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Abstract

In this work we study the structure of approximate solutions of variational problems with continuous
integrandsf : [0;∞/ × Rn × Rn → R1 which belong to a complete metric space of functions. The
main result in this paper deals with the turnpike property of variational problems. To have this property
means that the approximate solutions of the problems are determined mainly by the integrand, and are
essentially independent of the choice of interval and endpoint conditions, except in regions close to the
endpoints.
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1. Introduction and main results

In this paper we analyse the structure of solutions of the variational problems∫ T2

T1

f .t; z.t/; z′.t// dt → min;

{
z.T1/ = x, z.T2/ = y, z : [T1; T2] → Rn is
an absolutely continuous (a.c.) function,

(P)

whereT1 ≥ 0, T2 > T1, x; y ∈ Rn and f : [0;∞/ × Rn × Rn → R1 belongs to a
space of integrands described below.

Let T1 ≥ 0, T2 > T1, x; y ∈ Rn, f : [0;∞/ × Rn × Rn → R1 be an integrand
and letŽ be a positive number. We say that an absolutely continuous (a.c.) function
u : [T1; T2] → Rn satisfyingu.T1/ = x, u.T2/ = y is aŽ-approximate solution of the
problem (P) if ∫ T2

T1

f .t; u.t/; u′.t//dt ≤
∫ T2

T1

f .t; z.t/; z′.t//dt + Ž
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for each a.c. functionz : [T1; T2] → Rn satisfyingz.T1/ = x, z.T2/ = y.
The main results in this paper deal with the so-called turnpike property of the

variational problems (P). To have this property means, roughly speaking, that the
approximate solutions of the problems (P) are determined mainly by the integrand
(cost function), and are essentially independent of the choice of interval and endpoint
conditions, except in regions close to the endpoints.

Turnpike properties are well known in mathematical economics. The term was first
coined by Samuelson in 1948 (see [12]) where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path). This property was further investigated for optimal
trajectories of models of economic dynamics (see, for example, [2, 3, 5, 6, 7, 8, 9, 10,
11] and the references mentioned there). In control theory turnpike properties were
studied in [18, 19] for linear control systems with convex integrands.

Denote by| · | the Euclidean norm inRn. Let a > 0 be a positive constant and let
 : [0;∞/ → [0;∞/ be an increasing function such that .t/ → +∞ ast → ∞.
Denote byM the set of all continuous functionsf : [0;∞/×Rn ×Rn → R1 which
satisfy the following assumptions:

(A.i) The function f is bounded on[0;∞/× E for any bounded setE ⊂ Rn ×Rn.
(A.ii) f .t; x; u/ ≥ max{ .|x|/;  .|u|/|u|} − a for each.t; x; u/ ∈ [0;∞/×Rn ×
Rn.
(A.iii) For eachM; ž > 0, there exist0; Ž > 0 such that

| f .t; x1; u/− f .t; x2; u/| ≤ žmax{ f .t; x1; u/; f .t; x2; u/}
for eacht ∈ [0;∞/ and eachu; x1; x2 ∈ Rn which satisfy

|xi | ≤ M; i = 1; 2; |u| ≥ 0; |x1 − x2| ≤ Ž:

(A.iv) For eachM; ž > 0, there existsŽ > 0 such that

| f .t; x1; u1/− f .t; x2; u2/| ≤ ž

for eacht ∈ [0;∞/ and eachu1; u2; x1; x2 ∈ Rn which satisfy

|xi |; |ui | ≤ M; i = 1; 2; max{|x1 − x2|; |u1 − u2|} ≤ Ž:

In [16, 17] we studied the subset of the setM which consists of allf ∈ M
satisfying the following assumptions:

• for each.t; x/ ∈ [0;∞/× Rn the function f .t; x; ·/ : Rn → R1 is convex;
• for eachM; ž > 0 there exist0; Ž > 0 such that

| f .t; x1; u1/− f .t; x2; u2/| ≤ žmax{ f .t; x1; u1/; f .t; x2; u2/}
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for eacht ∈ [0;∞/ and eachu1; u2; x1; x2 ∈ Rn which satisfy

|xi | ≤ M; |ui | ≥ 0; i = 1; 2; max{|x1 − x2|; |u1 − u2|} ≤ Ž

(see (A.iii )).

This subset will be denoted byMco.
It is easy to show that an integrandf = f .t; x; u/ ∈ C1.[0;∞/×Rn×Rn/ belongs

toM if f satisfies assumption (A.ii ), and if sup{| f .t; 0; 0/| : t ∈ [0;∞/} < ∞ and
also there exists an increasing function 0 : [0;∞/ → [0;∞/ such that

sup

{∣∣∣∣@ f .t; x; u/

@x

∣∣∣∣ ;
∣∣∣∣@ f .t; x; u/

@u

∣∣∣∣
}

≤  0.|x|/.1 +  .|u|/|u|/

for eacht ∈ [0;∞/ and eachx; u ∈ Rn.
For the setM , we consider the uniformity which is determined by the following

base:

E.N; ž; ½/ = {. f; g/ ∈ M ×M : | f .t; x; u/ − g.t; x; u/| ≤ ž for each
t ∈ [0;∞/ and eachx; u ∈ Rn satisfying |x|; |u| ≤ N
and.| f .t; x; u/|+ 1/.|g.t; x; u/|+ 1/−1 ∈ [½−1; ½] for each
t ∈ [0;∞/ and eachx; u ∈ Rn satisfying|x| ≤ N},

(1.1)

whereN > 0, ž > 0, ½ > 1.
Clearly, the spaceM with this uniformity is metrizable (by a metric²w). It was

established in [13, Proposition 2.2] that the metric space.M ; ²w/ is complete. Note
that this uniformity was introduced in [16] for the subsetMco ofM . The metric²w
induces inM a topology.

We consider functionals of the form

I f .T1; T2; x/ =
∫ T2

T1

f .t; x.t/; x′.t// dt(1.2)

where f ∈M , 0 ≤ T1 < T2 < +∞ andx : [T1; T2] → Rn is an a.c. function.
For f ∈M , y; z ∈ Rn and numbersT1; T2 satisfying 0≤ T1 < T2 we set

U f .T1; T2; y; z/ = inf{I f .T1; T2; x/ | x : [T1; T2] → Rn is an a.c.
function satisfyingx.T1/ = y, x.T2/ = z}.

(1.3)

It is easy to see that−∞ < U f .T1; T2; y; z/ < +∞ for each f ∈M, eachy; z ∈ Rn

and all numbersT1; T2 satisfying 0≤ T1 < T2.
Let f ∈ M . A locally absolutely continuous (a.c.) functionx : [0;∞/ → Rn is

called an. f /-good functionif for any a.c. functiony : [0;∞/ → Rn there is a number
My such that

I f .0; T; y/ ≥ My + I f .0; T; x/ for each T ∈ .0;∞/:(1.4)

In [14, Proposition 1.1] we proved the following result.
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PROPOSITION1.1. Let f ∈M and letx : [0;∞/ → Rn be a bounded a.c. function.
Then the functionx is . f /-good if and only if there isM > 0 such that

I f .0; T; x/ ≤ U f .0; T; x.0/; x.T//+ M for any T > 0:

The next result will be proved in Section3.

PROPOSITION1.2. Let f ∈ M and let for each.t; x/ ∈ [0;∞/ × Rn the function
f .t; x; ·/ : Rn → R1 be convex. Then for eachz ∈ Rn there is a bounded. f /-good
functionZ : [0;∞/ → Rn such thatZ.0/ = z and that for eachT > 0,

I f .0; T; Z/ = U f .0; T; Z.0/; Z.T//:

Let f ∈ M . We say thatf has thestrong turnpike property, or briefly (STP), if
there exists a bounded a.c. functionX f : [0;∞/ → Rn which satisfies the following
condition: For eachK ; ž > 0 there exist constantsŽ; L > 0 such that for each
T1 ≥ 0, T2 ≥ T1 + 2L and each a.c. functionv : [T1; T2] → Rn which satisfies
|v.T1/|; |v.T2/| ≤ K and I f .T1; T2; v/ ≤ U f .T1; T2; v.T1/; v.T2//+ Ž

(i) there are−1 ∈ [T1; T1 + L] and−2 ∈ [T2 − L ; T2] for which

|v.t/− X f .t/| ≤ ž; t ∈ [−1; −2];

(ii) if |v.T1/ − X f .T1/| ≤ Ž, then −1 = T1 and if |v.T2/ − X f .T2/| ≤ Ž, then
−2 = T2.

