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Abstract

We obtain a maximal transference theorem that relates almost everywhere convergence of multilinear
Fourier series to boundedness of maximal multilinear operators. We use this and other recent results ot
transference and multilinear operators to dedu€eand almost everywhere summability of certain

linear Fourier series. We formulate conditions for the convergence of multilinear series and we investigate
certain kinds of summation.

2000Mathematics subject classificatioprimary 42B15, 42B25.

1. Introduction

Transference is a powerful tool that reveals equivalent and often unexpected refor-
mulations of certain estimates. The study of transference of boundedness of lineal
operators has been pursued by several authors; for brevity we only mention the pi-
oneering work of de Leeuws] that was beautifully placed into a framework of a
general theory by Coifman and Weig4.|

As an application of transference and some basic functional analysik,"tben-
vergence of Fourier series &f° functions on the circlel is equivalent to the.P
boundedness of the Hilbert transforbh on R. Likewise, the almost everywhere
convergence of the Fourier series of a functionTowhose p™ power is integrable
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follows from theL P boundedness of the maximally modulated Hilbert transform

H.(f) = sup/H(M* )],
EeR
on LP(R), whereM¢ f (x) = e?"¥* f (x) andH is the Hilbert transform; the passage
from the circle to the line here follows from the maximal transference theorem of
Kenig and TomasI[1].

It is natural to investigate analogous reductions of the problem of convergence
of multilinear Fourier series offi” x --- x T" to the boundedness of multilinear
operators ofR" x - - - x R". It turns out that such reductions are possible and are easy
consequences of a rich theory of multilinear transference. Multilinear transference
has been studied by (in chronological order) Murras]] Grafakos and Weisg], Fan
and Sato §], Blasco [1], and Blasco and Villaroya?]. These articles are concerned
with transference of operators that are linear in each variable. In this work we discuss
transference of maximal multilinear operators analogous to that obtained by Kenig
and Tomas11] for maximal linear operators.

As an application of transference (and some basic functional analysis), one can use
the boundedness of the bilinear Hilbert transforms

1 dt
(1) Ho (f1, f2)(X) = —p. V-/ fi(x —t) fo(X + at)—,
T R t

obtained by Lacey and Thielé2, 13] to deduce the_P convergence of the bilinear
Fourier series

D G(m)Ga(nyer M

|m—+n|<N
[m—an|<N

asN — oo and vice versa. Here is a fixed real numbeq;, g, are functions on the
circleT, andf;, f, functions onthe line. We note that the aforementioned convergence
can also be obtained via the boundedness of the bilinear conjugate function obtainec
in Fan and Satod] using transference. Likewise, we can use maximal multilinear
transference to obtain almost everywhere convergence for multilinear Fourier series.
Details on these applications will be given at the end of this paper.

We will be working with indices < py, ..., pm < oo such that
1 1 1 1
2) —=—+4+—+4--+—>0.
p Pt P Pm

We say that a functioB € L*((R™™) is an m-linear multiplier, or lies in
Mo, py..... pm.p(R™), if the m-linear operator

(3) TB( fl! ey fm)(x)
= / B(&y, ..., &m) f1(&) - - Fn(Em)€ 8% dg, .. dE,,
(Rmm
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satisfies, for some consta@t the estimate
ITe(fe, ... f)llee < Cli fallien ... |l fnllLom

for all smooth compactly supported functiohsonR". When allp; < oo this means
that Tz admits a bounded extension frdof* (R") x --- x LP"(R") to LP(R").

