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Abstract

In this paper we compute and continue meromorphically to the whole complex plane the zeta function
for twisted modular curves. The twist of the modular curve is done by a moepresentation of the
absolute Galois group.

2000Mathematics subject classificatioprimary 11G18, 11R42, 11R65.

1. Introduction

In Chapter 7 of his bookd], Shimura computed the zeta function for modular curves
and modular abelian varieties by relating the Frobenius morphism with Hecke opera-
tors using some congruence relations. We will use some of his ideas to compute the
zeta function of the curves that we will define below. When the moepresentation

is associated to a rational elliptic curve, such a twisted modular curve was defined anc
used in a paper by Wiled P, Remark 2]. LetX(p)/Q be the modular curve of the
principal congruence subgrouiff p) of SLy(Z) for a primep > 7 (we do not consider

5> p, since for these values, the modular curve has genus 0), which is a geometrically
disconnected curve whose connected componentp aré copies of the half upper
plane quotient out by (p). Let X(p) be the compactification ok (p). The curve

X(p) has an action 06GL,(Z/pZ) as specified later (see Sectidrl). For a number

field F we denote byGe the Galois group Ga/F). We consider a continuous
Galois representation : Go — GL,(Z/pZ), and letX'(p)/Q be the curve obtained
from X(p)/Q via twisting by p composed with the action @L,(Z/pZ) on X(p)

(see Sectior.2for the definition ofX'(p)).
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Let I'(p) be the adelic principal congruence subgroup of lepeh GLy(A¢),
whereA; is the finite part of the adele rifgyp of Q. Letn = 7 ® 7., be a cuspidal
automorphic representation &L,(Aq), wherexs and n,, are representations of
GLx(A;) andGL,(R), respectively. IK is an open compact subgroup®@E,(Ay), let
7 denote the space &f-fixed vectors ofr;. One can associate to a representation
an L-function L(s, 7) which has an analytic continuation to the whole complex
plane as an entire function and verifies a functional equat®or> 1 — s (see P,
Theorems 6.15 and 6.16]).

We fix an isomorphisnj : Q@ — C and from now on we identify these two fields.
Let p,; : Gg — GL(Q)) = GLy(C), | prime,l # p be the two dimensional contin-
uous Galois representation associated to the cuspidal automorphic representation
Define

L(s. pe) == [ [ La(S),
q

where
Lo(s) = det(1— | (pos(Frony)|,. ),

and Frol is a Frobenius element a, |, is the inertia group af| andV is the
space corresponding 19,. ThenL(s, p,.) has an analytic continuation to the whole
complex plane as an entire function and verifies a functional equatien:2 — s.

As Shimura proved, we have(s — 1/2,7) = L(S, pr)). From the work of
Shimura and others (se®, [Theorems 7.11 and 7.13]), we know that tHé part of
the Hasse-Weil zeta functions ¥f(p) is given by

L. X(p) = [ L(s - 172 m)dmmi”,

where the cuspidal automorphic representatiorthat appear in the product are of
weight 2, satisfyr;” + 0 and are cohomological, which means that

H(gl2(R), SO:(R); 7.) # O.

Here,H1(gl»(R), SG:(R); 7r..) is the Lie algebra cohomology group with respect to
gl.(R) relative to the maximal compact subgroB@(R).

The groupGL,(Z/ pZ) acts on the modular curv¥(p). The composition of this
action withp gives us an action dbq on X(p). Taking complex points oK (p) we
get thatGq acts onX(p)(C) through this geometric action oX(p). ThusGq acts
on H(X(p), C). Using this commutativity of this action and of the Hecke operators
outsidep we obtain the representati@h o p of Go onx; ® (see the beginning of
Section2.6for the definition ofg, ).
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Let

L(S, pr1 ® (@ 0 p)) 1= [ [ L4(®),
q

where we denote
Ly (s) := det(1— j (o (Frohy)|,, ® (@ o p) (Froky)|,,)d™°)

-1

andU is the space correspondingdg o p.

