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Abstract

We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new
variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We
demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversec
images.

2000Mathematics subject classificatioprimary 57Q45; secondary 57Q35.
Keywords and phrasesurface-knot, ribbon concordance, quandle, cocycle invariant, triple point.

1. Introduction

Throughout this paper, surface-knotmeans a connected, oriented closed surface
smoothly embedded in 4-spaRé up to ambient isotopies. L&, andF; be surface-
knots of the same genus. We say tlfatis ribbon concordant toF, if there is a
concordance in R* x [0, 1] betweenF; c R* x {1} andF, Cc R* x {0} such that
the restriction taC of the projectionR* x [0, 1] — [0, 1] is a Morse function with
critical points of index 0 and 1 only. We write; > F,. Note that ifF; > Fy, then
there is a set afl 1-handles on a split union & andn trivial sphere-knots, for some
n > 0, such thaf, is obtained by surgeries along these handles (Figjure

The notion of ribbon concordance was originally introduced by Gorddriof
classical knots inR3, and there are several studies found T 13, 12, 17], for
example. Note thaf is a ribbon surface-knot if and only F is a ribbon concordant
to the trivial sphere-knot.

Given surface-knot&, andF, it is natural to ask whethek; is ribbon concordant
to Fo. Cochran p] gave a necessary condition for a sphere-kiRdb be ribbon in
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FIGURE 1.

terms of the knot group;(R*\ F). The aim of this paper is to give new necessary
conditions for a pair of surface-knots to be ribbon concordant by using quandle cocycle
invariants.

A quandle P, 11] is an algebraic object whose model is a group with conjugation,
and its cohomology theory was developed 4 §s a generalization of the theory
given in [6]. It is known that each quandle 3-cocydedefines an invariant of a
surface-knotF, called thequandle cocycle invariantb,(F). The invariant®,(F)
is regarded as a multi-set of elements in the coefficient gidub the cohomology
where repetitions of the same element are allowed. For two multifsetsd A” of A,

we use the notatiod 8 A" if for any a € A’ it holds thata € A”. In other words,

A C A’ifand only if A ¢ A’ whereA and A” are the subsets ok obtained from
A’ and A” by eliminating the multiplicity of elements, respectively. The following is
a necessary condition for ribbon concordance.

THEOREM 1.1. If F; > Fy, then®, (F;) E O, (Fo).

By Theoreml.1, we give many examples of pairs of surface-knots such that one
is not ribbon concordant to another (Corolla2yl). For example, we can easily see
that the 2-twist-spun trefoil and its mirror image are not ribbon concordant to each
other. However, Theorerh.1is not effective in the family of ribbon surface-knots;
in fact, ®,(F) = 0 for any ribbon surface-kndt. Here, we use the notatidhto
stand for a multi-set consisting of zero element\ainly. In this paper, we define a
new variation of cocycle invariants of surface-knots by using a quandle 2-cagycle
(the definition is given in Sectio8). The invariant of a surface-knét is denoted by
Qy(F) = {A. | » € Hi(F; Z2)} which is a family of multi-setsA, of the coefficient
groupA. Note that a 2-cocycle is originally used to define the invariar,,(K), of
a classical knoK (cf. [4]). The invariant2, gives another necessary condition for
ribbon concordance.
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THEOREM 1.2. If F; > Fo, then for anyA’ € Q4(F,), there isA” € @,(Fy) such
m

that A’ C A".

As an application of our new invariatit, of a surface-knot, we obtain a result on
the cocycle invariant of a classical knot as follows (refer9id¢r the definition of an
involutory quandle, or see Sectiah).

THEOREM 1.3. If ¢ is a 2-cocycle of an involutory quandle, the&p,(K) = 0 for
any2-bridge knotK .

This paper is organized as follows. In Sectidnwe review the definition of
the original cocycle invarian®,(F). The proof of Theoreni.1 and its application
(Corollary 2.1) are also contained in this section. In Sect®&we introduce a new
invariant2, (F) by using a 2-cocycle, and then prove Theorefin2. An application
of the theorem is given in Sectign(Corollary4.3), where we only sketch the outline
of the proof and its completion is left to Appendix. Boyld ftudied a surface-knot
obtained from a twist-spun knot by surgery along a 1-handle. By using his result, we
prove Theoreni.3also in Sectior.

