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Abstract

We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new
variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We
demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversed
images.
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1. Introduction

Throughout this paper, asurface-knotmeans a connected, oriented closed surface
smoothly embedded in 4-spaceR4 up to ambient isotopies. LetF0 andF1 be surface-
knots of the same genus. We say thatF1 is ribbon concordant toF0 if there is a
concordanceC in R4 × [0; 1] betweenF1 ⊂ R4 × {1} and F0 ⊂ R4 × {0} such that
the restriction toC of the projectionR4 × [0; 1] → [0; 1] is a Morse function with
critical points of index 0 and 1 only. We writeF1 ≥ F0. Note that ifF1 ≥ F0, then
there is a set ofn 1-handles on a split union ofF0 andn trivial sphere-knots, for some
n ≥ 0, such thatF1 is obtained by surgeries along these handles (Figure1).

The notion of ribbon concordance was originally introduced by Gordon [8] for
classical knots inR3, and there are several studies found in [7, 13, 12, 17], for
example. Note thatF is a ribbon surface-knot if and only ifF is a ribbon concordant
to the trivial sphere-knot.

Given surface-knotsF0 andF1, it is natural to ask whetherF1 is ribbon concordant
to F0. Cochran [5] gave a necessary condition for a sphere-knotF to be ribbon in
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FIGURE 1.

terms of the knot group³1.R4 \ F/. The aim of this paper is to give new necessary
conditions for a pair of surface-knots to be ribbon concordant by using quandle cocycle
invariants.

A quandle [9, 11] is an algebraic object whose model is a group with conjugation,
and its cohomology theory was developed in [4] as a generalization of the theory
given in [6]. It is known that each quandle 3-cocycle� defines an invariant of a
surface-knotF , called thequandle cocycle invariant, 8�.F/. The invariant8�.F/
is regarded as a multi-set of elements in the coefficient groupA of the cohomology
where repetitions of the same element are allowed. For two multi-setsA′ andA′′ of A,

we use the notationA′ m⊂ A′′ if for any a ∈ A′ it holds thata ∈ A′′. In other words,

A′ m⊂ A′′ if and only if Ã′ ⊂ Ã′′ whereÃ′ and Ã′′ are the subsets ofA obtained from
A′ and A′′ by eliminating the multiplicity of elements, respectively. The following is
a necessary condition for ribbon concordance.

THEOREM1.1. If F1 ≥ F0, then8�.F1/
m⊂ 8�.F0/.

By Theorem1.1, we give many examples of pairs of surface-knots such that one
is not ribbon concordant to another (Corollary2.1). For example, we can easily see
that the 2-twist-spun trefoil and its mirror image are not ribbon concordant to each
other. However, Theorem1.1 is not effective in the family of ribbon surface-knots;
in fact,8�.F/ = 0 for any ribbon surface-knotF . Here, we use the notation0 to
stand for a multi-set consisting of zero elements ofA only. In this paper, we define a
new variation of cocycle invariants of surface-knots by using a quandle 2-cocycle�

(the definition is given in Section3). The invariant of a surface-knotF is denoted by
��.F/ = {A½ | ½ ∈ H1.F ;Z/} which is a family of multi-setsA½ of the coefficient
groupA. Note that a 2-cocycle� is originally used to define the invariant,8�.K /, of
a classical knotK (cf. [4]). The invariant�� gives another necessary condition for
ribbon concordance.
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THEOREM 1.2. If F1 ≥ F0, then for anyA′ ∈ ��.F1/, there isA′′ ∈ ��.F0/ such

that A′ m⊂ A′′.

As an application of our new invariant�� of a surface-knot, we obtain a result on
the cocycle invariant of a classical knot as follows (refer to [9] for the definition of an
involutoryquandle, or see Section4).

THEOREM 1.3. If � is a 2-cocycle of an involutory quandle, then8�.K / = 0 for
any2-bridge knotK .

