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Abstract

A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness
condition. We describe several cyclic grading of the modular Hamiltonian Lie algéti&sn; w,) (of
dimension one less than a powemg)ffrom which we construct infinite-dimensional thin Lie algebras. In

the process we provide an explicit identificationtd€2: n; w,) with a Block algebra. We also compute

its second cohomology group and its derivation algebra (in arbitrary prime characteristic).

2000Mathematics subject classificatioprimary 17B50; secondary 17B70, 17B56, 17B65.
Keywords and phrasedlodular Lie algebras, graded Lie algebras, derivations, central extensions, loop
algebras.

1. Introduction

In the last three decades the interest of researchers in firgteups has increasingly
extended to prge-groups. This trend was initiated by Leedham-Green and Newman
in 1980, who proposed iMp] one way of getting around the universally believed
impossibility of a classification gf-groups up to isomorphism. One of their intuitions
was that of using theoclassrather than the (nilpotency) class pfgroup as a
fundamental invariant. Since the coclass of a group of opfeis defined as the
difference between and the class of the group, this change has no real effect unless
one focuses on families gf-groups rather than singlp-groups. A special role is
then played by prgg-groups, to which the definition of coclass extends naturally, and
which represent entire families of finifggroups as the sets of their finite quotients.
In particular, having finite coclass for a pmpgroup G means that all lower central
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quotientsy; (G)/yi+1(G) have order at mogb from some point on. The fiveoclass
conjecturesdvanced in45] are now theorems thanks to the efforts of several authors,
culminating in B2] and [51]. They give information on prgs-groups of finite coclass
(Conjecture C, the simplest to state, claiming that everyggroup of finite coclass
is soluble), but also asymptotic information on families of finitgroups of fixed
coclass.

Lie-theoretic methods occupy an important place in the theorg-gfoups, and
also in the proofs of the coclass conjectures. The oldest and simplest such methoc
is associating the graded Lie rir@.”, 3 (G)/yi+1(G) with the lower central series
of a (pro-)p-group. In many interesting cases the Lie ring is actually a Lie algebra
over the field ofp elementsF,. This approach was already present in disguise in the
pioneering work of Blackburn op-groups of coclass one (better knownmagroups
of maximal classand the subsequent work of Leedham-Green and McKay {se [
and the references therein), which inspired the formulation of the coclass conjectures
Lie rings or algebras associated with gpegroups in this way are graded over the
positive integers, and are generated by their component of degree one. The coclas
conjectures have natural analogues for graded Lie algebras over an arbitrary field
defined by these properties, independently of the connection witlpq@ups, but
in this new context all the conjectures turn out to be false. This already occurs in
the simplest case of coclass one, as Shalev constructéd]ithp first examples of
insoluble graded Lie algebras of maximal class. Here, by a graded Lie algebra of
maximal class we mean a Lie algeliravhich is graded over the positive integers,

(1.1) L= é Ly,

whereL ; has dimension 2, has dimension 1 fdk > 1, andL,,; = [Ly, L] for all
k> 1.

Shalev’s construction starts from certain finite-dimensional simple modular Lie
algebras, originally introduced by Albert and Frarik, [and applies doop algebra
construction (strictly speaking, taking the positive part of a twisted loop algebra, see
Subsectiorb.1 for details). As a consequence, the resulting graded Lie algebras of
maximal class, despite being insoluble, have a kind of periodic structure, in a precise
sense. Therefore, one could still hope that each of them is uniquely determined by a
suitable finite-dimensional quotient, as is the case withggroups of finite coclass
(because each-group of finite coclass and class large enough, dependingmn
andr, is a quotient of a unique infinite prp-group of coclass). The investigation
carried out in P2] showed that this is not the case. In fact, it turned out that most
graded Lie algebras of maximal class are not periodic. Nevertheless, Shalev’s algebra
occupy a unigue place in the description of the graded Lie algebras of maximal class
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over fields of odd characteristic, which have been completely classifietffin An
analogous classification over fields of characteristic two will soon appeagjn [

After the coclass conjectures for pmpgroups were proved, other invariants have
been suggested, which may possibly lead to a finer classificatiprgodups than the
rough one provided by the coclass theorems. We do not need the precise definition:s
of these invariants, which are calleddth, obliquity and rank, and we refer the
interested reader to Chapter 12 of the bodK] [by Leedham-Green and McKay.
The simplest nontrivial case in terms of these invariants consists of thp-groups
of width two and obliquity zero. These groups, which do not have finite coclass
in general, have also been given the natma in [15, 14] (originally in the finite
case) because of a narrowness characterization in terms of their lattice of (closed)
normal subgroups. Some of our terminology, like ti@mondsntroduced in the next
paragraph, originates from that point of view.

An approach to thin groups via the associated graded Lie algebra was takéh in [
The lower central factors in a thin group are elementary abelian of rank at most two.
Those of rank two, in the group or in its associated graded Lie algebra, are called
diamonds There is of course a diamoil/y»(G) on top of a thin groujgs, and if this
is the only diamond thes has maximal class. Otherwise, it follows from the theory
of p-groups of maximal class that in a thin group the second diamond occurs in class
at mostp. In [23] we proved that the associated Lie algebra has bounded dimension,
except when the second diamond occurs in class (or degree) 3,p5 &ach of
these cases occurs for certain infinite prgroups, bothp-adic analytic and not. For
example, Sylow prge-subgroups of SI2, Z,,) or SL(2, F,[[t]]), or certain ‘nonsplit’
versions of them, are thin prp-groups with second diamond in class 3. A detailed
description of these groups in theeadic analytic cases is given if4, Section 12.2].

Thin pro-p-groups with second diamond in class 5 can be realized similarly starting
with certain linear groups of typé, over local fields, see3p] or [47]. Finally, the
second diamond in clags occurs for one of the wildest known pro-groups, the
Nottingham group (which is thin fop > 2), described in44, Section 12.4], for
example.

A crucial fact for the investigation carried out i@3] was that the condition of
a pro-group G having obliquity zero can be verified on the associated graded Lie
ring, which in this case is a Lie algebra ovigy. In this context a more convenient
formulation of the condition is theovering property A graded Lie algebrd. as
in (1.1), over an arbitrary field and thus not necessarily associated with a group, is
calledthin if L; has dimension 2 and the followirmpvering propertyholds:

1.2) forall k> 1, andallu € Ly, with u # 0, we havelL,, ; = [u, L,].

It follows that L is generated by.; as a Lie algebra and that all homogeneous
components have dimension at most two. (See Definiidmnd the comments that
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follow for more details.) The arguments dtJ have been extended im,[20] to
show that the second diamond in an infinite-dimensional thin Lie algebra (or one of
finite dimension large enough) can only occur in degree 8§, &, 29 — 1, for some
powerq of the characteristip of the underlying field. It follows from43] that there
are, up to isomorphism and with the possible exception of very small characteristics,
one or two (depending on the ground field) infinite-dimensional thin Lie algebras
with second diamond in degree 3 and no diamond in degree 4, and one with seconc
diamond in degree 5. Thus, they are the graded Lie algebras associated with som
of the thin prop-groups mentioned earlier. Machine computations have shown that
each of the cases where the second diamond is in degoee2q — 1 splits into a
number of subcases, depending on the location of the further diamonds anggesir
(see Subsectioh.2). Several of these subcases have been investigated in various
papers, having in mind a classification of all infinite-dimensional thin Lie algebras
as a distant goal. We refer to the pap2t][ and to the references mentioned there,
for a discussion of thin Lie algebras with second diamond in degyeed to RO, 5]
for those with second diamond in degreg-2 1. Here we restrict ourselves to some
general and informal comments on the type of results which have been proved so far.

The results in this subject typically come in pairs, of rather different flavour:
namely, a unigueness theorem and an existence theorem. The former states the
a certain initial structure of an infinite-dimensional thin Lie algebra (formulated in
terms of the location of the first few diamonds and thgieg, determines the algebra
completely (within the class of thin Lie algebras). More precisely, a certain specified
finite-dimensional thin Lie algebra is a quotient of a unique infinite-dimensional
thin Lie algebralL. This is proved by producing a finite presentation for a central
extensionM (broadly speaking, the universal central extensioh)fUsuallyL itself
is not finitely presented, see RemarR for a specific instance of this phenomenon.
The existence result consists in the explicit constructioh. oés a loop algebra of
some finite-dimensional Lie algeb& with respect to a suitable cyclic grading, and
sometimes with the intervention of an outer derivatiorsof

The latter type of result brings in an interesting connection with (usually simple)
finite-dimensional modular Lie algebras, certain cyclic gradings of them, and their
derivations. Their second cohomology group (with values in the trivial module) also
plays a role, being closely related with the centreMbf Apart from the classical
algebras of type#y and A, used in the construction of thin Lie algebras with second
diamond in degree 3 and 5 (sek7] 23)), all the remaining cases involve (non-
classical) simple modular Lie algebras of Cartan type, namely Zassenhaus algebra
and Hamiltonian algebras of various types. We recall the definitions of these algebras
in Sections2 and 3, and point out in Remark.1 other notations in use for them.
In particular, infinite-dimensional thin Lie algebras with second diamond in degree
have been constructed as loop algebras of Zassenhaus algebras (which have dimensi



[5] Gradings of non-graded Hamiltonian Lie algebras 403

a power ofp, see |16, 17, 18]), and Hamiltonian algebras of the typES2 : n; wg) =

H(2 : n) (the graded simple Hamiltonian algebras, of dimension two less than a
power ofp, see B]) andH (2 : n; w;) (which are Albert-Zassenhaus algebras and have
dimension a power op, see f]).

A preliminary version of the present paper, which predated and inspired some of
the other papers cited here, had as its main goal the construction of some infinite-
dimensional thin Lie algebras with second diamond in degcee 2 as loop algebras
of Hamiltonian algebra$i (2 : n; w,), which have dimension one less than a power of
p. (Infact, a construction for those thin Lie algebras had already been givéf]in [
but as loop algebras of certain finite-dimensional Lie algebras defined ‘ad hoc'’.) The
paper has somehow expanded after we have realised that some of our result may b
of interest independently of their application to thin Lie algebras.

Now we describe the contents of this paper in some detail. Our results are presente
in Sections4-8. Sections2 and 3 are expository and include information on low
characteristics which is not easily accessible in the literature. Since much motivation
for studying Lie algebras of maximal class and related classes of ‘narrow’ Lie algebras
like thin Lie algebras comes from analogous classes of (prgrdups, we have written
the expository sections with the aim of making the paper accessible to the group theoris!
with little knowledge of modular Lie algebras.

We have mentioned earlier the relevance of the second cohomology group (with
values in the trivial module) of a finite-dimensional Lie algebra with presentations
of the corresponding loop algebra. Therefore, we determine in Settluasecond
cohomology group of the algebr&k(2: n; w,). We do this according to the classical
method used in Farnsteine2d], which relates the group to the derivations of the
algebra, exploiting the presence of a nonsingular associative form. The result is surely
well known to experts, but we have been unable to find a suitable reference in the
literature. We have also collected in Sectibknown information about derivations
and the second cohomology grouphdt2: n; wy), in all positive characteristics.

In Section5, we show how various cyclic gradings Bff(2 : n; w,) way, and how
they relate to graded Lie algebras of maximal class and to certain thin algebras closely
connected to them, which were also studied 26][ Note thatH (2 : n;w,) has
a natural filtration, thestandardfiltration, inherited by the natura-grading of the
divided power algebra on which it acts. The filtration is not induced by a grading,
however, in contrast té(2 : n; wg), which is agradedLie algebra of Cartan type.
(Hence the cheap pun in the title.)

The first manifestation of a connection between ‘narrow’ infinite-dimensional
graded Lie algebras and certain finite-dimensional simple Lie algebras was in Shalev’s
construction in0] of insoluble graded Lie algebras of maximal class, which we have
mentioned earlier. The finite-dimensional simple algebras of Albert and Frank used
by Shalev belong to the larger class of Block algebras, introducednif is known
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that Block algebras are Lie algebras of Hamiltonian Cartan type and, in particular, that
the algebras of Albert and Frank are Hamiltonian algelbt@2: n; w,), at least for

p > 3. (We discuss this further and provide appropriate references towards the end
of Section3.) In Theorem6.1 we give an explicit isomorphism of the Hamiltonian
algebrasH (2: n; w,) with the algebras of Albert and Frank which is valid in every
positive characteristic.