The functionX f is calledthe turnpike off .
If the integrandf has the strong turnpike property, then the solutions of variational

problems withf are essentially independent of the choice of time interval and values
at the endpoints except in regions close to the endpoints of the time interval. If a
point t does not belong to these regions, then the value of a solution att is closed
to a trajectory (‘turnpike’) which is defined on the infinite time interval and depends
only on f . This phenomenon has the following interpretation. If one wish to reach a
point A from a pointB by a car in an optimal way, then one should turn to a turnpike,
spend most of time on it and then leave the turnpike to reach the required point.

If in the definition above condition (ii) is not assumed, then we say that the inte-
grand f has the turnpike property [17, 15, 14].

In the sequel we use the following definition [4].
Let f ∈ M . We say that an a.c. functionx : [0;∞/ → Rn is . f /-overtaking

optimal if for each a.c. functiony : [0;∞/ → Rn satisfyingy.0/ = x.0/,

lim sup
T→∞

[I f .0; T; x/− I f .0; T; y/] ≤ 0:
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Assume thatf ∈ M and X : [0;∞/ → Rn is a bounded a.c. function. How to
verify if the integrandf has (STP) andX is its turnpike? In this paper we introduce
three properties (P1), (P2) and (P3) and show thatf has (STP) if and only iff
possesses properties (P1), (P2) and (P3). Property (P1) means that all. f /-good
functions have the same asymptotic behavior while property (P2) means thatX is a
unique. f /-overtaking optimal function whose value at zero isX.0/. Property (P3)
means that if an a.c. functionv : [0; T] → Rn is an approximate solution andT is
large enough, then there is− ∈ [0; T] such thatv.− / is close toX.− /. In [14] we
establish thatf has the turnpike property if and only iff possesses properties (P1)
and (P3).

The next theorem is the main result of the paper.

THEOREM1.3. Let f ∈M , for each.t; x/ ∈ [0;∞/× Rn the function f .t; x; ·/ :
Rn → R1 be convex and letX f : [0;∞/ → Rn be a bounded a.c. function. Thenf
has the strong turnpike property withX f being the turnpike if and only if the following
three properties hold:

(P1) For each pair of. f /-good functionsv1; v2 : [0;∞/ → Rn,

|v1.t/− v2.t/| → 0 as t → ∞:

(P2) X f is an . f /-overtaking optimal function and if an. f /-overtaking optimal
functionv : [0;∞/ → Rn satisfiesv.0/ = X f .0/, thenv = X f .

(P3) For eachK ; ž > 0 there exist; l > 0 such that for eachT ≥ 0 and each
a.c. functionw : [T; T + l ] → Rn which satisfies|w.T/|; |w.T + l /| ≤ K and
I f .T; T + l ; w/ ≤ U f .T; T + l ; w.T/; w.T + l // +  there is− ∈ [T; T + l ] for
which|X f .− /− v.− /| ≤ ž.

2. Auxiliary results

We have the following result (see Berkovitz [1]).

PROPOSITION 2.1. Assume thatf ∈ M and f .t; x; ·/ : Rn → R1 is a convex
function for each.t; x/ ∈ Rn ×[0;∞/. Then for each pair of numbersT1; T2 satisfying
0 ≤ T1 < T2 and eachz1; z2 ∈ Rn there exists an a.c. functionx : [T1; T2] → Rn such
that

x.Ti / = zi ; i = 1; 2; I f .T1; T2; x/ = U f .T1; T2; z1; z2/:

In [13] we analyzed the properties of. f /-good functions and established the
following results.
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PROPOSITION2.2 ([13, Theorem 1.1]).For eachh ∈M , eachŽ ∈ .0; 1/ and each
z ∈ Rn, there exists an.h/-good functionZh

Ž : [0;∞/ → Rn satisfyingZh
Ž .0/ = z

such that the following assertions hold:

(1) Let f ∈ M , ž ∈ .0; 1/, z ∈ Rn and let y : [0;∞/ → Rn be an a.c. function.
Then one of the following properties holds:

(i) I f .0; T; y/− I f .0; T; Z f
ž / → ∞ asT → ∞;

(ii) sup{|I f .0; T; y/− I f .0; T; Z f
ž /| : T ∈ .0;∞/} < ∞ and

sup{|y.t/| : t ∈ [0;∞/} < ∞:

(2) For each f ∈ M and each positive numberM , there exist a neighborhoodU
of f in M and a numberQ > 0 such thatsup{|Zg

ž .t/| : t ∈ [0;∞/} ≤ Q for each
g ∈ U , eachž ∈ .0; 1/ and eachz ∈ Rn satisfying|z| ≤ M .
(3) For each f ∈M and each positive numberM , there exist a neighborhoodU of f

inM and a numberQ > 0 such that for eachg ∈ U , eachz ∈ Rn satisfying|z| ≤ M ,
eachž ∈ .0; 1/, eachT1 ≥ 0, T2 > T1 and each a.c. functiony : [T1; T2] → Rn

satisfying|y.T1/| ≤ M the following relation holds:

I g.T1; T2; Zg
ž / ≤ I g.T1; T2; y/+ Q:

(4) For each f ∈M , ž > 0, z ∈ Rn, T1 ≥ 0 andT2 > T1,

I f .T1; T2; Z f
ž / ≤ U f .T1; T2; Z f

ž .T1/; Z f
ž .T2//+ ž:

(5) For each f ∈M , z ∈ Rn and an integeri ≥ 0,

Z f
ž1
.i / = Z f

ž2
.i / for each ž1; ž2 ∈ .0; 1/:

Proposition2.2is an extension of [16, Theorem 1.1] which was established for the
spaceMco. In [16] we have shown that for eachf ∈Mco andz ∈ Rn,

Z f
ž1

= Z f
ž2

for each ž1; ž2 ∈ .0; 1/
and

U f .T1; T2; Z f
ž .T1/; Z f

ž .T2// = I f .T1; T2; Z f
ž /

for eachT1 ≥ 0, T2 > T1 and eachž ∈ .0; 1/.
PROPOSITION2.3 ([13, Proposition 2.6]).Let f ∈ M , 0 < c1 < c2 < ∞ and

let M; ž > 0. Then there existsŽ > 0 such that for eachT1; T2 ≥ 0 satisfying
T2 − T1 ∈ [c1; c2] and eachy1; y2; z1; z2 ∈ Rn satisfying

|yi |; |zi | ≤ M; i = 1; 2; |y1 − y2|; |z1 − z2| ≤ Ž

the relation|U f .T1; T2; y1; z1/− U f .T1; T2; y2; z2/| ≤ ž holds.



[7] The turnpike result 111

PROPOSITION2.4 ([13, Theorem 1.3]).Let f ∈ M and let M1;M2; c be positive
numbers. Then there exist a neighborhoodU of f inM and a numberS> 0 such
that for eachg ∈ U , eachT1 ∈ [0;∞/ and eachT2 ∈ [T1 + c;∞/ the following
property holds: For eachx; y ∈ Rn satisfying|x|; |y| ≤ M1 and each a.c. function
v : [T1; T2] → Rn satisfying

v.T1/ = x; v.T2/ = y; I g.T1; T2; v/ ≤ U g.T1; T2; x; y/+ M2;

inequality|v.t/| ≤ S is valid for t ∈ [T1; T2].
PROPOSITION2.5 ([13, Proposition 2.4]).Let M1; ž > 0, 0 < −0 < −1. Then there

existsŽ > 0 such that for eachf ∈M , eachT1 ∈ [0;∞/, T2 ∈ [T1+−0; T1+−1], each
a.c. functionx : [T1; T2] → Rn satisfyingI f .T1; T2; x/ ≤ M1 and eacht1; t2 ∈ [T1; T2]
which satisfy|t2 − t1| ≤ Ž, relation |x.t1/− x.t2/| ≤ ž holds.

