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Abstract

In this paper we compute and continue meromorphically to the whole complex plane the zeta function
for twisted modular curves. The twist of the modular curve is done by a modp representation of the
absolute Galois group.

2000Mathematics subject classification: primary 11G18, 11R42, 11R65.

1. Introduction

In Chapter 7 of his book [9], Shimura computed the zeta function for modular curves
and modular abelian varieties by relating the Frobenius morphism with Hecke opera-
tors using some congruence relations. We will use some of his ideas to compute the
zeta function of the curves that we will define below. When the modp representation
is associated to a rational elliptic curve, such a twisted modular curve was defined and
used in a paper by Wiles [12, Remark 2]. LetX.p/=Q be the modular curve of the
principal congruence subgroup0.p/ of SL2.Z/ for a primep ≥ 7 (we do not consider
5≥ p, since for these values, the modular curve has genus 0), which is a geometrically
disconnected curve whose connected components arep− 1 copies of the half upper
plane quotient out by0.p/. Let X.p/ be the compactification ofX.p/. The curve
X.p/ has an action ofGL2.Z=pZ/ as specified later (see Section2.1). For a number
field F we denote byGF the Galois group Gal.Q=F/. We consider a continuous
Galois representation² : GQ → GL2.Z=pZ/, and letX′.p/=Q be the curve obtained
from X.p/=Q via twisting by² composed with the action ofGL2.Z=pZ/ on X.p/
(see Section2.2for the definition ofX ′.p/).
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Let 0̂.p/ be the adelic principal congruence subgroup of levelp in GL2.A f /,
whereA f is the finite part of the adele ringAQ ofQ. Let³ = ³ f ⊗ ³∞ be a cuspidal
automorphic representation ofGL2.AQ/, where³ f and³∞ are representations of
GL2.A f / andGL2.R/, respectively. IfK is an open compact subgroup ofGL2.A f /, let
³ K

f denote the space ofK -fixed vectors of³ f . One can associate to a representation³

an L-function L.s; ³/ which has an analytic continuation to the whole complex
plane as an entire function and verifies a functional equation:s ↔ 1− s (see [2,
Theorems 6.15 and 6.16]).

We fix an isomorphismj : Ql → C and from now on we identify these two fields.
Let ²³;l : GQ → GL2.Ql / ∼= GL2.C/, l prime, l 6= p be the two dimensional contin-
uous Galois representation associated to the cuspidal automorphic representation³ .
Define

L.s; ²³;l / :=
∏

q

Lq.s/;

where

Lq.s/ := det
(
1− j

(
²³;l .Frobq/

)∣∣
V Iq q−s

)−1
;

and Frobq is a Frobenius element atq, Iq is the inertia group atq and V is the
space corresponding to²³;l . ThenL.s; ²³;l / has an analytic continuation to the whole
complex plane as an entire function and verifies a functional equation:s↔ 2− s.

As Shimura proved, we haveL.s − 1=2; ³/ = L.s; ²³;l/. From the work of
Shimura and others (see [9, Theorems 7.11 and 7.13]), we know that theH1 part of
the Hasse-Weil zeta functions ofX.p/ is given by

L.s; X.p// =
∏
³

L.s− 1=2; ³/dim³0̂.p/f ;

where the cuspidal automorphic representations³ that appear in the product are of

weight 2, satisfy³0̂.p/f 6= 0 and are cohomological, which means that

H1.gl2.R/;SO2.R/;³∞/ 6= 0:

Here,H1.gl2.R/;SO2.R/;³∞/ is the Lie algebra cohomology group with respect to
gl2.R/ relative to the maximal compact subgroupSO2.R/.

The groupGL2.Z=pZ/ acts on the modular curveX.p/. The composition of this
action with² gives us an action ofGQ on X.p/. Taking complex points ofX.p/ we
get thatGQ acts onX.p/.C/ through this geometric action onX.p/. ThusGQ acts
on H1.X.p/;C/. Using this commutativity of this action and of the Hecke operators

outsidep we obtain the representatioñ'³ ◦ ² of GQ on ³0̂.p/f (see the beginning of
Section2.6for the definition of'̃³ ).
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Let

