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Abstract

New nonoscillatory criteria are presented for second order differential inclusions. The theory relies on
Ky Fan’s fixed point theorem for upper semicontinuous multifunctions.

2000Mathematics subject classificatioprimary 34A60.

1. Introduction

In [1] we initiated the study of nonoscillatory solutions to the differential inclusion

(1.1) @a)y'(t)) e F(t, y)).

Recall a nontrivial solution ofl(.1) is called oscillatory if it has arbitrarily large zeros,
otherwise it is called nonoscillatory. In the single valued case many nonoscillatory
results are available in the literature; sée7, 8, 9, 10] and the references therein. In
this paper, by looking at the asymptotic behaviour at infinity, we are able to establish
new nonoscillatory criteria forl(1). We first discuss1(.1) when [~ ds/a(s) < co
and we establish the existence of a nonoscillatory solytigrerey > 0) to (1.1) with
lim_. y() = 0. Two results will be presented, one wherelim y(t)/z(t) > 0
and the other where lim., y(t)/7(t) = oo; hererx(t) = ft“ds/a(s). The theory
relies on Ky Fan’s fixed point theorem in the Banach space setting. It is also possible
(and we present this in Secti@) to discuss the case wheii” ds/a(s) is infinity if
we use Ky Fan'’s fixed point theorem in theeEhet setting.

Solutions to {.1) will be sought inB[T, co) andC[T, co); T > 0 will be suitably
chosen. RecalB[T, oo) denotes the Banach space of all continuous, bounded real

© 2006 Australian Mathematical Society 1446-81078&.00 + 0.00

1


http://www.austms.org.au/Publ/JAustMS/V80P1/j73.html

2 Ravi P. Agarwal, Said R. Grace and Donal O’Regan [2]

valued functions ofiT, co) endowed with the usual supremum norm, thatug,, =
SUR¢.00) UMD fOor u € B[T, 00). C[T, o0) denotes the space of continuous real
valued functions ofT, co), the topology being that of uniform convergence on
compact intervals ofil, co).

We next state Ky Fan’s fixed point theore2] pnd we also state a compactness
criterion [5] in B[T, 00).

THEOREM 1.1. Let Q be a nonempty, closed, convex subset ofé&cket spacd
andN : Q — CK(Q) an upper semicontinuous, compact magreC K(Q) denotes
the family of nonempty convex compact subset3.ofrhen there existg € Q with
X € N(X).

THEOREM 1.2. Let E be an equicontinuous and uniformly bounded subset of the
Banach spac®([T, co). If E is equiconvergent ado, it is also relatively compact.

2. Differential inclusions

In this section a variety of nonoscillation results will be presented for the differential
inclusion

(2.1) @by ®) e Ft y®), t=t=0,

where the functiom s single valued an# is a multifunction. Throughout this section
the following conditions will be satisfied:

(2.2) a € C([to, 00), R")

and

F : [t, 00) x R — CK(R) is an L*-Caratteodory multifunction: by
this we mean

(@) for each measurable: [ty, c0) — R, the mapt — F(t, u(t)) has

(2.3) measurable single valued selections;

(b) fora.e.t € [to, 00), the mapu — F(t, u) is upper semicontinuous;

(c) for eachr > 0, there existh, € L[ty, co) with |F(t, u)| < h,(t)
for a.e.t € [ty, o0) and allu € R with |u| < r; here|F(x,u)| =
suv] : v € F(X,u)}.

In [1] we initiated the study of nonoscillatory solution .1), and we continue this
study here. In particular, different types (that is, different asymptotic behaviour at
infinity than that in [L]) of nonoscillatory solutions are discussed. In our first two
results we will assumg@tzO ds/a(s) < oo.
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THEOREM 2.1. Suppos€2.2) and (2.3) hold and in addition assume the following
five conditions are satisfied

(2.4) F : [to, c0) x (0, 0c0) - CK((—o00, 0])
(2.5) m(tg) < oo where n(t) = / E
¢ as
there exists a single valued!-Caratheodory function
(2.6) G : [ty,00) x R — [0, 00) with |[F(u, 2)| < G(u, 2)
for (u, 2) € [to, o0) x (0, )
2.7) 3xr > 0 with / G(s, A(s))ds < o0
to
and
there exists a positive constaht such that if
(2.8) 0 <Xx <y <an(ty),thenG(t, x) < MG(t, y)
fort > to.

Then there is a nonoscillatory solutignof (a(t)y'(t))’ € F(t, y(t)), a.e.t > T, with
lim_ o yt) = 0andy(t)/x(t) € [A/2,A] fort > T; hereT is chosen as irf2.9).

We also have
R 0) A
lim —= = — A
& (D) %6[2’ ]

REMARK 2.1. If G is nondecreasing in the second variable (that is, # & <y
impliesG(t, x) < G(t, y) fort > ty) then clearly 2.8) holds withM = 1.