This paper is organized as follows. In Section2, we review the definition of
the original cocycle invariant8�.F/. The proof of Theorem1.1 and its application
(Corollary 2.1) are also contained in this section. In Section3, we introduce a new
invariant��.F/ by using a 2-cocycle�, and then prove Theorem1.2. An application
of the theorem is given in Section4 (Corollary4.3), where we only sketch the outline
of the proof and its completion is left to Appendix. Boyle [3] studied a surface-knot
obtained from a twist-spun knot by surgery along a 1-handle. By using his result, we
prove Theorem1.3also in Section4.

REMARK. Kawauchi points out that the linking signature of every surface-knot is
invariant under ribbon concordance. This result has not appeared in any paper, but
can be obtained as a corollary of [10].

2. Invariants by using 3-cocycles

We first review the definition of the quandle 3-cocycle invariants of surface-knots.
Refer to [4] for more details. Aquandleis a setX with a binary operation.a; b/ 7→ a∗b
satisfying the following three axioms:

• a ∗ a = a for anya ∈ X.
• The map∗a : X → X defined byx 7→ x ∗ a is bijective for anya ∈ X, and
• .a ∗ b/ ∗ c = .a ∗ c/ ∗ .b ∗ c/ for anya; b; c ∈ X.

For an abelian groupA, we say that a map� : X3 → A is a 3-cocycleif it satisfies the
conditions that

• �.x1; x2; x3/ = 0 if x1 = x2 or x2 = x3, and
• for anyx1; : : : ; x4 ∈ X,

�.x1; x3; x4/− �.x1; x2; x4/+ �.x1; x2; x3/

= �.x1 ∗ x2; x3; x4/− �.x1 ∗ x3; x2 ∗ x3; x4/

+ �.x1 ∗ x4; x2 ∗ x4; x3 ∗ x4/



134 J. Scott Carter, Masahico Saito and Shin Satoh [4]

We denote byZ3.X; A/ the set of such 3-cocycles.
To describe a surface-knot, we use a fixed projection of³ : R4 → R3 as well as a

description of a classical knot into the plane. Every surface-knotF can be perturbed
slightly inR4 so that the projection image³.F/ has double point curves, isolated triple
points, and isolated branch points as the closures of the multiple point set. Crossing
information is indicated in³.F/ as follows: Along every double point curve, two
sheets intersect locally, one of which is under the other relative to the projection
direction of³ . Then the under-sheet is broken by the over-sheet. Adiagramof F
is the image³.F/ with such crossing information. Hence a diagram is regarded as a
union of disjoint compact, connected surfaces. For a diagramD, we denote by6.D/
the set of such connected surfaces ofD. Note that three sheets near a triple point are
labeled top, middle, and bottom according to crossing information, and the middle
and bottom sheets are divided into two and four pieces, respectively.

For a quandleX, a mapC : 6.D/ → X is called anX-coloring of D if it satisfies
the following condition near every double pointd: if a = C.Þ1/ andc = C.Þ2/ are the
colors of under-sheetsÞ1 andÞ2 separated by the over-sheetþ colored byb = C.þ/,
where the orientation normal ofþ points fromÞ1 to Þ2, thena ∗ b = c holds. See the
left of Figure2. We denote the set of suchX-colorings ofD by ColX.D/. Also, the
pair .a; b/ is called thecolor of a double pointd, and denoted byC.d/ ∈ X2.

FIGURE 2.

Each triple pointt of D is assigned the sign".t/ = ±1 induced from the orientation
in such a way that".t/ = +1 if and only if the ordered triple of the orientation normals
of the top, middle, and bottom sheets, respectively, agrees with the orientation ofR3.
Given anX-coloringC ∈ ColX.D/, the colors of the sheets neart are determined by
three colorsa = C.Þ/, b = C.þ/, andc = C.
 /, where
 is the top sheet,þ is the
middle sheet from which the orientation normal of
 points, andÞ is the bottom sheet
from which the orientation normals ofþ and
 point both. See the right of Figure2,
where the sheetsÞ; þ, and
 are shaded. The ordered triple.a; b; c/ is called thecolor
of t and denoted byC.t/ ∈ X3.
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Let D be a diagram ofF colored byC ∈ ColX.D/. Given a 3-cocycle� ∈
Z3.X; A/, we define the (Boltzmann) weightof each triple pointt by

W� .t ; C/ = ".t/ · �.a; b; c/ ∈ A;

whereC.t/ = .a; b; c/. We denote byW� .C/ ∈ A the sum
∑

t W� .t ; C/ for all
triple points of D. Then thecocycle invariantof F by using � is the multi-set
8�.F/ = {W� .C/ ∈ A | C ∈ ColX.D/}, where repetitions of the same element are
allowed. It is proved in [4] to be an invariant ofF which does not depend on the
choice of a diagramD of F .

