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Abstract

The function[0.x + 1/]1=x.1+ 1=x/x=x is strictly logarithmically completely monotonic in.0;∞/. The
function ′′.x + 2/+ .1 + x2/=x2.1 + x/2 is strictly completely monotonic in.0;∞/.
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1. Introduction

It is well known that the classical Euler gamma function0.z/ is defined for Rez> 0
as

0.z/ =
∫ ∞

0

t z−1e−t dt:(1)

The psi or digamma function .x/ = 0′.x/=0.x/, the logarithmic derivative of the
gamma function, and the polygamma functions can be expressed forx > 0 andk ∈ N
as

 .x/ = −
 +
∞∑

n=0

(
1

1 + n
− 1

x + n

)
;(2)
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 .k/.x/ = .−1/k+1k!
∞∑

i =0

1

.x + i /k+1
;(3)

 .x/ = −
 +
∫ ∞

0

e−t − e−xt

1 − e−t
dt;(4)

 .k/.x/ = .−1/k+1

∫ ∞

0

tke−xt

1 − e−t
dt;(5)

where
 = 0:57721566490153286: : : is the Euler-Mascheroni constant.

DEFINITION 1. A function f is said to becompletely monotonicon an intervalI if
f has derivatives of all orders onI which alternate successively in sign, that is,

.−1/n f .n/.x/ ≥ 0(6)

for x ∈ I andn ≥ 0. If inequality (6) is strict for allx ∈ I and for alln ≥ 0, then f
is said to be strictly completely monotonic.

DEFINITION 2. A function f is said to belogarithmically completely monotonicon
an intervalI if its logarithm ln f satisfies

.−1/k[ln f .x/].k/ ≥ 0(7)

for k ∈ N on I . If inequality (7) is strict for allx ∈ I and for allk ∈ N, then f is said
to be strictly logarithmically completely monotonic.

The concepts of (logarithmically) completely monotonic function are defined on an
arbitrary intervalI here, but the main case is whenI = .0;∞/, where the completely
monotonic functions are characterized by Bernstein’s Theorem [8, page 161] as the
Laplace transforms of positive measure¼ in .0;∞/. Bernstein’s Theorem states that
a function f is completely monotonic in.0;∞/ if and only if

f .x/ =
∫ ∞

0

e−xs d¼.s/;(8)

where¼.s/ is a nonnegative measure, or say that¼.s/ is nondecreasing, on.0;∞/

such that the integral converges for allx > 0. Hence we conclude that a completely
monotonic function which is non-identically zero cannot vanish at any point in.0;∞/.
It is clear that a completely monotonic functionf in .0;∞/ is strictly completely
monotonic if and only if¼.s/ has mass in the open interval.0;∞/. Therefore the
sharpenings with ‘strict’ in Definition1 and Definition2 are not very interesting.

To the best of our knowledge, the terminology or the notion ‘logarithmically com-
pletely monotonic function’ was explicitly introduced in [5, 6, 7] and it was also
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proved in [5, 6] that a logarithmically completely monotonic function is completely
monotonic. However, it cannot be said to be new, since in [2] this notion appears im-
plicitly in Lemma 2.4 (ii) which can be rephrased as [5, Theorem 1] or [6, Theorem 4].

Completely monotonic functions have applications in many branches. For exam-
ple, they play a role in potential theory, probability theory, physics, numerical and
asymptotic analysis, and combinatorics. Some related references are listed in [1].

It is easy to prove that the function.1+ 1=x/−x is completely monotonic in.0;∞/

through proving that it is logarithmically completely monotonic in.0;∞/. A stronger
result that the function.1+ 1=x/−x is a Stieltjes transform in.0;∞/ follows from [1,
Remark 3, page 457]. A functionf is called a Stieltjes transform if it is of the form

f .x/ = a +
∫ ∞

0

d¼.s/

s + x
;(9)

wherea ≥ 0 and¼ is a nonnegative measure on[0;∞/ satisfying∫ ∞

0

1

1 + s
d¼.s/ < ∞:

From (9) we can see directly that a Stieltjes transform is a completely monotonic
function.

Among other things, the following results were obtained in [6]: ForÞ ≤ 0, the func-
tion xÞ=[0.x + 1/]1=x is strictly logarithmically completely monotonic in.0;∞/. For
Þ ≥ 1, the function[0.x + 1/]1=x=xÞ is strictly logarithmically completely monotonic
in .0;∞/. It should be noted that a similar but stronger result is contained in [2, The-
orem 3.2]. The statement of [2] is that the function

'.x/ = 1

x[0.1 + 1=x/]x

is a Stieltjes transform and hence completely monotonic. However, it is well known
(see, for example, [3, page 127]) that if'.x/ is a Stieltjes transform, then so is
1='.1=x/ and this is exactly the function[0.x + 1/]1=x=x, which is then completely
monotonic, since it is a Stieltjes transform.