PROOF. From 2.7) there existS > ty with
o A
2.9 G(s, A d —.
(2.9) ﬁ (s, Am(s)ds < o
We wish to apply Theorerh.1with E = (B[T, 00), | - |») and

Q={yeB[T,o0): Anr(t)/2<yl) <Aimt)fort >T}.

Define a mappindN : Q — Z(E) (the power set oE) by (herey € Q),

A [ ds * 1 s
N tz—/ ——/ —/Fu, u)duds fort>T.
(M 2 ) as as /), (u, y(u))
Note [4, Proposition 1.1, page 777] guarantees tNat Q — C(E); hereC(E)
denotes the family of nonempty, convex subsetg oiVe first show that

(2.10) N:Q— C(Q).
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For notational purposes for aiyye Q, let

F(y) = {ue LT, 00) : ut) € F(t, y(t)) forae.t € [T,00)}.
Lety € Q, and takew € N(y). Then there exists € .7 (y) with

w(t):&/wﬁ—/wi/:(u)duds fort>T.
2J). a® JioaJr

From 2.4) we have immediately that

t>k T s _ 4 ty fort>T
'LU( ) = E[ @ = E]T( ) (0] = 1.
Also (2.6), (2.9), (2.9 andy € Q implies
A * 1 s
w(t) < 57r(t)+/ @/T G(u, y(u))duds

t

< &ﬂ(t)JrM/wi/wG(u,kn(u))duds
2 toas Jr
_27T()+2t a(s)_n() > T.

As aresultirr(t)/2 < w(t) < Am(t) fort > T for eachw € N(y). Thus .10

holds. Next we show

(2.11) N: Q — C(Q) is acompact map.

To see this we will use Theore2. Take anyy € Q andw € N(y). Then there

existst € .7 (y) with
w(t):&/ E-/ i/ t(uyduds fort >T.
2 ) ae ¢ a® Jr

lw(t)] < %n(t) + M /00 Ils)/ G(u, A (u)) duds< Am(t)
T

t

Thus

fort > T, and so for eaclhv € N(y) we havelw|,, < Am(ty). Thus the set

Y ={Ny:ye Q} isauniformly bounded subset @[T, o).

Since for eacht > T we have|w(t)] < An(t) for w € N(y), then the selY is

equiconvergent ato. Nextifty, t, € [T, oo) with t; < t, we have

2 ds

A
w(ty) — wity)] < 5/

/tz ds
<A —
n as)

o1 s
t a(s)JrM/H @/T G(u, Arr(u))duds

(4]
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for w € N(y). Now Theoreml.2guarantees that is relatively compact iB[T, o),
and as a resul2(11) holds. Essentially the same reasoning ad]rimplies that

(2.12) N : Q — CK(Q) is an upper semicontinuous map.

Theoreml.1 guarantees that there existse Q with y € N(y). That is for every
t > T, we have

(t)efn(w—/mi/sF(u W) duds
Y 2 ¢ as) Jr Y

Also sincey € Q we havey(t) /7 (t) € [A/2,A]fort > T,and lim_ . y(t) = 0 since
(2.5 implies

[ee] l S
ly®| < %n(t)+|\/|/ @/ G(u, Az(u))duds
T

t
<Aim(t) -0 ast— oo.

Now there exists € .% (y) with

t—kt T ) duds fort>T
y()—En()Jrf @/T[—r(un uds for t>T,

t

o)
im YO % i J (fT[_:;(u)]du)dS/a(S)
t—o0 7T(t) 2 t—o00 /; dS/a(S)
)\' [e%¢)
=3 +/ [—T(X)]dX. .
2 T

REMARK 2.2. Minor adjustments in the analysis are neede@ ifi)is replaced by
(2.13) F : [to, 00) x (0, 00) — CK([O, 00)).
We leave the details to the reader.

THEOREM 2.2. Suppose(2.2—(2.6) hold and in addition assume the following
conditions are satisfied

(o] 1 S
(2.14) Jr >0 with / —/ G(u,A)duds< o0
,  as) Jy

and
(2.15) there exists a positive constait such that if0 < x < A,
' thenG(t, x) < MG(t, o) fort > t,.
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Then there is a nonoscillatory solutignof (a(t)y'(t))’ € F(t, y(t)), a.e.t > T with
lim_ . y(t) =0andy(t) < rfort > T; hereT is chosen as if2.20). If in addition

G, : [tg, 0) x R — [0, 00) with |F(u, 2)| > Gi(u, 2)

there exists a single valuetd!-Caratheodory function
(2.16)
for (u, z) € [to, o0) x (0, A),

(2.17) there exists a positive constall; such thatifO < x <y < A,
' thenGy(t, X) < M;G4(t,y) fort >ty
and

(2.18) / Gi(s, um(s))ds=o0 forall u >0

hold, thenlim,_, ., y(t)/7(t) = co.
PrROOF. Choosex > 0 so that
(2.19) pll+ ()] < A

and choosf > t, so that

© 9 s m

Let E = B[T,00), Q = {ye B[T,00) : um(t)/2 <y() <A for t > T} and let
N:Q— Z(E) be (herey € Q),

_,Uv © ds © 1 s
N(Y)(t)—E[ @—/t @/T F(u,y(u)duds fort>T.