Let F0 andF1 be surface-knots withF1 ≥ F0, that is,F1 is ribbon concordant toF0.
For a diagramD0 of F0, we may take a typical diagramD1 of F1 as follows: There is
a set of sufficiently thinn 1-handles,h1; : : : ; hn, for somen ≥ 0, connecting a split
union of D0 andn embedded 2-spheres,S1; : : : ; Sn, such that

• each 1-handlehj connectsD0 and Sj , and intersectsD0 ∪ (⋃n
i =1 Si

)
with

disjoint meridian 2-disks ofhj , and
• D1 is obtained fromD0 ∪ (⋃n

i =1 Si

)
by surgeries along

⋃n
j =1 hj .

In the following, we useD1 in the above form unless otherwise stated.

PROOF OFTHEOREM 1.1. For any elementa ∈ 8�.F1/, there is anX-coloring
C1 ∈ ColX.D1/ with a = W� .C1/ = ∑

t W� .t ; C1/ on D1. Since the intersection
of D0 and each 1-handlehj consists of small 2-disks, theX-coloring C1 restricted
to the punctured diagramD0 \ (⋃n

j =1 hj

)
determines theX-coloring of D0 uniquely,

C0 ∈ ColX.D0/. Since the set of triple points ofD1 is coincident with that ofD0, and
sinceW� .t ; C0/ = W� .t ; C1/ for any triple pointt , we have

a = ∑
t W� .t ; C0/ = W� .C0/ ∈ 8�.D0/.

We present specific examples as an application of Theorem1.1 in the rest of this
section. The set{0; 1; : : : ; p−1} becomes a quandle under the operationa∗b = 2b−a
(mod p), which is called thedihedral quandleof order p, and denoted byRp. For an
odd primep, Mochizuki [14] found a 3-cocycle�p ∈ Z3.Rp;Zp/ given by

�p.x1; x2; x3/ = .x1 − x2/
.2x3 − x2/

p + x p
2 − 2x p

3

p
;

where coefficients in the numerator are divisible byp. The reader can check that�p

satisfies the 3-cocycle conditions by hands (cf. [2]).
In 1965 Zeeman [18] introduced an important family of sphere-knots. We take a

tangle (knotted arc)TK in the 3-ballB3, whose closure is a classical knotK . For an
integerr ≥ 0, let{ ft}t∈[0:1] be the ambient isotopy ofB3 which rotates the tangleTK a
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total of r times about an axis while keeping the boundary ofTK fixed. Furthermore,
f0.TK / = f1.TK /. We construct an annulusA properly embedded inB3 × S1 from

⋃
t∈[0;1]

ft.TK /× {t} ⊂ B3 × [0; 1]

by identifying the quotient[0; 1]=.0 = 1/ with S1. Ther -twist-spin ofK is a sphere-
knot obtained by embedding.B3 × S1; A/ in R4 standardly and cappingA with two
2-disks along the boundary ofA. We denote the sphere-knot by− r K .

Let T.2;q/ denote the.2;q/-torus knot inR3. For a surface-knotF , let−F denote
the surface-knotF with the reversed orientation. Then we have the following.