We have two curve(p)/Q and the twisted on&’'(p)/Q. Their jacobians]
and J’ are identical oveQ, but the Galois actions od and J’ are different. The
difference is described by the representatigr po. Then we go through Shimura’s
computation of the zeta function of(p) modifying the Galois action by, o p
and we obtain the first part of the following theorem (which is a consequence of
Proposition2.2):

THEOREM 1.1. We have

L(s, X' (P) =[] LS. pr1 ® (@ 0 p)),

where the cuspidal automorphic representatiaris that appear in the product are
of weight2, verify 7; ® + 0 and are cohomological. If the representatiprfactors
through the Galois group of a solvable Galois extension of a totally real fiblal

is, the fieldK := (Q)*" is a solvable extension of a totally real figldhen the
L-function L(s, W) has a meromorphic continuation to the whole complex plane
and verifies a functional equation.

In this theoremL (s, W) represents thél® part of the zeta function oX'(p).
Meromorphic continuation is done combining the technique of Artin-Brauer with a
recent result of Taylor][1] and theGL,-base change for cyclic extensions proven by
Langlands §]. We shall compute thé&-function in the following section and prove
the meromorphic continuation in SectiBn

2. Computation of the zeta function

2.1. Known facts Let us recall some known facts (s€& ¢r [5]) which will be used
in the proof of Theorem..1 Let N be a positive integer withN > 2, Sa scheme, and
E/San elliptic curve ovet. If N : E — E is the multiplication byN, then the kernel
of this morphismE[N]/S = ker{N] is a locally free group scheme of rahk overS.
A level N-structure is by definition a group scheme isomorphismz/Nz)?/S —
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E[N]/S. Let SCH be the category of schemes and SETS be the category of sets. We
consider the following functoty : SCH/ SpecZ[1/N]) — SETS:

en(S) =[(E, ¢)/S| E/San elliptic curveg a levelN structuré,

where [-]' means the set of isomorphism classes of the objects in the brackets. Two
structureg E, ¢) and(E’, ¢’) are isomorphic by : E — E’if ¢ is an isomorphism
andg o ¢ = ¢'. It is known that the functoey is representable over Sg@¢1l/N])
by an affine curveX(N). There is a natural action @&L,(Z/NZ) on ey which is
given by(E, ¢) — (E, ¢ 0 ), if g € GL,(Z/NZ). The action of—1 € GL,(Z/NZ)
is trivial because-1 : E — E induces an isomorphisiE, ¢) = (E, ¢ o (—1)).
Sinceey is representable b (N) over Spe¢Z[1/N]), the groupGL,(Z/NZ) acts
on X(N)/ SpecZ[1/N]).

It is known also that (se&[ Lemma 10.3.2]):

PrROPOSITION2.1. The group Gk(Z/NZ) acts on the compactified modular curve
X(N).

2.2. Construction of the twisted curve We fix a continuous representation
p:Gq — GLy(Z/p2)

where p is a prime number. LeK be the finite Galois extension @ defined by
K := (@)ker@)_

Suppose that a group acts on an affine scheme= Spe¢R). ThenG determines
an action onR. If we considerR® = {r € R | gr =r, Vg € G}, thenRC is a ring.
We have that Spé&®) = Spec¢R)/G as a geometric quotient R/R® is étale (see
[3, Proposition 1.8.4]). 1iX is not affine and we can covet by affine schemes that
are stable unde®, we similarly obtain a geometric quotieKt/ G.

Let X' = X(P) Xspeczia/pay SPECOK[1/pd]), where O is the ring of integers
of K, d is the discriminant oK /Q, and Ok [1/pd] is the sub-ring ofK in which
pd is inverted. The groufBl,(Z/pZ) acts onX(p). Sincep : GalK/Q) —
GL,(Z/pZ), the group GalK /Q) acts onX(p). The Galois group GéK /Q) has a
natural action on Sp€®[1/pd]) and we can descend via the quotient proces®
X'(p)/ Specz[1/ pd]) using the diagonal action

Gal(K/Q) >0 — p(0)®o

on X'. Thus, we obtain a smooth projective cuX& p)/ SpecZ[1/pd]). This is the
twisted curve that we mentioned in the title. If we do descend as above the jacobian
of X(p)/ SpecZ[1/pd]), we obtain the jacobian of’(p)/ Spec¢Z[1/pd]).