It is easy to see fron2(4), (2.6), (2.19, (2.19 and .20 that
(2.21) N:Q— C(Q).

Similarly as in Theoren2.1one can also deduce thidt: Q — CK(Q) is an upper
semicontinuous, compact map. Theorermguarantees that there existE€ Q with

/,L (o] 1 S
(t) € =m(t) —/ —/ F(u,y(u)duds fort>T.
Y 2 ¢ as) Jr Y
Also sincey € Q we havey(t) € [um(t)/2, A]fort > T, and lim_.., y(t) = 0 since
w © 1 S
|y(t)|§—n(t)+M/ —/ Gu,A)duds— 0 ast — oo.
2 as) Jr

t

(6]
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Next supposel.16—(2.18 hold. We now show that

. t

lim & —

oo r(t)

To see this notice there existss .7 (y) with

y(t) = EJT(’[) +/oo i/ [-t(u)]duds for t >T.
¢ as Jr

2
t
+ lim [—/ r(u)du}
t—o0 T

t
+tlim/ Gi(u, y(u)) du
- Jr

Thus
lim w =
t—o0 j'[(t)

v

v

NIE NIE NIE

1 t
~|—Vlim/T G1<u,%n(u))du:oo. =

REMARK 2.3. There is also an analogue of Theor@x if (2.4) is replaced by
(2.13. We leave the details to the reader.

If we don't assume the conditiom(ty) < oo, then it is also possible to obtain an
analogue of Theorer.1and Theoren2.2. The idea here is to work wit€[T, co)
instead ofB[T, co). For our next theorem, for notational purposes, Rgt, x] =
[; ds/a(s) andR(t) = RIt, t].

THEOREM 2.3. Supposg(2.2—(2.4) and (2.6) hold and in addition assume the
following conditions are satisfied

(2.22) Jt; >t and A >0 with / G(s, AR[s, t1]) ds < o0

and
there exists a positive constalt such that if 0 < x < A, then

(2.23) {G(t, XR[t, t1]) < MG(t, AR[t, t;]) fort > t;.
Then there is a nonoscillatory solutignof (a(t)y'(t))’ € F(t, y(t)), a.e.t > T with

Iimw—

M R = Co € (0, AT;

hereT is chosen as if2.24).

REMARK 2.4. (i) If Gisnondecreasinginthe second variable (asin Rethérk
then clearly 2.23 holds withM = 1.
(i) There is also an analogue of Theor@n3if (2.13 replaces?.4).
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ProOF. ChooseT > t; so that

*© A
(2.24) /T G(s, AR[s, ;) ds < M

LetE = C[T, 00),

Q= {y e C[T, o) : % R[t, T] < y() < AR[t, t;] for t > T}

and letN : Q — Z(E) be (herey € Q),
t dS t l s
N(y) () =)»/T @‘f’fr @/T F(u,y(u)duds for t>T.
It is easy to see fron2(4), (2.6), (2.23 and @.24) that
(2.25) N:Q— C(Q).

A slight modification of the argument i3] Theorem 1.1, page 1293] guarantees
thatN : Q — CK(Q) is an upper semicontinuous, compact map. Theotehn
guarantees that there existe Q with

(t) e a tﬁ ti SF(u (u)duds fort>T
yoe /Ta(8)+/T a(S)/T Y -

Now there exists € .% (y) with

t S
y(t):/T %[A+/T r(u)du]ds fort >T.

There are two cases to consider, namﬁﬂ“yd s/a(s) < oo andfoo ds/a(s) = oco. If
[ ds/a(s) < oo then

Offoci[xjtfsr(u)du}dsgx/ooﬁ<oo,
T am) T T am)

im YO _ Ji [+ [frwdulds/as)
t—oo R(t) ft:OdS/a(s) =

SO

Notice thatc, € (0, A] since

o0 1 S o0 1 X
ﬁia5p+ﬁ’“”@“zﬁia5P‘Mﬁﬂ“

e
2 ) a@s)’
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and so

(A/ZZOfT ds/a(s) co = A{TO ds/a(s) -
fto ds/a(s) fto ds/a(s)

If [~ ds/a(s) = oo then

/wi[)\+/sr(u)du}ds>&/wﬁ—oo
T oas) T —2J)r al

so I'Hopital’s rule implies

- y() /“
im —= = = Co.
Im R =4t ), r@du=e
Notice thath/2 < ¢y < A sincei + (7" t(u)du> A — M(A/2M) = /2. O

THEOREM 2.4. Supposg(2.2—(2.4) and (2.6) hold and in addition assume the
following conditions are satisfied
. [e'e} l S
(2.26) i >0 with / E G(u,A)duds< o0
to
and

(2.27) {there exists a positive constavt such that if /2 < x < A, then

G, x) < MG(t, ) fort > t.