REMARK. Kawauchi points out that the linking signature of every surface-knot is
invariant under ribbon concordance. This result has not appeared in any paper, bu
can be obtained as a corollary 4{J.

2. Invariants by using 3-cocycles

We first review the definition of the quandle 3-cocycle invariants of surface-knots.
Referto f] for more details. Ajuandldas a setX with a binary operationa, b) +— axb
satisfying the following three axioms:

e axa=aforanyace X.
e The mapta: X — X defined byx — X x a is bijective for anya € X, and
e (axb)ysxc=(axc)x*(bx*c)foranya,b,ce X.

For an abelian group, we say that a map: X3 — Ais a 3cocycleif it satisfies the
conditions that

° Q(Xl, X2, X3) =0if X1 = X OI Xo = Xg, and
e foranyxs, ..., x; e X,

0 (X1, X3, Xa) — 0 (X1, X2, Xa) + 0(X1, X2, X3)
= 6 (Xy * Xo, X3, Xa) — O(Xq * X3, X2 * X3, X4)
+ 0(Xq * Xa, Xp * Xa, X3 * Xg)
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We denote byZ3(X; A) the set of such 3-cocycles.

To describe a surface-knot, we use a fixed projectiom oR* — R® as well as a
description of a classical knot into the plane. Every surface-kncan be perturbed
slightly in R* so that the projection image(F) has double point curves, isolated triple
points, and isolated branch points as the closures of the multiple point set. Crossing
information is indicated int(F) as follows: Along every double point curve, two
sheets intersect locally, one of which is under the other relative to the projection
direction ofr. Then the under-sheet is broken by the over-sheetliagramof F
is the imager (F) with such crossing information. Hence a diagram is regarded as a
union of disjoint compact, connected surfaces. For a diagdame denote by (D)
the set of such connected surfacefofNote that three sheets near a triple point are
labeled top, middle, and bottom according to crossing information, and the middle
and bottom sheets are divided into two and four pieces, respectively.

For a quandleX, a mapC : (D) — X is called anX-coloring of D if it satisfies
the following condition near every double pothtif a = C(«;) andc = C(«,) are the
colors of under-sheetg, anda, separated by the over-shgetolored byb = C(8),
where the orientation normal gf points frome; to «», thena « b = c holds. See the
left of Figure2. We denote the set of suck-colorings ofD by Colx (D). Also, the
pair (a, b) is called thecolor of a double point, and denoted bg (d) € X2.

(a*b)*c
c=a*b =(a*c)*(b*c) —
b /]\ E c
a
FIGURE 2.

Each triple point of D is assigned the sigi(t) = £1 induced from the orientation
in such away that(t) = +1 if and only if the ordered triple of the orientation normals
of the top, middle, and bottom sheets, respectively, agrees with the orientafidn of
Given anX-coloringC € Colx(D), the colors of the sheets neaare determined by
three colorsa = C(x), b = C(8), andc = C(y), wherey is the top sheets is the
middle sheet from which the orientation normabopoints, andyr is the bottom sheet
from which the orientation normals gfandy point both. See the right of Figutz
where the sheets, 8, andy are shaded. The ordered trifgke b, c) is called thecolor
of t and denoted b (t) e X5.
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Let D be a diagram ofF colored byC e Colx(D). Given a 3-cocycl® €
Z3(X; A), we define theRBoltzmani) weightof each triple point by

W, (t;C) =¢e(t) - 6(a, b, c) € A,

whereC(t) = (a,b,c). We denote byW,(C) € A the sum)_, W,(t; C) for all
triple points of D. Then thecocycle invariantof F by usingé is the multi-set
Dy (F) = {W,(C) € A| C € Colx(D)}, where repetitions of the same element are
allowed. It is proved in4] to be an invariant ofr which does not depend on the
choice of a diagranb of F.

