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Abstract

In this work we study the structure of approximate solutions of variational problems with continuous
integrandsf : [0, c0) x R" x R" — R*! which belong to a complete metric space of functions. The
main result in this paper deals with the turnpike property of variational problems. To have this property
means that the approximate solutions of the problems are determined mainly by the integrand, and are
essentially independent of the choice of interval and endpoint conditions, except in regions close to the
endpoints.
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1. Introduction and main results

In this paper we analyse the structure of solutions of the variational problems

z2(Ty) =x,2T) =Yy,z2: [Ty, T,] = R"is

T
(®) /n f(t, (1), () dt — min, {an absolutely continuous (a.c.) function,

whereT; > 0, T, > T;, X,y € R"and f : [0, c0) x R" x R" — R! belongs to a
space of integrands described below.

LetT; >0, T, > Ty, X,y € R", f : [0,00) x R" x R" — R! be an integrand
and lets be a positive number. We say that an absolutely continuous (a.c.) function
u: [Ty, T,] — R"satisfyingu(T,) = X, u(T,) = y is as-approximate solution of the
problem @) if

T2 T2
/ f(t,u), u't))dt < / f(t, z(t), Zt)dt + 4
T

1 Ty
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for each a.c. functiom : [Ty, T,] — R" satisfyingz(T;) = X, z(T,) = v.

The main results in this paper deal with the so-called turnpike property of the
variational problemsR). To have this property means, roughly speaking, that the
approximate solutions of the problemB) @re determined mainly by the integrand
(cost function), and are essentially independent of the choice of interval and endpoint
conditions, except in regions close to the endpoints.

Turnpike properties are well known in mathematical economics. The term was first
coined by Samuelson in 1948 (sé&]) where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path). This property was further investigated for optimal
trajectories of models of economic dynamics (see, for exampl8, b, 6, 7, 8, 9, 10,

11] and the references mentioned there). In control theory turnpike properties were
studied in L8, 19 for linear control systems with convex integrands.

Denote by] - | the Euclidean norm iR". Leta > 0 be a positive constant and let
Y @ [0, 00) — [0, 00) be an increasing function such thatt) — +oo0 ast — oo.
Denote by.# the set of all continuous functiorfs: [0, co) x R" x R" — R* which
satisfy the following assumptions:

(A.) The functionf is bounded ofi0, co) x E for any bounded séE c R" x R".
(Adiy  ft, x,u) > maxy (x|, v(uplul} —afor each(t, x, u) € [0, c0) x R" x

n
DfA-.iii) For eachM, € > 0, there exist", § > 0 such that

[ f(t, X, u) — f(t, X, W] <emaxf(t,x,u), f, X, u)}
for eacht € [0, co) and eachu, x;, X, € R" which satisfy
X|<M,i=12 |u=T, |xx—X|<3$.
(A.iv) ForeachM, e > 0, there exist$ > 0 such that
[ f(t, X, up) — F(t, X, Up)| <e€

for eacht € [0, co) and eachuy, u,, X1, X, € R" which satisfy

IXil, Uil <M, i =12 max{|X, — Xp|, [uy — Up|} <38.

In [16, 17] we studied the subset of the set which consists of allf € .#
satisfying the following assumptions:

e for each(t, x) € [0, co) x R" the functionf (t, X, -) : R" — R is convex;
e foreachM, ¢ > 0 there exist", § > 0 such that

[t X, up) — F(L, X2, Up)| < emax{ f(t, xq, up), F(t, X, Uy}
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for eacht € [0, o) and eachuy, u,, X;, X2 € R" which satisfy
Xl <M, Ju|>T, i =12 maxX|X,— Xg|, Uy — U]} <6

(see A.iii)).
This subset will be denoted byZ.,.

Itis easy to show that anintegrarfid= f (t, X, u) € C([0, co) x R" x R") belongs
to.# if f satisfies assumptior(ii), and if sug| f (t,0,0)| : t € [0, c0)} < o0 and
also there exists an increasing functigg: [0, co) — [0, co) such that

of (t
sup{‘ t, x,w| [af, x,u)
X ou
for eacht € [0, o0) and eaclx, u € R".

For the set#, we consider the uniformity which is determined by the following
base:

’

} < Yo(IXD(@ + ¢ (ublul)

(1.1) E(N,e, M) ={(f,9) e 4 x .# :|f(t,x,u) —g(t, x,u)| < e for each
t € [0,00) and eachx,u e R" satisfying x|, Ju] < N
and(| f(t, x, w)|+ D (g(t, x, u)| +1)~t e [»~%, 1] for each
t € [0, 00) and eachx, u € R" satisfying|x| < N},

whereN > 0,e > 0,1 > 1.

Clearly, the space# with this uniformity is metrizable (by a metrig,). It was
established in13, Proposition 2.2] that the metric space’, p,,) is complete. Note
that this uniformity was introduced irif] for the subset#., of .#Z. The metricp,
induces in# a topology.

We consider functionals of the form

T

(1.2) | '(Ty, To X) = / f(t, x(t), X'(t)) dt

Ty

wheref ¢ #,0< T, < T, < +o00 andx : [T, T.] — R"is an a.c. function.
For f € .#,y, z< R" and numberd;, T, satisfying 0< T; < T, we set

(13) U f(-I-la T27 ys Z) = Inf{l f(-I-la T23 X) | X: [Tla T2] - [Rn IS ana.c.
function satisfyingk(Ty) =y, X(T,) = zJ.

It is easy to see thatoo < U (T, To, v, 2) < +oo for eachf e 91, eachy, z € R"
and all numberd;, T, satisfying 0< T; < To.

Let f € .#. A locally absolutely continuous (a.c.) function: [0, c0) — R" is
called an( f )-good functiorif for any a.c. functiory : [0, co) — R" there is a number
M, such that

(1.4) 170, T,y) > My + 170, T,x) foreachT e (0, o).

In [14, Proposition 1.1] we proved the following result.
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ProPOSITIONL.1. Let f € .#Z and letx : [0, o) — R" be a bounded a.c. function.
Then the functiox is ( f)-good if and only if there i > 0 such that

170, T,x) <U"(0, T,x(0),x(T)) + M forany T > 0.
The next result will be proved in Sectiéh

ProPOSITIONL.2. Let f € .# and let for eacht, X) € [0, co) x R" the function
f(t,x,-) : R" — R be convex. Then for eaghe R" there is a boundedf )-good
functionZ : [0, o) — R" such thatZ (0) = z and that for eachl > 0,

170, T,Z)=U"0, T, 2(0), Z(T)).