In [4] the following two inequalities are presented: Forx ∈ .0; 1/, we have

x

[0.x + 1/]1=x
<

(
1 + 1

x

)x

<
x + 1

[0.x + 1/]1=x
:

For x ≥ 1, (
1 + 1

x

)x

≥ x + 1

[0.x + 1/]1=x
:(10)
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Equality in (10) occurs forx = 1.
It is easy to obtain, using the standard argument, that

lim
x→∞

[0.x + 1/]1=x

x

(
1 + 1

x

)x

= 1:

Out of curiosity, the (logarithmically) completely monotonic property of the quo-
tient between two (logarithmically) completely monotonic functions (Stieltjes trans-
forms) [0.x + 1/]1=x=x and.1 + 1=x/−x will be considered in this article. The main
result of this consideration is

THEOREM1.1. The functionx−1.0.x + 1//1=x.1+ 1=x/x is strictly logarithmically
completely monotonic in.0;∞/.

As a direct consequence of the proof of Theorem1.1, we have

COROLLARY 1.2. The function

 ′′.x/+ x4 + 5x3 + 7x2 + 7x + 2

x3.x + 1/3
=  ′′.x + 2/+ 1 + x2

x2.1 + x/2

is strictly completely monotonic in.0;∞/.

2. Proof of Theorem1.1

Define

F.x/ = [0.x + 1/]1=x

xc

(
1 + a

x

)x+b

(11)

for x > 0 and some fixed real numbersa, b andc.
Taking the logarithm ofF.x/ and differentiating yields

ln F.x/ = .x + b/ ln
(
1+ a

x

)
+ ln0.x + 1/

x
− c ln x;

[ln F.x/]′ = ln
(
1+ a

x

)
− a.x + b/

x.x + a/
+ x .x + 1/− ln0.x + 1/

x2
− c

x
; and

[ln F.x/].n/ = .−1/n−1.n − 1/!.x + b/

[
1

.x + a/n
− 1

xn

]

+ .−1/n.n − 2/!n
[

1

.x + a/n−1
− 1

xn−1

]
+ hn.x/

xn+1
+ .−1/n.n − 1/! c

xn

= .−1/n.n − 2/!
[
.n − 1/.b+ c/− x

xn
+ x + na− .n − 1/b

.x + a/n

]
+ hn.x/

xn+1
;
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wheren ≥ 2, .−1/.x + 1/ = ln0.x + 1/,  .0/.x + 1/ =  .x + 1/, and

hn.x/ =
n∑

k=0

.−1/n−kn!xk .k−1/.x + 1/

k! ;

h′
n.x/ = xn .n/.x + 1/

{
> 0; if n is odd;

< 0; if n is even:

Therefore, we have

.−1/nxn+1[ln F.x/].n/ + .−1/n+1hn.x/

= .n − 2/!
{
.n − 1/.b + c/− x + xn[x + na − .n − 1/b]

.x + a/n

}
x

and
d
{
.−1/nxn+1[ln F.x/].n/}

dx

= .−1/nxn .n/.x + 1/+ .n − 2/!
{
.n − 1/.b + c/− 2x

+ xn[a.b + an + an2 − bn2/+ .2a + b + 2an − bn/x + 2x2]
.x + a/n+1

}

= xn

{
.−1/n .n/.x + 1/+ .n − 2/!

[
.n − 1/.b + c/− 2x

xn

+ a.b + an + an2 − bn2/+ .2a + b + 2an − bn/x + 2x2

.x + a/n+1

]}

= xn

{
.−1/n .n/.x/+ n!

xn+1
+ .n − 2/!

[
.n − 1/.b + c/− 2x

xn

+ a.b + an + an2 − bn2/+ .2a + b + 2an − bn/x + 2x2

.x + a/n+1

]}
:

By letting a = c = 1 andb = 0, we have

d
{
.−1/nxn+1[ln F.x/].n/}

dx

= xn

{
.−1/n .n/.x/+ n!

xn+1

+ .n − 2/!
[

n − 1 − 2x

xn
+ n.n + 1/+ 2.n + 1/x + 2x2

.x + 1/n+1

]}

= xn

{
.−1/n .n/.x/+ .n − 2/!