L.s; ²³;l ⊗ .'̃³ ◦ ²// :=
∏

q

L ′q.s/;

where we denote

L ′q.s/ := det
(
1− j

(
²³;l .Frobq/

∣∣
V Iq ⊗ .'̃³ ◦ ²/ .Frobq/

∣∣
U Iq

)
q−s

)−1

andU is the space corresponding to'̃³ ◦ ².
We have two curvesX.p/=Q and the twisted oneX ′.p/=Q. Their jacobiansJ

and J ′ are identical overQ, but the Galois actions onJ and J ′ are different. The
difference is described by the representation'̃³ ◦ ². Then we go through Shimura’s
computation of the zeta function ofX.p/ modifying the Galois action bỹ'³ ◦ ²
and we obtain the first part of the following theorem (which is a consequence of
Proposition2.2):

THEOREM1.1. We have

L
(
s; X′.p/

) =∏
³

L.s; ²³;l ⊗ .'̃³ ◦ ²//;

where the cuspidal automorphic representations³ ′s that appear in the product are

of weight2, verify³0̂.p/f 6= 0 and are cohomological. If the representation² factors
through the Galois group of a solvable Galois extension of a totally real field(that
is, the fieldK := .Q/ker.²/ is a solvable extension of a totally real field), then the
L-functionL

(
s; X′.p/

)
has a meromorphic continuation to the whole complex plane

and verifies a functional equation.

In this theoremL
(
s; X′.p/

)
represents theH1 part of the zeta function ofX ′.p/.

Meromorphic continuation is done combining the technique of Artin-Brauer with a
recent result of Taylor [11] and theGL2-base change for cyclic extensions proven by
Langlands [6]. We shall compute theL-function in the following section and prove
the meromorphic continuation in Section3.

2. Computation of the zeta function

2.1. Known facts Let us recall some known facts (see [3] or [5]) which will be used
in the proof of Theorem1.1. Let N be a positive integer withN > 2, Sa scheme, and
E=San elliptic curve overS. If N : E→ E is the multiplication byN, then the kernel
of this morphismE[N]=S= ker[N] is a locally free group scheme of rankN2 overS.
A level N-structure is by definition a group scheme isomorphism� : .Z=NZ/2=S→
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E[N]=S. Let SCH be the category of schemes and SETS be the category of sets. We
consider the following functoržN : SCH=Spec.Z[1=N]/→ SETS:

žN.S/ = [.E; �/=S | E=S an elliptic curve,� a levelN structure];

where ‘[·]’ means the set of isomorphism classes of the objects in the brackets. Two
structures.E; �/ and.E′; �′/ are isomorphic by' : E → E′ if ' is an isomorphism
and' ◦ � = �′. It is known that the functoržN is representable over Spec.Z[1=N]/
by an affine curveX.N/. There is a natural action ofGL2.Z=NZ/ on žN which is
given by.E; �/→ .E; � ◦ g/, if g ∈ GL2.Z=NZ/. The action of−1 ∈ GL2.Z=NZ/
is trivial because−1 : E → E induces an isomorphism.E; �/ ∼= .E; � ◦ .−1//.
SincežN is representable byX.N/ over Spec.Z[1=N]/, the groupGL2.Z=NZ/ acts
on X.N/=Spec.Z[1=N]/.

It is known also that (see [5, Lemma 10.3.2]):

PROPOSITION2.1. The group GL2.Z=NZ/ acts on the compactified modular curve
X.N/.

2.2. Construction of the twisted curve We fix a continuous representation

² : GQ → GL2.Z=pZ/

where p is a prime number. LetK be the finite Galois extension ofQ defined by
K := .Q/ker.²/.

Suppose that a groupG acts on an affine schemeX = Spec.R/. ThenG determines
an action onR. If we considerRG = {r ∈ R | gr = r; ∀g ∈ G}, thenRG is a ring.
We have that Spec.RG/ = Spec.R/=G as a geometric quotient ifR=RG is étale (see
[3, Proposition 1.8.4]). IfX is not affine and we can coverX by affine schemes that
are stable underG, we similarly obtain a geometric quotientX=G.