Let f € .#. We say thatf has thestrong turnpike propertyor briefly (STP), if
there exists a bounded a.c. functi®n : [0, co) — R" which satisfies the following
condition: For eachK, ¢ > 0 there exist constants L > 0 such that for each
T, >0, T, > T, + 2L and each a.c. function : [T;, T,] — R" which satisfies
lo(Tol, [v(T)| < K andl (T, Tp, v) < U (T, To, v(Tw), v(Tp) + 8

(i) there arery € [Ty, T; + L] andz, € [T, — L, T,] for which
() = Xt <€, te[n, ]

(i) if Jv(T) — X;(Ty)| < 68, thent, = Ty and if [u(T,) — X (T)| < 8, then
= To.

The functionX; is calledthe turnpike off.

If the integrandf has the strong turnpike property, then the solutions of variational
problems withf are essentially independent of the choice of time interval and values
at the endpoints except in regions close to the endpoints of the time interval. If a
pointt does not belong to these regions, then the value of a solutibrsatlosed
to a trajectory (‘turnpike’) which is defined on the infinite time interval and depends
only on f. This phenomenon has the following interpretation. If one wish to reach a
point A from a pointB by a car in an optimal way, then one should turn to a turnpike,
spend most of time on it and then leave the turnpike to reach the required point.

If in the definition above condition (ii) is not assumed, then we say that the inte-
grandf has the turnpike propertyl¥, 15, 14).

In the sequel we use the following definitiof]

Let f € .#. We say that an a.c. functioxn : [0, co) — R" is (f)-overtaking
optimal if for each a.c. functioy : [0, co) — R" satisfyingy(0) = x(0),

limsup(l 70, T,x) — 170, T,y)] < 0.

T—o0
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Assume thatf € .#Z and X : [0, c0) — R"is a bounded a.c. function. How to
verify if the integrandf has (STP) anK is its turnpike? In this paper we introduce
three propertiesR1), (P2 and @3 and show thatf has (STP) if and only iff
possesses propertieB1), (P2 and P3. Property P1) means that all f)-good
functions have the same asymptotic behavior while prop&# iheans thak is a
unique( f)-overtaking optimal function whose value at zeroXig0). Property P3
means that if an a.c. function: [0, T] — R" is an approximate solution and is
large enough, then there ise [0, T] such thatv(t) is close toX(z). In [14] we
establish thatf has the turnpike property if and only ff possesses propertie3lj
and 3.

The next theorem is the main result of the paper.

THEOREM1.3. Let f € ., for each(t, xX) € [0, c0) x R" the functionf (t, X, -) :
R" — R! be convex and leX; : [0, co) — R" be a bounded a.c. function. Thdn
has the strong turnpike property wiXy; being the turnpike if and only if the following
three properties hold

(P1) For each pair of( f )-good functions, v, : [0, c0) — R",
[vi(t) — v (1)) > 0 ast — oo.

(P2) X; is an(f)-overtaking optimal function and if aqf )-overtaking optimal
functionv : [0, c0) — R" satisfiesv(0) = X (0), thenv = X;.

(P3) For eachK, ¢ > 0there existy,| > 0 such that for eacil > 0 and each
a.c. functionw : [T, T +1] — R" which satisfiedw(T)|, |lw(T +1)] < K and
ITT, T+Lw <UT, T+, w),wT+1) +ythereist e [T, T +1] for
which| X () —v(7)| < e.

2. Auxiliary results

We have the following result (see Berkovitd)]

ProPOSITION2.1. Assume thatf € .# and f(t,X,-) : R — R!is a convex
function for eachit, x) € R" x [0, oo). Then for each pair of numbeTs, T, satisfying
0 < T; < T, and eaclr;, z € R" there exists an a.c. function: [T;, T,] — R" such
that

X(-rl) =17, I = l’ 2’ I f(-I—fl.v T27 X) = U f(-rls TZ! Z, 22)

In [13] we analyzed the properties @ff )-good functions and established the
following results.
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PROPOSITION2.2 ([13, Theorem 1.1]).For eachh € .#, eachs € (0, 1) and each
z € R", there exists arih)-good functionZ} : [0, c0) — R" satisfyingZ{(0) = z
such that the following assertions hold

(1) Letf e #,¢c € (0,1),ze R"and lety : [0, c0) — R" be an a.c. function.
Then one of the following properties holds

() 1700, T,y)— 170, T,Z/) > coasT — oo;
(i) sup{|l "0, T,y)—1"(0, T,ZNH|:T € (0, 00)} < o0 and

sup]y()| : t € [0, 00)} < oo.

(2) Foreachf e .# and each positive numbé, there exist a neighborhodd

of f in . and a numberQ > 0 such thatsup(|Z3(t)| : t € [0, 00)} < Q for each
g € U, eache € (0, 1) and eaclz € R" satisfying|z] < M.

(3) Foreachf e .# andeach positive numbét, there exista neighborhoddl of f
in.# and a numbef > 0such that for eacly € U, eachz € R" satisfying|z| < M,
eache € (0,1), eachT; > 0, T, > T; and each a.c. functioly : [Ty, T,] — R"
satisfying|y(T;)| < M the following relation holds

19(Ty, T2, Z2) < 19(T1, T2, ) + Q.
(4) Foreachf e #,¢ >0,ze R", Ty > 0andT, > Ty,
| F(T, To, 25 < UN(Ty, To, 21 (Ty), 2] (Ty)) + €.
(5) Foreachf e .#,z< R"and an integei > 0,
z!(i)=2z!(i) foreache, e € (0,1).

Proposition2.2is an extension ofl[6, Theorem 1.1] which was established for the
space#.,. In[16] we have shown that for each e .#., andz € R",

z! =27! foreache;, e € (0,1
and
UN(Ty, T, Z)(Tw), Z](T) = 1 '(To, T2, Z)

foreachT; > 0, T, > T, and eachk € (0, 1).