We define the class?,, p, . 5, p(T") in the same way. (We identif§ with [0, 1].)
We say that a sequenbes L>((Z")™) belongs ta#Z, p,.... p..p(T™), OF is anm-linear
multiplier onT", if the operator

@ SO GO = Y bk K Gi(K) - G (k)%

ke(zmm

initially defined for trigonometric polynomials;, extends to a bounded operator from
LP(T") x---x LP(T")to LP(T"). The spaces#,, p,.. . p.p(RMand.Z,, o, 5. po(T
are easily seen to be Banach spaces (or quasi-Banach spaces wherwith respect
to the norms (respectively quasi-norms when< 1) defined by the corresponding
operator norms. We will use the notation

I B||//{p1,p2,‘,‘,pmp<n&") = || Tsll LPL(RM) x---x LPm(RM)—LP(RM) 5

||b||,f/p1_p2____pm,p(v“) = [l Lrramysecx Lom @y Lo (T 5

for these multiplier and operator norms.

We introduce the dilation operat®@® f (x) = f(Rx) for R > 0 wheneverf is
a function onR". The following proposition summarizes a few basic properties of
multilinear multipliers. The simple proof is omitted.

PrROPOSITIOND.1. Letby, b, € Ay, 4, 5. p(R™) andb € #, (R") for somel <
P, ..., P < o0 and0 < p < oo satisfyingl/py+ -+ 1/pm = 1/p. Then

(a) Tbl + sz = Tb1+bz € f//pl,pz....,pm,p-

(0) ToCoeoos To(), oo ov ) = Togib € Ay po.... pm.p» WheTe®; represents product in
the variablei, that is,(b; ®; b) (X1, ..., Xm) = bi(X4, ..., Xm)D(X).

(c) The dilation operatoiDR leaves the norm of a multiplier invariant, that is,

Dbyl = |Ibal]

Mpy.pp....pm.p Mpy.pg.....om.p*

2. Transference of maximal multipliers

The main result of this section, Theoreéh®?, concerns transference of maximal
multipliers. This theorem will be a key element in obtaining almost everywhere
convergence for certain multilinear Fourier series. A similar result is mentioned as a
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remark (without proof) in Fan and Sat6] for maximal dilations of multipliers. For
the applications we have in mind, we need a slightly stronger version of this theorem
that allows an arbitrary family of multipliers.

We fix a sefl” and a set ob, € L>*((R™)™) indexed byx € I'. We also fix indices
P, ..., Pm that satisfy ) and we assume thdi, is a boundedn-linear operator
from LP(R") x --- x LP"(R") to LP(R"). Then, forf; € LP(R"), we set

N(fy, ..., f)(X) = sup| Ty, (f1, ..., f) ().
ael’
We make a similar assumption f&;, and forg, € L (T"), we set
M9, ..., g (X) = Surp|3)u(91, cees gm)(X)| .

We will need the following lemma from the measure theory whose easy proof is
omitted (seeT)).

LEMMA 2.1. Let A be a family of measurable functions on a measure space
Suppose that

<C < o0.
LP(X)

sup
{FCAF finite}

supf

feF

Then for everyf € Athere is a measurable functian, such thatf = g¢ a.e. and

supgs¢ <C.

feA

LP(X)

We introduce the following notatio® . (x) = e "1ex?/p which will be used re-
peatedly in the sequel. We note that for all continuous functipos T" we have

5) lim s”/ g9(X)Gy.(X) dx=/ g(x) dx.
e—>0 RD ™

We now state and prove the main result of this section, a transference theorem for
maximal multilinear multipliers. In the case = 1, a slightly weaker version of this
theorem was obtained by Kenig and Tomas] [

THEOREM2.2. Letl < py, ..., pn < 00,0 < p < oo, where} ", 1/p = 1/p,
and letb, € L*((RM™), wherex € I". Assume that evety, has a Lebesgue point at
everyk e (Z")™. Suppose that for alf; € LP (R") we have

INCE, ooy f) llee@ny < Cll falliegn = I fmll Lom oy
Then for allg; € LP1(T") we have

IM@1, -, O lleamy < ClldallLescrm) -« - [1GmllLomcrn)-
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PrROOF. Let us fixay, ..., o in the index sef”. In view of Lemma?2.1, it will be
enough to prove the boundedness of the following operator

M%(Q1..... Qm(X) = sup |S, (Qu..... Qu(X)|.