Let X′ = X.p/ ×Spec.Z[1=pd]/ Spec.OK [1=pd]/, whereOK is the ring of integers
of K , d is the discriminant ofK=Q, and OK [1=pd] is the sub-ring ofK in which
pd is inverted. The groupGL2.Z=pZ/ acts onX.p/. Since² : Gal.K=Q/ ,→
GL2.Z=pZ/, the group Gal.K=Q/ acts onX.p/. The Galois group Gal.K=Q/ has a
natural action on Spec.OK [1=pd]/ and we can descend via the quotient processX′ to
X ′.p/=Spec.Z[1=pd]/ using the diagonal action

Gal.K=Q/ 3 ¦ → ².¦/⊗ ¦

on X′. Thus, we obtain a smooth projective curveX ′.p/=Spec.Z[1=pd]/. This is the
twisted curve that we mentioned in the title. If we do descend as above the jacobian
of X.p/=Spec.Z[1=pd]/, we obtain the jacobian ofX′.p/=Spec.Z[1=pd]/.
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2.3. Zeta Function for curves We recall briefly the definition of theH1 part of
the Hasse-Weil zeta function of a smooth projective curveX overS= Spec.Z[1=N]/
whereN is a positive integer. We hereafter call theH1 part, the zeta function ofX
for simplicity. First let us considerFp a finite field of characteristicp and J=Fp an
abelian variety. LetJ[l n] the l n-torsion points for a prime numberl 6= p. The Galois
group Gal.Fp=Fp/ acts onJ[l n] for all natural numbersn and taking the limit

Tl .J/ = lim←− J[l n];

we get the Gal.Fp=Fp/-moduleTl .J/. We write²l : Gal.Fp=Fp/→ GL.Tl .J// for the
resulting representation. LetL p.T/ = det.1− ²l .�p/T/, where�p is the Frobenius
element

Gal.Fp=Fp/ 3 .x→ x p/:

The polynomialL p.T/ ∈ Z[T] does not depend onl .
Now, letX be a smooth proper curve overS= Spec.Z[1=N]/, andJ be the jacobian

of X. ThenJ is an abelian scheme overS= Spec.Z[1=N]/. We denote

J.l / = J ×Spec.Z[1=N]/ Spec.Fl /;

for l prime, l - N. We define the zeta function ofX over S= Spec.Z[1=N]/ as the
product

L.s; X=S/ =
∏
l -N

Ll .l
−s/−1

Here the definition of the zeta function is given up to the factors atl | N.

2.4. Twisted Galois action onJ To simplify the notations we regard our curves
X.p/ andX ′.p/ as curves over Spec.Q/. Let J andJ ′ be the jacobians ofX.p/ and
X ′.p/ respectively.

We obtainedX ′.p/ from X.p/ first tensoring by Spec.OK [1=pd]/ and then making
the diagonal quotient. The difference of the action ofGQ on the Tate modulesTl .J/and
Tl .J ′/ can be described in the following way: AsZl -modules, we haveTl.J/ = Tl .J ′/,
but the Galois action is different. We write the Galois action of¦ ∈ GQ on Tl .J/ as
x→ x¦ . We want to describe the action ofGQ on Tl .J ′/ in terms of the action ofGQ

on Tl .J/ and
² : GQ → GL2.Z=pZ/:

The Galois representation² composed with the action ofGL2.Z=pZ/ on X.p/ induces
a representation

² ′′ : GQ → Aut.Tl.J//:

PROPOSITION2.2. The action of¦ ∈ GQ on Tl .J ′/ is given byx 7→ ² ′′.¦ /x¦ .
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PROOF. Let ² ′ : GQ → Aut.X.p// be the composition of² : GQ → GL2.Z=pZ/
and of the action ofGL2.Z=pZ/ on X.p/. Let W = X.p/×Spec.Q/ Spec.Q/. We have

W.Q/ = HomSpec.Q/.Spec.Q/; X.p//× HomQ.Q;Q/:

An element− ∈ GQ acts onW.Q/ by

− .x; g/ = .² ′.− /.x/; g−−1/;

where.x; g/ ∈ W.Q/. This is the diagonal action onW.Q/ that we use to do descent.
In this circumstance, we can realize the descent as a geometric quotient ofW by the
action ofGQ.

SinceX ′.p/ is obtained fromX.p/×Spec.Q/Spec.K /by a twist of Gal.K=Q/-action,
we have

X.p/×Spec.Q/ Spec.K / = X ′.p/×Spec.Q/ Spec.K /:

Thus, we getX.p/.Q/ = X ′.p/.Q/. Let u = [.x; 1/] ∈ X ′.p/.Q/ = X.p/.Q/ be a
class of the quotient ofW.Q/, determined by the above action. The groupGQ acts
through its arithmetic action onX.p/.Q/ sendingu → u¦ = [.x¦ ; 1/]. Then we
describe the action ofGQ on X ′.p/.Q/ in terms of the action ofGQ on X.p/.Q/:

u→ u¦
′ = [.x; 1/]¦ ′ = [.x¦ ; ¦ /] = [¦−1.² ′.¦ /x¦ ; 1/]
= [.² ′.¦ /x¦ ; 1/] = ² ′.¦ /[.x¦ ; 1/] = ² ′.¦ /u¦ ;

where we attach a′ to ¦ to indicate when we refer to the action ofGQ on X ′.p/.Q/.
Thus¦ ∈ GQ acts onX ′.p/.Q/ by sendingu → ² ′.¦ /u¦ . We explained above

the action ofGQ on X ′.p/.Q/ in terms of the action ofGQ on X.p/.Q/. We obtain
the action in the proposition replacingX.p/ andX ′.p/ by their jacobians and by their
Tate modules.

2.5. Complex points on the modular curve We have

X.p/.C/ = GL+2 .Q/\GL+2 .AQ/=0̂.p/SO2.R/R
×;

where

GL+2 .Q/ = {g ∈ GL2.Q/ | detg > 0};
the ringAQ is the adele ring ofQ andGL+2 .AQ/ = GL2.A f /GL+2 .R/, A f is the finite
part of the adele ringAQ, and

0̂.p/ = {x ∈ GL2.Ẑ/ | x ≡ 1.p/}

with Ẑ = 5pZp.
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The groupGL2.Z=pZ/ acts onX.p/.C/. This action can be described in terms of
the following action:GL2.Zp/ ,→ GL2.AQ/ by Þ 7→ .1; : : : ; Þ; 1; : : : ; 1/ (Þ is the p
component). Using the isomorphismGL2.Z=pZ/ ∼= GL2.Zp/=0̂.p/p, where

0̂.p/p = {x ∈ GL2.Zp/|x ≡ 1.p/};
we get the action ofg ∈ GL2.Zp/ on X.p/.C/which is given by the left multiplication
at thep component.

2.6. The zeta function of the twisted curve Let ³ = ³ f ⊗ ³∞ be a cuspidal
automorphic representation ofGL2.AQ/, where³ f and³∞ are representations of
GL2.A f / andGL2.R/, respectively. Let

²³;l : GQ→ GL2.Ql / ∼= GL2.C/;

l prime,l 6= p be the two dimensional continuous Galois representation associated to
³ . If K is an open compact subgroup ofGL2.A f /, let³ K

f denote the space ofK -fixed
vectors of³ f .

We write ³0̂.p/f = ³
∏

l 6=p GL2.Zl / ⊗ ³0̂.p/p
p . By the work of Shimura and others we

know that

L
(
X.p/; s

) =∏
³

L.s− 1=2; ³/dim³0̂.p/f ;

where the³ ′s that appear in the product are of weight 2, verify³0̂.p/f 6= 0 and are
cohomological, that is,H1.gl2.R/;SO2.R/;³∞/ 6= 0.

We consider the decomposition of the cohomology with compact support ofX.p/:

H1
c .X.p/;C/ = ⊕³ H1.gl2.R/;SO2.R/;³∞/⊗ ³0̂.p/f ;

where the³ ′s that appear in the product are of weight 2, verify³0̂.p/f 6= 0 and are co-
homological. The spaceH1.gl2.R/;SO2.R/;³∞/ is a 2-dimensional complex vector
space. On each of the above summands,GL2.Z=pZ/ acts through a representation of

the form 1⊗ '−1
³ , where'³ is a representation ofGL2.Z=pZ/ on ³0̂.p/f . The space

H1
et.X.p/;Ql / has a decomposition of the same form asH1

c .X.p/;C/:

H1
et.X.p/;Ql / = ⊕³UQl

.³/⊗Ql
³̃
0̂.p/
f ;

where the³ ′s that appear in the product are of weight 2, verify³0̂.p/f 6= 0 and are

cohomological,UQl
.³/ is theQl -space of dimension 2 and̃³0̂.p/f is aQl -space. The

groupGQ acts on each summand ofH1
et.X.p/;Ql / by a representation of the form
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t²−1
³;l ⊗ 1. We denote bỹ'³ the representation oñ³0̂.p/f that corresponds to'³ . Since