PrOPOSITION 2.3 ([13, Proposition 2.6])Let f € .#,0 < ¢, < ¢, < oo and
let M, e > 0. Then there existd > 0 such that for eachl;, T, > 0 satisfying
T, — Ty € [c, C;] and eachyy, Vs, 21, Z, € R" satisfying

Vil.1z1 <M, 1=12 |y1—VYol,|1a—2| <56
the relation|U " (Ty, To, Y1, 1) — U T(Ty, T2, Vo, 20)| < € holds.
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PROPOSITION2.4 ([13, Theorem 1.3])Let f € .# and letM;, M,, ¢ be positive
numbers. Then there exist a neighborhagdof f in .# and a numbelS > 0 such
that for eachg € %, eachT; € [0, o) and eachT, € [T; + ¢, co) the following
property holds For eachx, y € R" satisfying|x|, |y] < M; and each a.c. function
v: [Ty, T,] - R" satisfying

U(Tl) = X’ U(TZ) = y7 Ig(Tlv T27 U) S Ug(Tlv T21 Xv y) + MZ?
inequality|v(t)| < Sis valid fort € [Ty, T].

PROPOSITION2.5 ([13, Proposition 2.4]).LetM;, e > 0,0 < 179 < t1. Then there
existss > Osuch that foreactf € .#, eachT; € [0, c0), T, € [Ty + 19, T1+ 1], €ach
a.c. functionx : [T, T,] — R"satisfyingl " (T, T,, X) < M; and eachiy, t, € [Ty, T,]
which satisfyit, — t;| < 8, relation |x(t;) — X(t2)| < € holds.

PROPOSITION 2.6 ([13, Proposition 2.5])Let f € .#,0 < ¢, < ¢; < oo and
c; > 0. Then there exists a neighborho@d of f in .# such that the set

{Ug(Tlv T21 le ZZ) : g S %7 Tl € [07 OO), T2 S [Tl + Clv Tl + CZ]!
21,7 € IRn, |Z|| < Cs, i :1,2}

is bounded.

PrROPOSITION2.7. LetT; > 0, T, > T; and letv : [T1, T,] — R" be a continuous
function. Assume that for eaeh, t, € (Ty, T,) satisfyingr; < t, the restriction ofv
to [y, 2] is an a.c. function and

(2.1) | T(11, 72, v) = U (11, 10, v(11), v(12)).
Then the function : [T4, T,] — R"is an a.c. function and
(2.2) | T(Ty, T2y v) = U T(Te, To, v(Th), v(T2)).
PrOOF. Choose
(2.3) Mo > supfjv(t)| : t € [Ty, T2]}.
By (2.1), (2.3) and Propositior2.6the set
(1", 0) i1, 2 € (T, To), 1o — 1 € (0, (T, — T1)/8)}

is bounded. It follows from this factA(ii) and Fatou’s lemma that the integral

T
/ f(t, v(t), V(1)) dt
T
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is finite. Then A.ii) implies thatv’ € LY([Ty, T,];R") andv : [Ty, T,] — R"is an
a.c. function.

We show that Z.2) holds. Assume the contrary. Then there is an a.c. function
u: [Ty, To] — R" such that

(24) uM=vT), i=12 1"(TnTHv)— 11T, Tou) >2A

with A > 0.
It is not difficult to see that there ig € (0, (T, — T;)/8) such that:

(2.5) |l '(s, s, v)| < A/64 foreachs,, s, € [Ty, T, + y] satisfyings, > s,
11 7(s1, s, v)| < A /64 foreachs,, s; € [T, — y, Tp] satisfying s, > s,
(2.6) |l17(s:, s, u)| < A/64 foreachs,, s, € [Ty, T, + y] satisfyings, > s,
[ '(s1, S, u)| < A/64 foreachs,, s, € [T, — y, T,] satisfying s, > s;.

Choose a number
2.7) M; > su|v(t)| : t € [Ty, T2} + supju(t)] : t € [Ty, To]}.

By Proposition2.3 there is§ > 0 such that the following property holds: For each
t; > 0,t € [ty + v/16,t; + 16y] and eaclxy, X,, Y1, Yo € R" satisfying

(2.8) X, Vil <My, i=212 |x—-Vy|<é i=12,
the inequality
(2.9) U (t, to, Xq, X2) — U (ty, b, Y1, yo)| < A/64

is true.
Choose numbers, t, such that

(2.10) the (T, Ti+y/4], tell,—y/4 Tl

ow LT

Relations 2.11) and @.4) imply that, fori = 1, 2,

(2.12) Jv(t) —ut)] < lvt) — v(T)|+ [v(T) —u(T)| + [u(T) —ut)| < /2.
Consider an a.c. functioi: [t;, t,] — R" such that

) =u@®), te[M+y, o=yl Gt)=v), i=12



[9] The turnpike result 113

and

T, T+ y,0) <U T, To+ y, v(ty), u(Ty+ y)) + A/128

(2.13) f o
I (T2 - J/a t27 u) 5 U (t27 T2 - J/a u(T2 - J/)7 v(tz)) + A/128

It follows from (2.10), the choice ofy (see 2.5), (2.6)) and @.4) that

(214) I f(tlv t27 U) - I f(tls tZs u) = I f(-I—fl.s TZ? U) - I f(-r].v T21 u) - I f(-rls tlv U)
— 1, T ) + 1 (Tt )+ 1 (t, To,w)
> 2A — 4(A/64) > 3A /2.

In view of (2.13 and @.1)

(2.15) 17t t, 0) — 1Tt o, ) = 1Tt To+p,0) — | Tt i+, 1)
+ 1M (T =y, t,0) — 1 '(Ta— y, 1, u)
<U'(t, i+, v(t), u(T+y)) + A/128
— U (ty, To + v, u(ty), u(Ty + )
+U(t, =y, u(T2— ), v(t2)) + A /128
—UNT =y, t, u(T2 — ), u(t).

It follows from (2.12), (2.7), (2.10 and the choice of (see 2.98), (2.9)) that

(2.16) U (t, Tat v, ut), u(Ty+y)) —U "(ty, To4y, v(ty), u(Tyi+y))| <A /64,
T UN(T—y, o, u(To—y), U(t) —U (T2 — v, o, U(Ta— ), v(t2)| < A/64.

Relations 2.15 and @.16) imply that

(2.17) I T(ty, to, 0) — | "(ty, t, u) < A/6B4+ A/64+ A /64 < A/16.