Let Fy andF; be surface-knots witk; > Fo, that is,F; is ribbon concordant t&.
For a diagranD, of Fy, we may take a typical diagra; of F; as follows: There is
a set of sufficiently thim 1-handleshy, ..., h,, for somen > 0, connecting a split
union of Do andn embedded 2-sphereS,, ..., S, such that

e each 1-handlé; connectsD, and Sj, and intersectd, U (L, §) with
disjoint meridian 2-disks ofi;, and

e D, is obtained fromD, U (LJ{_, S) by surgeries alongJ{_, h;.
In the following, we useD; in the above form unless otherwise stated.

PROOF OF THEOREM 1.1 For any element € ®,(F;), there is anX-coloring
C, € Colx(Dy) with a = W,(Cy) = ), Wy(t; C,) on D;. Since the intersection
of Do and each 1-handll; consists of small 2-disks, th¥-coloring C; restricted
to the punctured diagrar, \ (UT:1 hi) determines the&X-coloring of Dy uniquely,
Co € Colx(Dg). Since the set of triple points @, is coincident with that oDy, and
sinceW,; (t; Co) = W (t; Cy) for any triple pointt, we have

a=  Wy(t; Co) = W,(Cp) € ®y(Do). 0

We present specific examples as an application of Thedrénm the rest of this
section. ThesdD, 1, ..., p—1} becomes aquandle under the operatieh = 2b—a
(mod p), which is called thelihedral quandleof order p, and denoted byR,. For an
odd primep, Mochizuki [14] found a 3-cocyclé, € Z3(R,, Z,,) given by

(2X3 — X2)P + xP — 2x°
Op(X1, X2, X3) = (X1 — X2) 2 o 2 3,

where coefficients in the numerator are divisiblefyThe reader can check this
satisfies the 3-cocycle conditions by hands (J).[

In 1965 Zeemanl[g] introduced an important family of sphere-knots. We take a
tangle (knotted arcJ in the 3-ballB*, whose closure is a classical kriét For an
integerr > 0, let{ f;};cj0.1; be the ambient isotopy d&* which rotates the tangl& a
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total ofr times about an axis while keeping the boundanfpffixed. Furthermore,
fo(Tk) = f1(Tx). We construct an annulus properly embedded iB% x S from

LJ fuTo = {t} € B®x [0, 1]

te[0,1]

by identifying the quotienf0, 1]/(0 = 1) with S'. Ther -twist-spin ofK is a sphere-
knot obtained by embeddind?® x S, A) in R* standardly and capping with two
2-disks along the boundary @&. We denote the sphere-knot byK .

LetT (2, q) denote th&2, q)-torus knot inR3. For a surface-kndE, let—F denote
the surface-knoF with the reversed orientation. Then we have the following.

COROLLARY 2.1. (i) If gandq’ are distinct odd primes, then we have
?T(2,q) # 7°T(2,q) and 7°T(2,q) # t°T(2, Q).
(i) If g is an odd prime witlg = 3 (mod 4, then we have
?T(2,q) # —t°T(2,q) and —7°T(2,q) # r°T(2,Q).

PrROOF. (i) It is proved in P] that &, (7T (2, q)) = Ofor p # g, and

0, ... 0,

-2.12, ..., ~2.12,

D, (r°T (2, ) = —2.22, .., 2.2
-2q-1% ..., —2(q-17?

for p = g, where the number of each term of the for2k? (k = 0,1,...,q— 1)
is g. In particular, sincedy, (72T (2,q)) # 0 and @, (¢*T(2,q)) = 0, we have
2T(2,q) # t2T(2, ) by Theorenil.1 Itis also similarly proved that?T (2, ') #
2T (2, Q).

(i) It is known that®,(—F) = —®4(F) for any surface-knofF and 3-cocycl®
(see, for example,4]). On the other hand, we obtain the set= {—2k? | k =
0,1,...,(p—1)/2} from &, (r2T (2, )) by eliminating the multiplicity of elements.
It is not difficult to see that ifj = 3 (mod 4), therS ¢ —SandS » —S, and hence,
we have the conclusion by Theoreni. O

3. Invariants by using 2-cocycles

Let X be a quandle ané an abelian group. We say that a map X? — Ais a
2-cocycleif it satisfies
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e ¢(Xy, %) =0if X, = Xy, and

o P (X1, X3) — P (X1, X2) = P (X1 * Xa, X3) — P (X1 * X3, Xz * X3) for anyx; € X.
We denote byZ?(X; A) the set of such 2-cocycles.