H1
et.X.p/;Ql / ∼= Tl .J/∨ ⊗Zl Ql (hereTl .J/∨ is the dual space ofTl .J/) we obtain

a decomposition of the same form as above forV = Tl .J/ ⊗Zl Ql and writeV[³ ]
(see the above decomposition) for the³ component. By the result of Shimura and the
irreducibility of²³;l (the irreducibility of²³;l is proved in Section3.2) and multiplicity
one of³ combined,V[³ ] is isomorphic to²³;l ⊗ '̃³ as.GQ;GL2.Z=pZ//-module.
For the twistJ ′ of J we putV ′ = Tl .J ′/⊗Zl Ql . Then by Proposition2.2, the action
of GQ on V ′[³ ] is given by²³;l ⊗ .'̃³ ◦ ²/. Thus, we get

L.s; X ′.p// =
∏
³

L.s; ²³;l ⊗ .'̃³ ◦ ²//:

Hence, we proved the following result, which is the first part of the main theorem
from the introduction:

PROPOSITION2.3. The zeta function of the curveX ′.p/ that is obtained from the
compactified modular curveX.p/ via twisting by a continuous Galois representation
² : GQ → GL2.Z=pZ/ composed with the natural action of GL2.Z=pZ/ on X.p/ is
equal to

L
(
s; X′.p/

) =∏
³

L.s; ²³;l ⊗ .'̃³ ◦ ²//;

where the³ ′s that appear in the product are of weight2, with ³0̂.p/f 6= 0 and are
cohomological.

REMARK 1. Here we have used the fact thatL.s; ²³;l/ = L.s− 1=2; ³/ by the
solution of the local Langlands conjecture forGL2. We computed the zeta function of
X ′.p/ only up to Euler factors at the prime numbersl | pd, whered is the discriminant
of K=Q.

REMARK 2. We can replacep andX.p/ in the proof of the theorem by an arbitrary
positive integerN andX.N/ and obtain essentially the same result.

Actually we studied the twisted curves slightly different from those used in [12] in
order to treat the general². The Galois representation² that Wiles used in [12] comes
from an elliptic curve overQ. Thus its action onQ.�p/ is given by det² composed
with the cyclotomic character.Z=pZ/× ∼= Gal.Q.�p/=Q/. Thus the action coincides
with the action ofGL2.Z=pZ/ ⊂ Aut.X.p// on Q.�p/; so, we can actually make
quotient of X.p/ ⊗Spec.Q.�p// Spec.K / by the diagonal action. The new curve thus
obtained, slightly different from the one we studied, is the curve Wiles used whose
zeta function can be computed in the same manner as we described.
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3. Meromorphic continuation

Now we try to continue meromorphically the zeta functionL.s; X ′.p// to the whole
complex plane. Since

L
(
s; X′.p/

) =∏
³

L.s; ²³;l ⊗ .'̃³ ◦ ²//;

it is sufficient to continue meromorphically the functionL.s; !⊗ ²l /, where²l is the
Galois representation

²l : GQ→ GL2.Ql / ∼= GL2.C/;

l prime, l 6= p associated to a cuspidal automorphic representation³ of weight 2,

with ³0̂.p/f 6= 0 and! : GQ → GLN.C/ is an Artin representation.
Let Q f := Q.a.q/ | q prime;q - lp/, wherea.q/ := Tr.²l .Frobq// if q - lp,

and Frobq is the Frobenius element atq (²l is unramified outsidelp). If we change
the primel , then we obtain also the value ofa.l /. It is known thatQ f is a finite
extension ofQ. The field Q f is the minimal field of rationality of³ . Let Of be
the integer ring ofQ f and Ol the l completion ofOf for a prime factorl of l in
Q f . Then,²l : GQ → GL2.Ol/ is continuous, unramified outsidelp and satisfies
Tr.²l .Frobq// = a.q/ and det.²l .Frobq// = ž.q/q for q prime, q - lp, wherež is
a Dirichlet character. Strictly speaking, we should have written²l instead of²l , but
we keep the symbol²l to simplify our notation. We say that³ is of CM type if
the associated representation²l is an induced from a Galois character ofGM for a
quadratic imaginary extensionM=Q.

DefineK to be the fixed field of Ker.!/.

3.1. CM case First we consider the case when³ is of CM type. By the work of
Langlands and Jacquet (see [2, Theorem 7.4]) for any number fieldE, one can find
an automorphic representation' of GL2.AE/ and a place½ of the minimal field of
rationality of' abovel such that²';½ ∼ ²l |GE . We take the number fieldE to be a
Galois extension ofQ that containsK .