The crucial property of the algebras of Albert and Frank exploited by Shalev
in [5Q] is that they admit a cyclic grading with one-dimensional components, and
a nonsingular derivation which permutes them transitively. Benkart, Kostrikin and
Kuznetsov proved inq] and [39] that the only finite-dimensional simple Lie algebras
with this property, over an algebraically closed field of characterjstic 7, are the
Hamiltonian algebrasd (2: n;w,). The proof rests on the classification of simple
modular Lie algebras, which causes the restrictiorppbut now a classification-free
proof of this result forp > 2 is a consequence at4]. A more thorough discussion,
which includes the case of characteristic two, will be found in Sediiofhe cyclic
grading of H(2: n; w,) and the nonsingular derivation are also the ingredients for
discovering the isomorphism with a Block algebra exhibited in Thedgim

The determination of the second cohomology grougd@®2: n; w,) in Section4
depends on a knowledge of its derivation algebra. Since this piece of information
is not easily available in low characteristics, we fill this gap by exploiting the other
incarnation ofH (2: n; w,), as originally defined by Albert and Frank. Thus, in
Theorem6.2 we compute the derivation algebra of the algebras of Albert and Frank
in arbitrary positive characteristic, by suitably modifying Block’s original prddf/|
which was valid forp > 3 only (although for a larger class of algebras).

In [20] we constructed various thin Lie algebras with second diamond in degree
2q — 1. One can assigntgpeto each diamond of such algebras, taking values in the
underlying field plusx, in such a way that the locations and types of the diamonds
determine the isomorphism type of the algebra (see Subsécfidor more details).

The thin Lie algebras with all diamonds of type turn out to be closely connected
with graded Lie algebras of maximal class. In particular, there is such a thin Lie
algebra associated with each of the graded Lie algebras of maximal class constructe
by Shalev in p0]. We describe that in Subsectiér2as a loop algebra dfl (2: n; ws)

with respect to a suitable grading. IBJ we also constructed thin Lie algebras with
second diamond in degreg 2- 1 and all diamonds of finite types, as loop algebras

of certain Block algebras. The Block algebras usedit] pre actually isomorphic

with algebras of Albert and Frank (being simple Block algebras W@th= G,, see
Section3, and according to known results, for example3,[ Lemma 1.8.3]), but
were presented there in a different basis. As we have mentioned earlier, the original
motivation for the present paper was finding an explicit identification of those algebras
with Hamiltonian algebrasl (2 : n; w,) and describing a corresponding cyclic grading
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of the latter. We realize these two tasks in Secti®asd?7, respectively. We should
mention that coexistence of diamonds of both finite and infinite types is possible in
the same thin Lie algebra. Such algebras are constructed], iaq loop algebras of
Hamiltonian algebrasi (2 : n; w,) with respect to yet another grading.

2. Generalities about some Lie algebras of Cartan type

The Hamiltonian Lie algebras form one of the four families of Lie algebras of
Cartan typeW, S, H, K. Definitions of these families can be found in the recent
book of Strade%7]. Here we will limit ourselves to a discussion of the general Lie
algebra of Cartan typ®/(m : n), with a special attention for the Zassenhaus algebra
W(1: n), and of two types of Hamiltonian algebras in the next section.

Let F be a field of prime characteristig, letn = (ny, ..., n,) be anm-tuple of
positive integers, and pat= n;+- - -+n,,. The algebra ofndivided powers truncated
atn, denoted b¥F[Xy, ..., Xm; N1, ..., Nw] or F[M : n] for brevity, is theF-vector space
of formal F-linear combinations of monomiabéi“ o xgm) with 0 < i; < p", with
multiplication defined byx{“x!” = (“/")x{**", and extended by linearity and by
postulating commutativity and associativity of the multiplication.

Note that, as an algebrgim : n] is determined up to isomorphism by its dimension
p", wheren = n; + --- + n,,. In fact, it coincides (up to notation) with the free
associative and commutative algebra on the generaf&kfé forO0<j<mO0<
k; < nj, subject to the lawP = O (that is, withF[x,, ..., Xa]/(XF, ..., xP)); this is
easily seen by using Lucas’ theoresf] to compute the binomial coeﬁicierﬁf:').

In particular, a derivation off[m : n] can be defined by sending the given free
generators to arbitrarily chosen elementgFph : n] and extending by the Leibniz
rule; furthermore, every derivation is obtained in this way.

However,F[m : n] comes equipped with an additional structure, namely a set of
divided power mapswhich tie the varioug-(divided) powers of the same variable
together B5]. We will not need to know any detail about the divided power maps,
except that the definition afpecialderivations given in35] or [58] singles out exactly
those derivations df[m : n] which are compatible with the divided power maps in a
natural sense. It turns out that the special derivatiorigrof: n] are those of the form
D= f19/d% + -+ fnd/dxn with f; € F[m: n], thus acting a®x{* = f;x{¥
(wherex(™" = 0).

The Lie algebra of special derivations Bfim : n] (which coincides with the full
derivation algebra df[m : n] only whenn; = - -- = n,, = 1) is denoted byV(m : n)
and is called thegeneral Lie algebra of Cartan typg@r generalized Jacobson-Witt
algebrg. Itis simple of dimensiomp’, unlessn = 1 andp = 2. Agrading oflW(m :

n) overZ™ is inherited from the natural™-grading ofF[m : n], but it is the grading
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of F[m : n] given by total degree of monomials which induces the most important
grading ofW(m : n), called thestandard grading:W(m: n) = @{:_l L;, whereL;

is the subspace spanned by the derivatidis - - Xm 3 /9x; Withig+- - - +im =i+1
andj =1,...,m(wherer = p™+...+ p"™—m-—1).

REMARK 2.1. What we have described is the unique generalized Jacobson-Witt
algebra, for fixedm andn, provided the fieldF is algebraically closed; since we
have takerf¥ arbitrary of prime characteristi®V/(m : n) is just one of possibly many
F-forms of the generalized Jacobson-Witt algebra, §€k for example. A similar
proviso applies to the Hamiltonian algebras which we will describe in the next section,
see [9] for a determination of the forms in the restricted case.

In this paper, we will actually only need the Zassenhaus algelMés: n), as
they occur as distinguished subalgebras of the Hamiltonian algebras which we will
consider. Inthis case, the components of the standard grading are one-dimenhsional,
being generated b, = x1*Yd/dx, fori = —1,...,r (wherer = p" — 2). Direct
computation shows that

o= ((T) (e

In particular, we havéE_,, E;] = E;_,, and[E,, E;] = JE;.
The Zassenhaus algebra has also a grading over (the additive grokyp,oflith
graded basis consisting of the elemestsfor o € [, which satisfy

&), 6] = (B — a)€p.

In particular, note thaftey, e,] = @e,. The base$E;} and{e,} of W(1;n) are some-
times referred to in the literature (at least whes: 1) as aproper basisand agroup

basis respectively. One way to obtain the group basis from the proper basis is noting
thatE_; 4+ E; spans a Cartan subalgebra/ét1; n), and computing the corresponding
Cartan decomposition. Since@ 1+ E;) permutess, _1, E; _», ... E1, Eo, E_1+2E;
cyclically, one quickly finds the formulas

€& = E—l + Er
e=E+)_ ,aME foraeF;,
wherer = p" — 2. Note that the first formula is a special case of the second formula

if we stipulate that = 1.
The inverse formulas are

Ei=&+) 6
E=->,a"¢ fori=0,...,r,
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where the summations are fere F,, and again for the case= r we understand
«® = 1for anya € Fy, whenceE, = — Y e,.

We note in passing that the Zassenhaus algebra is not simple pvhed, but has
a unique non-trivial ideal, nameljg; | i #r1) = (e, | « # 0), which we will refer to
asthe simple Zassenhaus algebrBhe above transition formulas are clearly valid in
this case, too. As we will point out in the next section, a simple Zassenhaus algebra
in characteristic two can also be regarded as a Hamiltonian algebra (and, in turn, as «
Block algebra).

Since the problem of inverting formulas similar to those which relate the bases
{e,} and{E;} of the Zassenhaus algebra will occur repeatedly in this paper, we record
the solution explicitly. To simplify notation and computations it will be useful to set
0° = 1 once and for all. The customary rulgss’ = («B)' anda'a’ = o'+ now hold
for «, B in a field andi, j non-negative integers. Note that with this convention the
expressior_, ;. a!, whereF, is the finite field ofq elements, becomes meaningful
for every non-negative integdr, its value is—1 if j is a positive multiple ofjy — 1,
and 0 otherwise.

LEMMA 2.2. The linear relations, = ZT;éanj, for o € [Fq, between elements
a, (¢ € Fy) andb; (j =0, ...,q— 1) of any vector space ovéy, are equivalent to
the relations

bo = a,
b, = —Zaeﬂqaq‘l‘l'aa, forj=1,...,9-1

PROOF. If w is a primitiven-th root of unity in any field, then the sets of formulas

n n
N 1 N
a = E o'b; and b; == E oy,
j=1

i=1

relating subsetéa; | i = 1,...,n}and{b; | j = 1,...,n} of any vector space over
that field, are inverse of each other. This is an instance of a Fourier transform and its
inverse over a cyclic group of order and can be easily proved using the fact that
> -1 equalsnif i is a multiple ofn, and 0 otherwise.

In particular, taking as a generator of*, we obtain that the sets of formulas

g-1
aq=Zaibj and bj=—za‘jaa,
j=1 ael

which relate elements, (¢ € Fq) andb; (j = 0,...,q — 1) of any vector space
over[,, are inverse of each other.
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Now consider the formulas, = ?;éajbj for o € [y, note that one of them is
ay = by, and write the remaining ones in the foap— a, = Z?;iajbj. As we have
seen above, these formulas can be inverted, and yield

bj=—) a'@ —8) =818~ ) ala=-) a'la,

. N
acly acly aelq

forj=1,...,9—1. O

3. Hamiltonian algebras and Block algebras

The Lie algebras of Cartan tyfg H and K are defined as subalgebras of the
generalized Jacobson-Witt algebBf&(m : n), and depend on a choice of a certain
differential formw (or, equivalently, of a certain automorphism\im : n)). For this
to make sense in general one must complete the algebra of divided pEwers] to
an algebra of divided power series. However, this will not be necessary to define the
only Hamiltonian algebras which we will consider in this paper, nank&(g : n; w;)
for j = 0 or 2. Note that the Hamiltonian algebras in two variables can also be
considered as belonging to the Cartan series of special algebras (and thus be denote
by S(2 : n;w;)). A rather condensed description of all four classes of Lie algebras
of Cartan type, but complete with all the relevant references, can be foufd to [
which we also conform our notation. (See Remarkconcerning our notation.) For
a more extensive discussion séé|[

As in the previous section, we assume only thas a field of prime character-
istic p, and point out which statements need restrictiond @s we go along. Let
F[2 : n] = [F[X, y; ny, ny] be the algebra of divided powers in two variablesy of
heightsn = (ny, ny). It will be convenient to puk = xP*~b, y = y®*-1 and
e=Xy. ThenH(2: n;w;) can be defined as the second derived algebra of

H(2:nw)={DeW(@2:n)| Dw; =0},

wherewy = dx A dy andw, = (1 — e) dx A dy. Note that the (formal) differential
forms here are simply elements of the exterior algebra on thd sedly} overF[2 : n].
In particular, the space of differential 2-forms is the fig2 : n]-module on the basis
{dx A dy}, and is @V (2 : n)-module via

D(fdxAady) = (Df)ydxady+ fd(Dx) Ady+ fdxAd(Dy)

for D € W(2 : n), wheredf = (af/dx)dx + (af/ay)dy. When dealing with
derivations ofH (2 : n; w;) it will be useful to consider the larger algebra

CH(2:n;wj) ={D e W2:n) | Dw; = coj, C € F},
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which containsH (2 : n;w)) as an ideal of codimension one and zero jfoe 0, 2,
respectively.