[5] Zeta functions of twisted modular curves 93

2.3. Zeta Function for curves We recall briefly the definition of thél! part of
the Hasse-Weil zeta function of a smooth projective cufvaver S = SpecZ[1/N])
whereN is a positive integer. We hereafter call thi part, the zeta function oX
for simplicity. First let us consideF, a finite field of characteristip and J/[F, an
abelian variety. Letl[I"] thel"-torsion points for a prime numbér£ p. The Galois
group GaiF,/F,) acts onJ[I"] for all natural numbers and taking the limit

Ti(d) = lim (1"},

we get the GaF,/F,)-moduleT; (J). We writep, : Gal(F,/F,) — GL(T(J)) for the
resulting representation. Lét,(T) = det(1 — pi(¢,)T), whereg, is the Frobenius
element

Gal(F,/Fp) > (x — xP).

The polynomialL ,(T) € Z[T] does not depend dn
Now, letX be a smooth proper curve ov@e= SpecZ[1/N]), andJ be the jacobian
of X. ThenJ is an abelian scheme ov8r= Spe¢Z[1/N]). We denote

J() = J Xspeeziyny Speck),

for | prime,l ¥ N. We define the zeta function o over S = SpecZ[1/N]) as the
product
L. X/9=]]Ld™™"

1N

Here the definition of the zeta function is given up to the factotg .

2.4. Twisted Galois action onJ To simplify the notations we regard our curves

X(p) andX'(p) as curves over Spé®). Let J andJ’ be the jacobians ok (p) and
X'(p) respectively.

We obtainedX’(p) from X (p) first tensoring by Spe€©y [1/ pd]) and then making
the diagonal quotient. The difference of the actio®gfon the Tate modul€g (J) and
T,(J) can be described in the following way: Zsmodules, we havé (J) = T,(J"),
but the Galois action is different. We write the Galois actiowof Go onT(J) as
X — X?. We want to describe the action Gf, onT,(J’) in terms of the action 064
onT(J)and

p:Gq — GLy(Z/p2).

The Galois representatigncomposed with the action &L,(Z/ pZ) on X(p) induces
a representation
p": Gg — Aut(Ti(J)).

PROPOSITION2.2. The action obr € Gg on T (J’) is given byX — p”(o)X°.
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PROOF. Let p’ : G — Aut(X(p)) be the composition b : Go — GL,(Z/pZ)
and of the action 0GL,(Z/pZ) on X(p). LetW = X(pP) X specq) SpecQ). We have

W(Q) = Homspeco) (SpeCQ), X(p)) x Homg(Q, Q).

An elementr € Gq acts onW(Q) by

(X, 9) = (p'(1)(%), gt ),

where(x, g) € W(Q). This is the diagonal action oW (Q) that we use to do descent.
In this circumstance, we can realize the descent as a geometric quoti&ibpthe
action ofGq.
SinceX'(p) is obtained fromX (p) x speca) SPEEK ) by a twist of GalK /Q)-action,
we have
X(P) Xspeca) SPEEK) = X'(P) Xspeca) SPeEK).

Thus, we geX(p)(Q) = X'(p)(Q). Letu = [(X, )] € X'(p)(Q) = X(p)(Q) be a
class of the quotient olV(Q), determined by the above action. The grdbip acts
through its arithmetic action oX(p)(Q) sendingu — u’ = [(x?, 1)]. Then we
describe the action @& on X'(p)(Q) in terms of the action o6 on X(p)(Q):

u—u =[x, D" =[(x7,0)] = [0 (p'(0)x", )]
=[(p'(0)X7, D] = p'(a)[(X7, D] = p'(o)U’,

where we attach ‘ato o to indicate when we refer to the action®f, on X'(p)(Q).
Thuso e Gq acts onX'(p)(Q) by sendingu — p’(o)u’. We explained above
the action ofG, on X'(p)(Q) in terms of the action 06, on X(p)(Q). We obtain
the action in the proposition replacing(p) and X'(p) by their jacobians and by their
Tate modules. O

2.5. Complex points on the modular curve We have

X(p)(C) = GL (@)\GL} (Ag) /T (P)SQ(R)R,
where
GL; (Q) = {g € GL,(Q) | detg > 0},

the ringAq is the adele ring of) andGL; (Aq) = GLy(A;)GL] (R), Ay is the finite
part of the adele ring\q, and

['(p) = {x € GL(2) | x = 1(p)}

with 7 = I1,Z,,.
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The groupGL,(Z/ pZ) acts onX(p)(C). This action can be described in terms of
the following action:GL,(Zp) — GLy(Ag) bya — (1,...,a, 1, ..., 1) (« isthep
component). Using the isomorphisBl,(Z/pzZ) = GLZ(ZP)/f(p)p, where

[(p)p = (x € GLy(Zp)|x = 1(p)},

we get the action of € GL,(Z,) on X(p)(C) which is given by the left multiplication
at thep component.