By Brauer’s theorem (see [8, Theorems 16 and 19]), we can findFi ⊂ E such that
Gal.E=Fi / is solvable and the characters�i : Gal.E=Fi /→ C× and the integersmi

such that the representation

! : Gal.E=Q/→ Gal.K=Q/→ GLN.C/;

can be written as

! =
i=k∑
i=1

mi IndGQ

GFi
�i ;
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as a virtual sum. We denote also by�i the corresponding character of adele class
groupA×Fi

=F×i by class field theory. We know (see [6, Lemma 11.6]) that there is a
cuspidal automorphic representation'i of GL2.AFi / and a prime½1 abovel such that
²l |GFi

∼ ²'i ;½1. Then we have

L.s; ²l ⊗ !/ =
i=k∏
i=1

L
(

s; ²l ⊗ IndGQ

GFi
�i

)mi =
i=k∏
i=1

L
(

s; IndGQ

GFi
.²l |GFi

⊗ �i /
)mi

=
i=k∏
i=1

L.s− 1=2; 'i ⊗ �i ◦ det/mi

which is a product ofL-functions that have a meromorphic continuation to the whole
complex plane and verify a functional equation. ThusL.s; ²l ⊗ !/ can be meromor-
phically continued to the whole complex plane when³ is of CM type.

3.2. Solvable extension of a totally real field and non CM caseWe consider the
case whenK=Q is a solvable extension of Galois totally real fieldF and³ is not of
CM type. We prove in this case thatL.s; ²l ⊗!/ has a meromorphic continuation and
verifies a functional equation. Letžl be thel -adic cyclotomic character:žl : GF → Z×l
for l a prime number andF a number field. We want to use the following theorem of
R. Taylor:

THEOREM 3.1 (Taylor, [11]). Suppose thatl is an odd prime and thatk=Fl is a
finite extension. LetF be a totally real field and² ′ : GF → GL2.k/ a continuous
representation. Suppose that the following conditions hold:

(1) The representation² ′ is irreducible.
(2) For every placev of F abovel , we have

² ′|Gv
'

(
žl�v;1 ∗

0 �v;2

)
;

where Gv is the decomposition group abovev and �v;1 and �v;2 finitely ramified
characters.
(3) For every complex conjugationc, we havedet² ′.c/ = −1.

Then there is a finite Galois totally real extensionE=F in which every prime ofF
abovel splits completely , a cuspidal automorphic representation' of GL2.AE/ and a
place½′ of the minimal field of rationality of' abovel such that²̄';½′ ' ² ′|GE , where
²';½′ : GE → GL2.M½′/ is the continuous irreducible representation associated to',
the fieldM is the minimal field of rationality of' and ²̄';½′ is the reduction of²';½′
modulo½′.



[11] Zeta functions of twisted modular curves 99

Moreover, if² ′.Iv′/ does not consist of scalar matrices for every placev′ of E
abovel (Iv′ is the inertia group atv′), then the representation' can be chosen such
that

²';½′ |Gv′ '
(
¼v′;1 ∗

0 ¼v′;2

)
;

whereGv′ is the decomposition group abovev′ and the characters¼v′;1 and¼v′;2 are
the lifts of�v;1 and�v;2 respectively, ifv′ devidesv.

This statement is a combination of Theorem 1.6 and Corollary 1.7 of [11] (in [11,
Theorem 1.6 and Corollary 1.7] the representation² ′|Gv

verifies det² ′|Gv
= žl , but

this condition was imposed only to simplify some notations). In our case where the
field F is a Galois extension ofQ, one can prove that the fieldE that appears in the
above theorem can be taken to be Galois overQ by the following argument. By a
M-HBAV over a fieldE we mean a triple.A; i; j /, where

(1) A=E is an abelian variety of dimension[M : Q];
(2) i : OM ,→ End.A=E/ (algebra homomorphism which takes 1 to identity);
(3) j is anOM -polarization (see [11, page 133] for details).

In his paper ([11, page 136]), Taylor finds a primep, a totally real fieldM , a Galois
totally real extensionE=F in which every place abovel and p splits completely, a
quadratic extensionL=F in which every place abovel and p splits and aM-HBAV
.A; i; j /=E such that the representation ofGE on A[½] is equivalent to² ′|GE , and the
representation ofGE on A[p] is equivalent to IndGF

GL
 |GE for some character of GL .