PROPOSITION2.6 ([13, Proposition 2.5]).Let f ∈ M , 0 < c1 < c2 < ∞ and
c3 > 0. Then there exists a neighborhoodU of f inM such that the set

{U g.T1; T2; z1; z2/ : g ∈ U ; T1 ∈ [0;∞/; T2 ∈ [T1 + c1; T1 + c2];
z1; z2 ∈ Rn; |zi | ≤ c3; i = 1; 2}

is bounded.

PROPOSITION2.7. Let T1 ≥ 0, T2 > T1 and letv : [T1; T2] → Rn be a continuous
function. Assume that for each−1; −2 ∈ .T1; T2/ satisfying−1 < −2 the restriction ofv
to [−1; −2] is an a.c. function and

I f .−1; −2; v/ = U f .−1; −2; v.−1/; v.−2//:(2.1)

Then the functionv : [T1; T2] → Rn is an a.c. function and

I f .T1; T2; v/ = U f .T1; T2; v.T1/; v.T2//:(2.2)

PROOF. Choose

M0 > sup{|v.t/| : t ∈ [T1; T2]}:(2.3)

By (2.1), (2.3) and Proposition2.6the set

{I f .−1; −2; v/ : −1; −2 ∈ .T1; T2/; −2 − −1 ∈ .0; .T2 − T1/=8/}
is bounded. It follows from this fact, (A.ii ) and Fatou’s lemma that the integral∫ T2

T1

f .t; v.t/; v′.t// dt
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is finite. Then (A.ii ) implies thatv′ ∈ L1.[T1; T2];Rn/ andv : [T1; T2] → Rn is an
a.c. function.

We show that (2.2) holds. Assume the contrary. Then there is an a.c. function
u : [T1; T2] → Rn such that

u.Ti / = v.Ti /; i = 1; 2; I f .T1; T2; v/− I f .T1; T2; u/ > 21(2.4)

with 1 > 0.
It is not difficult to see that there is ∈ .0; .T2 − T1/=8/ such that:

|I f .s1; s2; v/| ≤ 1=64 for eachs1; s2 ∈ [T1; T1 +  ] satisfying s2 > s1;(2.5)

|I f .s1; s2; v/| ≤ 1=64 for eachs1; s2 ∈ [T2 − ; T2] satisfying s2 > s1;

|I f .s1; s2; u/| ≤ 1=64 for eachs1; s2 ∈ [T1; T1 +  ] satisfying s2 > s1;(2.6)

|I f .s1; s2; u/| ≤ 1=64 for eachs1; s2 ∈ [T2 − ; T2] satisfying s2 > s1:

Choose a number

M1 > sup{|v.t/| : t ∈ [T1; T2]} + sup{|u.t/| : t ∈ [T1; T2]}:(2.7)

By Proposition2.3 there isŽ > 0 such that the following property holds: For each
t1 ≥ 0, t2 ∈ [t1 +  =16; t1 + 16 ] and eachx1; x2; y1; y2 ∈ Rn satisfying

|xi |; |yi | ≤ M1; i = 1; 2; |xi − yi | ≤ Ž; i = 1; 2;(2.8)

the inequality

|U f .t1; t2; x1; x2/− U f .t1; t2; y1; y2/| ≤ 1=64(2.9)

is true.
Choose numberst1; t2 such that

t1 ∈ .T1; T1 +  =4]; t2 ∈ [T2 −  =4; T2];(2.10)

|v.T1/− v.t1/|; |u.T1/− u.t1/| ≤ Ž=4;

|v.T2/− v.t2/|; |u.T2/− v.t2/| ≤ Ž=4:
(2.11)

Relations (2.11) and (2.4) imply that, fori = 1; 2,

|v.ti /− u.ti /| ≤ |v.ti /− v.Ti /| + |v.Ti /− u.Ti /| + |u.Ti /− u.ti /| ≤ Ž=2:(2.12)

Consider an a.c. functioñu : [t1; t2] → Rn such that

ũ.t/ = u.t/; t ∈ [T1 + ; T2 −  ]; ũ.ti / = v.ti /; i = 1; 2;
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and

I f .t1; T1 + ; ũ/ ≤ U f .t1; T1 + ; v.t1/; u.T1 +  //+1=128;

I f .T2 − ; t2; ũ/ ≤ U f .t2; T2 − ; u.T2 −  /; v.t2//+1=128:
(2.13)

It follows from (2.10), the choice of (see (2.5), (2.6)) and (2.4) that

I f .t1; t2; v/− I f .t1; t2; u/ = I f .T1; T2; v/− I f .T1; T2; u/− I f .T1; t1; v/(2.14)

− I f .t2; T2; v/+ I f .T1; t1; u/+ I f .t2; T2; u/

≥ 21− 4.1=64/ > 31=2:

In view of (2.13) and (2.1)

I f .t1; t2; ũ/− I f .t1; t2; u/ = I f .t1; T1 + ; ũ/− I f .t1; T1 + ; u/(2.15)

+ I f .T2 − ; t2; ũ/− I f .T2 − ; t2; u/

≤ U f .t1; T1 + ; v.t1/; u.T1 +  //+1=128

− U f .t1; T1 + ; u.t1/; u.T1 +  //

+ U f .t2; T2 − ; u.T2 −  /; v.t2//+1=128

− U f .T2 − ; t2; u.T2 −  /; u.t2//:

It follows from (2.12), (2.7), (2.10) and the choice ofŽ (see (2.8), (2.9)) that

|U f .t1; T1+; u.t1/; u.T1+ //−U f .t1; T1+; v.t1/; u.T1+ //| ≤1=64;

|U f .T2−; t2; u.T2− /; u.t2//−U f .T2−; t2; u.T2− /; v.t2//| ≤1=64:
(2.16)

Relations (2.15) and (2.16) imply that

I f .t1; t2; ũ/− I f .t1; t2; u/ ≤ 1=64+1=64+1=64< 1=16:(2.17)

By (2.17) and (2.14),

I f .t1; t2; v/− I f .t1; t2; ũ/

= I f .t1; t2; v/− I f .t1; t2; u/+ I f .t1; t2; u/− I f .t1; t2; ũ/

≥ 31=2 −1=16> 0;

a contradiction (see (2.1)). The obtained contradiction proves the proposition.

In the sequel we also need the next two propositions proved in [13].

PROPOSITION2.8 ([13, Proposition 2.8]).Let f ∈ M and let0 < c1 < c2 < ∞,
c3; ž > 0. Then there exists a neighborhoodV of f inM such that for eachg ∈ V ,
eachT1; T2 ≥ 0satisfyingT2−T1 ∈ [c1; c2] and eachy; z ∈ Rn satisfying|y|; |z| ≤ c3

the relation|U f .T1; T2; y; z/− U g.T1; T2; y; z/| ≤ ž holds.
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PROPOSITION2.9 ([13, Proposition 2.7]).Let f ∈ M , 0 < c1 < c2 < ∞ and
D; ž > 0. Then there exists a neighborhoodV of f inM such that for eachg ∈ V ,
eachT1; T2 ≥ 0 satisfyingT2 − T1 ∈ [c1; c2] and each a.c. functionx : [T1; T2] →
Rn satisfyingmin{I f .T1; T2; x/; I g.T1; T2; x/} ≤ D the relation |I f .T1; T2; x/ −
I g.T1; T2; x/| ≤ ž holds.