2.6. The zeta function of the twisted curve Let 7w = 7y ® 7, be a cuspidal
automorphic representation &L,(Aq), wherexs and n,, are representations of
GLx(A;) andGL,(R), respectively. Let

Prl - GQ - GLz(@O = GLy(O),

| prime,| # p be the two dimensional continuous Galois representation associated to
7. If K is an open compact subgroup®E,(A¢), letz ¥ denote the space &f-fixed
vectors ofr;.

We write 7 ® = 71l+62@) @ 7P By the work of Shimura and others we
know that

L(X(p). s) = [ L(s— /2, ;)™

where ther’s that appear in the product are of weight 2, vev'rfgl‘p) # 0 and are
cohomological, that isH*(gl(R), SG(R); 74,) # 0.
We consider the decomposition of the cohomology with compact supp¢ jof.

H1(X(p), C©) = &, H(glo(R), S(R); 7o) ® 7. P,

where ther’s that appear in the product are of weight 2, verify” = 0 and are co-
homological. The space!(gl,(R), SG:(R); 7.) is a 2-dimensional complex vector
space. On each of the above summaRls(Z/ pZ) acts through a representation of
the form 1® ¢!, whereg, is a representation @L,(Z/pZ) onz;”. The space

H&(X(p), @) has a decomposition of the same formHE X (p), C):
Helt(x(p)’ @I) = ®”U@| () ®ag, ﬁ.f(p)’

where ther’s that appear in the product are of weight 2, veviff/(p) # 0 and are
cohomologicalUg, () is the@,-space of dimension 2 arftf ® is aQ,-space. The
group G acts on each summand bL(X(p), Q) by a representation of the form
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'p.1 ® 1. We denote by, the representation oﬁf‘p) that corresponds t@,. Since

HAX(p), Q) = T/(J)" ®; Q (hereT,(J)" is the dual space dF, (J)) we obtain

a decomposition of the same form as aboveMoe= T, (J) ®; Q and writeV[]
(see the above decomposition) for theomponent. By the result of Shimura and the
irreducibility of p,, (the irreducibility ofp, is proved in SectioB.2) and multiplicity
one ofr combined,V[x] is isomorphic top,; ® ¢, as(Gq, GLx(Z/pZ))-module.
For the twistJ’ of J we putV’ = T;(J’) ®; Q,. Then by PropositioR.2, the action

of Gq onV’'[xr] is given byp, | ® (¢, o p). Thus, we get

L(s, X'(P) = [ [L(S, px1 ® (@ 0 p)).

Hence, we proved the following result, which is the first part of the main theorem
from the introduction:

PROPOSITION2.3. The zeta function of the cur¢'(p) that is obtained from the
compactified modular curv¥ (p) via twisting by a continuous Galois representation
p : Gg = GLx(Z/pZ) composed with the natural action of G/ pZ) on X(p) is
equal to

L(s, X () = [ L(s: pr1 ® @z 0 ),

where ther’s that appear in the product are of weigBt with nf(p) # 0 and are
cohomological.

REMARK 1. Here we have used the fact thats, p, ;) = L(s — 1/2, ) by the
solution of the local Langlands conjecture ®k,. We computed the zeta function of
X'(p) only up to Euler factors at the prime numbéris pd, whered is the discriminant
of K/Q.

REMARK 2. We can replacg and X (p) in the proof of the theorem by an arbitrary
positive integeiN and X (N) and obtain essentially the same result.

Actually we studied the twisted curves slightly different from those usedzhif
order to treat the general The Galois representatignthat Wiles used in]2] comes
from an elliptic curve oveQ. Thus its action orQ($p) is given by dep composed
with the cyclotomic characteZ/pz)* = Gal(Q(¢p)/Q). Thus the action coincides
with the action ofGL,(Z/pZ) c Aut(X(p)) on Q(¢,); so, we can actually make
quotient of X(p) ®specar,) SPeEK) by the diagonal action. The new curve thus
obtained, slightly different from the one we studied, is the curve Wiles used whose
zeta function can be computed in the same manner as we described.
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3. Meromorphic continuation

Now we try to continue meromorphically the zeta functios, X'(p)) to the whole
complex plane. Since

L(s, X'(p) = [ L(S, ot ® (¢ 0 p)),

it is sufficient to continue meromorphically the functibiis, » ® o), wherep, is the
Galois representation

Pl GQ - GL2(@|) = GL(O),

| prime, | # p associated to a cuspidal automorphic representatiaf weight 2,
with 71 ® £ 0 andw : Gg — GLy(C) is an Artin representation.