[
n.n − 1/+ .n − 1/x − 2x2

xn+1

+ n.n + 1/+ 2.n + 1/x + 2x2

.x + 1/n+1

]}
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, xn
{
.−1/n .n/.x/+ .n − 2/!gn.x/+ .n − 2/!hn.x/

}
:

By induction, it follows thatg′
n.x/ = −.n−1/gn+1.x/ andh′

n.x/ = −.n−1/hn+1.x/.
This impliesg.n−2/

2 .x/ = .−1/n.n − 2/!gn.x/ andh.n−2/
2 .x/ = .−1/n.n − 2/!hn.x/.

Therefore,

d
{
.−1/nxn+1[ln F.x/].n/}

dx
= .−1/nxn

[
 ′′.x/+ g2.x/+ h2.x/

].n−2/
:

It is a well-known fact that, forx > 0 andr > 0,

1

xr
= 1

0.r /

∫ ∞

0

t r −1e−xt dt:(12)

From formulae (3), (5) and (12), for x ∈ .0;∞/ and any nonnegative integeri , we
have

�.x/ ,  ′′.x/+ g2.x/+ h2.x/ =  ′′.x/+ 2 + x − 2x2

x3
+ 2.3 + 3x + x2/

.x + 1/3

=  ′′.x/+ x4 + 5x3 + 7x2 + 7x + 2

x3.x + 1/3

=  ′′.x/+ 2

x3
+ 1

x2
− 2

x
+ 2

.1 + x/3
+ 2

.1 + x/2
+ 2

1 + x

= 1

x2
− 2

x
+ 2

.1 + x/2
+ 2

1 + x
− 2

∞∑
i =2

1

.x + i /3

=  ′′.x + 2/+ 1

x2
− 2

x
+ 2

.1 + x/2
+ 2

1 + x
=  ′′.x + 2/+ 1 + x2

x2.1 + x/2

=
∫ ∞

0

te−xt dt − 2
∫ ∞

0

e−xt dt + 2
∫ ∞

0

te−.x+1/t dt

+ 2
∫ ∞

0

e−.x+1/t dt −
∫ ∞

0

t2e−.x+2/t

1 − e−t
dt

=
∫ ∞

0

[
t − 2+ .t + 4/e−t − .t2 + 2t + 2/e−2t

] e−xt

1− e−t
dt ,

∫ ∞

0

q.t/e−xt

1− e−t
dt;

�.i /.x/ = .−1/i

∫ ∞

0

q.t/
t i e−xt

1− e−t
dt;

and

q′.t/ = (
2 + 2t + 2t2 − 3et + e2t − tet

)
e−2t

, p.t/e−2t;

p′.t/ = 2 + 4t − 4et + 2e2t − tet ; p′′.t/ = 4 − 5et + 4e2t − tet ;

p′′′.t/ = (
8et − t − 6

)
et > 0:
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Hence,p′′.t/ increases in.0;∞/. Since p′′.0/ = 3 > 0, we havep′′.t/ > 0 and
p′.t/ is increasing. Becausep′.0/ = 0, it follows that p′.t/ > 0 in .0;∞/, and then
p.t/ is increasing. Fromp.0/ = 0, it is deduced thatp.t/ > 0 andq′.t/ > 0 in
.0;∞/, thenq.t/ increases. As a result ofq.0/ = 0, we obtainq.t/ > 0 in .0;∞/.
Therefore, we have�.x/ > 0 in .0;∞/, and then for all nonnegative integeri , we
have.−1/i�.i /.x/ > 0 in .0;∞/. This means that the function ′′.x/+ g2.x/+ h2.x/
is strictly completely monotonic in.0;∞/.

Thus the function.−1/nxn+1[ln F.x/].n/ is increasing inx ∈ .0;∞/. Since

lim
x→0

{
.−1/nxn+1[ln F.x/].n/} = 0;

we have.−1/nxn+1[ln F.x/].n/ > 0, then.−1/n[ln F.x/].n/ > 0 for n ≥ 2 in .0;∞/.
Since[ln F.x/]′′ > 0, the function[ln F.x/]′ is increasing. It is not difficult to obtain
limx→∞[ln F.x/]′ = 0, so [ln F.x/]′ < 0 and lnF.x/ is decreasing in.0;∞/. In
conclusion, the function lnF.x/ is strictly completely monotonic in.0;∞/. The
proof is complete.

3. An open problem

We would like to pose the following open problem:

OPENPROBLEM. Under what conditions ona, b andc is the functionF.x/ defined
by(11) completely monotonic, or logarithmically completely monotonic, or a Stieltjes
transform on.0;∞/?

In some subsequent papers, we will discuss the above open problem and publish
its solutions.
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