We define a cocycle invariant of a surface-knot by using a 2-cogyeleZ?(X; A).

Let D be a diagram of a surface-knét, andC € Colyx(D) an X-coloring of D.
Consider an oriented immersed cirdleon D intersecting the double point curves
transversely, and missing triple points and branch points.dLet ., d, denote the
points on the under-sheet at whithintersects the double point curves. We give the
signe(dy) = £1 to d, such that(d,) = +1 if and only if the orientation of. at d
agrees with the orientation normal of the over-sheet. We define the Boltzman weight
atdg by W, (di; C) = e(dy) - ¢(a, b) € A, whereC(dy) = (a, b). Moreover, we put
W, (L;C) = Y, W,(dy; C). See Figure. We extend these notations for a union of
immersed circled on D naturally.

/L VW L
Xb DN Xb DN
a MN a ¥
Wy (dy;C)=+ o (a,b) Wy (dy;C)=-¢ (a,b)
FIGURE 3.

LEMMA 3.1. If L and L’ are homologous o, thenW,,(L; C) = W,(L’; C).

PrROOF It is sufficient to prove thaw,(L; C) does not change under the moves
(0)—(3) (and the ones with orientation reversed, or with opposite crossing information)
as shown in Figurd. First, it is clear for the move (0) by the definition\f; (L ; C).
Since¢ satisfiesp(a,a) = 0 for anya € X, the move(1) also does not change
W, (L;C). Inthe move(2), the termsp(a, b) and —¢(a, b) cancels inW,(L"; C).
Finally, it follows from the 2-cocycle condition af that W, (L;C) = W,(L";C)
under the move (3). O

For each homology class € H;(F;7Z) and its representative curte ¢ D, the
elementW, (L; C) € Ais independent of the choice bfby Lemma3.1, and hence,
we denote it by, (A; C). Then we assign each class H;(F;Z) a multi-setQ, (1)
of Asuch that2,(x) = {W,(x;C) | C € Colx(D)}. Moreover, we define a family of
multi-sets ofA by @, (F) = {Q2,(}) | 2 € Hi(F; 2)}.
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+ ¢ (a*b,c)

FIGURE 4.

ProOPOSITION3.2. The familyQ,(F) does not depend on the choice of a diagram
D of F.

PROOF It is known that any other diagram’ of F is obtained fromD by a finite
sequence of Roseman movés$]up to ambient isotopies dk3. Assume thaD’ is
obtained fromD by a single Roseman move in a sufficiently small 3-I&gll For any
classi € Hi(F;Z), we may take its representative curveon D with L N B® = ¢
so that we regardl as a curve oD’ also. Moreover, eack-coloringC € Colx(D)
induces a colorin@’ € Colx(D’) uniquely. Hence, anW,(L; C) on D is coincident
with W, (L;C’) on D". O

The following proof is similar to that of Theorefinlin Section2.
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PROOF OFTHEOREM 1.2. Let D; be diagrams of; (i = 0, 1) as in the beginning
of Section3. For anyA’ € Q,(F,), there is a curvé& on D; with A" = Q,(L). Since
we can defornL such that. N (Uj_, h;) = #, L is regarded as a curve @.

Put A” = Q,(L) € Q4(Fo). Then A’ C A” can be proved in a similar way to
Theoreml.l O

4. Torus-knots with 1-handles

A surface-knot is called mrus-knoff it is an embedded torus iR*. We distinguish
it from a classical ‘torus knot' ifR? by inserting the hyphen -. In this section, we use
a typical family of torus-knots studied by Boyl8][ Let K be a classical knot in a
3-ball B3, and letD® C intB?® be a 3-ball such thdd®*N K = T is the knotting arc for
K. For aninteger > 0, let{g}ic0.1 be the ambient isotopy d&* which rotatesTy r
times keeping the trivial ark \ Ty fixed. We denote by 'K the torus-knot obtained
from [, a(K) x {t} ¢ B® x S' by embedding it ifR* standardly. Note that'K is
also obtained from the-twist-spin of K by surgery along a certain 1-handie

By definition, o' K has a diagranD' in the form A x S', whereA is a knot
diagram ofK, except the twisting part dfc. See Figuré, where we ignore crossing
information along double point curves and omit the twisting part. Refe,tbd] for
the complete figure of the diagram. We take meridional and longitudinal curaed
B on D", respectively, such that can be identified with\, andg has no intersection
with double point curves.