COROLLARY 2.1. (i) If q andq′ are distinct odd primes, then we have

− 2T.2;q/ 6≥ − 2T.2;q′/ and − 2T.2;q′/ 6≥ − 2T.2;q/:

(ii) If q is an odd prime withq ≡ 3 .mod 4/, then we have

− 2T.2;q/ 6≥ −− 2T.2;q/ and − − 2T.2;q/ 6≥ − 2T.2;q/:

PROOF. (i) It is proved in [2] that8�p

(
− 2T.2;q/

) = 0 for p 6= q, and

8�q

(
− 2T.2;q/

) =




0; : : : ; 0;
−2 · 12; : : : ; −2 · 12;

−2 · 22; : : : ; −2 · 22;

: : : : : : : : : ;

−2.q − 1/2; : : : ; −2.q − 1/2




for p = q, where the number of each term of the form−2k2 .k = 0; 1; : : : ;q − 1/
is q. In particular, since8�q

(
− 2T.2;q/

) 6= 0 and8�q

(
− 2T.2;q′/

) = 0, we have
− 2T.2;q/ 6≥ − 2T.2;q′/ by Theorem1.1. It is also similarly proved that− 2T.2;q′/ 6≥
− 2T.2;q/.

(ii) It is known that8�.−F/ = −8�.F/ for any surface-knotF and 3-cocycle�
(see, for example, [4]). On the other hand, we obtain the setS = {−2k2 | k =
0; 1; : : : ; .p−1/=2} from8�q

(
− 2T.2;q/

)
by eliminating the multiplicity of elements.

It is not difficult to see that ifq ≡ 3 (mod 4), thenS 6⊂ −S andS 6⊃ −S, and hence,
we have the conclusion by Theorem1.1.

3. Invariants by using 2-cocycles

Let X be a quandle andA an abelian group. We say that a map� : X2 → A is a
2-cocycleif it satisfies
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• �.x1; x2/ = 0 if x1 = x2, and
• �.x1; x3/− �.x1; x2/ = �.x1 ∗ x2; x3/− �.x1 ∗ x3; x2 ∗ x3/ for anyxi ∈ X.

We denote byZ2.X; A/ the set of such 2-cocycles.
We define a cocycle invariant of a surface-knot by using a 2-cocycle� ∈ Z2.X; A/.

Let D be a diagram of a surface-knotF , andC ∈ ColX.D/ an X-coloring of D.
Consider an oriented immersed circleL on D intersecting the double point curves
transversely, and missing triple points and branch points. Letd1; : : : ; dm denote the
points on the under-sheet at whichL intersects the double point curves. We give the
sign".dk/ = ±1 to dk such that".dk/ = +1 if and only if the orientation ofL at dk

agrees with the orientation normal of the over-sheet. We define the Boltzman weight
at dk by W�.dk; C/ = ".dk/ · �.a; b/ ∈ A, whereC.dk/ = .a; b/. Moreover, we put
W�.L; C/ = ∑m

k=1 W�.dk; C/. See Figure3. We extend these notations for a union of
immersed circlesL on D naturally.

FIGURE 3.

LEMMA 3.1. If L and L ′ are homologous onD, thenW�.L; C/ = W�.L ′; C/.

PROOF. It is sufficient to prove thatW�.L; C/ does not change under the moves
(0)–(3) (and the ones with orientation reversed, or with opposite crossing information)
as shown in Figure4. First, it is clear for the move (0) by the definition ofW�.L; C/.
Since� satisfies�.a; a/ = 0 for any a ∈ X, the move.1/ also does not change
W�.L; C/. In the move.2/, the terms�.a; b/ and−�.a; b/ cancels inW�.L ′; C/.
Finally, it follows from the 2-cocycle condition of� that W�.L; C/ = W�.L ′; C/
under the move (3).

For each homology class½ ∈ H1.F ;Z/ and its representative curveL ⊂ D, the
elementW�.L; C/ ∈ A is independent of the choice ofL by Lemma3.1, and hence,
we denote it byW�.½; C/. Then we assign each class½ ∈ H1.F ;Z/ a multi-set��.½/

of A such that��.½/ = {W�.½; C/ | C ∈ ColX.D/}. Moreover, we define a family of
multi-sets ofA by��.F/ = {��.½/ | ½ ∈ H1.F ;Z/}.
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FIGURE 4.

PROPOSITION3.2. The family��.F/ does not depend on the choice of a diagram
D of F.