By (2.17) and @.14),

(bt v) — | (t, b, 0)
= | f(tlvt27 U) —1 f(‘tfl.s tZs u) + I f(tlvt21 u) -1 f(tlvt27 [])
> 3A/2— A/16> 0,

a contradiction (se€(1)). The obtained contradiction proves the proposition. [J

In the sequel we also need the next two propositions provet3n [

PrROPOSITION2.8 ([L3, Proposition 2.8])Let f € .# and let0 < ¢; < ¢, < oo,
c3, € > 0. Then there exists a neighborho®dof f in .# such that for eacly € V,
eachT,, T, > OsatisfyingT, — T; € [c;, C;] and eachy, z € R" satisfyingly|, |z] < C3
the relation|U "(Ty, To, y, 2) — U9(Ty, To, v, 2)| < € holds.
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PrROPOSITION 2.9 ([13, Proposition 2.7])Let f € .#,0 < ¢, < ¢; < oo and
D, e > 0. Then there exists a neighborho®dof f in .# such that for eacly € V,
eachTy, T, > 0 satisfyingT, — T; € [cy, ¢;] and each a.c. functior : [Ty, T,] —

R" satisfyingmin{l '(Ty, To, x), 19(Ty, T2, )} < D the relation [l " (Ty, To, X) —
Ig(Tla T23 X)| S € h0|dS

3. Proof of Proposition1.2

Foreacth € .#,6 € (0, 1) and eaclz € R", letan a.c. functiorz,? 1[0, 0) — R"
be as guaranteed by Propositipr2.

Assume thatz € R", f € .# and that for eaclit, x) € [0, c0) x R" the function
f(t,x,-): R" - R!'is convex.

For each integer > 0, set

(3.1) z2=2!() with €e(01).

In view of Assertion (5) of Propositiod.2, z* (i > 0) does not depend o By
Proposition2.1, there exists an a.c. functiafy* : [0, co) — R" such that for each
integeri > 0,

(3.2) Z*(iy=1z, 1'G(,i+21,29=U"G,i+1, 2%0), Z°( +1)).
It follows from (3.2), (3.1) and Assertion (4) of Propositioh 2 that for each integer
k> 1andeack € (0, 1)

k—1

k—1
170k, 2= 17,1 +1,2)=) U'(i+12.2,)
i=0 i=0

k—1
=Y U'Gi+12zf@).z' i+ <170.k.Z)
i=0

<U'0.k, Z2[(0), 2/ (k) + e =U"(0,k Z0), Z*(K)) + €.
Sincee is an arbitrary element @b, 1) we conclude that
170, k, Z*) = U (0, k, Z*(0), Z*(K))
for any integek > 0. This implies that (0, T, Z*) = U (0, T, Z*(0), Z*(T)) for

anyT > 0. By Assertion (1) of Propositio@.2 and Propositiori.1 the functionZ*
is bounded andf )-good. Propositior..2is proved. O
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4. Overtaking optimal trajectories
ProPOSITION4.1. Let f € .# and property(P1) hold (see Theoren.3). Assume
thatx : [0, o) — R"is a bounded a.c. function such that for each- 0
(4.1) 170, T, x) = U (0, T, x(0), x(T)).
Thenx is an ( f)-overtaking optimal function.

PrROOF. By (4.1) and PropositionlL.1, x is (f)-good. Assume thax is not an
(f)-overtaking optimal function. Then there is an a.c. funciari0, co) — R" such
that

4.2) y(0) = x(0), limsup(l (0, T,x) —17(0, T, y)] > 2¢

T—o0

with some positive numbet. By Proposition2.2, there is a boundedf)-good
function Z : [0, ) — R" such thatZ(0) = x(0) and that for each a.c. function
v: [0, o0) — R" either

(4.3) T|im (170, T,v)—170, T, 2)] =
or

4.4) sup{|1 70, T,v) = 1 7(0, T, 2)|: T € (0, >0)} < o0,
' sup[v(t)| : t € [0, 00)} < oo.

Since the functiorx is ( f)-good we conclude that

(4.5) sug]1 70, T,x) =1 7(0, T, 2)| : T € (0, 00)} < 0.

Relations 4.2) and @.5) imply that @.3) is not valid withv = y. Thus @.4) is true
with v = y. This implies thaty is a bounded f)-good function. In view of property

(PD)

(4.6) tIi_)ngo IX(t) — y)| =0.

Sincex, y are bounded functions we can choose a number
4.7) A > sup|x(t)| + |y®)| : t € [0, 00)} + 2.

In view of Proposition2.3, there existss > 0 such that for eacii > 0 and each
z eR"i=1,...,4satisfying

Izl <A, i=1...,4 |a—-2zl|l—2l<3d
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the following inequality holds:
(4.8) UNT, T+1,2,2)—UNT, T+1,2,2) <e¢/8.

It follows from (4.2) that there exists a sequenf&}™, C (0, co0) such that, for
i=12...,

(4.9) Ta>T+8 170,T,%x)—170,T,y) > 3¢/2.
Equality @.6) implies that there exists a natural numbesuch that
(4.10) IX(T)) — y(Tpl = 6.

Consider an a.c. functioki: [0, T; + 1] — R" such that

(4.11) f X(t) = y(t~), t Gf [0, T, X(Tj41) = X(T; + 1),
"M, T +1LX% <U' (T, T, + 1 y(T), x(T; +1)) + ¢/8.
Relations 4.2) and @.11) imply that

(4.12) X(0) =x(0), X(Tj +1) = x(T; + D).

It follows from (4.11) and @.9) that

(4.13) 170 T, 41— 170, T, +1,x)
=170, T, +1"(T,, T, +1,%)
— 170, T;,x) — I '(T;, T +1,%)
<170, T, y) = 17O, T, ) + U (T, T, + 1, y(T)), x(T; + 1))
+€/8—U" (T}, Tj + 1, x(T)), x(T; + 1))
< —3¢/2+¢€/8+ U (T, T; + L, y(T)), x(T; + 1))
— U, T) 4+ 1, x(T)), x(T; + 1)).