REMARK 3.1. We should mention that the notation for the Lie algebras of Cartan
type is not uniform in the literature. In particuld#,(—) sometimes denotes what we
have indicated wittH (—) here, and so one has to take the (first or) second derived
algebraH (—)® to obtain the simple algebra. Furthermore, special, Hamiltonian and
contact algebras can also be obtained as subalgebras of the generalized Jacobsc
Witt algebra (on an algebra of divided power series, in general) by means of certain
automorphismsp, instead of differential form&. For example, ouH (2 : n; wg)
andH (2 : n; w,) are denoted bH (2;n)? = H(2;n;id)® andH(2;n; ®(z))® in
the book p7], and similarly in many papers. We also note that, strictly speaking, the
notationH (2 : n; w;) which we use here would be only justified when working over
an algebraically closed field (and of characteristic large enough). This is because only
in that case it can be shown that any fomrdefining a Hamiltonian algebra can be
assumed to have certain specific formsw:, @, (see [[] and the reference therein for
the most general results, bl Corollary 2] suffices for the Hamiltonian algebras
H (2 : n; w;) under consideration here). Whenever we consii€2 : n; w;) over an
arbitrary field in this paper, we refer to the specific form defined above.

Since the space of differential 2-forms B[R : n] has a natural structure of graded
module for thez?-graded Lie algebraV(2 : n), andw, is a homogeneous element
with respect to this grading-] (2: N we) andCH (2 : n; wy) are graded subalgebras of
W(2 : n) with respect to th@&?-grading. In particular, they are also graded subalgebras
with respect to the standard gradingWw{2 : n), and thus they acquire what is called
their standard grading They are usually referred to as theadedLie algebras of
Hamiltonian type, in contrast to their relatives with respect to forms of dyjEndw,,
which are onlyfiltered

Thus, in determining an explicit expression for the generic elerdent these

subalgebras one may assume thais homogeneous with respect to thggrading
of W(2 : n). A simple computation as irdp, pages 255-257], obB, page 162ff.]
(where the assumption that> 2 is not used before Theorem 4.5) shows tHa® :
n; wo) consists of the derivations &{2 : n] of the form %, (f) = f,a/9x — f,0/dy
for somef € P(2: njwp) = F[2 : n] @ (x®™, y®) (where f, and f, stand for
af /ox andaf/dy, respectively), and thaEH (2 : n; we) = H (2 : n; wo) & (x/0X).
The latter can be written in the more symmetric fafhi2 : n; wo) @ (X3/3X +yd/dy)
if p> 2. Since

B 0
[QH(f)y 9H (g)] = (fygx - fxgy)ya_x - (fygx - fxgy)xa_y
= In(Dn (1)),
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the mapZy is a homomorphism from thil (2 : n; wo)-moduleP (2 : n; w,) onto the
adjoint module forH (2 : n; o), with kernel(1). The associative (and commutative)
algebra|5(2 : N; wg) can be endowed with an additional structure of Lie algebra with
respect to théoisson bracket f, g} = 24 (f)(9) = f,0« — f«09y, and the ma@y
yields a Lie algebra isomorphism froR(2 : n; wp)/{1) onto H(2: n;wo). (Note that

our notation for the magy and, consequently, for the Poisson bracket, differs in sign
from that of 8], and agrees withJ7] or [8] instead.) Under this isomorphism, the
second derived subalgehifa2 : n; wy) of H(2: n; wo) corresponds to the subalgebra

P(2:nwo)/(1) = (xVyD e F[2:n] | xVyD £ ) /(1),

of dimensionp” — 2, wheren = n; 4+ n,. This is a simple Lie algebra ip > 2,
see fi0] or [58]. In characteristic two it is simple provided > 1 andn, > 1, as
one can prove along the lines &g, Theorem 3.5 or Theorem 4.5 of Chapter 4].
However,P(2: (1, n,); wo)/(1) has(y’ | 0 < j < 2%)/(1) as an ideal. In fact, itis
the split extension of a simple Zassenhaus algebra by its adjoint module. It can also
be viewed as the tensor product of a simple Zassenhaus algebra with the algebra o
divided powerdF[z : 1].

Since the Lie algebra homomorphisf, is also a homomorphism ofi (2 :

n; wg)-modules, the action of ady (f) as an inner derivation of the Lie algebra
structure ofP(2 : n; we) coincides with the action of, (f) as a derivation of the
associative algebra structure Bf2 : n;wg). This will be useful when computing
with derivations ofH (2 : n; wp) in Sections4 and5. For this reason we will simply
regard2y (f) as a derivation of the Lie algebw&(z : N;wg) (rather than the more
cumbersome notation ad (f)). A word of caution, however: this does not extend
to derivations ofP(2 : n; w,) which are notinner. In factzy is not a homomorphism
of CH (2 : n; wp)-modules, becaug®, 2, (xVyD)] = (i + j —2) Py (xV y1) while
D(xVyDy = (i + jH)xDyD for D = xa/9x +yd/ay.

In this paper, we will find convenient to always talk abdtit2 : n;w,) while
actually carrying out explicit computations insié&?2 : n; wo)/(1) with the Poisson
bracket (and similarly foH (2 : n; w,), later). Writingx®yd for xVy® + (1), we
have

xOy D x0yhy — xDya-Dyk-Dyh =Dy k-1

= NG, j, k, 1) x0HDylH-D,
where

. i +k—1\/j+1 -1\ [i+k=1\/j+I-1
N(I,j,k,|):(l+i )(J;L_l )_(IT—l )(J+j )

TheZ2-grading ofL = H(2: n;wp) isL = @D.j)er Lij» whereL,; j = (x+Dy(+D)y
in the Poisson bracket notation, and the standard gradihg4s &, , Ly, where
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Ly = > i+j—« Lij consists of all homogeneous polynomials of dedtee 2. Note
thatL is trivial unless—1 < k < p™ + p™ — 4 (or unless-1 < k < p™ + p™ — 5,
if we restrict our attention td (2 : n; wo)).

We consider novC H (2 : n; w,). Although the formw, is not homogeneous with
respectto th&?-grading, it becomes so with respect to the grading obtained by viewing
it modulo(p™ — 1, p™ — 1). Thus,CH (2 : n; w,) is a graded subalgebra @f(2 : n)
with respect to itsA-grading, whereA = 72/((p™ — 1, p™ — 1)). We will examine
some specializations of this grading in Sect®nConsideration ofA-homogeneous
elements makes it straightforward to determine an explicit form for the elements of
CH (2 : n; w,). One finds thatd (2 : n; w,) coincides withCH (2 : n; w,), and can be
identified withP(2 : n;w,)/(1) = (F[2 : n] & (xP™, y®™)) /(1) with the Poisson
bracket{ f, g} = (1+e)(f,0« — fx9y). The derived subalgebitd (2 : n; w,) of H@2:
n; w,) has dimensiop" — 1 and corresponds %2 : n]/(1) with the Poisson bracket.
It is simple (in every characteristic), as will follow from its identification, given in
Section6, with a certain Block algebra, whose simplicity was provedlid][ In
characteristic twdH (2 : (1, n); wy) is isomorphic with the simple Zassenhaus algebra
of dimension 2! — 1, an isomorphism being obtained by mappiyy’ — E;_; and
y? > Ej;»_». A curious consequence of this isomorphism is that in characteristic
two H(2 : (1, n); w,) can be embedded iR (2 : (1,n + 1);w,) as a subalgebra,
namely as the simple Zassenhaus subalgety® : j =0, ..., p"t — 2).

The Poisson bracket of monomials

{x“)y(”, X(k)y(l)} — (1 + e)N(i, j, k, |)X(i+kfl)y(i+l—1)

for H(2 : n; w,) coincides with that folH (2 : n; wy) except for the productly, x} =
—{x, y} = e. This shows that thé\-grading of H (2 : n;w,) cannot be lifted to a
7%-grading. For the same reasdfi(2 : n; w,) is notZ-graded by the subspackg =
>+ Lij defined as before. However, it s filtered by the subspates Y, , L,
thatis,L = L' 2 [°D> L' D> ... (whereL¥ = 0 fork > p™+ p™ — 4), and
[Lh, L¥] € LMk, Thisis called thestandard filtrationof H (2 : n; w,), and the graded
Lie algebra associated with it I4(2 : n; wp).

We should note here that both Hamiltonian algeba® : n; wo) andH (2 : n; w,)
were originally constructed in a different way. In fact, after being introduced fir&{ in [
among other examples, they became special cases of a more general construction d
to Block [11]. We briefly recall only a special case of Block’s construction which is
relevant to the present paper, and we refed. @} ¢r [48, page 110] for full generality.

Let G be an elementary abeligirgroup of orderp”, written additively, lets € G,
and letf : G x G — G be a non-singular biadditive function of the forfife, ) =
g(a) h(B) — g(B) h(x) for some additive functiong, h : G — G. A vector space.
over a fieldF of characteristiq, with basis{u, | « € G} in bijective correspondence
with the elements oG, becomes a Lie algebra by defining a multiplication on the
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basis elements vipu,, ug] = f(«, B) u,15_s and extending linearly. The elememnt

is central inL, and the elements, with « # § span an ideal of. If § = O the ideal
(U, | @ # 0) is a simple Lie algebra, and & - 0 the quotienfu, | « # 8)/{Uo)

is simple. In both cases the simple algebra is call®logk algebra (These special
cases of Block’s construction had already been introduced by Albert and Freijk in [
and denoted by, and.%; there; in this paper we refer to the algebt&gswith § £ 0
asalgebras of Albert and Franlconforming to P2, 24, 50].)

Itis known that iffF is algebraically closed of characterispic> 3, the above special
cases of Block’s construction yield exactly the Hamiltonian algebté3 : n; w,) if
8 = 0, and the algebrabl (2 : n;wo) if § # 0. For example, this is stated 03,
Lemma 1.8.3] under the blanket assumption of that paperghat7, but the proof
given there is seen to be valid fpr> 3. (In particular, one ingredient of that proof,
namely B1, Corollary 2], was originally proved fapo > 5; however, itis now a special
case of more general results B] pr [54] which assume onlyp > 3.)

Note that the method of proof 0B, Lemma 1.8.3] does not easily produce explicit
realizations oH (2 : n; wp) andH (2 : n; w,) (with respect to the given forms) as Block
algebras. In fact, in essence (using automorphignmather than forms), it shows
that for appropriate choices of the foimthe Hamiltonian algebr&d (2 : n; w) is a
Block algebra of dimensiop” — 2 or p" — 1, and then appeals t@3, Theorem 1.8.1]
(which quotes®1, Corollary 2]) to conclude thadt (2 : n;w) = H(2: n;w;) fori =0
or 2, respectively. In Sectiobof the present paper we do give an explicit realization
of H(2 : n; w,) as a Block algebra, and we do that for arbitrary prime charactepstic
(thus including 2 and 3). We mention that, more generally, it was announcéd]in [
and proved in39] that every algebrdd (m : n; w,) is a Block algebra.

4. The second cohomology group ofl (2 : n; wy)

In this section we appeal to some results which were formulated under the assump-
tion that the ground field is algebraically closed, or at least perfect; since derivations
and cohomology are essentially independent of the ground field, these assumption:
are immaterial here in view of Remafkl We assume that the ground field has
odd characteristic. At some stage in the discussion we also need to assume that th
characteristicp is greater than three (see Remdrk for the casep = 3), but our
main result, Theorem.2, does not depend on this assumption. Finally, we deal with
the case of characteristic two in Rema#kd and4.5.

The dimensions of the second cohomology grotigsL , F) of some graded Lie
algebras of Cartan type with values in the trivial module were computezZjr(ut
see also6]). In particular, according ta9, Theorem 2.4]H2(L, F) has dimension
n; + n, + 1 for the graded Hamiltonian algebka= H (2 : n; w,). Here we compute
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H2(L, F) for L = H(2 : n; w,) and show that it has dimension+ n,. (In the special
casen = (1, 1) this can essentially be found iBg, Theorem 6.3].)

Following [29], we briefly recall the classical method (sé&[page 102]) employed
there to computed?(L, F) from the space of outer derivations bf in presence of
a nondegenerate associative formlonin addition, we exhibit a basis df?(L, F)
for L = H(2 : n;wg). According to R9, Proposition 1.3], for any Lie algebra
over a fieldF there is an injective homomorphisk?(L, F) — H*(L, L*), whereL*
denotes the dual of the adjoint modulelof This monomorphism is induced by the
mapg — D, which sends a 2-cocycle € Z?(L, F) to the derivationrD, : L — L*
with D, (&) = ¢(&,-). Furthermore, the image of the monomorphism consists of
the cohomology classes representedskgwderivations, that is to say, derivations
D : L — L*which satisfyD(&)(n) = —D(n) (&), forall&,n € L.