PROOF. It is known that any other diagramD′ of F is obtained fromD by a finite
sequence of Roseman moves [15] up to ambient isotopies ofR3. Assume thatD′ is
obtained fromD by a single Roseman move in a sufficiently small 3-ballB3. For any
class½ ∈ H1.F ;Z/, we may take its representative curveL on D with L ∩ B3 = ∅
so that we regardL as a curve onD′ also. Moreover, eachX-coloringC ∈ ColX.D/
induces a coloringC′ ∈ ColX.D′/ uniquely. Hence, anyW�.L; C/ on D is coincident
with W�.L; C′/ on D′.

The following proof is similar to that of Theorem1.1 in Section2.
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PROOF OFTHEOREM 1.2. Let Di be diagrams ofFi .i = 0; 1/ as in the beginning
of Section3. For anyA′ ∈ ��.F1/, there is a curveL on D1 with A′ = ��.L/. Since
we can deformL such thatL ∩ (⋃n

j =1 hj

) = ∅, L is regarded as a curve onD0.
Put A′′ = ��.L/ ∈ ��.F0/. Then A′ m⊂ A′′ can be proved in a similar way to

Theorem1.1.

4. Torus-knots with 1-handles

A surface-knot is called atorus-knotif it is an embedded torus inR4. We distinguish
it from a classical ‘torus knot’ inR3 by inserting the hyphen -. In this section, we use
a typical family of torus-knots studied by Boyle [3]. Let K be a classical knot in a
3-ball B3, and letD3 ⊂ intB3 be a 3-ball such thatD3∩ K = TK is the knotting arc for
K . For an integerr ≥ 0, let{gt}t∈[0;1] be the ambient isotopy ofB3 which rotatesTK r
times keeping the trivial arcK \ TK fixed. We denote by¦ r K the torus-knot obtained
from

⋃
t gt.K /× {t} ⊂ B3 × S1 by embedding it inR4 standardly. Note that¦ r K is

also obtained from ther -twist-spin ofK by surgery along a certain 1-handleh.
By definition, ¦ r K has a diagramDr in the form1 × S1, where1 is a knot

diagram ofK , except the twisting part ofTK . See Figure5, where we ignore crossing
information along double point curves and omit the twisting part. Refer to [2, 16] for
the complete figure of the diagram. We take meridional and longitudinal curvesÞ and
þ on Dr , respectively, such thatÞ can be identified with1, andþ has no intersection
with double point curves.

FIGURE 5.

To calculate the invariant�� of ¦ r K , we recall the definition of the cocycle invariant
8�.K / of a classical knotK by using a 2-cocycle�. Let1 ⊂ R2 be a diagram of an
oriented classical knotK , and6.1/ the set of arcs separated by over-arcs at crossings.
For a quandleX, a mapC : 6.1/ → X is called anX-coloring of1 if it satisfies the
following condition near every crossingx: if a = C.Þ1/ andc = C.Þ2/ are the colors
of under-arcsÞ1 andÞ2 separated by the over-arcþ colored byb = C.þ/, whereÞ1

is on the right side ofþ, thena ∗ b = c holds. We denote the set of suchX-colorings
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of 1 by ColX.1/. Also, the pair.a; b/ is called the color of the crossingx, and
denoted byC.x/ ∈ X2. Given a 2-cocycle� ∈ Z2.X; A/, we define the Boltzmann
weight atx by W�.x; C/ = ".x/ · �.a; b/ ∈ A, whereC.x/ = .a; b/. We denote by
W�.C/ ∈ A the sum

∑
x W�.x; C/ for all crossings of1. Then the cocycle invariant

of K by using� is the multi-set8�.K / = {W�.C/ | C ∈ ColX.1/} where repetitions
of the same element are allowed. It is proved in [4] to be an invariant ofK which does
not depend on the choice of a diagram1 of K .

Any X-coloring of Dr determines that of1 by restricting it to the meridional
curveÞ. Conversely, not anyX-coloring of1 extend toDr totally; an X-coloring
of 1 extends toDr if and only if x.∗y/r = x for any x; y ∈ X appeared in1; this
condition corresponds to ther -twisting of TK . Refer to [2, 16] for more details. A
quandleX is calledof types .s ≥ 0/ if it satisfies thatx.∗y/s = x for anyx; y ∈ X,
and in particular,X is aninvolutoryquandle if it is of type 2. The dihedral quandleRp

is an example of involutory quandles;.x ∗ y/∗ y ≡ .2y− x/∗ y ≡ 2y− .2y− x/ ≡ x
(mod p). Then we have the following immediately.