3. Proof of Proposition1.2

For eachh ∈M , Ž ∈ .0; 1/ and eachz ∈ Rn, let an a.c. functionZh
Ž : [0;∞/ → Rn

be as guaranteed by Proposition2.2.
Assume thatz ∈ Rn, f ∈ M and that for each.t; x/ ∈ [0;∞/× Rn the function

f .t; x; ·/ : Rn → R1 is convex.
For each integeri ≥ 0, set

z∗
i = Z f

ž .i / with ž ∈ .0; 1/:(3.1)

In view of Assertion (5) of Proposition2.2, z∗
i .i ≥ 0/ does not depend onž. By

Proposition2.1, there exists an a.c. functionZ∗ : [0;∞/ → Rn such that for each
integeri ≥ 0,

Z∗.i / = z∗
i ; I f .i; i + 1; Z∗/ = U f .i; i + 1; Z∗.i /; Z∗.i + 1//:(3.2)

It follows from (3.2), (3.1) and Assertion (4) of Proposition2.2 that for each integer
k ≥ 1 and eachž ∈ .0; 1/

I f .0; k; Z∗/ =
k−1∑
i =0

I f .i; i + 1; Z∗/ =
k−1∑
i =0

U f .i; i + 1; z∗
i ; z∗

i +1/

=
k−1∑
i =0

U f .i; i + 1; Z f
ž .i /; Z f

ž .i + 1// ≤ I f .0; k; ; Z f
ž /

≤ U f .0; k; Z f
ž .0/; Z f

ž .k//+ ž = U f .0; k; Z∗.0/; Z∗.k//+ ž:

Sincež is an arbitrary element of.0; 1/ we conclude that

I f .0; k; Z∗/ = U f .0; k; Z∗.0/; Z∗.k//

for any integerk ≥ 0. This implies thatI f .0; T; Z∗/ = U f .0; T; Z∗.0/; Z∗.T// for
anyT > 0. By Assertion (1) of Proposition2.2 and Proposition1.1 the functionZ∗

is bounded and. f /-good. Proposition1.2 is proved.
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4. Overtaking optimal trajectories

PROPOSITION4.1. Let f ∈M and property(P1) hold (see Theorem1.3). Assume
that x : [0;∞/ → Rn is a bounded a.c. function such that for eachT > 0

I f .0; T; x/ = U f .0; T; x.0/; x.T//:(4.1)

Thenx is an. f /-overtaking optimal function.

PROOF. By (4.1) and Proposition1.1, x is . f /-good. Assume thatx is not an
. f /-overtaking optimal function. Then there is an a.c. functiony : [0;∞/ → Rn such
that

y.0/ = x.0/; lim sup
T→∞

[I f .0; T; x/− I f .0; T; y/] ≥ 2ž(4.2)

with some positive numberž. By Proposition2.2, there is a bounded. f /-good
function Z : [0;∞/ → Rn such thatZ.0/ = x.0/ and that for each a.c. function
v : [0;∞/ → Rn either

lim
T→∞

[I f .0; T; v/− I f .0; T; Z/] = ∞(4.3)

or

sup{|I f .0; T; v/− I f .0; T; Z/| : T ∈ .0;∞/} < ∞;

sup{|v.t/| : t ∈ [0;∞/} < ∞:
(4.4)

Since the functionx is . f /-good we conclude that

sup{|I f .0; T; x/− I f .0; T; Z/| : T ∈ .0;∞/} < ∞:(4.5)

Relations (4.2) and (4.5) imply that (4.3) is not valid withv = y. Thus (4.4) is true
with v = y. This implies thaty is a bounded. f /-good function. In view of property
(P1)

lim
t→∞

|x.t/− y.t/| = 0:(4.6)

Sincex; y are bounded functions we can choose a number

1 > sup{|x.t/| + |y.t/| : t ∈ [0;∞/} + 2:(4.7)

In view of Proposition2.3, there existsŽ > 0 such that for eachT ≥ 0 and each
zi ∈ Rn, i = 1; : : : ; 4 satisfying

|zi | ≤ 1; i = 1; : : : ; 4; |z1 − z3|; |z2 − z4| ≤ Ž
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the following inequality holds:

|U f .T; T + 1; z1; z2/− U f .T; T + 1; z3; z4/| ≤ ž=8:(4.8)

It follows from (4.2) that there exists a sequence{Ti }∞
i =1 ⊂ .0;∞/ such that, for

i = 1; 2; : : : ,

Ti +1 ≥ Ti + 8; I f .0; Ti ; x/− I f .0; Ti ; y/ > 3ž=2:(4.9)

Equality (4.6) implies that there exists a natural numberj such that

|x.Tj /− y.Tj /| ≤ Ž:(4.10)

Consider an a.c. functioñx : [0; Tj + 1] → Rn such that

x̃.t/ = y.t/; t ∈ [0; Tj ]; x̃.Tj +1/ = x.Tj + 1/;

I f .Tj ; Tj + 1; x̃/ ≤ U f .Tj ; Tj + 1; y.Tj /; x.Tj + 1//+ ž=8:
(4.11)

Relations (4.2) and (4.11) imply that

x̃.0/ = x.0/; x̃.Tj + 1/ = x.Tj + 1/:(4.12)

It follows from (4.11) and (4.9) that

I f .0; Tj + 1; x̃/− I f .0; Tj + 1; x/(4.13)

= I f .0; Tj ; x̃/+ I f .Tj ; Tj + 1; x̃/

− I f .0; Tj ; x/− I f .Tj ; Tj + 1; x/

≤ I f .0; Tj ; y/− I f .0; Tj ; x/+ U f .Tj ; Tj + 1; y.Tj /; x.Tj + 1//

+ ž=8 − U f .Tj ; Tj + 1; x.Tj /; x.Tj + 1//

< −3ž=2 + ž=8 + U f .Tj ; Tj + 1; y.Tj /; x.Tj + 1//

− U f .Tj ; Tj + 1; x.Tj /; x.Tj + 1//:

By (4.7), (4.10) and the choice ofŽ (see (4.8))

|U f .Tj ; Tj + 1; y.Tj /; x.Tj + 1//− U f .Tj ; Tj + 1; x.Tj /; x.Tj + 1//| ≤ ž=8:

Combined with (4.13) this inequality implies that

I f .0; Tj + 1; x̃/− I f .0; Tj + 1; x/ < −3ž=2 + ž=8 + ž=8< 0:

This contradicts (4.1). The contradiction we have reached proves the proposition.

Proposition1.2and Proposition4.1 imply the following result.
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PROPOSITION4.2. Assume thatf ∈M , for each.t; x/ ∈ [0;∞/×Rn the function
f .t; x; ·/ : Rn → R1 is convex and that property(P1) holds(see Theorem1.3). Then
for eachz ∈ Rn there exists a bounded. f /-overtaking optimal functionZ : [0;∞/ →
Rn satisfyingZ.0/ = z.

PROPOSITION4.3. Let f ∈M and assume that property(P1) holds(Theorem1.3).
Assume thatv1; v2 : [0;∞/ → Rn are bounded a.c. functions,v1 is . f /-overtaking
optimal,T0 > 0,

v1.t/ = v2.t/; t ∈ [0; T0](4.14)

and

I f .T0; −; v2/ = U f .T0; −; v2.T0/; v2.− // for each − > T0:(4.15)

Thenv2 is an. f /-overtaking optimal function.

