e0;Þ; aX + bY; 〈X;Y〉} = L2;Þ+2 unlessa = b = 0 in
caseÞ 6= −1, and unlessa = 0 in caseÞ = −1 (the case of thefakediamond). It
follows that the grading is thin. Furthermore, the elements just above the (possibly
fake) diamonds are those of the formVÞ = e0;−Þ−1 and satisfy

{VÞ;Y; X} = Þ{VÞ; X; X};
hence the diamond〈{VÞ; X}; {VÞ;Y}〉 in degreeq+Þ.q−1/ (which isfakefor Þ = 0)
has typeÞ. Note that most of the computations done in this paragraph need not be
carried out in full, provided we use the fact that the elementsek;Þ and ē1;Þ form a
graded basis ofL, according to Lemma7.1.

We have completed the proof of the following result.

THEOREM 7.2. In casen1 = 1 the cyclic grading ofL = H.2 : n;!2/ defined
in Lemma7.1 is a thin grading(with respect to the generator.1; 1/ of the grading
group). The diamond types are all finite, and follow an arithmetic progression.
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Note that {Lk;Þ;Y} = 0 for k 6≡ 0; 1 .mod .q − 1//, and also{L0;−1;Y} =
{L1;0;Y} = 0; henceY centralizes all one-dimensional components which do not
immediately precede a diamond.

We remark that thin Lie algebras with diamonds of both finite and infinite types are
constructed in [5]. The finite diamond types there follow an arithmetic progression,
but they are separated by sequences of constant length of diamonds of infinite type.

8. Another realization of H (2 : (1, n2); ω2) as a Block algebra

In [20] we constructed a simple Lie algebraA with a thin grading and all diamonds
of finite type. Since the location and types of the diamonds ofA match those of the
algebraL = H.2 : .1; n2/;!2/ with the grading defined in the preceding section it
follows that the loop algebras ofL and A are isomorphic. Actually, this yields an
isomorphism betweenL and A themselves, but it may be necessary to extend the
ground field for this. The purpose of this section is to justify these claims.

We recall the definition ofA from [20], with slight notational changes to avoid
clash with the notation of the present paper. Letp be any prime, letq = pn2, and
setS∗ = .Fp × Fq/ \ {.0; 0/}. TheFq-vector spaceA with basis{ fu;Þ | .u; Þ/ ∈ S∗}
becomes a Lie algebra overFq by defining[ fu;Þ; fv;þ ] = .vÞ − uþ/ · fu+v;Þ+þ, where
we read 0· f0;0 as zero. By constructionA is a Block algebra, and so it is simple and
isomorphic to a Hamiltonian algebraH.2 : n;!2/ (at least whenp > 3, and possibly
after extending the ground field, see Section3). We will construct an isomorphism
explicitly.

It was shown in [20] that A has a thin grading where the component of degree one
is spanned byx = f1;0 andy = ∑

Þ∈Fq
f1;Þ. (The assumptionp > 3 stated in [20] was

only needed in later sections, when considering presentations for the thin algebra.)
An easy induction showed that

[y; x; : : : ; x︸ ︷︷ ︸
j −1

] =
∑
Þ∈Fq

Þ j −1 f j;Þ for j ≥ 1

(where our convention that 00 = 1 intervenes whenj = 1). This element spans the
component of degreej of the grading, except whenj ≡ 1 .mod q − 1/ but j 6≡ 0
.mod p/, in which cases the component is two-dimensional. An element just above a
diamond of type½− 1 is

v½−1 = [y; x; : : : ; x︸ ︷︷ ︸
½.q−1/−1

] =
∑
Þ∈F∗

q

Þ−1 f−½;Þ;

whence

[y; x; : : : ; x︸ ︷︷ ︸
½.q−1/−1

; y] = .½− 1/
∑

∈Fq

f−½+1;
 :
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In particular, we have


[y; x; : : : ; x︸ ︷︷ ︸
p.q−1/

] =
∑
Þ∈Fq

Þ.q−1/p f1+.q−1/p;Þ =
∑
Þ∈F∗

q

f1;Þ = y − x;

[y; x; : : : ; x︸ ︷︷ ︸
p.q−1/−1

; y] = −
∑

∈Fq

f1;
 = −y:

Now we carry out analogous computations inL = H.2 : .1; n2/;!2/ with the thin
grading constructed in the previous section, using the formulas obtained there. In
particular, the component of degree one in the grading is spanned byX = ē1;1 and
Y = e1;1, and we find that