Let Qs := Q(a(q) | g prime g { Ip), wherea(q) := Tr(p (Froh,)) if q 1 Ip,
and Frol is the Frobenius element gt(po is unramified outsidép). If we change
the primel, then we obtain also the value afl). It is known thatQ; is a finite
extension ofQ. The field Q; is the minimal field of rationality ofr. Let O; be
the integer ring ofQ; and O, the [ completion of O; for a prime factorf of | in
Q¢. Then,p : G — GL,(O) is continuous, unramified outsidp and satisfies
Tr(pi(Froky)) = a(q) and detp (Frohy)) = €(q)q for q prime, g t Ip, wheree is
a Dirichlet character. Strictly speaking, we should have wrigeimstead ofp,, but
we keep the symbab, to simplify our notation. We say that is of CM type if
the associated representatignis an induced from a Galois character ®f; for a
quadratic imaginary extensidvi/Q.

DefineK to be the fixed field of K&kw).

3.1. CM case First we consider the case whenis of CM type. By the work of
Langlands and Jacquet (se& Theorem 7.4]) for any number field, one can find
an automorphic representatignof GL,(Ag) and a place. of the minimal field of
rationality of ¢ abovel such thatp,, ~ plc.. We take the number fiel& to be a
Galois extension of) that containK.

By Brauer’s theorem (se®[Theorems 16 and 19]), we can fifd C E such that
Gal(E/F) is solvable and the characteys: Gal(E/F) — C* and the integers,
such that the representation

o : Gal(E/Q) - GallK/Q) — GLy(C),

can be written as
i=k

w = Zmi |ndg§ Xis

i=1



98 Cristian Virdol [10]

as a virtual sum. We denote also lythe corresponding character of adele class
groupAg /F* by class field theory. We know (se, Lemma 11.6]) that there is a
cuspidal automorphic representatipnof GL,(Ar ) and a prime.; abovel such that
ol ~ Py .1y~ Then we have

i=k i=k i
Lsm@o) =[[L(sa®ind x) =]t (s md (s, ®x))
i=1 i=1
i=k
=[]L(s-1/2 ¢ ® xi o det™

i=1

which is a product of_-functions that have a meromorphic continuation to the whole
complex plane and verify a functional equation. Thu(s, o ® w) can be meromor-
phically continued to the whole complex plane wheis of CM type.

3.2. Solvable extension of a totally real field and non CM caseWe consider the
case wherK /Q is a solvable extension of Galois totally real fidtiddands is not of
CM type. We prove in this case thiats, py ® w) has a meromorphic continuation and
verifies a functional equation. Latbe thd-adic cyclotomic characteg; : Gg — Z*
for I a prime number an& a number field. We want to use the following theorem of
R. Taylor:

THEOREM 3.1 (Taylor, [L1]). Suppose thalt is an odd prime and thak/[F, is a
finite extension. LeF be a totally real field ang’ : G — GL,(k) a continuous
representation. Suppose that the following conditions hold

(1) The representatiop’ is irreducible.
(2) For every placev of F abovel, we have

’ ~ € Xv,1 *
Ple, = ( 0 Xv,2> .

where G, is the decomposition group aboweand x, . and y, . finitely ramified
characters.
(3) For every complex conjugatiar) we havedetp’(c) = —1.

Then there is a finite Galois totally real extensi&jyF in which every prime of
abovd splits completely , a cuspidal automorphic representagiai GL,(Ag) and a
placer’ of the minimal field of rationality ap abovel such thatp, , >~ p'lg., where
Po : Ge = GL(M,) is the continuous irreducible representation associated,to
the fieldM is the minimal field of rationality of and p, ;. is the reduction o, ;/
modulo)’.
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Moreover, if p’(l,) does not consist of scalar matrices for every placef E
abovel (1, is the inertia group ab’), then the representatiop can be chosen such

that
~ M1 *
pw,x/|Gv/ — ( 0 Mv’,Z) )

whereG, is the decomposition group aboveand the characterg.,, ; and i, » are
the lifts of x, ; and x, » respectively, i’ devidesy.