Now assume that possesses a nondegeneisociative form., that is, a sym-
metric bilinear formi : L x L — [ satisfyingA([&, n],0) = A(&, [n, 0] for all
&,n,0 € L. (Note that the latter condition together with anticommutativity of the
Lie bracket easily implies that([&, n], 0) = A(0, [€, n]), hence the symmetry of
is automatic ifL is perfect. In particular, in view of the interpretation of associa-
tivity which we are about to give, there are non nonzermodule homomorphisms
L AL — Fif L is perfect, in odd characteristic.) Since the associativity condition
can be written in the equivalent fori{([n, &1, 0) + A (€, [, 6]) = O, it simply means
that the corresponding linear map L ® L — [F is a homomorphism of -modules
into the trivial module. Consequently, the adjoint moduld_aé self-dual; this con-
dition is, in fact, equivalent with the existence of a nondegenerate bilinear forin on
satisfying associativity but not necessarily symmetric.

By composition with the inverse of the-module isomorphisnk — L* given
by & — A(&, -), the monomorphisnii?(L, F) — H(L, L*) turns into a monomor-
phism H?(L, F) — H(L,L) = Der(L)/ad(L), where adL) is the space of in-
ner derivations ofL. Its image is SkDdlL)/ad(L), where SkDefl) denotes the
space of all derivation® : L — L which areskewwith respect to the associa-
tive form A, that is, which satisfyw(D (&), n) = —A(D(n), &) for all &,n € L (see
[29, Remark after Proposition 1.3]). Writing this condition in the equivalent form
A(D(&),n) + A&, D(n)) = 0 shows that a derivatioD of L is skew exactly ifD
annihilates the form viewed as an element £ ® L)*, the dual of the tensor square
of the adjoint module of_; it follows, in particular, that SkDé&L.) is a p-subalgebra
of Der(L) containing all inner derivations df.

The isomorphismH?(L, F) — SkDerL)/adL) is actually induced by an iso-
morphismZ?(L, F) — SkDerL), which we describe here for convenience. Because
of the nondegeneracy af for each cocycle € Z2(L, F) there is a unique derivation
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D, : L — L, necessarily skew, such that

MD, (&), n) = (&, n) forallg,ne L.

Conversely, the 2-cocycle associated with the skew deriv&lio. — L is given by

@(D)(E, n) =A(DE),n  forall§,nel.

Now we apply these well-known facts to the Hamiltonian algebras under consider-
ation (the case dfl (2 : n; wy) being already dealt with ir2f)]). It is known from 28,
Theorem 4.4] or$8, Chapter 4, Theorem 6.5] that the graded algeatra : n; wg)
has a non-degenerate associative farrwhich in our notation becomes

AXOYD x®OyOy = (1) 5@ +k, p" = 1) 8(j +1, p” — D).

Thus the dual basis ¢k yU’} with respect to the nondegenerate foxris given by
(XD yDy* = (—1)i+ixPH=1=D (P2 -1-])

We assume now thgi > 3. The derivation algebras of the simple Lie algebras of
Cartan type are known and are summarizedjiphges 903-905]. (Alternatively, the
derivation algebras of Block algebras, which include the Hamiltonian algebras under
consideration here, were already computedLih Theorem 14], again fop > 3.) In
particular, it is known that

DerH(2:n;w)=CH2:n,wm),

the p-closure ofCH(2 : n;w;) in DerF[2 : n], fori = 0,2. More explicitly, a
basis for the space of outer derivatidns= H (2 : n; wy) (or, more precisely, a set of
representatives for a basisléf (L, L) = Der(L)/ ad(L)) consisting of homogeneous
derivations with respect to th&*-grading is as follows:

(1) (adx)”, of degreq0, —p'), for0 <r < ny;

(2) (ady)”, of degree—p®, 0), for0 < s < ny;

(3) adx®), of degreg p™ — 1, —1);

(4) ady®™), of degreg—1, p"™ — 1);

(5) adxy) = [adx"™), ady"™)], of degree(p™ — 2, p™ — 2);

(6) thedegree derivatiomdh, which has degre€, 0) and acts agadh)(x"y")) =
i+j— Z)X(i)y(j)_

Note that the derivations under (1) and (2) are powers of inner derivations of
H (2 : n; wp); together with the inner derivations, they spargtslosureH (2 : n; wo).
We have denoted the derivations under (3), (4) and (5) as restrictions of inner deriva-
tions of H(2 : n; wo). Finally, the degree derivation is the restriction of the inner
derivation ach of W(2 : n), where the elemeltit = x 9/0x 4+ y d/9y has no analogue

in the Poisson bracket notation which we have adopted.
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All derivations listed above except the degree derivation (becpuse3, but see
Remark4.3for p = 3) are skew with respect to(by direct verification, or fromZ9,
Proposition 2.2]), and hence ditd?(L, F)) = dim(Der(L)/ ad(L)) —1 = n;+n,+1
for L andp > 3 (see, for example2p, Theorem. 2.4] andf]). Asetofn; +n,+1
cocycles ofL = H(2 : n; wo) which form a basis oH?(L, F) can be obtained from
the skew derivations described above according to the procedure described earliel
Note that since. : L ® L — F is a graded map of degrge-p™ + 3, —p™ + 3)
(where the trivial moduldF is assigned degree zero), the cocycles thus obtained are
homogeneous with respect to the gradingZsfL, F) inherited by thez?-grading
of L. A conclusion which is more relevant for us is that the universal central extension
M of L (see Remarlks.2) inherits az?-grading fromL, and the central elements
corresponding(see Remarkt.l) to the cocycles obtained are homogeneous. We
record the degrees explicitly: B is a homogeneous skew derivation of degiieg),
then the central elements of the universal central exterdiari L corresponding to
the cocyclep(D) acquires degreep™ — 3 —i, p2 — 3 — j).

REMARK 4.1. Strictly speaking, central elements df correspond naturally to
elements of the second homology grohip(L, F), and not of its dualH?(L, F).
There is, however, a natural correspondence between the homogeneous componen
in the A-gradings ofH,(L, F) and its duaH?(L, F), reversing the sign of the degrees.
The fact that all these components are one-dimensional in the present case (and in th
case ofL = H(2: n; w,) below) justifies our abuse of language.

Now we turn our attention to the filtered algelfia2 : n; w,). This algebra has a
non-degenerate associative fokr(see L1, Theorem 7]), defined by the same formula
given above foH (2 : n; wp) with, in addition,A(Xy, Xy) = 1 andA(-,-) = Oin all
remaining cases. Again fronT][(or the original source41, Theorem 3.2]), all outer
derivations ofH (2 : n;w,) are lifted from part of those of its associated graded
algebra, which isH (2 : n; w) @ (Xy). Specifically, a basis for the space of outer
derivations ofH (2 : n; w,) is given by

(@adx)” foro <r < n, and (ady)” for0 < s < n,.

(Note that(adx)P” and(ady)”" induce the derivations &d*™) and ady®™) on the
associated graded algebra.) In particular, all derivatioris ef H(2 : n; w,) belong
to its p-closure in DefL) and, consequently, they are all skew.

So far our assumption that > 3 was in force. However, the; 4+ n, derivations
of L = H(2 : n;w,) which we have described clearly remain linearly independent
in Der(L)/ad(L) also for smaller characteristics, provided in characteristic two we
replace the degree derivation (which coincides with the inner derivationogdx —
ya/9y) = adZ(xy)) in that case) with agk 9/9x). In Section6, we will identify
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H (2 : n;w,) with an algebra of Albert and Frank (a special type of Block algebra,
see Sectio), and we will prove (extending results obtainedii][for characteristic
p > 3) that its space of outer derivations has dimensipa- n,, in every positive
characteristic. Consequently, the derivationsHa2 : n; w,) described above, but
with ad(x 3/0x) replacing the degree derivation (a change which is only relevant in
characteristic two), form a basis for its space of outer derivations regardless of the
characteristic.

Settingy, = ¢((@dx)?) andvys = ¢((ady)?), the following result follows by
direct computation.

THEOREM4.2. A basis for the second cohomology gradp(L, F) of the Hamil-
tonian Lie algebralL = H(2 : n; w,) over a fieldF of odd characteristic is given by
the classes of the cocyclesand s, for 0 < r < n, and0 < s < ny, as defined by
the following formulas

(=1 if i 4k j+1) =0, p")
o (XY Wy ) = (mod (p™ — 1, p™ — 1))
0 otherwise
(=D if (i 4k, j+1) = (pS,0)
Ps(x My Xy ) = 4 (mod (p™ — 1, p™ — 1))
0 otherwise.

The A-degrees of the cocycleg and s are (2, —p" + 2) and (—p° + 2, 2),
respectively. The central elements of the universal central exterMdiaf L =
H(2: n; w,) (see Remark.2) corresponding to them acquifedegree(—2, p" — 2)
and(p® — 2, —2), respectively.

REMARK 4.3. It is easy to verify that the degree derivationdf2 : n; wo) acts
on A, considered as an element @f ® L)*, as multiplication by 6. In particular,
when the characteristic is three (or two, but see Remdrkoncerning this case) the
degree derivation is skew (see, for exampl, [Proposition 2.2]), and the second
cohomology group of (2 : n; wy) becomes larger. Also, the derivation algebra.of
can be larger (se&8, page 197]). In particular, the graded Hamiltonian algdbea
H(2: (1, 1); wp) in characteristic three is a classical Lie algebra of tppenamely,

L is isomorphic to the quotient of smodulo its one-dimensional center, sé&s,[
Lemma 6.4]. According to1, Corollary 3] and the identification of Hamiltonian
algebras with Block algebras, this is the only instancefdaos 2 where an algebra

H (2 : n;we) or H(2 : n; w,) is isomorphic with a classical algebra. It is well known
that DekL) is a fourteen-dimensional classical algebra of t@p€dcf. [53, page 678]),
hence diniDer(L)/ ad(L)) = 7. The additional three derivations with respect to those
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described earlier can be obtained fronx&t], ady® and adky by conjugation under
the automorphismx®y) — (—1) x@y@=D of L. Since all derivations are skew
in this case, we conclude that?(L, F) has dimension 7 (but se&q, page 38] for
another proof of this fact).

It is easily checked that exactly one of those three ‘exceptional derivations’ of
H(2 : (1, 1); wy) extends to a derivation afl (2 : (1, n,); wg) for n, > 1. These
additional derivations account for all the exceptions in characteristic three with respect
to the description of outer derivations Bff(2 : n; wo) in higher characteristic given
earlier in this section. This follows fron®B, Proposition 4.3] and a general fact about
derivations of nonnegative degree (in the standard grading) of graded Lie algebras of
Cartan type, se&B, Chapter 4, Proposition 8.3]. The derivationd.of H (2 : n; wo)
in characteristic three can be summarized as follows: (OenL)/adL)) equals
n; + n, + 2 if n, n, > 1 (like in higher characteristic), it equatg + n, + 3 if
n; =1 < ny, and it equals 7 ih; = n, = 1. Since all derivations of are skew in
characteristic three, we have dikh?(L, F)) = dim(Der(L)/ad(L)).

REMARK 4.4. Again according to%3, Proposition 4.3] andi8, Chapter 4, Proposi-
tion 8.3], the derivations of a simple algebta?2 : n; wo) in characteristic two (hence
with ny, n, > 1) allow the same description as in characteristic greater than three, by
the list given earlier in this section, except that the degree derivation in item (6) (which
is inner in characteristic two, as it coincides withxad should be replaced with the
derivation acting aD (xVy") = (i — 1) xPy¥. In particular, DefL)/ad(L) has
dimensiom; + n, + 2.

The algebraH (2 : (1, ny); wp) In characteristic two has more derivations than
usual. Since it is a semidirect product of a simple Zassenhaus algebra by its adjoint
module, its derivations can be easily calculated from those of the Zassenhaus algebr:
(see Remarld.6). In fact, if L is a semidirect product of a simple alget8dy its
adjoint module, then diiiDer(L)) = 2 dim(Der(S)) + 2 in characteristic two, and
dim(Der(L)) = 2 dim(Der(S)) + 1 otherwise. Consequently, O&n/adL) has
dimension 2, + 2 forL = H(2: (1, n,); wp). Alternatively, sinceH (2 : (1, ny); wo)
is the tensor product of a simple Zassenhaus algebra with a ring of divided powers
[F[z: 1], the conclusion follows froml[2, Theorem 7.1].