LEMMA 4.1 (cf. [2, 16]). If X is a quandle of types, then for anyr =0; s; 2s; 3s; : : : ,
there is a natural one-to-one correspondence betweenColX.Dr / andColX.1/.

PROPOSITION4.2. Assume thatX is a quandle of types, and let� ∈ Z2.X; A/ a
2-cocycle ofX. For anyr = 0; s; 2s; 3s; : : : , the cocycle invariant��.¦

r K / is given
by

��.¦
r K / =




: : : : : : : : :

−8�.K /; −8�.K /; : : :

0; 0; : : :

8�.K /; 8�.K /; : : :

28�.K /; 28�.K /; : : :

: : : : : : : : :



;

where the number of each multi-setk8�.K / is infinite.k ∈ Z/. In particular, we have
8�.K / ∈ ��.¦

r K /.

PROOF. Recall that.Þ; þ/ represents a basis ofH1.¦
r K ;Z/ ∼= Z⊕Z. For any class

½ = k[Þ] + l [þ] .k; l ∈ Z/, we have

W�.½; C/ = kW�.Þ; C/+ lW�.þ; C/ = kW�.Þ; C/

by definition. Hence it follows from Lemma4.1thatW�.½/ = k8�.K /.

For integersm andn, let S.m; n/ be the classical knot represented by the diagram
as shown in Figure6. Note thatS.3; 3/ is coincident with 85 in the knot table. Then
we have the following as a corollary of Theorem1.2. We sketch the outline of the
proof here, and a complete proof is given in Appendix.
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FIGURE 6.

COROLLARY 4.3. We have¦ r T.2; l / 6≥ ¦ sS.m; n/ for anyr; s ≡ 0 .mod 4/ and
l ;m; n ≡ 3 .mod 6/.

PROOF. Let Q6 be the subset of the permutation group of four letters, consisting of
six cyclic elements of length four. ThenQ6 has a quandle structure under conjugation.
Note thatQ6 is a quandle of type 4. There exists a 2-cocycle� ∈ Z2.Q6;Z4/ with the
coefficient groupZ4 such that the associated invariant of the.2; k/-torus knot satisfies

8�

(
T.2; l /

) = {
0; 0; : : : ; 0︸ ︷︷ ︸

6

; l + 2; l + 2; : : : ; l + 2︸ ︷︷ ︸
24

}

for anyl ≡ 3 .mod 6/, where the values in the invariant are taken inZ4. On the other
hand, the invariant ofS.m; n/ associated with the same 2-cocycle� satisfies

8�

(
S.m; n/

) = {
0; 0; : : : ; 0︸ ︷︷ ︸

30

; 2; 2; : : : ; 2︸ ︷︷ ︸
24

}

for anym; n ≡ 3 .mod 6/. By Proposition4.2, we have8�

(
T.2; l /

) ∈ ��.¦
r T.2; l /

)
for r ≡ 0 .mod 4/. Since

8�

(
T.2; l /

) 6 m⊂ k8�

(
S.m; n/

) = {0; 0; : : : ; 2k; 2k; : : : } ∈ ��

(
¦ sS.m; n/

)

for anys ≡ 0 (mod 4) andk ∈ Z, it follows from Theorem1.2 that¦ r T.2; l / is not
ribbon concordant to¦ sS.m; n/.

To prove Theorem1.3, we prepare the following lemma. We say that a torus-knot
is reducibleif it is obtained from a sphere-knot by surgery along a trivial 1-handle.

LEMMA 4.4. If a torus-knotF is reducible, then��.F/ = {0; 0; : : : ; 0; : : : } for
any2-cocycle�.

PROOF. For any class½ ∈ H1.F ;Z/, we can choose a representative curveL of ½
along the trivial 1-handle which does not meet any double point curves. Hence, we
haveW�.½; C/ = 0 by definition.