PROOF. Clearlyv1 is an. f /-good function. We will show thatv2 is an. f /-good
function. Choose a number

M0 > sup{|vi .t/| : t ∈ [0;∞/; i = 1; 2}:(4.16)

By Proposition2.6there isM1 > 0 such that

M1 > sup

{
|U f .t1; t2; y; z/|

∣∣∣∣ t1 ≥ 0; t2 ∈ [t1 + 1=8; t1 + 8];
y; z ∈ Rn; |y|; |z| ≤ M0 + 2

}
:(4.17)

Let − ≥ T0 + 2. Consider an a.c. functionu : [0;∞/ → Rn such that

u.t/ = v1.t/; t ∈ [0; − − 1]; u.− / = v2.− /;

I f .− − 1; −; u/ ≤ U f .− − 1; −; v1.− − 1/; v2.− //+ 1:
(4.18)

Relations (4.18) and (4.14) imply that

u.T0/ = v2.T0/; u.− / = v2.− /:(4.19)

By (4.14), (4.15), (4.18) and (4.19),

I f .0; −; u/− I f .0; −; v2/ = I f .T0; −; u/− I f .T0; −; v2/ ≥ 0:(4.20)

In view of (4.16)–(4.18),

I f .0; −; u/− I f .0; −; v1/ = I f .− − 1; −; u/− I f .− − 1; −; v1/

≤ U f .− − 1; −; v1.− − 1/; v2.− //+ 1

− U f .− − 1; −; v1.− − 1/; v1.− //

≤ 2M1:
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Combined with (4.20) this relation implies that

I f .0; −; v2/ ≤ I f .0; −; u/ ≤ I f .0; −; v1/+ 2M1

and

I f .0; −; v2/ ≤ I f .0; −; v1/+ 2M1 for any − > T0 + 2:

Sincev1 is . f /-good we conclude thatv2 is an. f /-good function. By property (P1)

lim
t→∞

|v2.t/− v1.t/| = 0:(4.21)

Sincev1 is . f /-overtaking optimal we have

lim sup
T→∞

[I f .0; T; v1/− I f .0; T; v2/] ≤ 0:(4.22)

We show that

lim sup
T→∞

[I f .0; T; v2/− I f .0; T; v1/] ≤ 0:(4.23)

Letž > 0. By Proposition2.3there isŽ > 0 such that for eacht ≥ 0, eachyi ; zi ∈ Rn,
i = 1; 2, satisfying

|yi |; |zi | ≤ M0 + 1; i = 1; 2; |yi − zi | ≤ Ž; i = 1; 2;(4.24)

the following inequality holds:

|U f .t; t + 1; y1; y2/− U f .t; t + 1; z1; z2/| ≤ ž=8:(4.25)

In view of (4.21), there isT1 > T0 + 4 such that

|v2.t/− v1.t/| ≤ Ž for all t ∈ [T1;∞/:(4.26)

Let T > T1 and consider an a.c. functionw : [0; T + 1] → Rn such that

w.t/ = v1.t/; t ∈ [0; T]; w.T + 1/ = v2.T + 1/;

I f .T; T + 1; w/ ≤ U f .T; T + 1; v1.T/; v2.T + 1//+ ž=8:
(4.27)

Relations (4.14) and (4.27) imply that

w.t/ = v2.t/; t ∈ [0; T0]; w.T + 1/ = v2.T + 1/:(4.28)

By (4.15) and (4.28),

I f .0; T + 1; w/− I f .0; T + 1; v2/(4.29)

= I f .T0; T + 1; w/− I f .T0; T + 1; v2/ ≥ 0:
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It follows from (4.16), (4.26), (4.27) and the choice ofŽ (see (4.24), (4.25)) that

I f .0; T + 1; w/− I f .0; T + 1; v1/(4.30)

= I f .T; T + 1; w/− I f .T; T + 1; v1/

≤ U f .T; T + 1; v1.T/; v2.T + 1//+ ž=8

− U f .T; T + 1; v1.T/; v1.T + 1//

≤ ž=8 + ž=8 = ž=4:

By (4.29)–(4.30), I f .0; T + 1; v2/ ≤ I f .0; T + 1; w/ ≤ I f .0; T + 1; v1/+ ž=4 for
anyT > T1. This implies (4.23). In view of (4.22) and (4.23),

lim
T→∞

[I f .0; T; v1/− I f .0; T; v2/] = 0:(4.31)

Sincev1 is . f /-overtaking optimal we conclude thatv2 is . f /-overtaking optimal.
The proposition is proved.

5. (STP) implies (P1), (P2) and (P3)

Assume thatf ∈ M , for each.t; x/ ∈ [0;∞/ × Rn the function f .t; x; ·/ :
Rn → R1 is convex, the functionf has (STP) and that a bounded a.c. function
X f : [0;∞/ → Rn is the turnpike off . In [14, Section 4] we showed that properties
(P1) and (P3) hold. Now we show that (P2) holds.

By Proposition4.2 there exists an. f /-overtaking optimal functionv : [0;∞/ →
Rn such thatv.0/ = X f .0/. Let v : [0;∞/ → Rn be any. f /-overtaking optimal
function satisfyingv.0/ = X f .0/. In view of Proposition2.2, v is bounded. Then it
follows from (STP) thatv.t/ = X f .t/, t ∈ [0;∞/.

6. Basic lemma

Assume thatf ∈ M , for each.t; x/ ∈ [0;∞/ × Rn the function f .t; x; ·/ :
Rn → R1 is convex,X f : [0;∞/ → Rn is a bounded a.c. function and assume that
properties (P1), (P2) and (P3) hold. In [14, Lemma 5.1] we proved the following
important lemma.

LEMMA 6.1. For eachž > 0, there existT0 > 0, Ž0 > 0 such that the following
property holds: If T1 ≥ T0, T2 ≥ T1 + 1 and if an a.c. functionu : [T1; T2] → Rn

satisfies, fori = 1; 2,

|u.Ti /− X f .Ti /| ≤ Ž0 and I f .T1; T2; u/ ≤ U f .T1; T2; u.T1/; u.T2//+ Ž0;

then|u.t/− X f .t/| ≤ ž, for t ∈ [T1; T2].
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Now we prove our basic lemma.

LEMMA 6.2 (Basic Lemma).Let ž > 0. Then there existsŽ > 0 such that for each
T1 ≥ 0, T2 ≥ T1 + 1 and each a.c. functionv : [T1; T2] → Rn satisfying

|v.Ti /− X f .Ti /| ≤ Ž and I f .T1; T2; v/ ≤ U f .T1; T2; v.T1/; v.T2//+ Ž;(6.1)

for i = 1; 2, the following inequality holds:

|X f .t/− v.t/| ≤ ž; t ∈ [T1; T2]:(6.2)

PROOF. By Lemma 6.1, there exist−0; Ž0 ∈ .0; ž=16/ such that the following
property holds:

(P4) If T1 ≥ −0, T2 ≥ T1 + 1 and an a.c. functionv : [T1; T2] → Rn satisfies
|v.Ti / − X f .Ti /| ≤ Ž0, i = 1; 2, andI f .T1; T2; v/ ≤ U f .T1; T2; v.T1/; v.T2// + Ž0,
then|v.t/− X f .t/| ≤ ž, t ∈ [T1; T2].
We may assume without loss of generality thatŽ0 < 1. Choose

M0 > 4 + sup{|X f .t/| : t ∈ [0;∞/}:(6.3)

By Proposition2.4 there exists a numberM1 > 1 such that for eachT1 ≥ 0, T2 ≥
T1 + 8−1 and each a.c. functionv : [T1; T2] → Rn satisfying (i = 1; 2)

|v.Ti /| ≤ M0 + 4 and I f .T1; T2; v/ ≤ U f .T1; T2; v.T1/; v.T2//+ 4(6.4)

the following inequality holds:

|v.t/| ≤ M1; t ∈ [T1; T2]:(6.5)

In view of property (P3), there existŽ1 ∈ .0;min{1; Ž0}/ and L1 > 0 such that the
following property holds:

(P5) For eachT ≥ 0 and each a.c. functionv : [T; T + L1] → Rn which satisfies

|v.T/|; |v.T + L1/| ≤ M1 + 4;

I f .T; T + L1; v/ ≤ U f .T; T + L1; v.T/; v.T + L1//+ Ž1;
(6.6)

there is− ∈ [T; T + L1] for which

|X f .− /− v.− /| ≤ Ž0:(6.7)
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Consider a sequence{Ži }∞
i =1 ⊂ .0; 1/ such that

Ži < 2−1Ži −1; i = 2; 3; : : :(6.8)

Assume that the lemma is wrong. Then for each natural numberi there existTi 1 ≥ 0,
Ti 2 ≥ Ti 1 + 1, an a.c. functionvi : [Ti 1; Ti 2] → Rn such that

|X f .Ti j /− vi .Ti j /| ≤ Ži ; j = 1; 2;