REMARK 4.5. In characteristic two the argument which relates derivatiorisinfo
L* and the second cohomology grouplofieeds to be modified as follows.

The image of the mag?(L,F) — Z(L, L*) consists of all derivations which
are alternating in the sense thab(¢)(£) = 0 for all £ € L. This condition is
equivalent to being skew in odd characteristic, but is stronger in characteristic two. (It
is convenient to reserve the teskewfor the weaker condition, as it applies in slightly
greater generality; se@9], where Lemma 1.1 remains valid for skew derivations, but
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not for alternating derivations, in characteristic two.) In presence of a nondegenerate
associative form., a derivationD of L will be calledalternatingwith respect to. if
AMD(&),&) =0forall¢ € L. Since inner derivations df are alternating, there is an
isomorphism ofH2(L, F) with the quotient of the space of alternating derivations by
the space of inner derivations bf Note that while the space of skew derivations is a
p-subalgebra of DéL) (in every characteristic), the space of alternating derivations
is a Lie subalgebra but need not be-subalgebra in characteristic two (as shown by
the examples below).

In order to verify that a skew derivation is alternating it suffices to check that
D(&)(&) = 0 for all elementst of some basis ol.. Also, if L is graded and
its associative form is homogeneous with respect to the grading (as is the case foi
the Z?-grading of H(2 : n;w,) and theA-grading of H (2 : n; w,)) it is enough to
check derivations which are homogeneous with respect to the grading, because th
alternating derivations form a graded subalgebra (as well as the skew derivations).

ForL = H(2 : n;wy) with ny, n, > 1, all derivations described earlier in this
section (taking Remark.4into account) are alternating, excepva®d®’ and ady®™,
which are only skew. Thereforé{?(L, F) has dimensiom; + n,. An examination of
L = H(2: (1, ny); we) shows that the alternating derivations are exactly those which
normalize the Zassenhaus subalgeprg!’ : j =0, ..., 2" — 2) (together with the
inner derivations). These correspond to the derivations described under items (1), (5)
and (6) in the list given earlier in this section, and we conclude Hh&t_, F) has
dimensionn; + n, in this case, too.

In the case ofL = H(2 : n;w,) all alternating derivations are inner. As a
consequence, in characteristic two we h&d&L , F) = 0.

REMARK 4.6. Recalling from SectiorB that the simple Zassenhaus algehra=
W(1: n)® in characteristic two is isomorphic with = H(2 : (1, n — 1); w,), the
previous remark shows that its second cohomology grddpL, F) vanishes. By
contrast, the second cohomology group of the Zassenhaus algliran) in odd
characteristic has dimension ongit- 3, and dimensiom — 1 if p = 3 (as a special
case of B0, Theorem. 3.2] or36]). The second cohomology group of the simple
Zassenhaus algebra was also compute®ity Theorem 2]; however, note that the
central extensions &/ (1 : n)® in characteristic two which are exhibited there are not
Lie algebras in the common sense, because their multiplication is (skew-)symmetric
but not alternating. For the sake of completeness we mention that the algebra of oute
derivations of the simple Zassenhaus algetté : n)® has dimensiom — 1 if p
is odd andn if p = 2. This is well known, but the case whepe= 2 is also a
consequence of Theoretn2.

REMARK 4.7. The last sentence if ][] claims that there is no isomorphism between
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a Block algebra and an exceptional (classical) simple algebra exceptmhehand

the algebra has dimension 14, since otherwise their dimensions are distinct. This
may leave some doubt on whether in characteristic W@ : (2, 2); wg) Might be
isomorphic with a simple algebra of tyg@, (which, in turn, is isomorphic with

the quotient of gl by its one-dimensional center). However, according5d fhe
second cohomology group of the latter has dimension 7, and this fact together with
Remark4.5 excludes the possibility of an isomorphism.

5. Some cyclic gradings oH (2 : n; w,)

The A-grading of H(2 : n;w,) defined in Sectior3 leads in a natural way
to several gradings (here calleecialization} over cyclic quotientsA of A =
7?/((p™ — 1, p™ — 1)). More precisely, for any pair of integeR, S) and any
divisor N of R(p™ — 1) + S(p™ — 1) we have a group homomorphism: A —

A = Z/NZ given by u(i, j) = Ri+ Sj+ NZ. Correspondingly, we obtain an

A gradingL = @,_; L« by settingLy = > ui.p=k Li.j- In what follows we set

N = |[R(p™ — 1) + S(p™ — 1), since the remaining cases can be obtained from
these gradings through a further specialization. Also, it is no loss to assume that the
homomorphism is surjective, which amounts to choodihgnd S relatively prime
(because of our choice &). To help visualizing the grading thus obtained, it may

be convenient to arrange the monomial$iit2 : n; w,) in a(p™ x p™)-array accord-

ing to the degrees of andy, and think of the specialization processséising the
A-grading according to some specified direction.

The simplest specialization whe(®, S) = (0, —1) will be useful in Sectiorv.
This is aZ/NZ-grading withN = p™ — 1, every component has dimensipft and
is spanned by all monomials wheyehas a given degree £ | < p™ — 2, except
the component of degree 1, which has dimensipft 2= 1 and is spanned by all
monomials wherg has degree 0 q@™ — 1. The component of degree 0 is isomorphic
with a Zassenhaus algebvé(1 : n,).

The following two specializations of thé-grading of H(2 : n;w,) are more
interesting.

5.1. A grading related to graded Lie algebras of maximal class Let (R, S) =
(—p™, —1). ThenN = p" — 1, and all components, are one-dimensional. In fact,
Liprayj = (XP*Dy®2=Dy for0 < i < p™and O< j < p™ with (i, j) # (p™, p™).
Furthermorel has an outer derivation

0 0
51 D=y— 1 —,
(5.1) yax+( +e)ay
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which is non-singular and homogeneous of degree one (with respect to the grading
under consideration). Hend2 permutes the components of the grading cyclically,
namelyDLy = Ly, for alli. (Recall from Sectior3 that we writeD for adD, since

the latter acts the same way as a Lie algebra derivatid(®@f n; w,) asD acts as a
derivation of the associative structure.) In fact, we have

o _ _ - x(1-Dy if j=0
DxVy() = yxi-Dyh 4 (14 eyxDyd-D = o '
Y Y Y ( XY 1+ exDyi=b jf j >0,
In particular, the derivatiod is periodic of periodo"—1. Note thaD is the derivation
denoted byD, in [7, p. 911], viewing the Hamiltonian algebtd(2 : n; w,) as the
special algebr&(2 : n; w,).
We quote from 87] the following definition.

DEFINITION 5.1. We say that a finite-dimensional Lie algeldraadmits a nonsin-
gular derivationD agreeing with & /NZ-gradingL = @, _,/n; L« if DLk = Lksa
forallk € Z/NZ.

It will be convenient to allow any finite cyclic group to repla@gNZ in the
definition, provided we specify a distinguished generator of it (to play the role of 1).
The situation described in Definitidh 1 where all componentk, have dimension
one played a crucial role irbP] and [51].

Suppose. is a finite-dimensional Lie algebra possessing a nonsingular derivation
which agrees with & /NZ-grading with one-dimensional components. We build
the correspondingwisted loop algebraD,_, Ly ® t* inside L ®; F[t, t™*], wherek
denotes the residue classkomoduloN. The Lie algebra spanned by its positive part
B, Lk ® t* together with its derivatioD ® t is a graded Lie algebra of maximal
class in the sense o2P]. With a harmless abuse of language we will call the latter
the loop algebraof L.

In particular, the loop algebra ¢ (2 : n; w,) with respect to the derivatiob and
the grading which we have just constructed is a graded Lie algebra of maximal class,
and precisely one of those which we have named after Albert-Frank-Shalgg]in [
We will come back to this grading in Secti@n

REMARK 5.2. We comment briefly on the relevance of the second cohomology
group ofH (2 : n; wy), which we have discussed in Sectidnto presentations of the
algebras of Albert-Frank-Shale¥F S(a, b, n, p) (see Sectiot® for their definition).
Although these algebras are not finitely presented, it is proved®5hthat they
are quotients of certain finitely presented Lie algebras modulo their second centers.
Knowledge of the second cohomology grouphdf2 : n; w,) sheds light on these
particular extensions of the algebras of Albert-Frank-Shalev, as we illustrate below.
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The second cohomology group 6f(2 : n; we) plays a similar role in3] and [21,
Section 4].

Recall that every perfect Lie algebkahas a universal central extension9 Z —

M — L — 0 (see b9, Section 1]). In particulaivi/Z = L, so we may viewL as a
quotient ofM, andZ = H,(L, F) = H?(L, F)* as vector spaces. According tb0[
Theorem 2.2], every derivation aflifts to a derivation ofM; if L is centerless, the lift

is unique, therefore DeM) = Der(L), andM is a De(L)-module in a natural way. In

the case ol = H(2: n; w,), we claim that DeflL) acts trivially onZ, which coincides
with the centet (M) of M here. In fact, for a perfect and centerless Lie algehrie

dual module; (M)* andH?(L, ) are easily seen to be isomorphic not only as vector
spaces, but as Ddr)-modules. Now assume, in addition, that the characteristic is odd
and thatL has a nonsingular associative foimThen the isomorphism dfi?(L, F)

with SkDerL)/ad(L) described in Sectiod is also an isomorphism of Dér)-
modules (with respect to the adjoint action of Oeron itself). Since DgiL)/ ad(L)

is abelian forL = H(2 : n;w,), our claim follows. Therefore, the center of the
extension ofM by (D), whereD is the nonsingular derivatiorb(l), coincides with
Z(M) and, in particular, is nonzero according to Theorr in odd characteristic.

It follows that the loop algebr& of M with respect taD has an infinite-dimensional
center. The quotient dfl by its center is isomorphic with. A standard result of

B. H. Neumann recalled ir2D] as Theorem 6 implies that the quotient of a finitely
generated Lie algebra modulo an infinite-dimensional central ideal cannot be finitely
presented; in particulat, = M/z (M) is not finitely presented.

The main result of 5] shows that a suitable central extensionMfis finitely
presented. (The need to take a further central extension to obtain a finitely presentec
algebra is due to the fact that the second cohomology group of a loop algebra, beside
depending on the second cohomology group of the underlying finite-dimensional
algebra, includes a component arising from associative forms of the latter and the cyclic
homology of the polynomial rin§j[t] which we are tensoring with. We will not discuss
this point further here, but seé3].) According to our identification in Theoref 1
of the algebras of Albert and Frank with Hamiltonian algebkbd&@ : n; w,), the
second cohomology group of the latter discussed in Thedr@man be recognized
in (part of) the central elements of the finitely presented central extensions of the
Albert-Frank-Shalev algebras considered 28][ More precisely, theA-grading of
L = H(2 : n;wy) (like any other grading) extends uniquely to a grading of its
universal central extensioM. The central elements of the latter corresponding
(recall Remarl.1) to the cocyclesg, andis of Theorend.2 (in odd characteristic)
occur in degrees®— p" + 2 and 2] — qp° + 2, respectively, and give rise to central
elements oMM, the loop algebra oM with respect toD, in all degrees congruent to
these modulo difL) = p™*t™ — 1. These central elements can be recognized in the
list given in [25, pages 399-400], in the special case of the algétf&(a, n, n, p).
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(Additional complications arise in the case of characteristic two, which we have
neglected here for simplicity.)

By symmetry, the casgR, S) = (—1, —p™) is completely analogous. In this case

SN )

DP* = (l+e)ax +X8y
is a non-singular derivation which permutes the components cyclically. This latter
grading is just one instance of a whole se#efradings which can be obtained from
the formerA-grading by an application of an automorphism of the grading graup
More precisely,L is also graded by the subspades= L,;, wherek is any integer
with (k, p" — 1) = 1. In general, a derivatio® such thatDL; = L;,; need not
exist. However, it certainly does ifis a power ofp, because the®D P L; = L;,4, if
L = L. This way of obtaining new gradings is related to the procesketiation
for graded Lie algebras of maximal class introducedi.[ In fact, the loop algebra
of L with respect to its grading given by the subspates= L, and its derivation
DP is the deflation of the loop algebra bfwith respect to its grading given by the
subspaceg; and its derivatiorD.