142 J. Scott Carter, Masahico Saito and Shin Satoh [12]

PROOF OFTHEOREM 1.3. Consider the invariant��.¦
2K / of the torus-knot¦ 2K .

SinceX is an involutory quandle, that is, of type 2, we have8�.K / ∈ ��.¦
2K / by

Proposition4.2. On the other hand, Boyle [3] proved that ifK is a 2-bridge knot, then
¦ 2K is a reducible torus-knot. Hence, we have8�.K / = 0 by Lemma4.4.
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Appendix

Let Q6 be the subset of the permutation group of four letters 1; 2; 3; 4 consisting of
cyclic elements of length four, where the subscript 6 stands for the number of elements
belonging toQ6. ThenQ6 becomes a quandle under conjugationg ∗ h = h−1gh; in
general, any conjugacy class of a group becomes a quandle under the conjugation.
For example, ifg = .1342/ andh = .1234/, then

g ∗ h = .1342/ ∗ .1234/ = .1234/−1.1342/.1234/ = .1324/:

In other words,g ∗ h is obtained fromg by replacing the letters ing according to the
permutation ofh. Note that since

g.∗h/4 = h−4gh4 = g;

Q6 is a quandle of type 4.
The quandleQ6 can be visualized by using the equilateral octahedronH (Figure7).

First, we number the faces ofH by 1; : : : ; 4 in such a way that each pair of parallel
faces admit the same number. At each vertex, we put the element ofQ6 by reading the
numbers on faces concentrated at the vertex counterclockwise. Under the identification
of Q6 and the set of vertices ofH , the vertexg ∗ h is obtained fromg by rotatingH
quarterly around the diagonal axis throughh in the counterclockwise direction; in fact,
the permutation of the numbers on faces caused by the rotation is coincident withh as
an element ofQ6. Note that for each vertexg ∈ Q6, the inverseg−1 is located on the
diagonal vertex. Quandles consisting of rotations of an equilateral polyhedron can be
found in [1].
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FIGURE 7.

Recall that the 2-cocycle conditions are

�.a; a/ = 0 for anya ∈ Q6, and(1)

�.a; c/− �.a; b/− �.a ∗ b; c/+ �.a ∗ c; b ∗ c/ = 0 for anya; b; c ∈ Q6:(2)

By using the model of the octahedronH , we will give a way to check whether a
given map� : Q6 × Q6 → A satisfies condition (2). For this purpose, we interpret
condition (2) visually.

Case 1.Assume that the set{a; b; c} contains the same element.

1-i. If a = b or b = c, then condition (2) always holds under (1).
1-ii. Assume thata = c 6= b. If b = a−1, then (2) always holds similarly. If

b 6= a−1, then (2) is equivalent to

�.a; b/+ �.a ∗ b; a/− �.a; b ∗ a/ = 0;(3)

for any pair .a; b/ which spans an edge of the octahedronH . We illustrate this
condition (3) as in Figure8, where the black/white arrow−→xy corresponds to the value
�.x; y/ or −�.x; y/, respectively.

Case 2.Assume that{a; b; c} contains no pair of the same element but a pair of
inverse elements.

2-i. If b = a−1, then we have�.a; a−1/ = �.a ∗ c; a−1 ∗ c/. By changinga
andc variously, (2) implies that�.a; a−1/ is constantregardless ofa ∈ Q6, which we
denote byŽ ∈ A.

2-ii. If c = b−1, then condition (2) is equivalent to

�.a; b−1/+ �.a ∗ b−1; b/− �.a; b/− �.a ∗ b; b−1/ = 0;(4)

for any pair.a; b/ which spans an edge ofH . We also illustrate condition (4) in
Figure8.
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2-iii. If c = a−1, then (2) is equivalent to

�.a; b/+ �.a ∗ b; a−1/− �.a; b ∗ a−1/ = Ž;(5)

for any pair.a; b/which spans an edge ofH . See Figure8again, wherea∗b = b∗a−1

holds.

Case 3.Assume that{a; b; c} spans a face of the octahedronH .