This statement is a combination of Theorem 1.6 and Corollary 1.710f(in [11,
Theorem 1.6 and Corollary 1.7] the representafidia, verifies dep’|s, = €, but
this condition was imposed only to simplify some notations). In our case where the
field F is a Galois extension df), one can prove that the field that appears in the
above theorem can be taken to be Galois @éby the following argument. By a
M-HBAV over a fieldE we mean a tripl€A, i, j), where

(1) A/E s an abelian variety of dimensidiM : Q];
(2) i:On — End(A/E) (algebra homomorphism which takes 1 to identity);
(3) jisanOy-polarization (seelll, page 133] for details).
In his paper (L1, page 136]), Taylor finds a primp, a totally real fieldM, a Galois
totally real extensiorE/F in which every place abovieand p splits completely, a
quadratic extensioi./F in which every place aboveand p splits and aM-HBAV
(A, i, j)/E such that the representation®g on A[1] is equivalent tq’|., and the
representation d6g on A[p] is equivalent to Ingf V|, for some charactef of G, .
Herei andp are primes oM overl and p. Taking the Galois closurg% of E, the
primes abovep andl in F also split completely irE%' and the above proprieties are
verified for M-HBAV (A, i, j)/E%. Thus we obtain the result that we wanted.
We shall now verify the conditions of Theorednl for some prime numbdrand
o' = ple.. We remark that in order to find ®l-HBAV (A, i, j) as above, in11]
it was assumed that the image of the representatiois not solvable, but using
Proposition 6 below, we can assume this fact.
Forl rational prime we say that is|-ordinary ifa(l) is a unit inO,. We have the
following proposition (seel], Proposition 2.2]):

PrROPOSITION3.2 (Serre).Any cuspidal automorphic representatignof weight2
as above i$-ordinary for a set of primes of density

Using the same notations as above, we know by the work of Deligne, Mazur and
Wiles the following theorem (sed,[Theorem 3.26]):

THEOREM 3.3 (Deligne, Mazur-Wiles)If a(l) is a unit in O, for a prime factor(
ofl, thenp |g =~ (6'32 ;1), whereG, is the decomposition group htthe charactei;
is unramified and; is finitely ramified.
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We remark that we can use Propositi®r to find a primel and a prime ideal,
such that(l) is a unit inO,. Thus, the conditions of TheoreBi3are verified and we
can choosé such thatp |, Vverifies condition (2) of Theorer®.1 Also, it is known
that detp (c) = —1, so we have det|s.(c) = —1 for all complex conjugations,
thus we verified condition (3) of Theore®l

We now verify condition (1) of Theorer®.1, that is, the irreducibility of |, -

Let - be the residue field oD, mod the maximal ideal ang be the reduction of
n - Gg — GLy(O)). By a nice result of Ribet (seg[Section 4]) we have:

ProPOSITION3.4 (Ribet). For all but finitel, the representatiop, is full if  is not
of CM type, that is, SI(F)) C p(Gq).

Actually Ribet proved a slightly stronger result concern8lg(fF;s) for an explicit
0 < s <r. Thus we can choose an odd primsuch thatSL,(F|) C 5(Gq). We
prove the following proposition:

ProPOSITION3.5. For all but finite |, the representatiof, |, is full and hence
irreducible for any totally real extensioB/F.

PrROOF. Using Propositior3.4 we may assume thatis odd and thaSLy(F,) C
0(Gq). For anyx € Gq, xcx ! fixes E, becauseE is totally real. Since i)
containsSLy(F,), we have that ing |g.) contains all theSL,(F,) conjugates op, ().
We can choose a basis for such thatp (c) is the diagonal matrix with diagonal
entries 1 and-1. Let(g‘ 3) € SLy([F,). Then we have that

a b\/1 0)\/a b\ _(a by/1 0\(/d -b
c d/\o -1/\c d/ ~\c d/\0o - —Cc a
ad + bc —2ab L
:( ocd _bC_da>€|m(P||GE)-

Fora=d = 1andc = 0 we gettha(} %) € im(ps.). Thus, we have

1 —2b\ (1 0\ (1 -2b\ . _
o -1/)\o -1/ \o 1 € Im(pilee)-

Since 2 is invertible irf; andb is an arbitrary element df;, we get that inip |c.)
contains all the elements of the for(ﬁ f‘l) withee . Fora=d=1andb=0
we get(2 %) €im(ails.). Thus,