Buy by

In analogy, for trigonometric polynomial®4, ... Qn, we define

N°(Q1..... Qm(x) = sup | T, (f1 ..o, ) (0]

Buy

We shall first obtain the boundednes3wf for trigonometric polynomial®);. We
observe that for linear monomial (x) = ¥ we have

S(P1 ..., P (X)Gp.(X)

- coem“/ bk ... Kn) Hexp(—”—?@,— — kg [?) e 6 i,
(RMM =1 &

whereCo = /p7 - - - pp.. If we setg;(x) = P;(X)Gy, . (X), we can write
To(91, -+ - Gm) (X)

m D0 .
_ Cog_mn/ b, ..., En) Hexp(—%ﬁ:j _ ki |2) e () §)x ds
(R =1 €

and compare the two operators as follows:

1S (P, .., PR)(X)Gpe(X) = Po(Q1, - - -, Gm) (X)]

< C'lb]l / e g
{Ee(RMM:|&[>r})

_ n Nm
L Ce mn/ b(kl,...,km)—b< +Ki, ..., +km>
{(ne(RM™:|y|<re) ~/ P1 +/ Pm

wherer > 0 is arbitrary. The first term above tends to O as> oo while the second
one tends to 0 as — 0 whenevek is a Lebesgue point df. We can extend the
same estimate to trigonometric polynomi&s by linearity. Taking the supremum,
we obtain

IM®(Q1. ..., Q) (X¥)Gp. — N°(Q1Gypyee - - -, QuGi, ) (X)| < 01 (1) +1™0. (D).
Using () we deduce

dn,

/ sup S, (Qu. ..., Qm(X)|” dx
TN Doy s, Dy

= lim e”/ sup S, (Qu, ..., Qu)(X)Gp.(X)| dx.
RM Beg e, By

=0
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The functionM®(Q;, ..., Qn) is bounded by some constaft so

im e [ sup 1S, (Qu... Qn) (G (0 I
e RO Dy oD

< Koyg(D) + lim ¢" f SUp 1S, (Qu. ... Qu(X)Gyp. ([P dx.
R

0 PO(IXI=R/e) Bay oo By

After we deduce the estimate

8”/ sup S, (Qu. ..., Q) (X)Gp(X)[P dx
|

X|<R/e Day e By
< R" (0 (1) +1™0,(1))

+e”/ bsug I To, (QiGpes - - - » QuGp,, ) (X)|P dX,
RN Doy 1B

we takeR andr such that the first term above is negligible and finally obtain

I MO(QL oo QmllLeamy < lim SOUp8"|| N(Q1Gp. e, .-, QmGpne) Lo

<Clim SUDSn/mHQlel,slle e _gn/pm” QmGpm.,s”meSn/p/

e—>0

< ClIQulle - - - [| QmllLom.

This proves that the operattt® is bounded for trigonometric polynomials.

To extend the boundedness to genéralfunctionsg;, we first recall that the linear
operatorS,, is well defined and bounded do™ x --- x LP» for anya € I'. This
implies that whenever trigonometric polynomi&ls, — g; in L” (T"), we have

S, (Qui, .o, Qmi) = $,(d1, -+, Gm)

in LP. We can now can use the trivial estimate
|Mo(gls ey gm)(x) - MO(QlJ! e ey Qm,|)(X)|

k
<Y 18, (Qui - Qud () — S, (@1, - -, G (X))
i=1

and take thelL P norm to obtain the required estimate for general functignse
LPi. O

We make a couple of remarks. It is possible to define the multilinear multiplier
even in the case when some= co. The multiplier then, of course, extends only to
the closure of the s€l5° in L*. Itis possible to prove the above transference result in
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this setting, using an arbitrary cutoff function in placeXf, . Whenp > 1, the proof
can be trivially extended to regulated maximal multipliers, whgrés regulated, if
b, (x) = lim,, ¢, * b, for any pointx € Z"™ for some approximate identity,. Key

to this is the following lemma, which has been proved for bilinear multiplierd]in [

LEMMA 2.3. Assume the hypotheses of Theofefand also thatp > 1. Letd be
in LY(R™. Then for anyb; = b, * ®, ..., b, = b, * ® we have

< Cl®|lL1gn)

LP(R")

sup [Ty, (0, - - -, Gm) ()|
ba,...,bx

for Schwartz functiongy, . . ., gm, WwhereC is the constant in Theoreth2.