3-i. If c = b ∗ a, then condition (2) is equivalent to (5).
3-ii. If c = a ∗ b, then condition (2) is equivalent to (3).

FIGURE 8.

FIGURE 9.
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We rewrite the elements ofQ6 by

1 ↔ .1234/; 2 ↔ .1423/; 3 ↔ .1342/;

4 ↔ .1423/; 5 ↔ .1324/; 6 ↔ .1243/:

Note that 1−1 = 4, 2−1 = 5, and 3−1 = 6. We consider the map

� : Q6 × Q6 → Z4 = {0; 1; 2; 3}

such that�.a; a/ = 0 and�.a; a−1/ = 1 for anya ∈ Q6, and

• �.1; 3/ = �.2; 1/ = �.2; 3/ = �.3; 1/ = �.3; 5/ = �.5; 1/ = �.5; 6/ =
�.6; 1/ = �.6; 2/ = �.6; 5/ = 1,

• �.1; 5/ = �.5; 3/ = 2,
• �.1; 6/ = �.3; 2/ = 3, and
• �.a; b/ = 0 for other cases.

The value�.a; b/ for b 6= a; a−1 is also indicated in the lower right of Figure8 by
the number of arrows on the edge

−→
ab. Then the reader can check that� satisfies the

conditions (3)–(5), and hence,� is a 2-cocycle inZ2.Q6;Z4/.
For this 2-cocycle�, we calculate the invariant ofT.2; l / for l ≡ 3 .mod 6/.

Consider the diagram ofT.2; l / as a closure of the 2-string braid withl half twists.
Since eachQ6-coloring of the diagram is determined by the pair of colors.a; b/ on
the top arcs of the braid, we denote the coloring byC.a; b/. There are 6 trivial
Q6-coloringsC.a; a/ for which we haveW�

(
C.a; a/

) = 0 by definition. Ifb = a−1,
then the bottom arcs of the braid admits the pair of colors.a−1; a/; for l is odd. Hence,
such aQ6-coloring does not exist. Ifb 6= a; a−1, that is,{a; b} is the boundary of an
edge of the octahedronH , then the same pair of colors appears by three half twists.
See Figure9. The number of suchQ6-colorings are 6× .6 − 2/ = 24. For each
Q6-coloringC.a; b/ with b 6= a; a−1, we have

W�

(
C.a; b/

) = l

3

(
�.a; b/+ �.b; c/+ �.c; a/

)
;

wherec = a ∗ b. On the other hand, we see that�.a; b/+ �.b; c/+ �.c; a/ = 1 by
the definition of�. Hence, we haveW�

(
C.a; b/

) = l=3 ≡ l + 2 .mod 4/, and

8�

(
T.2; l /

) = {
W�

(
C.a; b/

) | a = b or b 6= a; a−1
}

= {
0; 0; : : : ; 0︸ ︷︷ ︸

6

; l + 2; l + 2; : : : ; l + 2︸ ︷︷ ︸
24

}
:

The calculation of8�

(
S.m; n/

)
for m; n ≡ 3 .mod 6/ can be similarly checked,

and the details are left to the reader. The classical knotS.m; n/ has a diagram as a
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closure of the 3-string braid¦m
1 ¦

−1
2 ¦ n

1 ¦
−1
2 for the standard generators¦1 and¦2 of the

braid group. LetC.a; b; c/ be theQ6-coloring of the diagram such that the colors of
the top first, second, and third arcs area; b; c ∈ Q6, respectively. Then we have the
following three cases:

• W�

(
C.a; a; a/

) = 0 for anya ∈ Q6;
• W�

(
C.a; b; b/

) = m + n + 2 for anya; b ∈ Q6 with b 6= a; a−1; and
• W�

(
C.a; b; b−1/

) = m + n for anya; b ∈ Q6 with b 6= a; a−1.

Since the numbers ofQ6-colorings in these cases are 6, 24, and 24, respectively, and
sincem + n is even, we have

8�

(
S.m; n/

) = {
0; 0; : : : ; 0︸ ︷︷ ︸

6+24=30

; 2; 2; : : : ; 2︸ ︷︷ ︸
24

}
:
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