I f .Ti 1; Ti 2; vi / ≤ U f .Ti 1; Ti 2; vi .Ti 1/; vi .Ti 2//+ Ži

(6.9)

andti ∈ [Ti 1; Ti 2] for which

|X f .ti /− vi .ti /| > ž:(6.10)

Let i be a natural number. It follows from property (P4), (6.9), (6.10), (6.8) and (6.5)
that

Ti 1 < −0:(6.11)

By (6.9), (6.8), (6.3) and the choice ofM1 (see (6.4), (6.5)),

|vi .T/| ≤ M1; t ∈ [Ti 1; Ti 2]:(6.12)

We show thatti ≤ −0 + L1 + 2. Assume the contrary. Then

ti > −0 + L1 + 2:(6.13)

Consider the restriction ofvi to the interval

[ti − L1 − 1; ti − 1] ⊂ .−0 + 1;∞/:(6.14)

Property (P5), (6.14), (6.12), (6.9) and (6.8) imply that there is

t̂ ∈ [ti − L1 − 1; ti − 1](6.15)

such that

|X f .t̂/− vi .t̂/| ≤ Ž0:(6.16)

By (6.15) and (6.13), t̂ > −0 + 1, Ti 2 − t̂ ≥ 1. It follows from these inequalities,
(6.16), (6.9), (6.8) and property (P4) that |vi .t/− X f .t/| ≤ ž, t ∈ [t̂ ; Ti 2]. Combined
with (6.15) this inequality implies that|vi .ti / − X f .ti /| ≤ ž, a contradiction. The
contradiction we have reached proves that

ti ≤ −0 + L1 + 2:(6.17)
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Extracting if it is necessary a subsequence and re-indexing we may assume without
loss of generality that there exist

T̃1 = lim
i →∞

Ti 1 ∈ [0; −0]; t̃ = lim
i →∞

ti ∈ [T̃1; −0 + L1 + 2];
T̃2 = lim

i →∞
Ti 2 ∈ [t̃ ;∞](6.18)

(see (6.11), (6.17)).
It follows from (A.ii ), (6.9), (6.12) and Proposition2.6 that for each−1 ∈ .T̃1; T̃2/,

−2 ∈ .−1; T̃2/ the sequence{I f .−1; −2; vi /}∞
i =1 is bounded.

By lower semicontinuity results [1], we may assume that there exists a function
v̂ : .T̃1; T̃2/ → Rn such that the following property holds:

(P6) For each−1 ∈ .T̃1; T̃2/, −2 ∈ .−1; T̃2/, the function v̂ is a.c. on[−1; −2],
vi .t/ → v̂.t/ as i → ∞ uniformly in t ∈ [−1; −2], v′

i → v̂′ as i → ∞ weakly in
L1.[−1; −2];Rn/, andI f .−1; −2; v̂/ ≤ lim inf i →∞ I f .−1; −2; vi /.

We show thatX f .T̃1/ = lim t→T̃+
1
v̂.t/. Let1 > 0. By Proposition2.5, Proposition2.6,

(6.9) and (6.12) there is ∈ .0; 1=8/ such that the following properties hold: For each
integeri ≥ 1 and eacht1; t2 ∈ [Ti 1; Ti 2] satisfying|t1 − t2| ≤ 4 we have

|vi .t1/− vi .t2/| ≤ 1:(6.19)

For eacht1; t2 ∈ [0;∞/ satisfying|t1 − t2| ≤ 4 , we have

|X f .t1/− X f .t2/| ≤ 1:(6.20)

Let − ∈ .T̃1; T̃1 +  /. Then for all sufficiently large natural numbersi

Ti 1 < − < T̃1 +  < Ti 1 + 2(6.21)

and in view of the choice of

|vi .− /− vi .Ti 1/| ≤ 1:(6.22)

It follows from (6.21), (6.22) and (6.9) that for all sufficiently large natural numbersi

|vi .− /− X f .Ti 1/| ≤ |vi .− /− vi .Ti 1/| + |vi .Ti 1/− X f .Ti 1/| ≤ 1+ Ži :(6.23)

By the choice of , (6.20) and (6.18) for all sufficiently large natural numbersi ,

|X f .T̃1/− X f .Ti 1/| ≤ 1:

Combined with (6.23) this inequality implies that for all sufficiently large natural
numbersi

|vi .− /− X f .T̃1/| ≤ |vi .− /− X f .Ti 1| + |X f .Ti 1/− X f .T̃1/| ≤ 1+ Ži +1:



[19] The turnpike result 123

Thus by (P6) and (6.8)

|v̂.− /− X f .T̃1/| = lim
i →∞

|vi .− /− X f .T̃1/| ≤ lim
i →∞

21+ Ži = 21:

We have shown that for each− ∈ .T̃1; T̃1 +  /, |v̂.− /− X f .T̃1/| ≤ 21. Since1 is an
arbitrary positive number we conclude that

X f .T̃1/ = lim
−→T̃+

1

v̂.− /:(6.24)

Analogously we can show that if̃T2 < ∞, then

X f .T̃2/ = lim
−→T̃−

2

v̂.t/:(6.25)

We setv̂.T̃1/ = X f .T̃1/ and if T̃2 < ∞, thenv̂.T̃2/ = X f .T̃2/. It follows from (P6),
(6.9), (6.8) and Proposition2.3that for eachS1; S2 ∈ .T̃1; T̃2/ satisfyingS1 < S2

I f .S1; S2; v̂/ ≤ lim inf
i →∞

I f .S1; S2; vi /

≤ lim inf
i →∞

[U f .S1; S2; vi .S1/; vi .S2//+ Ži ]
= lim inf

i →∞
U f .S1; S2; vi .S1/; vi .S2// = U f .S1; S2; v̂.S1/; v̂.S2//

and

I f .S1; S2; v̂/ = U f .S1; S2; v̂.S1/; v̂.S2//:(6.26)

By (P6), (6.12), (6.24) and (6.25), v̂ is bounded. It follows from Proposition2.7, (P6)
and (6.24)–(6.26) that v̂ is a.c. function on[T̃1; − / for each real− ≤ T̃2 and that the
following properties hold:

I f .T̃1; −; v̂/ = U f .T̃1; −; v̂.T1/; v̂.− //(6.27)

for each− ∈ .T̃1; T̃2] if T̃2 < ∞; and equality (6.27) holds for each− > T̃1 if T̃2 = ∞.
We will show thatv̂.t̃/ 6= X f .t̃/. It follows from Proposition2.6 that there is

M2 > 0 such that

sup

{
|U f .s1; s2; x; y/|

∣∣∣∣ s1 ≥ 0; s2 ∈ [s1 + 8−1; s1 + 8];
x; y ∈ Rn; |x|; |y| ≤ M1 + 2

}
+ 4< M2:(6.28)

Relations (6.28), (6.12) and (6.9) imply that the following property holds:

(P7) For each integeri ≥ 1, eachs1; s2 ∈ [Ti 1; Ti 2] satisfyings2 ∈ [s1+8−1; s1+8],
I f .s1; s2; vi / < M2.
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In view of property (P2), Proposition2.6and (6.3),

sup{I f .s1; s2; X f / : s1 ≥ 0; s2 ∈ [s1 + 8−1; s1 + 8]} < ∞:(6.29)

By (P7), (6.29) and Proposition2.5, there exists a positive number

 < min{1; T̃2 − T̃1}=32

such that the following properties hold:

(P8) For eachs1; s2 ≥ 0 satisfying|s1 − s2| ≤  , |X f .s1/− X f .s2/| ≤ ž=64.
(P9) For each integeri ≥ 1, eachs1; s2 ∈ [Ti 1; Ti 2] satisfying|s1 − s2| ≤  ,

|vi .s1/− vi .s2/| ≤ ž=64:

Let i be a natural number. We show thatti − Ti 1 >  . Assume the contrary. Then
ti − Ti 1 ≤  and by properties (P8) and (P9)

|X f .ti /− X f .Ti 1/|; |vi .ti /− vi .Ti 1/| ≤ ž=64:

Combining with (6.9), these inequalities imply that

|X f .ti /− vi .ti /| ≤ |X f .ti /− X f .Ti 1/| + |X f .Ti 1/− vi .Ti 1/| + |vi .Ti 1/− vi .ti /|
≤ ž=64+ Ži + ž=64 ≤ ž=32+ Ž0 < ž=32+ ž=16

< ž=2;

This inequality contradicts (6.10). The obtained contradiction proves that

ti − Ti 1 > :(6.30)

Analogously we can show that

Ti 2 − ti > :(6.31)

It follows from (6.30), (6.31), (6.17), (6.18) and property (P6) that

lim
i →∞

|vi .ti /− v̂.ti /| = 0:

Combined with (6.18) this equality implies that

lim
i →∞

vi .ti / = v̂.t̃/:(6.32)

By (6.18), limi →∞ X f .ti / = X f .t̃/. Combined with (6.32) and (6.10) this equality
implies that

|v̂.t̃/− X f .t̃/| = lim
i →∞

|vi .ti /− X f .ti /| ≥ ž:(6.33)
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Thus

v̂.t̃/ 6= X f .t̃/:(6.34)

There are two cases: (1)̃T2 = ∞; (2) T̃2 < ∞. Assume thatT̃2 < ∞. Then (6.27)
holds for each− ∈ .T̃1; T̃2/. By Proposition2.7, v̂ : [T̃1; T̃2] → Rn is an a.c. function
and

I f .T̃1; T̃2; v̂/ = U f .T̃1; T̃2; v̂.T̃1/; v̂.T̃2//:(6.35)

We haveX f .T̃i / = v̂.T̃i /, i = 1; 2. Define an a.c. functionu : [0;∞/ → Rn by

u.t/ =
{

X f .t/; t ∈ [0;∞/ \ .T̃1; T̃2/;

v̂.t/; t ∈ .T1; T2/:

Clearlyu is well defined. By property (P2) and (6.35), v̂ is . f /-overtaking optimal.
On the other hand,u.0/ = X f .0/ andu.t̃/ = v̂.t̃/ 6= X f .t̃/. This contradicts property
(P2). Thus case (2) does not hold andT̃2 = ∞.

For eacht ≥ 0 satisfyingt < T̃1, set v̂.t/ = X f .t/. Now (6.27) holds for each
− > T̃1. It follows from this fact, the boundedness ofv̂, the equalityv̂.T1/ = X f .T̃1/

and Proposition4.3thatv̂ is . f /-overtaking optimal. Now (6.34) contradicts property
(P2). The obtained contradiction proves the lemma.

7. Proof of Theorem1.3

In this section we prove the following theorem which is an extension of Theorem1.3.

THEOREM7.1. Let f ∈M , for each.t; x/ ∈ [0;∞/× Rn the function f .t; x; ·/ :
Rn → R1 is convex and letX f : [0;∞/ → Rn be a bounded a.c. function. Assume
that properties(P1)–(P3) from Theorem1.3hold.

Then for eachK ; ž > 0 there existŽ; L > 0 and a neighborhoodU of f in M
such that the following property holds: For eachg ∈ U , eachT1 ≥ 0, T2 ≥ T1 + 2L
and each a.c. functionv : [T1; T2] → Rn which satisfies

|v.T1/|; |v.T2/| ≤ K ; I g.T1; T2; v/ ≤ U g.T1; T2; v.T1/; v.T2//+ Ž;(7.1)

there exist−1 ∈ [T1; T1+L], −2 ∈ [T2−L ; T2] such that|v.t/− X f .t/| ≤ ž, t ∈ [−1; −2].
Moreover, if|v.T1/ − X f .T1/| ≤ Ž, then−1 = T1, and if |v.T2/ − X f .T2/| ≤ Ž, then
T2 = −2,
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PROOF. Let K ; ž > 0. By Lemma6.2there existŽ0 ∈ .0; 1/ such that the following
property holds:

(C1) If T1 ≥ 0, T2 ≥ T1 + 1 and if an a.c. functionv : [T1; T2] → Rn satisfies

|v.Ti /− X f .Ti /| ≤ Ž0; i = 1; 2; I f .T1; T2; v/ ≤ U f .T1; T2; v.T1/; v.T2//+ Ž0;

then|v.t/− X f .t/| ≤ ž, t ∈ [T1; T2].
By Proposition2.4, there exist a number

M0 > K + 2 + sup{|X f .t/| : t ∈ [0;∞/}(7.2)

and a neighborhoodU0 of f inM such that the following property holds:
(C2) For eachg ∈ U0, eachT1 ≥ 0, T2 ≥ T1 + 1 and each a.c. functionv :

[T1; T2] → Rn which satisfies

|v.Ti /| ≤ K + 2 + sup{|X f .t/| : t ∈ [0;∞/}; i = 1; 2;

I g.T1; T2; v/ ≤ U g.T1; T2; v.T1/; v.T2//+ 4

the inequality|v.t/| ≤ M0 holds for allt ∈ [T1; T2].
In view of property (P3), there existŽ1 ∈ .0; Ž0/, L1 > 0 such that the following

property holds:
(C3) For eachT ≥ 0 and each a.c. functionw : [T; T + L1] → Rn which satisfies

|w.T/|; |w.T + L1/| ≤ M0 + 4;

I f .T; T + L1; w/ ≤ U f .T; T + L1; w.T/; w.T + L1//+ Ž1;

there is− ∈ [T; T + L1] for which |X f .− /−w.−/| ≤ Ž0.
Proposition2.8 implies that there exists a neighborhoodU1 of f in M such that

the following property holds:
(C4) For eachT1 ≥ 0, T2 ∈ [T1 + L1; T1 +8.L1 +1/], eachg ∈ U1, eachx; y ∈ Rn

satisfying|x|; |y| ≤ M0 + 4, |U g.T1; T2; x; y/− U f .T1; T2; x; y/| ≤ Ž1=32.
By Proposition2.6, there exists a numberM1 > 0 such that

sup

{
|U f .T1; T2; x; y/|

∣∣∣∣ T1 ≥ 0; T2 ∈ [T1 + 1; T1 + 8.L1 + 1/];
x; y ∈ Rn; |x; |y| ≤ M0 + 4

}
≤ M1:(7.3)

It follows from Proposition2.9 that there exists a neighborhoodU2 of f inM such
that the following property holds:

(C5) For eachT1 ≥ 0, T2 ∈ [T1 + L1; T1 + 8.L1 + 1/], eachg ∈ U2 and each a.c.
functionv : [T1; T2] → Rn satisfying

min{I f .T1; T2; v/; I g.T1; T2; v/} ≤ M1 + 8;
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the inequality|I f .T1; T2; v/− I g.T1; T2; v/| ≤ Ž1=32 holds.
Define

U = U0 ∩U1 ∩U2;(7.4)

choose a positive numberŽ < min{ž; Ž0; Ž1}=32 and set

L = 8 + 6L1:(7.5)

Assume thatg ∈ U , T1 ≥ 0, T2 ≥ T1 + 2L and an a.c. functionv : [T1; T2] → Rn

satisfies (i = 1; 2)

|v.Ti /| ≤ K and I g.T1; T2; v/ ≤ U g.T1; T2; v.T1/; v.T2//+ Ž:(7.6)

By (7.6), (7.4) and property (C2),

|v.t/| ≤ M0; t ∈ [T1; T2]:(7.7)

Let

s1; s2 ∈ [T1; T2]; s2 − s1 ∈ [L1; 8.L1 + 1/]:(7.8)

It follows from (7.7), (7.4) and property (C4) that

|U g.s1; s2; v.s1/; v.s2//− U f .s1; s2; v.s1/; v.s2//| ≤ Ž1=32:(7.9)

Relations (7.3), (7.7) and (7.8) imply that U f .s1; s2; v.s1/; v.s2// ≤ M1: Combined
with (7.9) this inequality implies thatU g.s1; s2; v.s1/; v.s2// ≤ M1 + Ž1=32. In view
of this inequality and (7.6),

I g.s1; s2; v/ ≤ U g.s1; s2; v.s1/; v.s2//+ Ž ≤ M1 + Ž1=32+ Ž:(7.10)

By (7.10), (7.8), (7.4) and property (C5),|I f .s1; s2; v/ − I g.s1; s2; v/| ≤ Ž1=32. It
follows from this inequality, (7.10), (7.9) and the choice ofŽ that

I f .s1; s2; v/ ≤ I g.s1; s2; v/+ Ž1=32 ≤ U g.s1; s2; v.s1/; v.s2//+ Ž + Ž1=32

≤ U f .s1; s2; v.s1/; v.s2//+ Ž1=32+ Ž + Ž1=32

and

I f .s1; s2; v/ ≤ U f .s1; s2; v.s1/; v.s2//+ 3Ž1=32:(7.11)

We have shown that the following property holds:
(C6) Inequality (7.11) is valid for eachs1, s2 satisfying (7.8).