PrROOF. To prove this result, we need to use the linearization introducedlj [
Clearly, if we write

Sup [Ty, (@, - - -, Gm) ()|

by,.... b Lo(RM)

= [T aw. - T Ao

LP(R")

we can express the second norm as the supremum over all Schwartz function:s
hy, ..., hewith | 3 |hi|}|Lp,(Rn) < 1 of the expression

/ D To (@ -, Gm) OB () dX
R

By Parseval’s identity, this is equal to

/ D b EnGED - GEnhy (Z s;) dé; - - - .
R 7 i

The claim then follows by expressitgash,, * ®, and applying the assumption that
the maximal operatoN is bounded on products of Schwartz functions. O

To obtain maximal transference in the opposite direction, one has to impose some
additional condition on the set of the multipliers. For example, a standard condition
is that the set of multipliergb, }, contains all dilations of its elements.

THEOREM2.4. Letl < py,..., pm < 00,0 < p < oo, where}_T", 1/p; = 1/p,
and letb, € L*((R™M™), wherex € I". Assume for everlg, and R > 0 we have a
B € T such thath, = DRbg. Let anyb, has a Lebesgue point at every (Z")™ and
let us assume that it is Riemann integrable over any rectangle.
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Suppose that for all functiorng; € LP (T") we have

IM(91, -, G lleeamy < CllGallLescm) -« - 1Gmll Lomcrny -

Then for all f; € LP(R") we have
INCEr, s T lleegey < Cll falliege <=« Il fnllLom go)-

PROOF. Again, in view of the Lemma&.1, it is enough to prove the boundedness
of the operatordN°. Moreover, a limiting argument similar to that in Theorén
shows that it is enough to work with smooth compactly supported funcégn®ne
can check that for any Riemann integrable bounded funttior have

lim D*" Sy, (Day. ..., DRam) () = To(@s, ..., ) (X),

where the right-hand side (which is well defined for laR)eis a Riemann sum. For
the maximal operators, this implies

Noay, ..., an)X) < lim inf DR'M(DRay, ..., DRay)(X)

and the claim follows. O

3. Tools to study convergence

Before we turn to applications of transference of maximal multipliers to conver-
gence ofm-linear Fourier series, we discuss a couple of useful results in the study of
convergence. We begin with a general theorem that formulates an equivalent condition
for the LP convergence of multilinear multiplier operators on the torus.

THEOREM 3.1. Fix 0 < p < oo and Z'j“:l 1/pj =1/p, 1 < p; < oo. Suppose
that for eachR > 0 there is a compactly supported sequebges |*°((Z")™) and a
sequence e [<((Z"™) such that for ank € (Z™)™ we havebr(k) =% b(k). Then
the sequenc&,, (9., ..., gm) converges irL °(T") for anyg; € L (T") if and only if
there exists a constamt < oo such that

(6) SUp||bR||%p1.p2.....pm.p = K

R>0

Moreover, if (6) holds for someK < oo, we must haveib|| -, , ., < K and

S:(O1s -, Om) = S(01, ..., Gm) in LP(T") for all g; € LP(T"). (Here §, denotes
the unique bounded extension of the same opeyator.
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ProOF We deduce §) by a repeated application of the uniform boundedness
theorem. Each operatd®,, corresponds to a compactly supported multiplier and
is therefore bounded. From the convergence we see that for{ggghwe have a
constantCyy,;; such that|S,;(91, . . ., Gm)llLe < Cyg,, for any choice ofR. Now we
fix g2, ..., gn and apply the uniform boundedness theorem on the family of linear
operatorsS,. (-, 9, - . .. Om), indexed byR. This gives us a consta, ..