By (4.7), (4.10 and the choice of (see ¢.9))
UTNT, T+ L y(T), x(T + 1) = U, Ty + L x(T), X(T; + )| < e€/8.
Combined with 4.13) this inequality implies that
17O, Tj+1.%) — 170, T, +1,x) < —3¢/2+¢/8+¢/8 < .
This contradicts4.1). The contradiction we have reached proves the propositiah.

Propositionl.2 and Propositiort.1imply the following result.
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PrOPOSITION4.2. Assume that € .#, for each(t, x) € [0, co) x R" the function
f(t,x, ) : R" — R!is convex and that proper{{1) holds(see Theorerii.3). Then
for eachz € R" there exists a bounded )-overtaking optimal functio : [0, co) —
R" satisfyingZ (0) = z.

PrOPOSITION4.3. Let f € .# and assume that proper{1) holds(Theoremil.3).
Assume thaty, v, : [0, c0) — R" are bounded a.c. functions; is ( f)-overtaking
optimal, To > 0,

(4.14) vi(t) = va(t), tel0, To]
and
(4.15) | T(To, 7, v2) = U (T, 7, v2(To), v2(r)) foreacht > T.

Thenu, is an ( f)-overtaking optimal function.

ProoOF. Clearly v, is an(f)-good function. We will show that, is an( f)-good
function. Choose a number

(4.16) Mo > sup{|vi(t)] : t € [0,00), | =1, 2}.

By Proposition2.6there isM; > 0 such that

(4.17) M, > sup{|U "t 1, Y, 2)|

>0 t, ety +1/8,t, 4 8],
yaZE IRn, Iyla |Z| 5 M0+2

Lett > Ty + 2. Consider an a.c. functian: [0, o) — R" such that

ut) =uv(t), tel0r—-1], u(r)=var),

(4.18) X ‘
tT-1Lr,u<U'(t =1 1,0(r — 1), v(r)) + 1.

Relations ¢.18 and @.14) imply that

(4.19) U(To) = v2(To),  U(r) = va(7).
By (4.14), (4.15), (4.189 and ¢.19,
(4.20) 17O, z,u) =170, 7, v) = 1 ' (To, 7, u) — | '(To, 7, v2) > O.

In view of (4.16—-(4.18),

'O, r,u)— 170, o) =1Tc -1, ,u) =1 "(r =1, 7,09
<U'r -1 1,u@ —1,v0(1)+1
—U"(r =1, 7,0(r — 1), v1(2))
< 2M;j.
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Combined with 4.20) this relation implies that

170, 7,v2) < 170, 7,u) < 17(0, 7, v1) + 2M;
and
170, 7, v) < 17(0, 7, v1) +2M, forany v > Ty + 2.

Sincev; is (f)-good we conclude that is an( f )-good function. By propertyX1)
(4.21) tIim [va(t) — vy ()] = 0.

Sinceuv; is ( f)-overtaking optimal we have

(4.22) limsup(l "0, T, vy) = 17(0, T, v2)] < 0.
T—o0

We show that

(4.23) limsup(l (0, T, v,) — 1 70, T, vy)] < O.
T—o0

Lete > 0. By Propositior2.3there is§ > 0 such that for each> 0, eachy;, z € R",
i =1, 2, satisfying

(4.24) IVil.1z2] < Mo+1, i=212 |y—z|<8 i=12,
the following inequality holds:

(4.25) Ut t+ 1y, y:) —U 't t+ 1,7, 2)| <e/8

In view of (4.21), there isT; > To + 4 such that

(4.26) [vo(t) — v (1) <8 forall t e [Ty, 00).

LetT > T, and consider an a.c. functian: [0, T + 1] — R" such that

w®) =vi®), te[0,T], w(T+1)=v(T+1),

(4.27) ¥ ‘
(M, T+Lw) <U (T, T+ v(T),v(T+ 1)) +¢€/8.

Relations ¢.14) and @.27) imply that

(4.28) wt) =v(t), te[0 T, w(T+1 =uv(T+1).
By (4.195 and ¢.29),
(4.29) 'O, T+2Lw — 170, T+1,v)

:If(TO,T+1,W)—If(TO,T—l-l,Uz)ZO.
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It follows from (4.16), (4.26), (4.27) and the choice of (see §.24), (4.25) that

(4.30) 17O, T+1,w) — 170, T+1,vy)
= 1" (T, T+ w - 1T, T+1uv)
<UYT, T+21v(T), va(T +1) +¢/8
—UNT, T+ 1, 0(T), v(T + 1))
<e€/8+¢€/8=¢€/4

By (4.29—(4.30, 1 "(O, T+ 1, v) < 170, T+ 1, w) <170, T+ 1, v;) +€/4 for
anyT > T;. This implies 4.23. In view of (4.22) and @.23),

(4.31) JWU%QIM%JWQIWﬂza

Sincev; is (f)-overtaking optimal we conclude thaj is ( f)-overtaking optimal.
The proposition is proved. O

5. (STP) implies 1), (P2) and (P3)

Assume thatf € .#, for each(t, x) € [0, 00) x R" the function f(t, x, ) :
R" — R! is convex, the functionf has (STP) and that a bounded a.c. function
Xt : [0, 00) — R"is the turnpike off . In [14, Section 4] we showed that properties
(PD and 3 hold. Now we show thatR2) holds.

By Propositiord.2 there exists arif )-overtaking optimal function : [0, co) —
R" such thatv(0) = X;(0). Letv : [0, 00) — R" be any( f)-overtaking optimal
function satisfyingv(0) = X (0). In view of Propositior2.2, v is bounded. Then it
follows from (STP) thab (t) = X; (1), t € [0, 00).

6. Basic lemma

Assume thatf € .#, for each(t, x) € [0, 00) x R" the function f(t, x, -) :
R" — RYis convex,X; : [0, co) — R" is a bounded a.c. function and assume that
properties P1), (P2 and 3 hold. In [14, Lemma 5.1] we proved the following
important lemma.

LEMMA 6.1. For eache > 0O, there existT, > 0, §; > 0 such that the following
property holds If T, > Ty, T, > T; + 1 and if an a.c. functioru : [T;, T,] — R"
satisfies, foi =1, 2,

u(T) — X (T)| <6 and | "(Ta, T, u) < U'(Ty, To, u(Ty), U(T2)) + 8o,
thenju(t) — X;(t)| < ¢, fort € [Ty, T,].
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Now we prove our basic lemma.