5.2. Athin grading Let(R,S) = (—p™+ 1, —1). This is aZ/NZ-grading with

N = p™(p™ — 1), and the components have dimension one or two. In the present
grading, the two-dimensional components are those of daggge — 1) + 1 for

1 <i < p™. Inparticular,L; = (x, ¥). This grading fits the following definition.

DEFINITION 5.3. A gradingL = P,;,y; L« of a (finite-dimensional) Lie algebra
L over a fieldF is calledthin if L; is two-dimensional, and the followingovering
propertyholds

forallk € Z/Nz,and allu € Ly, u # 0, we havelL,; = [u, L4].

Again, the definition is motivated by an analogous one for positively graded,
possibly infinite-dimensional Lie algebras. In fact, given a thjfNZ-grading of
a finite-dimensional Lie algebrh, the (positive part of the twisted) loop algebra
P, Lk ® Ft*is a thin Lie algebra in the sense of the following definition (s&@ [
for background).

DEFINITION 5.4. A graded Lie algebrd. = @Eil Ly is calledthin if L, is two-
dimensional, and the followingovering propertyholds

forallk > 1, and allu € Ly, u # 0, we havelL,; = [u, L4].
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With both definitions, it follows from the covering property thHatis generated
by Li, and that diniL,) < 2 for all k. We call a homogeneous componént of
dimension 2 adiamond The diamonds will be numbered in the natural order of
occurrence (cyclic starting frorh; in case of Definition5.3). Therefore,L; is the
first diamond. If there are no other diamonds in case of DefintidnthenL is an
algebra of maximal class (se&7). We refer to the finite sequence of one-dimensional
homogeneous components between two consecutive diamond$aisa

We must point out that there are also instances where a thin Lie algebra in the sens
of Definition 5.4 is constructed as a loop algebra from a suitable grading of a finite
dimensional simple (Hamiltonian) Lie algebra which does not quite fit Defin&ién
but requires the intervention of a nonsingular outer derivation, very much like in the
construction of Lie algebras of maximal class described in the previous subsection
(see B, 2]). These algebras are not needed in this paper, however.

The fact that an algebra with a thin grading in the sense of Defiritidgives rise
to a thin Lie algebra in the sense of Definitibré via the loop algebra construction
allows one to apply to the former setting arguments and results originally formulated
for the latter. For example, results fro@3, extended in 4], imply that in a finite-
dimensional Lie algebr& over a field of arbitrary characteristic with a thin grading,
the second diamond can only occur in degree 8, 6r 20 — 1, whereq is a power of
the characteristic. Some care is needed in carrying definitions over from the infinite-
dimensional setting to the present one, where the degree of a homogeneous element
an integer defined only modulo the ordérof the grading group: when speaking of
the degree where the second diamond ocauesactually refer to the smallest integer
greater than one in which degree a diamond occurs.

Suppose now that is a finite-dimensional Lie algebra with a thin grading, and
suppose that the second diamond occurs in degree 2, whereq is a power of the
characteristic. According td.p], we have

CL(L2) =Cp(La) = --- = C,(Log_a) = (Y),

provided the characteristic is odd; this fails in characteristic two, as is shown in
[31,34]. WeletX € L\ (Y), so thatX andY generatd_. (Note that with respect to
the analogous situation ir2()] we have switched to capital letters for the generators
X andY, to avoid conflict of meaning with the variables we use for divided powers.)

Suppose that is any diamond oL, and letL,_; = (V). Itis not difficult to
show, as in2Q], that[V, X, Y]+ [V, Y, X]=[V, Y, Y] =0, and to deduce that

[V.Y, X] = ALV, X, X]

for someir € [F U {oo}, to be read agV, X, X] = 0 wheni = oco. As in the
infinite-dimensional setting of20] we will say that the diamond in degrdehas
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type ». Note thath depends on the choice made for the generaxoandY, but the
type being finite, or infinite, does not. Strictly speaking= 0 cannot occur here,
because the covering property would imply tfet Y] = 0 and soLy, = ([V X]),
contradicting the assumption thhf is a diamond. However, there are situations
(here and in other papers, lik(], [3] and [21]) where we have found natural and
convenient to informally caflakediamonds certain one-dimensional componénts
which thus may be assigned type 0. This usually happens when the diamonds of som
algebra with a thin grading (or some infinite-dimensional thin algebra) occur at regular
intervals provided we include sonfigke diamonds. Unfortunately, which cocycle of
the algebra gives rise to the central element in a fake diamond depends on the gradin
under consideration, and appears not to admit an intrinsic characterization, in terms
of the algebra alone.

TheZ/NZ-grading ofH (2 : n; w,) under consideration in this subsection is a thin
grading, with diamonds in all degrees congruent to 1 moduid., with the exception
of degreeq, where we have set= p™. In fact, here we may také = y andX = x,
and the following computations show both the validity of the covering property and
the location of the diamonds:

{x(i)y”), X} =1+ e)x(i)y(i*l),
_x(-Dy®-2 if | =0,

2-2) _ X(i—l)y if j =1,

XOyD g} = —xI-DyDy@
0 otherwise.

TakingV = x"y, for0 <i < p™, we see that all diamonds have tyge Note that
the elementx®y with 0 < i < p™, that is, the elemenfsist above(in the sense of
immediately precedighe diamonds, if we includefakediamondL . = (y), span
a subalgebra o (2 : n; w,) isomorphic with a Zassenhaus algebval : n;). This
feature will reappear in the different grading which we will consider in Secfion
According to R0Q], the loop algebra oH (2 : n; w,) with respect to this grading is
the only thin maximal subalgebra of the algebra of maximal claB<S(0, n,, n, p),
which is the loop algebra ofl (2 : n; w,) with respect to the grading seen in the
previous subsection. The grading ldf(2 : n; w,) extends uniquely to a grading of
its universal central extension. The central elements of the latter corresponding to the
cocyclesy, andys of Theorem4.2 (in odd characteristic) occur in degrees 2 p'
and 31 — p°(q — 1), respectively.

6. The Hamiltonian algebra H (2 : n; w,) as a Block algebra

Benkart, Kostrikin and Kuznetsov proved i, [Theorem 4.9] (using the classifi-
cation of the modular simple Lie algebras of characterigtis 7 completed in$6])
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that the only simple Lie algebras over an algebraically closed field of characteristic
p > 7 which admit a nonsingular derivation agreeing with/& Z-grading with one-
dimensional components (in the terminology introduced in DefinBidhare of type
H(mM: n;w,). (In[7, Theorem 4.9N had the formp" — 1, but this was immaterial.)
Later it was proved in39] thatm necessarily equals two.

Simple Lie algebras with this property were considered earlier by Shal&dfin [
who noted that certain Lie algebras introduced by Albert and FranKk]iegn be
defined over the prime fielHl, and enjoy the property. Shalev used them to build the
first examples of insoluble graded Lie algebras of maximal class, as loop algebras of
the algebras of Albert and Frank. The algebras of Albert and Frank and their loop
algebras have been further discussed?i#,[to which we conform our notation, as
starting points for the construction of more graded Lie algebras of maximal class.
A byproduct of the classification of graded Lie algebras of maximal class achieved
in [24] and [33] (for odd and even characteristic, respectively) is a proof, independent
of the classification of modular simple Lie algebras, that the only finite-dimensional
Lie algebras which admit a nonsingular derivation agreeing wiity dZ-grading
with one-dimensional components, whétes any integer prime to the characteristic,
are the algebras of Albert and Frank. If we drop the conditiomNdout assume the
simplicity of the algebra the result remains true in odd characteristic (extending the
cited result of F]), while in characteristic two there is exactly one further class of
algebras joining the algebras of Albert and Frank and consists of the Lie algebras
constructed in 32] and namedBi-Zassenhaus algebrg$or which N is two less
than a power of two). Note that in characteristic two the simple Zassenhaus algebra
of dimension 2 — 1 has this property, the nonsingular derivation being given by
adley) = ad(E_; + Ex_») in the notation introduced in Sectich In fact, with
respect to its basig, } the simple Zassenhaus algebra coincides with the algebra of
Albert and FrankAF(0, 1, n, 2) defined below. (As we have mentioned in Section
it also coincides wittH (2 : n; w,).)

The above results indirectly imply that fgr > 7 the class of algebras of Albert
and Frank considered by Shalev coincides with the class of Hamiltonian algebras
H (2 : n;w,). In fact, since the algebras of Albert and Frank are Block algebras this
result holds forp > 3 according to 13, Lemma 1.8.3] together with the remarks on
the characteristic which we have made at the end of Se@tidn Theorem6.1 we
use the cyclic grading and the nonsingular derivation of the algebras of Albert and
Frank employed by Shalev to find an explicit isomorphism of the latter with Hamil-
tonian algebradd (2 : n; wy), in arbitrary (positive) characteristic. We compute the
derivations of the algebras of Albert and Frank in Theofefhextending to arbitrary
characteristic a result obtained by Block iril] for p > 3; in view of Theoren®.1,
the description of derivations of algebreig2 : n; w,) quoted in Sectiod for p > 3
is also extended to arbitrary characteristic.
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For integers O< a < b < n (the choice made in2p], or for the equivalent choice
0 < a < b < nmade later in24]), the algebra of Albert and FrankF(a, b, n, p) is
the Lie algebra oveF ,» with basis{e: | £ € F},} and multiplication given by

(6.1) le.. el = (s"anp" —é”bn"a) €1y

(where the right-hand side is interpreted as zero whenn = 0, for example by
settinge, = 0). Thus, an algebra of Albert and Frank is a special instance of a Block
algebra (see Sectiagd). It was shown in $0] that the algebra of Albert and Frank
S = AF(a, b, n, p) is defined over the prime fielfl,. Moreover, it has a graded
basisu, ..., um_, overF,, and a derivatiorD such thatDu; = u;4, for all i, to

be read modulg" — 1. Explicitly, this basis is related to the original basis by the
formulasu; = ZEE%" g-P"-Pg.. Part of the multiplication table with respect to
the new basis, namely, a description of the adjoint action of the elemen, was
computed in 0, Proposition 2.4] (but see als@Z]). If we include the derivatiorD
into consideration we obtain the following statement: the split extensio8 loy
Fo,D has afinite presentation on the generatyrs . ., up_, (with subscripts viewed
modulo p” — 1) andD, with relations

Duj = Ui

[Upa+pb, Upa] = —Uzpaypp,

[Upa+pb, Upb] = Upat2po,

[Upaspe, Uj] =0 otherwise.

This implies at once tha$ is defined over the prime field. Note that the above
formulas differ in sign from those given 22, page 4028], which were incorrectly
quoted from $0, Proposition 2.4]. That mistake amounts to using the algebra with
the opposite multiplication, and caused no serious consequerizd.ifNote also that
here we have written the derivatidd on the left, differently from 22], and hence
[u;, D] = —[D, Ul = —DUi.

In the terminology introduced in Definitidn 1, the nonsingular derivatioD agrees
with theZ/NZ-gradingS = P, /n; S, whereN = p” — 1 andS = (u). We will
take advantage of the similar grading ldf(2 : n; w,) defined in SubsectioB.1 to
construct an isomorphism betwe8nr= AF(a, b, n, p) andH (2 : n; w,), wheren =
(n—b+a, b—a). Since the map: — e gives an isomorphism oAF(a, b, n, p)
with AF(0, b—a, n, p) we may restrict ourselves to the case: 0. We will construct
a Lie algebra isomorphism from the extension o8 by (D) to the extension ot
by (D), whereD = ya/dx + (1+€)d/dy. (Using the same symbol for the derivation
D of both algebras should create no confusion.) If we set

0 (Uigras ) = —X 7Dy P
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for0 <i < prand 0< j < p™ with (i, ]) # (p™, p®), we clearly have
D(o(uy) = o(ux1) = o(Duy) for all k. In order to conclude that the bijective
linear map determined hy is a Lie algebra isomorphism it suffices to check that the
defining relations oS are satisfied irH (2 : n; w,). In fact, we have

[0 (U pr), 0 (U] = {RY, X} = RYP"D) = —0 (Ui ),
[U(U1+p"2), U(Upﬂz)] = {)_()_/7 y} = —X(pnlfz)y = U(U1+2p"2),
[0 (Uipr), 0(Uj)] =0 in all other cases,

where the last formula holds becausey, x¥y®} = 0 unlessk,| < 1, and also
(XY, Xy} = XyP* 2y — x(P"-2xy = 0.