Here½ andp are primes ofM overl and p. Taking the Galois closureEgal of E, the
primes abovep andl in F also split completely inEgal and the above proprieties are
verified for M-HBAV .A; i; j /=Egal. Thus we obtain the result that we wanted.

We shall now verify the conditions of Theorem3.1 for some prime numberl and
² ′ := ²̄l |GF . We remark that in order to find aM-HBAV .A; i; j / as above, in [11]
it was assumed that the image of the representation² ′ is not solvable, but using
Proposition 6 below, we can assume this fact.

For l rational prime we say that³ is l -ordinary if a.l / is a unit inOl. We have the
following proposition (see [1, Proposition 2.2]):

PROPOSITION3.2 (Serre).Any cuspidal automorphic representation³ of weight2
as above isl -ordinary for a set of primes of density1.

Using the same notations as above, we know by the work of Deligne, Mazur and
Wiles the following theorem (see [4, Theorem 3.26]):

THEOREM 3.3 (Deligne, Mazur-Wiles).If a.l / is a unit in Ol for a prime factorl
of l , then²l |Gl '

(
žl Ž2 ∗

0 Ž1

)
, whereGl is the decomposition group atl , the characterŽ1

is unramified andŽ2 is finitely ramified.
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We remark that we can use Proposition3.2 to find a primel and a prime ideall,
such thata.l / is a unit inOl. Thus, the conditions of Theorem3.3are verified and we
can choosel such that²̄l |GF verifies condition (2) of Theorem3.1. Also, it is known
that det²l .c/ = −1, so we have det²l |GF .c/ = −1 for all complex conjugationsc,
thus we verified condition (3) of Theorem3.1.

We now verify condition (1) of Theorem3.1, that is, the irreducibility of²̄l |GF .
Let Fl r be the residue field ofOl mod the maximal ideal and̄²l be the reduction of

²l : GQ → GL2.Ol/. By a nice result of Ribet (see[7, Section 4]) we have:

PROPOSITION3.4 (Ribet).For all but finitel , the representation²l is full if ³ is not
of CM type, that is, SL2.Fl / ⊂ ²̄l .GQ/.

Actually Ribet proved a slightly stronger result concerningSL2.Fl s/ for an explicit
0 < s ≤ r . Thus we can choose an odd primel such thatSL2.Fl / ⊂ ²̄l .GQ/. We
prove the following proposition:

PROPOSITION3.5. For all but finite l , the representation²l |GE is full and hence
irreducible for any totally real extensionE=F .

PROOF. Using Proposition3.4 we may assume thatl is odd and thatSL2.Fl / ⊂
²̄l .GQ/. For anyx ∈ GQ, xcx−1 fixes E, becauseE is totally real. Since im.²̄l /

containsSL2.Fl /, we have that im.²̄l |GE/ contains all theSL2.Fl / conjugates of̄²l .c/.
We can choose a basis for²l such that²l .c/ is the diagonal matrix with diagonal
entries 1 and−1. Let

(
a b
c d

) ∈ SL2.Fl /. Then we have that

(
a b
c d

)(
1 0
0 −1

)(
a b
c d

)−1

=
(

a b
c d

)(
1 0
0 −1

) (
d −b
−c a

)

=
(

ad+ bc −2ab
2cd −bc− da

)
∈ im.²̄l |GE/:

Fora = d = 1 andc = 0 we get that
(

1 2b
0 −1

) ∈ im.²̄l |GE/. Thus, we have

(
1 −2b
0 −1

)(
1 0
0 −1

)
=

(
1 −2b
0 1

)
∈ im.²̄l |GE/:

Since 2 is invertible inFl andb is an arbitrary element ofFl , we get that im.²̄l |GE /

contains all the elements of the form
(

1 e
0 −1

)
with e ∈ Fl . For a = d = 1 andb = 0

we get
(

1 0
2c −1

) ∈ im.²̄l |GE/. Thus,

(
1 0
2c −1

)(
1 0
0 −1

)
=

(
1 0
2c 1

)
∈ im.²̄l |GE /
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and we obtain that im.²̄l |GE/ contains all the elements of the form
(

1 0
f 1

)
for f ∈ Fl .

But the elements
(

1 e
0 1

)
and

(
1 0
f 1

)
with e; f ∈ Fl generateSL2.Fl /, so ²̄l |GE is full.

Thus,²̄l |GE is irreducible.