LEMMA 6.2 (Basic Lemma)Lete > 0. Then there exist& > 0 such that for each
T, >0, T, > T; + 1and each a.c. function : [T, T,] — R" satisfying

(6.1) [u(T) — Xi(T)| <8 and |"(Ty, T, v) < U'(Ty, T, v(To), v(T2) + 6,
fori =1, 2, the following inequality holds
(6.2) IXe() —v®)| <€, te[Ty, Tl

PROOF By Lemma6.1, there existry, 8o € (0, €/16) such that the following
property holds:

(P4) If Ty > 19, T, > Ty + 1 and an a.c. function : [Ty, T,] — R" satisfies

|v(-rl) - Xf(-rl)| =< 801 I - lv 21 andl f(-I—fl.v T27 U) =< U f(-I—fl.s TZ? U(Tl)v U(TZ)) + 801
thenju(t) — X;(1)| <e,t € [Ty, Tol.

We may assume without loss of generality thak 1. Choose
(6.3) Mo > 4+ supl|X;(t)| : t € [0, 00)}.

By Proposition2.4 there exists a numbeévl; > 1 such that for eacii; > 0, T, >
T, + 87 and each a.c. function: [T, T,] — R" satisfying { = 1, 2)

(6.4) [v(T)I<Mo+4 and |'(Ty, To,v) <UN(Ty, T, v(Ty), v(T) + 4
the following inequality holds:
(6.5) o) < My, tel[Ty, Tl

In view of property P3), there exis®; € (0, min{1, §o}) andL; > 0 such that the
following property holds:

(P5) Foreachi > 0and each a.c. function: [T, T + L;] — R" which satisfies

(ML, [v(T + Lyl < My + 4,

(6.6) f f
I (T’T+le U) SU (T’T+Llsv(T)vv(T+Ll))+8lv

thereist € [T, T + L4] for which

(6.7) X1 () = v(0)] < o
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Consider a sequengé }°, C (0, 1) such that
(68) (Si < 2715i,1, i = 2, 3, e

Assume that the lemma is wrong. Then for each natural nuimtbere exisfl;; > 0,
Ti» > T;1 + 1, an a.c. function; : [Ti1, Ti2] — R" such that

(6.9) [X:(Tj) —vi(Tipl <6, j=12
- I f(-rila-l-iZa Ui) 5 Uf(-l-ila-l-iZa vi(-ril)svi(-l-iZ))—i_gi
andt; € [T, T»] for which

(6.10) Xt (t) —vit)] > e.

Leti be a natural number. It follows from property4), (6.9), (6.10), (6.8) and ©.5)
that

(6.11) Ti1 < 1o.

By (6.9), (6.8), (6.3) and the choice oM, (see 6.4), (6.9),
(6.12) i(T)] < My, te [T, Tl

We show that; < 7o+ L; + 2. Assume the contrary. Then
(6.13) t>1+L+2

Consider the restriction af to the interval

(6.14) [t —Li—1,t —1] C (0 + 1, 00).

Property P5), (6.14), (6.12), (6.9) and ©.8) imply that there is

(615) fe [t| — Ll—l, ti —l]
such that
(6.16) IX1(€) — vi(®)] < 8.

By (6.19 and 6.13,f > 1o+ 1, Ti, — f > 1. It follows from these inequalities,
(6.16), (6.9), (6.8) and propertyR4) that|v; (t) — X (t)| < €, t € [f, T;z]. Combined

with (6.15 this inequality implies thatv; () — X¢(t)| < €, a contradiction. The
contradiction we have reached proves that

(617) ti <1 + L]_ + 2.
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Extracting if it is necessary a subsequence and re-indexing we may assume withou
loss of generality that there exist
Ti=limTyel0,w), f=lmte[T,w+Li+2]
(618) I—00 B . |—>oo~
T2 = .I|m Ti2 S [t, OO]

(see 6.11), (6.17).

It follows from (A.ii), (6.9), (6.12) and Propositior2.6 that for eachr; € (Ty, T»),
7, € (11, T,) the sequencfl ' (ty, 12, v;)}%, is bounded.

By lower semicontinuity resultsl], we may assume that there exists a function
9 : (T1, T,) = R" such that the following property holds:

(P6) For eachr; € (T, To), ©» € (11, T»), the function? is a.c. on[ty, ©,
vi(t) — O(t) asi — oo uniformly int € [ty 2], v/ — V' asi — oo weakly in
L([11, 21; R™), andl (11, 7, D) < liminfi_o | "(11, 72, v}).

We showthak ; (Ty) = lim_++ (t). LetA > 0. By Propositior2.5, Propositior?.6,
(6.9 and 6.12 thereisy € (0, 1/8) such that the following properties hold: For each
integeri > 1 and eacli, t; € [Ti1, Ti2] satisfying|t; — t,| < 4y we have

(6.19) i (ty) — vi (t)| < A.

For eachy, t, € [0, co) satisfying|t; — t,| < 4y, we have

(6.20) [X5(t1) — X ()| < A.

Lett e (T., T + y). Then for all sufficiently large natural numbers

(6.21) Ti<t<Ti+y <Ti+2y

and in view of the choice aof

(6.22) lvi(7) — vi(TiD)| < A.

It follows from (6.21), (6.22) and 6.9) that for all sufficiently large natural numbers

(6.23)  Jui(m) — X¢(TiD| = Jui(r) —ui(Tio)| + [vi(Ti) — Xe(Ti)| < A+ 6.

By the choice ofy, (6.20 and ©.18 for all sufficiently large natural numbers
X1 (T) = X¢ (T < A.

Combined with 6.23 this inequality implies that for all sufficiently large natural
numberd

i () = X (T < oy (1) = X (Tial + [ X4 (Ti) = X (T)] < A+ 8 + A.
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Thus by P6) and 6.9

19(z) — X (To)| = lim Jvi(x) — X;(T)] < lim 2A + 8 = 2A.
i—o00 1—00

We have shown that for eaehe (T1, Ti + ¥), |9(t) — X (T1)| < 2A. SinceA is an
arbitrary positive number we conclude that

(6.24) Xi(Ty) = lim 3(x).

=T,
Analogously we can show thatTh < oo, then

(6.25) X1(To) = lim d(t).