Incidentally, the sequence of the constituent lengths in the graded Lie algebra of
maximal classAF SO, b, n, p), which was computed ir2P] and utilized in p4], can
now be more easily deduced from the isomorphisnin fact, viewing the two-step
centralizers in the corresponding (twisted) loop algebr&@? : n; w,) and setting
g = p™ we see at once that all componehtsare centralized by = (D +u;) ®t =
(D+x)®t, except wherk = 1 (modqg — 1) andg # 1 (mod p" — 1), in which
cased y is centralized byX = u; ® t = x @t (in the usual notation of42] but with
capital letters instead).

Another consequence of the isomorphisnis a formula for carrying out explicit
computations in the Lie algebra of maximal clasB S0, b, n, p). In fact, setting

[Uig+j, Ukg ] = CGi, J, Ko D) - Uggiggej+)

forO<i,k < p™andO< j,| < p™,with (i, j) and(k, ) # (p™, p™), we have
o 2pm —i —k—=1\/2p=2—j—-1-1
du,kJ)=—( , )( :
: pr—1 pr—j—1

2p™ —i —k—1\/2p=—j—1—1
(L)
pr—i—1 pn — j

This rather unpleasant formula can be put into the slightly simpler form

. k -1 k—1 |
ek = (6 o) |
U etk (pnl—l)(p“2—1—1> (p“1—|—1>(p”2—1>

by means of standard binomial coefficient manipulations and the less standard bult
easily proved fact that the value QE) modulo p (for n,k € Z) is periodic inn

with period the smallest power gf which is greater thakk. Since any nonzero
homogeneous element of weidht- 2 of AFS(0, b, n, p) (realized as a loop algebra

of H(2 : (n — n,, ny); w,) as above) can be uniquely written as a scalar multiple of

Y, X, Z3, Zs, .. .. Z] = U ® t
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with Z; € {X, —Y}, the above formula allows one to multiply homogeneous elements
in AF S0, b, n, p) without any need for commutator expansions. Finally, the method
of iterated deflation described i27] reduces computations iIAFS(a, b, n, p) to
computations ilPAF S0, b — a, n, p).

The isomorphism which we have seen above between the algebra of Albert and
Frank AF(0, b, n, p) and the Hamiltonian algebrll (2 : n;w,) is perhaps better
expressed in terms of the bages} of AF(0, b, n, p). As we have mentioned above,
the general case oiF(a, b, n, p) can be reduced to that &F(0,b — a, n, p) as
in [22], and we record the more general case in the following theorem (which can, of
course, also be proved by direct but rather tedious computation).

THEOREM 6.1. The algebra of Albert and FranRF(a, b, n, p) with Lie bracket
given by(6.1) (in arbitrary prime characteristiq) is isomorphic with the Hamiltonian
algebraH (2 : n; w,), wheren = (n — b+ a, b — a). Anisomorphism is given by the
linear mapo : AF(a, b, n, p) > H(2: n; w,) defined by the formula

o(e) = Zsipbﬂpax(i)y(i)’

where the summation is over all paifs j) withO<i <n—b+a,0<j<b-a
and(, j) # (0, 0). The inverse map is given by

o t(xDyy = — Z g -iv'g,

éen:;n

This result gives an explicit realization &f(2 : n; w,) as a Block algebra. Note
that the subalgebra oiF(a, b, n, p) which corresponds to the soluble subalgebra
(xOyD +i4j > 0)of H(2: n; w,) under the isomorphism consists of all elements
deCe with Y. c.6” = ), c: £ = 0. Because of this isomorphism (or by
direct verification) this subalgebra &F(a, b, n, p) is maximal whenever the latter
is simple (that is, except whem= 2 and eitheb—a =1orn—b+a =1). Itis
known that forp > 3 this is the only maximal subalgebra of codimension two, 8ge [
Theorem 2.16].

Now we compute the derivation algebra of an algebra of Albert and Frank. Accord-
ing to the identification of the algebras of Albert and Frank with suitable Hamiltonian
algebras given in Theoret1, we may consider their derivation algebras as known
from the general results on algebras of Cartan type quoted in Segtrt only for
p > 3. Also, the derivation algebras of all Block algebras (thus including the algebras
of Albert and Frank) were computed already 11i]} again under the assumption that
p > 3. The reason for this assumption ihl] was that genuine exceptions occur
for p = 2, 3 in the more general case of Block algebras. In particular, additional
derivations may occur for algebra$(2 : n; wp) in low characteristics, as we have
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illustrated in Remarkg.3and4.4. Such exceptions do not arise for the algebras of
Albert and Frank, that is, for Hamiltonian algebrds?2 : n; w,). However, Block’s
proofin [11] (in particular, Lemma 12) was not devised to deal with low characteristics
in this special case, and we offer a variation of it which works in every characteristic.
Every specialization of the definingy.-grading of the algebra of Albert and
Frank AF(a, b, n, p) to an Fy-grading (this terminology was explained in Sec-
tion 5) gives rise to a derivation which multiplies each basis eleneefy its [F,-
degree. These derivations turn out to be a basis for the space of outer derivations o
L = AF(a, b, n, p). (In fact, these derivations span a maximal tofus Der(L),
and the given grading is the corresponding decompositidniofo root spaces.)

THEOREMG6.2. The outer derivation algebrer(L)/ ad(L) of the algebra of Albert
and FrankAF(a, b, n, p) has dimension. More precisely, every derivation of degree
zero with respect to thE,.-grading ofL acts asD, e; = c; - &, for some additive map
7 & — ¢ of Fi» to itself; all derivations of nonzero degree are inner. Thus a basis
for the space of outer derivations is given by the derivatiddg)”e. = £ - e, for
0<s<n.

ProoF. Clearly De(L) inherits anF »-grading fromL, and the maps described are
derivations of degree zero. Conversely, etbe a derivation of degree zero. Then
we haveDe: = c; - & for & € [y, for suitable scalars; € [y, and we may set
Co = 0. The Leibniz ruleD[e;, e,] = [De:, e,] + [e:, Dg,] for &, n € F, yields that
Cey = C: + C, provided(e., e,] # 0. The latter amounts ©"n? — £P'nP" £ 0,
which is satisfied as long &sandn do not span the sanfg.-subspace of ,», where
¢ = (b—a, n). Butif £ andn do span the samg,.-subspace of ., we may choose
6 outside this subspace and obtain tat, +- ¢y = C¢1 10 = Cs40 +C) = C: +C, +Cp
(which also settles the case whére n = 0). Thusthe map : F» — [F» is additive.
These maps form am-dimensionalF ».-space.

To simplify the calculations which follow we assurae= 0, as we may, and set
q = p. Let D be a derivation of degree € F},, henceDe. = c; - & for & € F,
(recalling our convention tha, = 0), wherec; € [, and we may sed, = c_, = 0.
Then the conditiorD[e;, e,] = [De:, e,] + [e:, Dg,] translates into the equation

En' =& Cpy=(E+M = E+D)N) G+ EM+DT - +1)-C

for &, n € F%, with & +n # —t. However, this equation is trivially satisfied also if
¢ =0o0rn=00r& +n=—rt, hence it holds for alf, n € Fpn.

For the sake of clarity, we only solve the equation in the case wherd.. This is
no loss because in general the equation can be reduced to this case bycsettiag.
The condition forD being a derivation can be written as

(6.2) GEn* =& (Cey—C—C)=M"—n) -+ (E—-EY-c, for& nelFp.
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One solution is; = £9 — &, which corresponds to the inner derivationegdWe will
prove that this is the only solution, up to scalars.

Settingn = —£ in equation 6.2), we obtain thaté% — &)(c: + c_¢) = 0, hence
C_: = —C;: holds provided? — & # 0. Our next goal is to show that the left-hand side
of (6.2) always vanishes. We may assume tfat- & andn® — »n do not both vanish,
otherwise the coefficier§n® — £9% vanishes, too. Then the left-hand side 6f2
can also be written as (1% — £€99)(c_¢_, + C: +¢,) if €949 —& —n # 0, and
as(&n% — &%9%)(ce4, + C_¢ + C_,) otherwise. Either expression is invariant under the
cyclic substitutiont — n — —& — n — &. Hence the right-hand side 06.Q) is
invariant, too, implying that

m*=n)-c—E" =& -c,=(=E"—n"+E+n)-c,— (" —n)-Ccy
=@E"-8) -coy—(E"=nT+E+n)-C
or, equivalently,

(E9-¢&)Ccey+C+c)=0"—n(Cs,+C+c)=0.

(A more conceptual view of the computation is the following: invariance of the right-
hand side of§.2) under the substitution implies that the (standard) vector product of the
two vectorgc;, C,, C_;_,) and(§9—-&, n9—n, —&9—n94+-£+n) isamultiple of(1, 1, 1);
since the vector product is orthogonal to both vectors we have + c: + ¢, = 0,
provided the second vector is nonzero.) Consequently, both sidés2pf/&nish for
allé, n € Fn. Hence(n® —n) - ¢ = (§9 — £) - ¢,, and fixingn such thay? — n # 0
we conclude that; = ((n? —n)~'c,) - (§9 — &) for all £. O

We have already used Theorén2in Section4 to extend the scope of Theoreh?
to characteristic three. We mention that a convenient basis for the second cohomolog)
group of AF(a, b, n, p) is obtained (in odd characteristic) from the outer derivations
given in Theorem6.2 by the method explained in Sectigh and consists of the
cocyclesp((Dig)”)(e:, €,) = 8(€ +1,0) - £” for 0 < s < n. In characteristic two
these functions are not cocycles because they are not alternating and, in fact, the
second cohomology group vanishes, see Remdrk

7. Another thin grading of H (2 : n; wy)

In this section we introducey/ (p™—1)Z x (Z/ pZ)™-gradingofL = H(2: n; w,).
In the special case, = 1, the grading will be (cyclic and) thin, and the corresponding
loop algebra will be the thin Lie algebra with all the diamonds of finite type constructed
in [20]. In fact, the construction of the present grading is guided by the structure of
that thin Lie algebra. Unlike inZ0], here we put no restriction on the (positive)
characteristic.
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To briefly outline the construction of the grading, we first note that such a grading
gives rise to aZ/(p™ — 1)-grading and to &Z/pZ)™-grading by specialization.
Conversely, the original grading can be recovered from these two specializations. We
start with theZ/(p™ — 1)Z-grading ofL mentioned at the beginning of Sectién
where(R, S) = (0, —1). Its components are

L= i=L...p" =1+ xVy]i=0... p"-1),
and
Lij=xVyDi=0,...,p" =1
forj =1,..., p2—2. The component of degree zero isisomorphic with a Zassenhaus

algebraW (1 : n;). As we saw in Sectiog, the latter has a grading over the additive
group of the fieldF ., which is simply the root space decompositionVéf1 : n;)
with respect to an appropriate one-dimensional Cartan subalgebrggsayiewing
W(1 : n;) as a subalgebra df, the decomposition of into weight spaces with
respect to aay, extends the grading & (1 : n;) to a grading oL, which turns out to
be over the same groufy... Sincee, € Lo, it normalizes every componeﬁi;, and it
follows that thisFF , -grading ofL together with theZ/(p™ — 1)Z-grading yield the
desiredZ/(p™ — 1)Z x [y -grading.

As announced above, we identify the subalgebra

W= x"|i=0,..,p"—-1)

of L with the Zassenhaus algeBA4(1 : ny) via E; = x1*Vy, fori = —1,..., pm—2.
This is justified by

. i+k-1 i+k-1 .
o157 (1)

Recall from Sectior? that anfF ,..-graded basis dfV is given by

& =Y+Xy

e, =xXy+ Y taixVy  fora e i
(where the former formula can be seen as a special case of the latter, but we have key
them separated for the sake of clarity, here and below).

It is a simple matter to find the weight spaces ofegdn each componerit;,
starting from the formula

— jx P2y ifi =0,
=1 @A+eyd + @+ HxyD ifi =1,
x(1=Dyd if i > 1.
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In particular, eigenvectors for ag on I:l,j, forj=1,...,p2—1,are
e o=y + jxy”
e jo = jXyD + 2Pl xOyD fora e o

extending the complete set of eigenvectors foeadn W given by its basis elements
&, = &,. Our notation is chosen so that ; , € I:H, and

{a)a el—j.ot} = aelfj.ot'

Also, the subscript - j in e,_; , will be read modulop™ — 1, so that, for example,
e, will be the same as,_,.,. However, beware tha , is not what one would
obtain by puttingj = 0 in the formulas.