||SJR('3 gZa ) gm)”LPleLP E ng....,gm-

In other words, we obtained a family of operat&s(g:/||dill e, - - - - » Om) iNdexed
by Randg;. We use the uniform boundedness in the second variable and proceed by
induction. This way we deduce the existence of a condfart co such that

1 Sr(92/19ellLes - - oy G/ 1 GmllLem) e < K.

Let us now assumes). Then clearly for any choice of trigonometric polynomials
{Q;};, Fatou's lemma gives

IS(Qu, -+, Qmller = iMinf |, (Q1, - -, Qu)llLe = KIIQullen -+ | QullLm,

which means tha§, extends to a bounded operator bft x --- x LP» with norm
bounded byK.

Fix now g; € LP(T") for each 1< j < m. For anye > 0, we may take
trigonometric polynomialgQ;} such thaf| Q; — g;ll.» < . The Fourier transform
of a trigonometric polynomial is compactly supported, which means

1S(Q1 - -+, Qm) — $x(Qu, ..., Qm)llLe = 0.
We can pickR, such that the above quantity is less thdor R > Ry and then write

(91, -+ s Om) — Se(Grs - - -5 Gm)llLe
< Cp(1S9:(01, -+ -5 Om) — S (Q1s -+, Qm)llLe
+ 1S (Q1, - -+, Qm) — S(Q1, - .., Qm)llLe
+ 1S(Q1, -+ -5 Qm) — S(1, - -+ Im) llLe)-

The middle term on the right is controlled lay while the remaining two can be
estimated using multilinearity by the usual transformation

S$(Q1 ..., Qm) — S(91, - -+ Gm)
=S(Q1 ..., Qm—0m) + S(Q1, ..., Qm-1— In-1, Om)
+ =301 — Q1, ..., Om)-
These terms all havie? norm estimated by some constant multiple<af. The same

works for S,,. The result follows by triangle inequality (or quasi-triangle inequality
whenp < 1). O
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Next we obtain a result allowing us to derive almost everywhere convergence for
multilinear operators from the boundedness of a corresponding maximal operator. Let
(Xj, 1j), 1 < j <m, (Y, v) be measure spaces and lek0Op; < 00,0 < g < oo.
Suppose tha® is a dense subspace bfi (X, ) for all j. Suppose that for every
e > 0, T, is anm-linear operator defined oo™ (X, 1) x -+ x LP"(Xy, wm) With
values in the set of measurable functionsYorDefine a sublinear operator

@) T.(fy, ..., fn) =sup|T.(fy, ..., fo)l.

>0

Then we have the following result.
THEOREM3.2. Suppose that for sont@ > Oand all f; € L? (X, ;) we have

IT(fa, oo fm)llLas < Bl fallie - [ fmllen
and that for allh; € 2
(8) I‘irTEJTg(hl,...,hm) =T(hy, ..., hyw)

exists and is finite-a.e. and defines a multilinear operator a". Then for all

f; € LP(X, i) the limit(8) exists and is finite-a.e. and defines a bounded multilinear
operatorT fromLP:(Xy) x - - - x LP(X;,) to L% (Y) that uniquely extend® defined
ong™.

PrROOF. Given a tuple(fy, ..., f) in LP x ... x LP we define its oscillation at
the pointy € Y as

O(fy, ..., f)(y) =limsuplimsup|T.(fy, ..., f)(y) — Te(fr, ..., f)(Y)].