So we proved that we can findl such that²̄l |GF is irreducible and verifies condi-
tions (2) and (3) of Theorem3.1. We fix anl that verifies these proprieties. Thus, we
can conclude using Theorem3.1, that there is a Galois totally real extensionE of Q,
which containsF , a cuspidal automorphic representation'′ of GL2.AE/ and a place
½′ of the field of coefficients of'′ abovel such that²̄'′;½′ ∼ ²̄l |GE .

Now we use the following theorem (this is [10, Theorem 5.1]):

THEOREM 3.6. Let F be a totally real number field and let² : Gal.F=F/ →
GL2.Ql / be a representation satisfying:

(1) ² is continuous and irreducible;
(2) ² is unramified at all but a finite number of finite places;
(3) det².c/ = −1 for all complex conjugationsc;
(4) det² =  žl , where is a character of finite order;

(5) ²|Di '
(
 i

1 ∗
0  i

2

)
, with  2|Ii having finite order, whereDi , for i = 1; : : : ; t are

the decomposition groups at the placesv1; : : : ; vt of F dividing l and I i ⊂ Di are the
inertia groups;

(6) ²̄ is irreducible and²̄|Di '
(
� i

1 ∗
0 � i

2

)
, i = 1; : : : ; t , with � i

1 6= � i
2 and� i

2 =  i
2

mod½;
(7) there exists an automorphic representation³0 of GL2.AF/ and a prime½0 of

the field of coefficients of³0 abovel such that²̄³0;½0 ' ²̄ and ²³0;½0|Di '
(
�i

1 ∗
0 �i

2

)
,

i = 1; : : : ; t , and� i
2 = � i

2 mod ½.

Then we have² ' ²³;½1 for some automorphic representation³ and some prime½1

of the field of coefficients of³ abovel .

We show now, that the representation²l |GE verifies all the conditions of the The-
orem 4: the representation²l |GE is irreducible, since we have chosenl so that²̄l |GE

is irreducible; conditions (1)–(4) are verified (see the beginning of Section2); condi-
tion (5) is proved by Theorem3.3out of our choice ofl ; condition (6) is satisfied also
(for a bigl ), since we proved that̄²l |GE is irreducible by our choice ofl and (using the
notations of Theorem3.3) we havežl Ž2 mod ½ 6= Ž1 mod ½ for l sufficiently large,
sinceŽ2 is a finite character independent ofl andžl .I i / increases linearly withl , while
Ž1 is unramified; condition (7) is satisfied by Theorem3.1 by our choice ofl . Thus
we can choosel such that Theorem3.6 is verified.

Hence we can apply Theorem3.6 to find an automorphic representation' of
GL2.AE/ and a place½ of the field of coefficients of' abovel such that²';½ ∼ ²l |GE .
The fieldK is a Galois solvable extension ofF , so the fieldK E is a Galois solvable
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extension ofE. By Langlands base change for Galois cyclic extensions (see [6,
Proposition 11.5]), we get a automorphic representation'′′ of GL2.AK E/ and a place
½′′ of the field of the coefficients of'′′ above½ such that²'′′;½′′ ∼ ²l |GK E .

Thus we proved the following theorem, which is a combination of the above
discussion and the beginning of Section3.1:

THEOREM 3.7. If ³ is a cuspidal automorphic representation of GL2.AQ/, of
weight2 and K is a solvable extension of a totally real field, then there is a solvable
extension of a totally real fieldK ′ that containsK and an automorphic representa-
tion '′′ of GL2.AK ′/ and a prime½′′ of the field of coefficients of'′′ abovel such that
²³;l |GK ′ ∼ ²'′′;½′′ .

In order to prove the meromorphic continuation ofL.s; ²l ⊗ !/ we can use the
same method as in Section3.1. To find'i as in Section3.1out of'′′ (in Section3.1
the representation was'), we use the result of Langlands (see [6, Lemma 11.6])
that'′′ descends to'i , becauseK E=Fi is a solvable Galois extension. We deduce
that L.s; ²l ⊗ !/ can be meromorphically continued to the whole complex plane and
verifies a functional equation whenK is solvable extension of a totally real field and³
is not of CM type.

Combining this section where we treated non CM type case and Section3.1 (read
the last sentence of Section3.1) where we treated the CM type case, we can conclude
in particular that when the fieldK is a solvable extension of a Galois totally real
field, L

(
s; X′.p/

)
has a meromorphic continuation to the complex plane and verifies

a functional equation. Thus, we proved the second part of the main theorem from the
introduction.
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