FIGURE 5.

To calculate the invariamit, of o" K, we recall the definition of the cocycle invariant
®,4(K) of a classical knoK by using a 2-cocycle. Let A C R? be a diagram of an
oriented classical knd€, andX (A) the set of arcs separated by over-arcs at crossings.
For a quandleX, a mapC : (A) — X is called anX-coloring of A if it satisfies the
following condition near every crossing if a = C(«;) andc = C(a,) are the colors
of under-arcsy; anda, separated by the over-afccolored byb = C(8), wherea;
is on the right side of, thena « b = ¢ holds. We denote the set of suBhcolorings
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of A by Colk(A). Also, the pair(a, b) is called the color of the crossing and
denoted byC(x) € X2. Given a 2-cocycled € Z?(X; A), we define the Boltzmann
weight atx by W, (x; C) = e(X) - ¢(a, b) € A, whereC(x) = (a, b). We denote by
W, (C) € Athe sum)_, W, (x; C) for all crossings ofA. Then the cocycle invariant
of K by usingg is the multi-setb,(K) = {W,(C) | C € Colx(A)} where repetitions
of the same element are allowed. It is proveddiitg be an invariant oK which does
not depend on the choice of a diagranof K.

Any X-coloring of D" determines that oA by restricting it to the meridional
curvea. Conversely, not an)-coloring of A extend toD" totally; an X-coloring
of A extends toD' if and only if x(xy)" = x for anyx, y € X appeared im; this
condition corresponds to thetwisting of Tx. Refer to R, 16] for more details. A
quandleX is calledof types (s > 0) if it satisfies thatx(xy)® = x for anyx, y € X,
and in particularX is aninvolutoryquandle if it is of type 2. The dihedral quand®g
is an example of involutory quandless+ y) xy = 2y —X) xy = 2y — (2y — X) = X
(mod p). Then we have the following immediately.

LEMMA 4.1 (cf. [2,16]). If X is aquandle of typs, then for any =0, s, 2s, 3s, .. .,
there is a natural one-to-one correspondence betweaR(D"™) andColk(A).

PrROPOSITION4.2. Assume thaK is a quandle of typs, and letp € Z3(X; A) a
2-cocycle ofX. Foranyr =0, s, 2s, 3s, ... ., the cocycle invarianf2, (o' K) is given
by

—®4(K), —Dy(K),

0, 0 ...
D (K),  Dy(K), ... [’
20,(K),  204(K),

Q¢(O'r K) =

where the number of each multi-$&b, (K) is infinite (k € Z). In particular, we have
(D¢(K) € Q¢(O'r K)

PrOOF. Recall that(«, B) represents a basis b, (0" K;Z) = Z @ Z. For any class
A =Kkla]+1[B] (k| € Z), we have

W, (A; C) = kWj(ar; C) + W, (B; C) = kW («r; C)
by definition. Hence it follows from Lemmé& 1thatW,, (1) = k®,(K). O

For integeram andn, let S(m, n) be the classical knot represented by the diagram
as shown in Figur®é. Note thatS(3, 3) is coincident with 8 in the knot table. Then
we have the following as a corollary of Theoreln?. We sketch the outline of the
proof here, and a complete proof is given in Appendix.



[11] Ribbon concordance of surface-knots 141

FIGURE 6.

COROLLARY 4.3. We haves'T(2,1) # o3S(m, n) for anyr,s = 0 (mod 4 and
[,m,n=3 (mod 6.