{Y; X; : : : ; X︸ ︷︷ ︸
j −1

} = .−1/b
j−1
q−1 c.ej; j − Žq−1. j ; 1/ēj; j / for j > 1

(but not for j = 1), whereŽq−1.s; t/ equals one ifs ≡ t .mod q − 1/, and zero
otherwise. An element just above a diamond of type½− 1 is

V½−1 = {Y; X; : : : ; X︸ ︷︷ ︸
½.q−1/−1

} = .−1/½−1e0;−½;

whence

{Y; X; : : : ; X︸ ︷︷ ︸
½.q−1/−1

;Y} = .−1/½.½− 1/e1;−½+1:

In particular, we have


{Y; X; : : : ; X︸ ︷︷ ︸
p.q−1/

} = −e1;1 + ē1;1 = −Y + X;

{Y; X; : : : ; X︸ ︷︷ ︸
p.q−1/−1

;Y} = e1;1 = Y:

The sign discrepancy of the latter formulas with the analogous ones forAseen above
means nothing if we work with the loop algebras ofA andL (which are isomorphic),
but suggests thatA may not be isomorphic withL = H.2 : .1; n2/;!2/ overFq. We
extend the ground field toFq2 and fix" ∈ Fq2 with "q−1 = −1. A well-defined linear
map− : A → L is obtained by setting− .x/ = "X, − .y/ = "Y, and


− .[y; x; : : : ; x︸ ︷︷ ︸

j −2

; x]/ = " j {Y; X; : : : ; X︸ ︷︷ ︸
j −2

; X};

− .[y; x; : : : ; x︸ ︷︷ ︸
j −2

; y]/ = " j {Y; X; : : : ; X︸ ︷︷ ︸
j −2

;Y}
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for all j ≥ 2. The computations done in Section7 and in [20] show thaty and
Y centralize all one-dimensional components which do not immediately precede a
diamond, in the respective algebras, and also that the diamond types match. It follows
that− .[w; z]/ = {− .w/; − .z/} for all w ∈ A andz = x or y. Sincex andy generate
A we conclude that the map− is an isomorphism of Lie algebras (because the set of
z ∈ A such that− .[w; z]/ = {− .w/; − .z/} for all w ∈ A is a subalgebra).

Finding explicit formulas for the isomorphism− in terms of convenient bases for
A andL is a matter of some manipulations, and we only record the final result.

THEOREM8.1. The Block algebraA defined in[20] and described at the beginning
of this section is isomorphic with the Hamiltonian algebraH.2 : .1; n2/;!2/. An
isomorphism is given by the linear map− : A → H.2 : .1; n2/;!2/ defined by the
formulas(both forÞ ∈ Fp, and where"q−1 = −1){

− . fÞ;þ/ = − ∑q−1
k=1 þ

−k+1"kek;Þ + "ē1;Þ for þ ∈ F∗
q;

− . fÞ;0/ = "ē1;Þ;

in terms of the basis{ek;Þ; ē1;Þ} of H.2 : .1; n2/;!2/ defined in Lemma7.1, or{
− . fÞ;þ − fÞ;0/ = ∑q−1

j =1 j "1− jþ j x̄ y. j / + ∑p−1
i =0

∑q−1
j =1 "

1− jÞiþ j x.i /y. j / for þ ∈ F∗
q;

− . fÞ;0/ = "
∑p−1

i =1 Þ
i .x.i / − i x .i / ȳ/

in terms of divided powers.

Note that there appears to be a certain amount of symmetry between the formulas
for − . f0;þ/ and− . fÞ;0/, because− . f0;þ/ = ∑q−1

j =1 "
1− jþ j .y. j / + j x̄ y. j //:

The following cocycles ofA were introduced in [20], and it was proved that they
form a basis for the second cohomology group ofA, if p > 3

'r . fu;Þ; fv;þ/ =
{
Þ pr

if Þ + þ = 0 andu + v = 0;

0 otherwise,

for 1 ≤ r ≤ n2, and

 . fu;Þ; fv;þ/ =
{

u if u + v = 0;

0 otherwise.

In view of the isomorphism− given in Theorem8.1, we now make the connection
with the cocycles ofL = H.2 : .1; n2/;!2/ described in Theorem4.2. Call8r and
9 the cocycles obtained by pulling the cocycles'r and of A back to L via the
isomorphism−−1. A straightforward computation for9, and a slightly more involved
one for8r , both of which we omit, show that9 = −"−2 1 and that

8r = " pr −2
(
'r + '.adxy.q−pr //

)
;

in the notation of Section4.
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[46] È. Lucas, ‘Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions
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