=T,

We seti(T;) = X;(Ty) and if T, < oo, thend(T,) = ~)(f(~'l~'2). It follows from (P6),
(6.9), (6.8) and Propositior2.3that for eachs,, S € (Ty, T,) satisfyingS, < S

I f(S_b SZa ﬁ) E Ilmlnf I f(&a SZ, Ui)
< liminf[U' (S, S, 0(S), u(S)) + 8]
= liminf U' (S, S, u(S), u($) = U’ (S, S 9(S), 8(S)

and

(6.26) 1(S1, S, 0) =U (S, S, (S, 9(S).

By (P6), (6.12), (6.24 and 6.29), v is bounded. It follows from Propositioh 7, (P6)
and 6.24—(6.26) that  is a.c. function o Ty, 7) for each reak < T, and that the
following properties hold:

(6.27) | '(To, 7, 9) = U (T, 7, 5(Ty), (1))

for eachr € (Tp, T»] if T, < oo; and equality §.27) holds for each > T, if T, = co.
We will show thatd(f) # X;(f). It follows from Proposition2.6 that there is
M, > 0 such that

$>0, s€[s+81 s +8],

f

Relations 6.298), (6.12 and €.9) imply that the following property holds:
(P7) Foreachintegeér> 1, eacls;, s, € [T;1, Ti2] satisfyings, € [s,+871, 5,+8],
1 (81, S, i) < M.
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In view of property P2), Proposition2.6and ©.3),
(6.29) sup{l "(s1, 9, X1) 151> 0, s, € [s; + 871, 5 + 8]} < 0.
By (P7), (6.29 and Propositior2.5, there exists a positive number
y <min{l, T, — T1}/32

such that the following properties hold:

(P8) Foreacts;, s, > 0 satisfying|s; — $| < y, | Xi(s1) — X:(S)]| < €/64.
(P9) Foreach integer> 1, eachs;, s, € [Ti1, Ti2] satisfying|s; — S| < v,

[vi (S1) — vi(S)| < €/64.

Leti be a natural number. We show thiat- T;; > y. Assume the contrary. Then
ti — Ti1 < y and by propertiesH8) and 9

IX¢(t) — Xe(TiDl, vi(t) —vi(Tin)| < €/64.
Combining with 6.9), these inequalities imply that

X () —vi ()] = [Xe () — X (i)l + 1 X5 (Tie) — vi(Tin)| + [vi (Tin) — vi ()]
<€/64+4 5 +€/64<¢€/32+ 5y <€/32+€/16
< €/2,

This inequality contradictss(10. The obtained contradiction proves that
(6.30) t— T > y.
Analogously we can show that
(6.31) To—t > y.
It follows from (6.30), (6.31), (6.17), (6.18 and property 6) that
iILrTo]o lvi(t) — ()| = 0.
Combined with 6.18) this equality implies that
(6.32) iILTo v (t) = o(D).

By (6.18, lim;_ ., X;(t) = X;(f). Combined with 6.32 and €.10 this equality
implies that

(6.33) [0(F) — X (O] = lim |y (t) — X;(t)] > €.
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Thus
(6.34) v(f) £ X¢ (D).

There are two cases: (T} = oco; (2) T, < co. Assume thafl, < co. Then 6.27)
holds for eachr € (Ty, T,). By Proposition2.7, v : [Ty, T,] — R" is an a.c. function
and

(6.35) | (Ty, To, 9) = U T (Ty, To, 9(T0), (o).
We haveX(T)) = 9(T), i = 1, 2. Define an a.c. function : [0, co) — R" by

uy = | X1, tel0.00\ (T, To),
IA)(t), te (T]_, Tz)

Clearlyu is well defined. By propertyR2) and €.39, 0 is (f)-overtaking optimal.
On the other handj(0) = X;(0) andu(f) = 9(f) # X; (). This contradicts property
(P2). Thus case (2) does not hold afid= cc.

For eacht > 0 satisfyingt < Ty, setd(t) = X;(t). Now (6.27) holds for each
7 > T;. It follows from this fact, the boundednessigfthe equalityn(Ty) = X (T1)
and Propositior.3that? is ( f)-overtaking optimal. Nowg.34) contradicts property
(P2. The obtained contradiction proves the lemma. O

7. Proof of Theorem1.3

In this section we prove the following theorem which is an extension of Thebrgm

THEOREM7.1. Let f € .#, for each(t, x) € [0, co) x R" the functionf (t, x, -) :
R" — R!is convex and leX; : [0, c0) — R" be a bounded a.c. function. Assume
that propertiedP1)—P3) from Theoreni.3 hold.

Then for eachK, ¢ > 0O there exist§, L > 0 and a neighborhood” of f in .#
such that the following property holdsor eachg € %, eachT; >0, T, > T; + 2L
and each a.c. function : [Ty, T,] — R" which satisfies

(7-1) |U(T1)|7 |U(T2)| <K, |g(T1, To,v) < Ug(Tl, To, v(T), v(T2)) + 6,
there exist; € [Ty, Ti+L], 2 € [To—L, To]suchthatv(t) — X (t)| < €,t € [11, T2].

Moreover, if|v(Ty) — X(Ty)| < 8, thenty = Ty, and if |[v(T,) — X (T,)| < 8, then
T, = 15,
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PrROOF. LetK, ¢ > 0. By Lemmab.2there exist, € (0, 1) such that the following
property holds:
(CH)IfT, >0,T, > T, + 1andif an a.c. function : [Ty, T,] — R" satisfies

[v(Ti) — X5 (T)| < 8o, i=12, I f(TL T, v) <U f(TL To, v(Th), v(T2)) + do.

thenjv(t) — X; ()| < e,t € [Ty, T2].
By Proposition2.4, there exist a number

(7.2) Mo > K + 2+ sup(|X: ()] : t € [0, 00)}

and a neighborhoo@; of f in .# such that the following property holds:
(C2) For eachg € %, eachT; > 0, T, > T; + 1 and each a.c. function :
[T:, T.] — R" which satisfies

(M) < K+24+sup[Xs ()] :t €[0,00)}, =12
[19(Ty, T2, v) < UY(Ty, Tp, v(Ty), v(Tp) + 4

the inequalityjv(t)| < Mg holds for allt € [Ty, T].