PROOF. Let Qg be the subset of the permutation group of four letters, consisting of
six cyclic elements of length four. ThéPs has a quandle structure under conjugation.
Note thatQs is a quandle of type 4. There exists a 2-cocygle Z?(Qg; Z4) with the
coefficient grougZ, such that the associated invariant of tBek)-torus knot satisfies

y(T(2,1)) =1{0,0,...,0,1 + 2,1 +2,...,1 +2}

6 24

foranyl = 3 (mod 6, where the values in the invariant are take@ jn On the other
hand, the invariant o$(m, n) associated with the same 2-cocyglsatisfies

®,(S(m,m) ={0,0,...,0,2,2,...,2)

30 24

foranym, n = 3 (mod 6. By Propositiont.2, we haved, (T (2,1)) € Q40" T(2,1))
forr =0 (mod 4. Since

Dy (T(2,1)) & kdy(S(M, ) ={0,0,..., 2k 2K, ...} € Q(c°S(M, )

for anys = 0 (mod 4) an € Z, it follows from Theoreml.2thato' T (2, 1) is not
ribbon concordant te>S(m, n). O

To prove Theorem..3, we prepare the following lemma. We say that a torus-knot
is reducibleif it is obtained from a sphere-knot by surgery along a trivial 1-handle.

LEMMA 4.4. If a torus-knotF is reducible, thert2,(F) = {0,0,...,0,...} for
any2-cocycleg.

PROOF. For any class. € H;(F; Z), we can choose a representative cucvef A
along the trivial 1-handle which does not meet any double point curves. Hence, we
haveW, (1; C) = 0 by definition. O



142 J. Scott Carter, Masahico Saito and Shin Satoh [12]

PROOF OFTHEOREM 1.3, Consider the invariar®,(c?K) of the torus-knot-2K .
SinceX is an involutory quandle, that is, of type 2, we havg(K) € ©,(c°K) by
Proposition4.2. On the other hand, Boyl&] proved that ifK is a 2-bridge knot, then
02K is a reducible torus-knot. Hence, we habg(K) = 0 by Lemma4.4. O
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Appendix

Let Qg be the subset of the permutation group of four lette® B, 4 consisting of
cyclic elements of length four, where the subscript 6 stands for the number of elements
belonging toQs. ThenQg becomes a quandle under conjugatippah = h='gh; in
general, any conjugacy class of a group becomes a quandle under the conjugatior
For example, ifg = (1342 andh = (1234, then

gxh = (1342 * (1234 = (1234 '(1342(1234 = (1324).

In other wordsg * h is obtained frong by replacing the letters ig according to the
permutation oh. Note that since

g(xh)* = h™*gh* =g,

Qs is a quandle of type 4.

The quandle&e can be visualized by using the equilateral octahedtdqfrigure?).
First, we number the faces &f by 1, ..., 4 in such a way that each pair of parallel
faces admit the same number. Ateach vertex, we put the elemégttnf reading the
numbers on faces concentrated atthe vertex counterclockwise. Under the identificatior
of Qg and the set of vertices ¢, the vertexg * h is obtained frorg by rotating H
quarterly around the diagonal axis througim the counterclockwise direction; in fact,
the permutation of the numbers on faces caused by the rotation is coincidehtasith
an element of)s. Note that for each vertex € Qs, the inverseg=? is located on the
diagonal vertex. Quandles consisting of rotations of an equilateral polyhedron can be
found in [1].
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(1234)

2

(1423) (1243)

(1423)
FIGURE 7.

Recall that the 2-cocycle conditions are

(1) ¢(a,a) =0 foranya € Qg, and
2) ¢@,c)—¢@b)—¢@axb,c)+¢@axc,bxc)=0 foranya, b, c e Qs.

By using the model of the octahedrdth, we will give a way to check whether a
given mapg : Qs x Qs — A satisfies condition?). For this purpose, we interpret
condition @) visually.

Case 1Assume that the s¢f, b, c} contains the same element.

1-i. If a=borb=c, then condition?) always holds underlj.

1-ii. Assume thabh = ¢ # b. If b = a1, then @) always holds similarly. If
b #£ a1, then Q) is equivalent to

3) ¢@,b)+p@axb,a)—¢@abxa) =0,

for any pair (a, b) which spans an edge of the octahedidn We illustrate this
condition @) as in Figures, where the black/white arrowy corresponds to the value
o (X,y) or —¢ (X, Y), respectively.

Case 2Assume thafa, b, c} contains no pair of the same element but a pair of
inverse elements.