Then there is a nonoscillatory solutignof (a(t)y’(t)) € F(t, y(t)), a.e.t > T with
lim_. Y1) = Cco € [A/2, 1]. HereT is chosen as if2.29).

PrROOF. ChooseT >t with

o0 1 S o0 1 S )\,
2.28 — G(u, A) du dss/ — G@u, M) duds< —.
(2.28) /T a(s)/T 2 - as ), S 2N

LetE = C[T,00), Q = {y € C[T,0) : 1/2 < y(t) < X for t > T} and let
N:Q— Z(E) be (herey € Q),

t S
N(y)t) = A+/T Ils)/l" F(u,y(u)duds fort>T.
It is easy to see fron2(4), (2.6), (2.27) and .28 that

(2.29) N:Q— C(Q).
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Also (as in Theorem.3) we have thalN : Q — CK(Q) is an upper semicontinuous,
compact map. Theorefh1guarantees that there existE Q with

t S
y(t) E)»—{—/T ?ls)/T F(u,y(u)duds fort>T.

Notice thaty(t) € [»/2, A] fort > T. Now there exists € .% (y) with

t S
y(t):A+/ i/ t(uyduds for t > T.
T a®) Jr

Sincey is monotonic, lim., ., y(t) exists and

. [e.9] l S
tILngoy(t)=)»+/ @/T z(u)duds O

.
REMARK 2.5. (i) There is an analogue of Theoretnwtif (2.13 replaces?.4).
(i) In Theorem2.4, it is possible to replace?(6), (2.26) and @.27) with

S

*© 1
(2.30) i >0 with / a® sup |F(u, w)|duds< oo,

to welr/2,A]
and the result is again true. The proof only involves a slight modification of the above
argument.

THEOREM 2.5. Supposeg(2.2—2.4) and (2.6) hold and in addition assume the
following conditions are satisfied

o0 S d
(2.31) 31>0 >0 with / G(s,u+A/ —X)ds<oo
t, a(x)
and
(2.32) for 0 < x <y we haveG(t, x) < G(t,y) for t > t,.

Then there is a nonoscillatory solutigrof (a(t)y'(t)) € F(t, y(t)), a.et > T. Here
T is chosen as ili2.34).
If, in addition,

o0 o0 u dX
(233) /T @/S‘ G(U,M+)&A %>du dS= o0,

thenlim,_, ., y(t) = oo.

PrROOF. ChooseT > t; so that

00 S dX
(2.34) /T G(s,;ﬂﬁ»/to %)d55x
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Let E = C[T, 00),
tdx
Q= yeC[T,oo):Mfy(t)SM—l-)»/ ﬁ fort>T
and letN : Q — Z(E) be (herey € Q),

t S
NWM%=M+/ ?)P+/‘HmmeQPsfmtzr

It is easy to see fron2(4), (2.6), (2.32 and .34 that
(2.35) N:Q— C(Q).

Also (as in Theorem2.3) we have thalN : Q — CK(Q) is an upper semicontinuous,
compact map. Theorefn1guarantees that there existe Q with

t
y(t)eu+f (1)[A+/ F(u,y(u))du}ds fort>T.

Now there exists € .% (y) with

t S
y(t) =,u+/T a(ls) [A+/T r(u)du]ds fort > T.

SupposeZ.33 holds. Then

t 1 u dx s
Y(t)Z,u+/T@[/ ( +A/ —))du+/ r(u)du]ds
A 11 A CUREY it
=T ae H x)
—/ G(u,y(u))du]ds
.
. +/‘i[/ (u a /d_>
B TS . a(x)
s dx
—/T G(u,u—l—)»/to a()())du}ds

t 1 o] dX t—o00
:'U“—i_ﬁ_%[/g G(u,u—{—)\,v[o @)du]ds—>oo O

REMARK 2.6. (i) There is an analogue of Theoretrbif (2.13 replaces?.4).
(i) Notice that if [~ ( /" G(u, 1) du)ds/a(s) = oo, then @.33 holds since
(2.32 guarantees thab (s, u + Aft:dx/a(x)) > G(s,pu) fors>T.

SJJ

QO
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