128 Alexander J. Zaslavski [24]

Assume that

− ∈ [T1 + L1 + 1; T2 − L1 − 1]:(7.12)

Relations (7.12) and (7.5) imply that−−1−L1; −+1+L1 ∈ [T1; T2]. By property (C6)

I f .− − 1 − L1; − − 1; v/(7.13)

≤ U f .− − 1 − L1; − − 1; v.− − 1 − L1/; v.− − 1//+ 3Ž1=32;

I f .− + 1; − + 1 + L1; v/(7.14)

≤ U f .− + 1; − + 1 + L1; v.− + 1/; v.− + 1 + L1//+ 3Ž1=32:

It follows from (7.13), (7.14), (7.7) and property (C3) that there exist

t1 ∈ [− − 1 − L1; − − 1]; t2 ∈ [− + 1; − + 1 + L1](7.15)

such that

|X f .ti /− v.ti /| ≤ Ž0; i = 1; 2:(7.16)

Property (C6) implies that

I f .− − 1 − L1; − + 1 + L1; v/

≤ U f .− − 1 − L1; − + 1 + L1; v.− − 1 − L1/; v.− + 1 + L1//+ 3Ž1=32:

Together with (7.15) this inequality implies that

I f .t1; t2; v/ ≤ U f .t1; t2; v.t1/; v.t2//+ 3Ž1=32:(7.17)

It follows from (7.15)–(7.17) and property (C1) that|v.t/ − X f .t/| ≤ ž, t ∈ [t1; t2]
and

|v.− /− X f .− /| ≤ ž:(7.18)

We have shown that the following property holds:
(C7) Inequality (7.18) is true for each− ∈ [T1 + L1 + 1; T2 − L1 − 1]. (Note that

[T1 + L ; T2 − L] ⊂ [T1 + L1 + 1; T2 − L1 − 1].)
Assume that

|v.T1/− X f .T1/| ≤ Ž:(7.19)

Let − = T1 + L1 + 1. We have shown that there is

t2 ∈ [T1 + L1 + 1; T1 + L1 + 1 + 1 + L1](7.20)
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such that

|X f .t2/− v.t2/| ≤ Ž0(7.21)

(see (7.15), (7.16)).
By property (C6),

I f .T1; T1 + 2L1 + 2; v/ ≤ U f .T1; T1 + 2L1 + 2; v.T1/; v.T1 + 2L1 + 2//+ 3Ž1=2:

Together with (7.20) this inequality implies that

I f .T1; t2; v/ ≤ U f .T1; t2; v.T1/; v.t2//+ 3Ž1=2:(7.22)

It follows from (7.19)–(7.22) and property (C1) that|v.t/ − X f .t/| ≤ ž, t ∈ [T1; t2]
(note that[T1; T1 + L1 + 1] ⊂ [T1; t2]). Together with property (C7) this implies that
(7.18) is true for each− belonging to the interval[T1; T2 − L1 − 1] which contains
[T1; T2 − L].

Assume that

|v.T2/− X f .T2/| ≤ Ž:(7.23)

Let − = T2 − L1 − 1. We have shown (see (7.15), (7.16)) that there is

t1 ∈ [T2 − L1 − 2 − L1; T2 − L1 − 2](7.24)

such that

|Xv.t1/− v.t1/| ≤ Ž0:(7.25)

By (7.24) and Property (C6),

I f .t1; T2; v/ ≤ U f .t1; T2; v.t1/; v.T2//+ 3Ž1=2:(7.26)

It follows from (7.23)–(7.26) and property (C1) that|v.t/ − X f .t/| ≤ ž for any t in
the interval[t1; T2] which contains[T2 − L1 −2; T2]. Together with property (C7) this
implies that (7.18) is true for each− in the interval[T1 + L1 + 1; T2] which contains
[T1 + L ; T2]: This completes the proof of theorem.

References

[1] L. D. Berkovitz, ‘Lower semicontinuity of integral functionals’,Trans. Amer. Math. Soc.192
(1974), 51–57.



130 Alexander J. Zaslavski [26]

[2] Z. Dzalilov, A. F. Ivanov and A. M. Rubinov, ‘Difference inclusions with delay of economic
growth’, Dynam. Systems Appl.10 (2001), 283–293.

[3] Z. Dzalilov, A. M. Rubinov and P. E. Kloeden, ‘Lyapunov sequences and a turnpike theorem
without convexity’,Set-Valued Analysis6 (1998), 277–302.

[4] D. Gale, ‘On optimal development in a multisector economy’,Rev. Econom. Stud.34(1967), 1–19.
[5] V. L. Makarov, M. J. Levin and A. M. Rubinov,Mathematical economic theory: pure and mixed

types of economic mechanisms(North-Holland, Amsterdam, 1995).
[6] V. L. Makarov and A. M. Rubinov,Mathematical theory of economic dynamics and equilibria

(Nauka, Moscow, 1973); English translation (Springer, New York, 1977) .
[7] M. A. Mamedov and S. Pehlivan, ‘Statistical convergence of optimal paths’,Math. Japon.52

(2000), 51–55.
[8] , ‘Statistical cluster points and turnpike theorem in nonconvex problems’,J. Math. Anal.

Appl.256(2001), 686–693.
[9] L. W. McKenzie, ‘Turnpike theory’,Econometrica44 (1976), 841–866.

[10] R. Radner, ‘Path of economic growth that are optimal with regard only to final states; a turnpike
theorem’,Rev. Econom. Stud.28 (1961), 98–104.

[11] A. M. Rubinov, ‘Economic dynamics’,J. Soviet Math.26 (1984), 1975–2012.
[12] P. A. Samuelson, ‘A catenary turnpike theorem involving consumption and the golden rule’,

American Economic Review55 (1965), 486–496.
[13] A. J. Zaslavski, ‘Existence and uniform boundedness of approximate solutions of variational

problems without convexity assumptions’,Dynam. Systems Appl.13 (2004), 161–178.
[14] , ‘The structure of approximate solutions of variational problems without convexity’,J.

Math. Anal. Appl.296(2004), 578–593.
[15] , ‘The turnpike property for approximate solutions of variational problems without convex-

ity’, Nonlinear Analysis58 (2004), 547–569.
[16] , ‘Existence and uniform boundedness of optimal solutions of variational problems’,Abstract

and Appl. Analysis3 (1998), 265–292.
[17] , ‘The turnpike property for extremals of nonautonomous variational problems with vector-

valued functions’,Nonlinear Analysis42 (2000), 1465–1498.
[18] A. J. Zaslavski and A. Leizarowitz, ‘Optimal solutions of linear control systems with nonperiodic

integrands’,Math. Oper. Res.22 (1997), 726–746.
[19] , ‘Optimal solutions of linear periodic control systems with convex integrands’,Appl. Math.

Optim.37 (1998), 127–150.

Department of Mathematics
Technion-Israel Institute of Technology
32000, Haifa
Israel
e-mail: ajzasl@techunix.technion.ac.il

mailto:ajzasl@techunix.technion.ac.il