2-i. If b = a!, then we havep(a,a™?) = ¢(a*c,atxc). By changinga
andc variously, @) implies thatp (a, a™*) is constantegardless o& € Qg, Which we
denote by € A.

2-ii. If c = b1, then condition 2) is equivalent to

(4) p@b™H+p@xb b)—¢@ b)) —p@xbb™) =0,

for any pair(a, b) which spans an edge ¢1. We also illustrate conditiord} in
Figure8.
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2-iii. If c=a™?, then Q) is equivalent to

() p@b)+¢@xba’) —¢@bra’) =3,

for any pair(a, b) which spans an edge bf. See Figur@&again, wher@axb = bxa?!
holds.

Case 3Assume thata, b, c} spans a face of the octahedrbin

3-i. If c = b=x*a, then condition %) is equivalent to §).
3-ii. If c=a=xb, then condition?) is equivalent to ).

axb

FIGURE 8.

a b
y +¢(a,b)
b c
2 +¢(bec) =
c a
1 +¢(c,a)
a b

FIGURE 9.
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We rewrite the elements @ by

1< (1234, 2 < (1423, 3+ (1342,
4 « (1423, 5« (1324, 6 < (1243.

Note that 1! = 4, 21 = 5, and 3! = 6. We consider the map

¢CQ6XQ6—>Z4={O,1,2,3}

such thatp(a, a) = 0 and¢(a, a ) = 1 for anya € Qg, and

e ¢(1,3) =¢@2,1D) =¢(23) =¢B 1 =¢@B,5 =9¢051 =¢(56) =
$(6,1) =¢(6,2) =¢(6,5 =1,

e ¢(1,5 =¢(3 =2,

o ¢(1,6)=¢(3,2 =3,and

e ¢(a,b) = 0 for other cases.
The valueg (a, b) for b # a, a ! is also indicated in the lower right of Figugsby
the number of arrows on the edaé. Then the reader can check tlyatsatisfies the
conditions 8)—(5), and hencey is a 2-cocycle inZ?(Qg; Z,).

For this 2-cocyclep, we calculate the invariant of (2,1) for | = 3 (mod 6.
Consider the diagram dff (2, ) as a closure of the 2-string braid withhalf twists.
Since eachQg-coloring of the diagram is determined by the pair of col@sb) on
the top arcs of the braid, we denote the coloring@®ia, b). There are 6 trivial
Qe-coloringsC(a, a) for which we havew,(C(a, a)) = 0 by definition. Ifb = a™,
then the bottom arcs of the braid admits the pair of calars, a); for | is odd. Hence,
such aQg-coloring does not exist. I # a, a2, that is,{a, b} is the boundary of an
edge of the octahedro, then the same pair of colors appears by three half twists.
See Figured. The number of sucl@s-colorings are 6x (6 — 2) = 24. For each
Qs-coloringC(a, b) with b # a, a~%, we have

|
W,(C(a, b)) = §(¢>(a, b) + ¢ (b, ¢) + ¢(c, @),

wherec = a x b. On the other hand, we see thigi, b) + ¢ (b, ¢) + ¢(c,a) = 1 by
the definition of¢. Hence, we hav&V,(C(a,b)) =1/3=1+2 (mod 4, and

D4(T(2, 1)) = {Ws(C(a,b)) Ja=b or b#a,a}
={0,0,....01 +2,14+2,....1 +2}.

6 24

The calculation oﬁ>¢(S(m, n)) form,n = 3 (mod 6 can be similarly checked,
and the details are left to the reader. The classical Baat, n) has a diagram as a
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closure of the 3-string braid"o, 101“02 ! for the standard generatars ando, of the
braid group. LeC(a, b, ¢) be theQ¢-coloring of the diagram such that the colors of
the top first, second, and third arcs areh, c € Qg, respectively. Then we have the
following three cases:

e W,(C(a a a) =0foranya e Q;

e W,(C(a,b,b)) =m+n+2foranya,be Qswithb #a,a™?; and

e W,(C(a,b,b™h) =m+nforanya, be Qswithb = a,a™.
Since the numbers dDs-colorings in these cases are 6, 24, and 24, respectively, and
sincem + n is even, we have

®,(S(m,m) ={0,0,...,0,2,2,...,2}.

6+24=30 24
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