In view of property P3), there exist; € (0, 8p), L; > 0 such that the following
property holds:

(C3) For eachT > 0 and each a.c. functian : [T, T 4+ L;] — R" which satisfies

lw(T)|, |w(T + Ly)| < Mg+ 4,
(T, T+ Ly w) <UNT, T+ Ly, w(T), w(T + L) + 61,

thereist € [T, T + L4] for which |X;(7) — w(z)| < bo.

Proposition2.8 implies that there exists a neighborhogd of f in .# such that
the following property holds:

(C4) Foreach; > 0,T, € [Ty+ L4, i +8(L;+1)], eachg € %, eachx, y € R"
satisfying|x|, |y] < Mo+ 4, [U%(Ty, To, X, y) — U "(Ty, T, X, y)| < 81/32.

By Proposition2.6, there exists a numbél; > 0 such that

(73) Sup{|Uf(T]_, T2, X, y)| TlZ 0, TZG [Tl+1, Tl+8(|—1+1)]7 } < M]_.

X,y e R X, |y| < Mo+ 4

It follows from Proposition2.9 that there exists a neighborho@qd of f in .# such
that the following property holds:

(C5) Foreachr; >0, T, € [Ty + Ly, T; + 8(L; + 1)], eachg € % and each a.c.
functionv : [Ty, T,] — R" satisfying

min{l (T, T, v), 19(Ty, To, v)} < My + 8,
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the inequality|l T (Ty, T2, v) — 19(Ty, To, v)| < 8:/32 holds.
Define

(7.4) U = U N U N U,
choose a positive numbér< min{e, &y, §;}/32 and set
(7.5) L =8+ 6L;.

Assume thag € 7, T, > 0, T, > T; + 2L and an a.c. function : [T, T,] — R"
satisfiesi(= 1, 2)

(7.6) (M) <K and 19Ty, Tp, v) < U(Ty, Ty, v(Ty), v(T2)) + 6.

By (7.6), (7.4) and property (C2),

(7.7) [v()] < Mo, tel[Ty, Tyl
Let
(7.8) S, €T, T2, S —s €[l 8L+ 1]

It follows from (7.7), (7.4) and property (C4) that

(7.9) U9(s1, 2, v(S1), v(S) — U (81, &, v(S1), v(%))] < 81/32

Relations 7.3), (7.7) and (7.8) imply thatU (s;, s, v(sy), v(S)) < M;. Combined
with (7.9) this inequality implies thal) ¢(s;, s, v(S1), v(S)) < My + 81/32. In view
of this inequality and{.6),

(7.10) 19(s1, S, v) < UY(S1, 9, v(S1), v(S) + 8 < My +8,/32+ 6.

By (7.10), (7.9), (7.4) and property (C5)|I f(s1, S, v) — 19(s1, S, v)| < 81/32. It
follows from this inequality, T.10), (7.9) and the choice of that

| 7(s1, ., v) < 19(S1, S, v) + 81/32 < U(s;, S, v(S1), v(Sp)) + 8 + 81/32
<U'(s1, %, v(81), v(S)) + 81/324 8 + 81/32

and
(7.11) | 7(s1, S, v) < U (81, S, v(S1), v(S)) + 381/32

We have shown that the following property holds:
(C6) Inequality {.17) is valid for eacls,, s, satisfying {.9).
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Assume that
(712) T € [T1+ L1+1, T2— Ll—l]

Relations7.12 and (7.5 imply thatt —1—L 4, t+1+L; € [Ty, T,]. By property (C6)

(7.13) "z —1=Ly,t—1,0)
<U'(t—1-Ly,t—1v(rt—1-Ly,v(r—1)+38/32
(7.14) "4+ t4+14Lyv)

<U'c+Lt+1+Lnv(r+D,v(r+1+Ly))+38/32

It follows from (7.13), (7.14), (7.7) and property (C3) that there exist

(715) tle[f—l—l_l,'[—l], t2€[‘[+1,f+1+|_1]
such that
(716) |Xf(tl)_v(tl)| 5803 I :17 2.

Property (C6) implies that

1"(t—1—Lyt+1+Lyv)
<U'(r—1-Ly,t+1+Lyv@—1-Ly),v(+1+4Ly))+38/32

Together with 7.15) this inequality implies that
(7.17) I (t, 12, v) < UT(t, b, v(t), v(t) + 381/32

It follows from (7.15—(7.17) and property (C1) that(t) — X¢(t)| < €, t € [ty, t5]
and

(7.18) lu(T) — X ()] <e.

We have shown that the following property holds:

(C7) Inequality 7.18) is true for eachr € [T; + L; + 1, T, — L; — 1]. (Note that
M+L T-Llc[Ml+L:+1T—L;—1])

Assume that

(7.19) [v(Ty) — X¢(Ty)| < 6.
Lett = T; + L; + 1. We have shown that there is

(720) t2€[T1+ L1+1,T1+L1+1+1+L1]
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such that

(7.21) X1 (t2) — v(t2)| < o

(see 7.19, (7.19).
By property (C6),

I'(T, To+ 2L+ 2,0) <UT(Te, To+ 2L + 2, v(Ty), v(Te + 2L + 2)) + 38,/2.
Together with 7.20 this inequality implies that
(7.22) I1(To to, v) < UN(Tw b, 0(Tw), v(tp) + 381/2.

It follows from (7.19—(7.22 and property (C1) thaw(t) — X ()| < €, t € [Ty, t5]
(note thaf{ T;, T; + L1 + 1] C [Ty, t,]). Together with property (C7) this implies that
(7.18 is true for eachr belonging to the intervdlT;, T, — Ly — 1] which contains
[Ty, T, — L]

Assume that

(7.23) [v(Ty) — X (Tp)| < 6.

Lett =T, — L; — 1. We have shown (seé&.(L5, (7.16) that there is

(724) t]_E [Tz— L1—2— Ll, T2— L1—2]
such that
(7.25) [ X, (t1) — v(ty)] < do.

By (7.24) and Property (C6),
(7.26) It Toy v) < Ut T2 v(t), v(T2) + 381/2.

It follows from (7.23—(7.26) and property (C1) tha(t) — X(t)| < € for anyt in
the intervallt;, T,] which containgT, — L; — 2, T,]. Together with property (C7) this
implies that {.18) is true for eachr in the interval[T; + L; + 1, T,] which contains
[T: + L, T2]. This completes the proof of theorem. O
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