=0 0—0

We will show that for all(f,, ..., f,)inLP x --- x LP» andé > 0, we have
) vy € Y : O(fy, ..., f)(y) > 8) = 0.
Once Q) is established, giverif;, ..., fy) in LP x ... x LP, we obtain that

O(fy, ..., fn)(y) = 0 forv-almost ally € Y, which implies thafT.(f, ..., fu)(y)
is Cauchy forv-almost ally and it therefore convergesa.e. to some multilinear
operatorT (fy, ..., fn)(y) ase — 0 that extendd defined on?™.

To approximateO(fy, ..., f,) we use density. Given & n < 1, findg; € 7
such that| f; — g;llL» < n. Itis easy to see that for some const@nive have

(10)  O(fy....f) <O(Gn.....Gn) +C Y _ O(¢r.....¢m) v-ae.,

whereg; is either f; or f; — g; and the sum is taken over all finitely many possible
combinations of expressions of this sort in which at least@gnis f, — g¢. Since
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T.(Q1, ..., 9m) = T(G1, ..., n) v-a.e., it follows thatO(g;, ..., gn) = Ov-a.e. We
can therefore pointwise control the oscillati@ f,, ..., f;) by a sum of oscillations
of tuples of functions in which at least one entry has small norm.

Now for anys > 0 and any tuplégs, ..., ¢n) as above we have

v({O(¢1, ..., ¢m) > 8} = v({O(Py, ..., ¢m) > 3})
= v({Tu¢s, ... ¢m) > 8/2})
< 2Bll¢allLr - - - I@mllLom /8)°
< C(fy, ..., fn) 2B/8)" 1Y,

whereC(fy, ..., fy) is a constant depending on the functiof)s Lettingn — 0
and using 10), we deduceq). We conclude thaf,.(f4, ..., f,) is a Cauchy se-
quence and hence it convergea.e. to somé& (fy, ..., f). Since|T(fy, ..., f)| <
IT.(f1, ..., fy)], it follows thatT is a bounded operator (with norm at mést O

4. Multilinear Fourier series

We now discuss applications of the preceding results. We consider an open con-
nected seE C R™ which contains the point 0 in its interior. Define thelinear
Fourier partial sum

PRE(glﬁ s Om(X) = Z O1(ky) ... gm(M)eZHi(kﬁ---Jrkm)x

(Ka,....km)€R-(ENZMM)

which naturally converges tg;(x) - - - gn(X) whenevem;, .. ., g, are smooth func-
tions onT". The summation here is taken over all lattice points insidéfield dilate
of the setE and the convergence is understoodas> co. We will use transference
to study theL? and almost everywhere convergence of this series whenevey; the
lie in some Lebesgue spaces. In view of Theorgth the LP convergence oPE
is a consequence of the uniform boundedness of the family of multilinear operators
{P&}r-0. Transferring these operators®d, reduces matters to showing that lies
SUPy-o I Ty | s bounded (for the almost everywhere convergence problem). Here
N - E is anN-fold dilate of E andTg is defined in 8).

We consider the case in which the €etis a polygon inR? with finitely many
sides. We prove an easy geometric lemma, which allows us to write this polygon as a
difference of finite unions of triangles.

LEMMA 4.1. Let D C R? be a closed polygon with finitely many sides. Then we
can find two finite sets7, 7 of closed triangles each of which has two sides parallel

to axes such tha} ;_,. X, — D ores, X, =X, ae.
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ProOF. Clearly, we can divide any polygon into finitely many triangles. Consider
such a triangle and denotet If T does not have any sides parallel to the first
coordinate axis, the orthogonal projection of its vertices on the second axis consists
of three distinct points and the straight line parallel to the first coordinate axis passing
though the middle of these three points spliténto two trianglesT’ and T” which
have one side parallel to the first coordinate axis.