The formulas above give complete sets of eigenvectors fa, @ L;_; only for
j=1,...,p%— 2. Infact, ade, acts on|:2,pn2 as a sum of two-dimensional Jordan
blocks, saye, ., &), one for each eigenvaluee [F’;nl. (These will be the diamonds
in the thin grading, in case; = 1.) It is convenient to assume that

{al), él.ot} = aél,a - ael,ou

which we may because # 0. This determine®,, € L, modulo (e,,), and we
choose to seé,, = ip:l‘lai(x“) —ixVy) fora e Fi . It will be convenient to
allow also the value = 0in the above formula, and thus &gt = 0. (Incasen; =1
the componente; o, & ) = (€10) corresponds to takediamond in the thin grading.)

In the following lemma, we summarize what we have obtained so far, and we
include the inverse formulas which give the divided powers in terms of the elements

g ., andg,.

LEMMA 7.1. The Hamiltonian algebrd = H (2 : n; w;) admits az/(p™ — 1)Z x
Fou-grading given byL = € L., whereLy, = (&4), OF Lky = (8o, &e)
whenever the latter makes sense, and the basis elements involved are given by

e jo = XYV + X aixDyd fora e Fpmandj =1,..., p% -1,

pri-1 i

€o =, axD—ixVy) for o € Fry,
where(® should be understood d@ Conversely, foi = 1,...,p" —land| =
1,...,p"2—1wehave
X(i)y(i) — Zaélenl ap"1—1—ie17j,a,
y(j) = el*l'-o + J Zaernl elfj,ou
X0 = — Zaernl O[pnlilii(iel,ut + él,a)7

where in the last formula it is understood th&at, = 0.
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For later use, we record the products of the basis elements given in L&€nima
We have

j+1 -1 j+1 -1
(7.1) {€1jo, @15} = (,B(J +| ) —a(J +j )) € i laip

forj,I =1,...,p" — 1, provided 1< j +1 — 1 < p™ — 1, and zero otherwise,

(7.2) (€ ju gl =B juip fOrj=2...,p=%—-1,
(7.3) {€0.0s €L g} = —BCLatps + BELa1s,
(7.4) (€L, 64} =0.

Itis not necessary to carry out the computations in full in order to prove these formulas,
if we use the fact that the basis is graded, according to Lemfnaor example, the
result of the product in formula7(1) must be a scalar multiple &_;_; 4, and we

only have to find that scalar. Since the mononyi&l appears ir,_; , with coefficient

1, it is enough to compute the coefficient of the mononyiat'~¥ in the product
{€e1_j«. €1 4}. The products of the only relevant terms, namely

v, Bxy") + faxy®, yO) = <ﬁ(j +: - 1) _a(J +1 - 1)) YD,
J

yield the desired conclusion. Formula2) follows similarly by computing

y?, Bxy = gy’ ="

Formula {.4) follows because the monomigli®”~? does not appear in the result.
The proof of formula T.3) is just slightly more involved because, ., & s} must be a
linear combination o&, ., andé, .. 4. Since the coefficients of andx are 1 and 0
in the former, and 0 and + B in the latter, the conclusion follows by computing the
only relevant products, which afg, —gxy} = —8y and

{y, B2X@} + faxy, Bx} = (@ + B)x.

(For the dubious case whese+ 8 = 0, recall from Lemmar.1 that we have set
€0=0)

Now we restrict our attention to the case of main interest for us by letting 1,
and introducing the shorthargd= p™, so thatL has dimensiorpg — 1. Then the
subspaceky , form a grading ol over the cyclic grouZ/(q — 1)Z x F,. Choosing
(1, 1) as a generator of the latter, we will show that the grading is thin, according to
Definition 5.3, and that all diamonds are of finite type.
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The diamonds occur in all degrees congruent to 1 mogwd., with the exception
of degreeg. We set

=

p—1
X=e,= Z(xﬂ) —ixPy) and Y=¢e,;=—-xy+ » xVy,

i=1 i

©

Il
o

and check that the covering property is satisfied. Since

{8e, X} =0,

{€0.as X} = €ras1 — €rLas1  (Whereg o = 0),
{€1jo. X} =€rjop1 fOrj=2...q-1,
{8, Y} = €41,

(€4, Y} = (@ + Dergy1,

{€1_jo,.Y}=0 forj=2...9-1,

we have{Ly.,, (X,Y)} = Lgi1q41 fOor k # 1 (mod (g — 1)), which shows that the
covering property holds in these degrees, singgis one-dimensional. To see that the
loop algebra is thin, it remains to check the covering property on the two-dimensional
components. At the same time we will check the diamond types (includinfakiee
diamondL ; 5, which is in degreq]). Since

{€.a: X, X} = {—€ras1, X} = —€2442,

{€0.0, X, Y} = {81011, Y} = — (0 + D€2yr2,

(€0, Y, X} = {(@ + Depgq1, X} = (@ + De&roya,
{€&.4, Y, Y} =0,

if a, b are scalars we havg,,,aX + bY, (X,Y)} = Ly,» unlessa = b = 0 in
casex # —1, and unless. = 0 in casew = —1 (the case of théakediamond). It
follows that the grading is thin. Furthermore, the elements just above the (possibly
fakg diamonds are those of the forsy = e, _,_; and satisfy

{VOH Ya X} = a{VOH X7 X}a

hence the diamondV,, X}, {V,, Y}) in degreeq + «(q— 1) (which isfakefor o = 0)
has typex. Note that most of the computations done in this paragraph need not be
carried out in full, provided we use the fact that the elemeptsand &, , form a
graded basis of, according to Lemma. L

We have completed the proof of the following result.

THEOREM 7.2. In casen; = 1 the cyclic grading ofL = H(2 : n; w,) defined
in Lemma7.1is a thin grading(with respect to the generatdf, 1) of the grading
group). The diamond types are all finite, and follow an arithmetic progression.
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Note that{Ly,,Y} = 0 for k # 0,1 (mod(q — 1)), and also{Lo_1, Y} =
{L1o, Y} = 0; henceY centralizes all one-dimensional components which do not
immediately precede a diamond.

We remark that thin Lie algebras with diamonds of both finite and infinite types are
constructed in]. The finite diamond types there follow an arithmetic progression,
but they are separated by sequences of constant length of diamonds of infinite type.

8. Another realization of H (2 : (1, n,); w,) as a Block algebra

In [20] we constructed a simple Lie algebfawith a thin grading and all diamonds
of finite type. Since the location and types of the diamonda afiatch those of the
algebral = H(2 : (1, ny); w,) with the grading defined in the preceding section it
follows that the loop algebras df and A are isomorphic. Actually, this yields an
isomorphism betweeh and A themselves, but it may be necessary to extend the
ground field for this. The purpose of this section is to justify these claims.

We recall the definition ofA from [20], with slight notational changes to avoid
clash with the notation of the present paper. pdbe any prime, letj = p™, and
setS* = (F, x Fqy) \ {(0, 0)}. The[F4-vector spaceA with basis{ f,, | (u, @) € S}
becomes a Lie algebra oviy by defining[ f, . f, ] = (v —up) - fuiy 444, Where
we read 0 foq as zero. By constructioA is a Block algebra, and so it is simple and
isomorphic to a Hamiltonian algebt&(2 : n; w,) (at least wherp > 3, and possibly
after extending the ground field, see Sect&)n We will construct an isomorphism
explicitly.

It was shown in 20] that A has a thin grading where the component of degree one
is spanned by = f;oandy = Zaeﬁq fi.. (The assumptiop > 3 stated in20] was
only needed in later sections, when considering presentations for the thin algebra.)
An easy induction showed that

_ i-1¢. i

[y,x,.j..l,x]_aze[;qa fio forj=>1
(where our convention thafG= 1 intervenes wherj = 1). This element spans the
component of degreg of the grading, except whep= 1 (modq — 1) butj # 0
(mod p), in which cases the component is two-dimensional. An element just above a
diamond of typer — 1 is

Vit =Y, X, ..., X] = Za Y

AQ-1)—1 acly

whence

Y, X, ..., Xyl = =1 Z footiy.

Aq-1)—1 yekq
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In particular, we have

[y, Xy oony X] = Za(qfl)p f1+(q71)p,a = Z fl.a =Yy —X,

———

p(g—1) aelq acly
[y,x,...,x,y]:—z fi, =-vy.
p(a-D-1 v€lbq

Now we carry out analogous computationd.in= H(2 : (1, n,); w,) with the thin

grading constructed in the previous section, using the formulas obtained there.

particular, the component of degree one in the grading is spanneéd-byg,; ; and
Y = e 1, and we find that

Y. X, X} = (=Dl — 8q_1(j. D& forj >1
j-1

(but not for j = 1), whered,_i(s,t) equals one ifs = t (modq — 1), and zero
otherwise. An element just above a diamond of type 1l is

VA._l = {Ys Xv ) X} = (_l))‘_la),—)u
——
Ag-1)—1
whence
Y, X, .., X, Y = (=D — Dey 1.
——

Mg-1-1

In particular, we have

Y, X, ..., X} =—e1+&:1=-Y+X
—_———
p(@-1)
{Y, X,..., X,Y} =e]_,1=Y.
———

p(@-1)—-1

The sign discrepancy of the latter formulas with the analogous onéssieen above
means nothing if we work with the loop algebrasfoéindL (which are isomorphic),
but suggests thah may not be isomorphic with = H (2 : (1, n,); w,) overF,. We
extend the ground field tB,: and fixe € Fq. with ¢4t = —1. A well-defined linear
maprt : A — L is obtained by setting(x) = ¢ X, t(y) = ¢Y, and

T([Y, X, ..o X XD = el {Y, X, oo, X, XD,
—— ———
j—2 i-2
(Y, X, ..., X, yD) =e{Y, X, ..., X, Y}
—— ———

j-2 j-2
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for all j > 2. The computations done in Secti@nand in 0] show thaty and
Y centralize all one-dimensional components which do not immediately precede a
diamond, in the respective algebras, and also that the diamond types match. It follows
thatt ([w, z]) = {t(w), t(2)} for all w € Aandz = x or y. Sincex andy generate
A we conclude that the mapis an isomorphism of Lie algebras (because the set of
z € Asuch thatr ([w, z]) = {t(w), t(2)} for all w € Ais a subalgebra).
Finding explicit formulas for the isomorphismin terms of convenient bases for
A andL is a matter of some manipulations, and we only record the final result.

THEOREMS8.1. The Block algebraA defined if20] and described at the beginning
of this section is isomorphic with the Hamiltonian algeldfg2 : (1, ny); w,). An
isomorphism is given by the linear map: A — H(2 : (1, ny); w,) defined by the
formulas(both fora € F,, and wheres9~! = —1)

T(fp) = — Y] g ke, + 8, forp e,
T( f(X,O) = Sél.ou

in terms of the basi& ., & .} of H(2 : (1, n,); w») defined in Lemm&.1, or

T(fop— fo0) = Z?;i jet I pIxyD + Zip:_ol ?;ielfjoziﬁixﬁ)yu') for 8 € F?,
T(fa,o) =& Zi’);ll ai(x(i) _ iX(i)y)
in terms of divided powers.

Note that there appears to be a certain amount of symmetry between the formulas
for 7(fo) andz (f,0), because (foz) = Y17 e8I (y D + jxyd).

The following cocycles ofA were introduced ing0], and it was proved that they
form a basis for the second cohomology grouppoff p > 3

af ifa+p=0andu+v=0;

r fuas fu = .
¢r(tu #) {O otherwise,

forl<r <n, and
u ifu+v=0;
0 otherwise.

w(fu,as fu,ﬂ) = {

In view of the isomorphism given in Theoren8.1, we now make the connection
with the cocycles oL = H(2 : (1, n,); w,) described in Theorem.2. Call ®, and
W the cocycles obtained by pulling the cocyclgsand ¢ of A back toL via the
isomorphisme 1. A straightforward computation fob, and a slightly more involved
one for®,, both of which we omit, show thab = —¢ =2y, and that

@ =" % (g + p(adxy ),

in the notation of Sectiod.
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