1 0\(1 0\ (1 0O\ . _
oc —1)\o —1) T \2c 1) € M@rlee)
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and we obtain that irfp |c.) contains all the elements of the for(r} E) for f € [F.
But the elementg}¢) and( {7) with e, f € F generateSLy(F)), S0 fis, is full.
Thus,p |6, is irreducible. O

So we proved that we can fiidsuch thatp, |, is irreducible and verifies condi-
tions (2) and (3) of Theorer®.1 We fix anl that verifies these proprieties. Thus, we
can conclude using TheoreBnl, that there is a Galois totally real extensigrof Q,
which containsk, a cuspidal automorphic representatigrof GL,(Ag) and a place
A" of the field of coefficients op’ abovel such thaip, ;, ~ pil.-

Now we use the following theorem (this i$Q, Theorem 5.1]):

THEOREM 3.6. Let F be a totally real number field and let : GalF/F) —
GL,(Q)) be a representation satisfying

(1) p is continuous and irreducibje

(2) p is unramified at all but a finite number of finite places
(3) detp(c) = —1for all complex conjugations;

(4) detp = e, wherey is a character of finite order

(5) plp, ~ (‘f; ;2) with ¢,|,, having finite order, wher®;, fori = 1,...,t are
the decomposition groups at the plaags. .., v; of F dividingl andl; c D; are the
inertia groups

(6) p is irreducible andp|p, ~ (Xo‘l X*;), i =1,....t withxi # x} andx} = ¥
mod A;

(7) there exists an automorphic representatiofnof GL,(Ag) and a primeig of
the field of coefficients of, abovel such thatp,,,, >~ p and p.,;,lp, = (“;1 (;2),
i=1,....,t,andx, = ¢5, mod .

Then we have ~ p, ;. for some automorphic representatianand some prime.;
of the field of coefficients af abovel.

We show now, that the representatiofe,. verifies all the conditions of the The-
orem 4: the representatign|s. is irreducible, since we have choskero thatp |,
is irreducible; conditions (1)—(4) are verified (see the beginning of Segjicondi-
tion (5) is proved by Theorer®.3 out of our choice of; condition (6) is satisfied also
(for a bigl), since we proved that |, is irreducible by our choice dfand (using the
notations of Theorer3.3) we haveg s, mod i # §; mod A for | sufficiently large,
sinces, is a finite character independentiainde (1;) increases linearly with, while
81 is unramified; condition (7) is satisfied by Theor@&u by our choice of. Thus
we can choosksuch that TheorerB.6is verified.

Hence we can apply Theoref6 to find an automorphic representatignof
GL:(Ag) and a place. of the field of coefficients of abovel such thaip, , ~ pilc,-
The fieldK is a Galois solvable extension Bf, so the fieldK E is a Galois solvable
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extension ofE. By Langlands base change for Galois cyclic extensions @ee [
Proposition 11.5]), we get a automorphic representapionf GL,(Axg) and a place
A" of the field of the coefficients af” abovex such thatp, ;» ~ pi|c,.-

Thus we proved the following theorem, which is a combination of the above
discussion and the beginning of Sectidi:

THEOREM 3.7. If & is a cuspidal automorphic representation of BAy), of
weight2 and K is a solvable extension of a totally real field, then there is a solvable
extension of a totally real fielt’ that containsK and an automorphic representa-
tion ¢” of GLy(Ak.) and a primer” of the field of coefficients @f’ abovel such that

Pr |GK/ ~ pw”,)ﬂ’-

In order to prove the meromorphic continuationlofs, o ® @) we can use the
same method as in Secti@nl To find¢; as in SectiorB.1 out of ¢” (in Section3.1
the representation wag), we use the result of Langlands (sé& Lemma 11.6])
thate” descends t@;, becauseK E/F; is a solvable Galois extension. We deduce
thatL (s, o ® w) can be meromorphically continued to the whole complex plane and
verifies a functional equation whéfis solvable extension of a totally real field and
is not of CM type.

Combining this section where we treated non CM type case and Sécligread
the last sentence of SectiBrl) where we treated the CM type case, we can conclude
in particular that when the fiel&k is a solvable extension of a Galois totally real
field, L (s, W) has a meromorphic continuation to the complex plane and verifies
a functional equation. Thus, we proved the second part of the main theorem from the
introduction.
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