Let T’ have verticesA, B, C, where the lineAB is parallel to the first coordinate
axis. If no remaining side of’ is parallel to the second coordinate axis, Xebe
the point of intersection of the line passing throuyland B and of the line passing
through the poinC and parallel to the second coordinate axis. The triangl¥sC
andB X C have two sides parallel to the coordinates, and we have

XABC:XAXC+XBXC or
Xpse = Xaxc " Xaxe 9"
XABC: _XAXC+XBXC ae

So this procedure split¥ to at most four triangles, which we place i# or %
according to the sign they inherit by the previous identities. O

We now discuss the problem of the convergence of bilinear Fourier series summed
over lattice points inside dilates of polygons®&?. Let us fix such a polygorD.
Apply Lemmad4.1to obtain sets of triangles indexed by the sétand.Z. It follows
from the work of Lacey and ThielelP)], [13] that the characteristic function of any
triangle inR? with no side parallel to the antidiagongl= —x lies in .y, p, ,(R)
where 23 < p < 00,1 < py, P <ooand ¥ p, +1/p, = 1/p. (If the triangle has
a side parallel to the antidiagonal= —x, then the same conclusion is valid with the
additional restriction thap > 1.)

Using Lemmad.1we conclude that the characteristic function of a poly@m
R? with no side parallel to the antidiagongl= —x is a bounded bilinear multiplier
iN Ay, p,p(R) Wwhere 23 < p < 00,1 < pi, po <occand ¥p, +1/p, = 1/p.
Moreover, part (c) of Propositiofi.1 says that any dilate oD is also a bounded
bilinear multiplier (with the same norm). We can now take a suitable increasing
sequence OR, such thatD dilated byR, contains no lattice point in its boundary and
such that there is exactly ol betweenR, and R, such that the dilate dd by the
amountR/, has a lattice point in its boundary. We can also arrange so that the dilate of
D by R; contains only the zero lattice point. This choice of our sequence ensures that
for any R > 0 there is am such thatP? = P2. Thus the characteristic function of
any dilate ofD has a Lebesgue point at every lattice point and we can apply both the
transference theorem if][and Theoren3.1to obtain the boundedness of each of the
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operatorsPY . We conclude thaPg (g:1, 92) — 010, in LP(T) for anyg, € L™(T)
andg, € LP(T) where 23 < p < 00, 1 < py, p2 < oo. Precisely we have the
following.

THEOREM4.2. Let2/3 < p < 00,1 < p, P2 < 00, 1/p +1/p, = 1/p and
D c R? be a polygon that contain@ in its interior and has no side parallel to the
antidiagonaly = —x. Then forg; € LP(T) andg, € L™(T) we have

P2(G1. 02) —=> gug, in LP(T).

Using a similar argument we can also obtain a theorem in which the summation is
taken over lattice points in a dilate of a disc.

THEOREM4.3. Letl < p<2,2< p1, p2 <00, 1/pr+1/p> =1/pandletU be
the unit disc inR?. Then forg, € LP(T) andg, € L (T) we have

PY (g1, ) —3 gug,  in LP(T).

Theoremd.3easily follows by applying the previous reasoning to the characteristic
function of a disc inR? and using the fact that this function is a#,, ,, , bilinear
multiplier onR x R. For the last result we refer t8]|

We now pass to an application of the maximal transference The@ranlLet E
be a polyhedron ifR™ containing the origin. One would like to known whether the
expression®E(gy, . . ., gn) converge almost everywhere to the prodggt- - g, as
R — oo wheneverg; € L” (T). The previous analysis reduces this problem to the
LPx ... x LP — LPboundedness of the maximal operator define®on- - - x R

T(f1, .., f) () = sup / o / figy) -+ fm(Em)e?™ Gt dg, . dp,
e &m/N)€E

which is a variant of a multilinear Carleson type operator. In the forthcoming publica-

tion, Muscalu, Thiele, and Tao (se&d for the Walsh case) show that the following

so-called bi-Carleson operator

¢, (f1, f2)(X) = sup

N=>0

/ / fu(&) Folln) @76 g de,
£1<€<N

mapsLP(R) x LP2(R) into LP(R) forall 1 < p;, p. < cowith 2/3 < p < ©
whenever Ip; + 1/p, = 1/p. Let us introduce a bilinear multiplier operatfy on
T x T by setting

S)(gla gZ)(X) = Z Ql(nl)gz(nz)e&ix(nwnz)

ni<ng
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for all g;, g, smooth functions ofi. The operatorS, is a version of a discrete
bilinear Hilbert transform and admits a bounded extension (also denot&g fypm
LP(T) x LP2(T) to LP(T) via bilinear transference; see Fan and Sa&fowhen
l<p,pp<00,2/3<p<oo,and¥pi+1/p>=1/p.

Using the aforementioned result concerning the bi-Carleson operator, The@em
and Theoren3.2we deduce the following:

THEOREM4.4. Letl < pg, P2 < cowith2/3 < p < oo whenevel/p; + 1/p, =
1/p. Then forg; € LP(T) we have

Y G G(ng) @K™ s §(gy, Go) (X)

ni<na<R
asR — oo for almost allx in T.

For our next application, we let agald be a polygon inR? containing 0 in its
interior with no side parallel to the antidiagona& —x. We are interested in showing
that the operator®? (g, g2) converge a.e. to the produgtg, wheneverg; and g,
areLP functions on the circle.

We can reduce the boundedness of the opefBtdo that ofC, in the following
way. We first writeD as a union of at most four polygons each contained in one of
the four quadrants and without loss of generality we may work with the pdbdt iof
the first quadrant. Using Lemnval we can breakD as a difference of two finite
unions of triangles with two sides parallel to the axes. Applying translations in Fourier
space (modulations in time space), we may assume that all of the triangles that appea
in the decomposition have an acute angle at the origin. This way we can pointwise
control T2 by a finite sum of operators of the form (for some- 0)

¢.(f1, f2)(X) = sup

N=>0

/ / fu(e) FolE) @76 deydey|
0<é&1<cér<N

Using the boundedness of this version of the bi-Carleson operator, Th@dteamd
Theorem3.2we obtain the following:

THEOREM4.5. Let D be a polygon irR? with no side parallel to the antidiagonal
y = —X that contains0 in its interior. Letl < p;, p» < cowith2/3 < p < o0
wheneverl/p; + 1/p, = 1/p. Then forg; € LP(T) we havePR (g, &) — 010
almost everywhere ofi asR — oo. If D has a side parallel to the the antidiagonal
y = —X, then the same conclusion is valid wheneper 1.

The preceding result may be viewed as a bilinear analogue of the Carleson-Hunt
theorem B, 10] on the almost everywhere convergence of Fourier serie$ @fnctions
on the circle (with respect to polygonal summation).
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Another analogue of the Carleson-Hunt theorem can be obtained using recent
results by Li and Muscalulpl] who showed that the maximal operator obtained by
considering the supremum of all the shifts of a Coifman-Meyer multiptien R™
is LP(R) bounded. (Taking (§) = x@.«) Whenm = 1, yields the Carleson-Hunt
theorem.) The Coifman-Meyer symbols are those satisfying

05+ 9370 (€1, - Em)| = Cuy (2] 4+ [y 0241l

for all sufficiently large multi-indice$vy, . .., an. The associated maximal operator
is defined as the supremum of the operatdig| over allz € (RM™, whereo, =

o(- 4+ 2). The result of 14] then says that this maximal operator is bounded from
LP(R) x --- x LP(R) to LP(R) for any p; satisfying @) with 1/m < p < ooc.
Combining this theorem with Theoref2 and Theoren?.2 yields the following
result:

THEOREM 4.6. Let o be a Coifman-Meyer multilinear multiplier oR™ which is
continuous at zero and ldt< p; < oo, 1/m < p < oo be such thaf2) holds. Then

Iirrg)T,,(AH)(fl, e ) =T,(f, ..., ) ae.
and
Izigg) S ---On) =S, ---,0m) ae.

forany f; e LP(R") andg; € LP(T").
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