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Abstract

We introduce a class of polynomials which induce a permutation on the set of polynomials in one variable
of degree less tham over a finite field. We call thei\,-permutation polynomials. We also give three
criteria to characterize such polynomials.
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1. Introduction

Various classes of permutation polynomials over finite fields are kn&jyibit very

little is known about the criteria for permutation polynomials. In some ways the most
useful criterion was first presented by Hermitg for finite prime fields and then
generalized by Dicksorf] to finite fields. For comparison with ours, we first state
the well-known Hermite-Dickson criterion.

THEOREM 1.1. A necessary and sufficient condition fé(x) € [F4[x] to be a
permutation polynomial is that

(1) f has exactly one root ifig;
(2) for each integett with1 <t < g — 2 such that # 0 (mod p), the reduction
of f(x)' (mod (x? — x)) has degree< q — 2, wherep is the characteristic of,.

The purpose of this paper is to introduce a class of polynomials which induce a
permutation on the set of polynomials of degree less thawer a finite field, which
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we call A-permutation polynomials. Then we give three criteria to characterize such
polynomials, which are reduced to those known for permutation polynomials in finite
fields. Before formulating them, we give some necessary notation and definitions.
Let [, be afinite field ofy elements wherg is a power of a primep, let A = [F4[T]
be a polynomial ring in one variable over F, andk = F4(T) be the quotient field
of A. Throughout we fix an integen > 1 once and for all. ByA,,, we denote the set
of polynomials inA of degree less tham.
Letp : An — Ay be an arbitrary map, then there is a unique polynorfyjat k[x]
of degree less thayi" that representg, in the sense thatt, (o) = p(«) foralle € An,.
Indeed, such a polynomial is in principle given by the Lagrange interpolation formula
or by the more concise formula involving Carlitz polynomials

f,00 = (=)™ Y p(@)Gjn_y(X — ).

a€Anm

For a reference to this notation see the definition in SeclionWe say that
f(X) € k[x] is Ap-invariant if f(An) C Am, thatis f(a) € Ay, forall @ € Ay,
and f is called anA,-permutation polynomial iff (A) = An. We are then ready to
formulate the extended Hermite-Dickson criterion £gf-permutation polynomials.

THEOREM 1.2. A necessary and sufficient condition for ag-invariant f (x) €
K[X] to be anAy-permutation polynomial is that

(1) f has exactly one root id\y;
(2) for eachinteget with1l <t < g™ — 2 such that = 0 (mod p), the reduction
of f (x)! (moden(x) := ]_[aeAm(x — a)) has degree at most" — 2.

It is easy to see that Theorefn2 coincides with Theoreni.1 whenm = 1,
sincee;(X) = X% — x. As a corollary we get a necessary condition for nonlinear
An-permutation polynomials as in permutation polynomials over finite fields.

COROLLARY 1.3. If d > 1is a divisor ofg™ — 1, then there is ndA,-permutation
polynomial ofA,, of degreed.

PROOF. Suppose we have aA,-permutation polynomial of degreg dividing
g™ — 1. Then deg(f@"~v/d) = g™ — 1, so part (2) of Theorerh.2 is not satisfied
unlesd = 1. O

The usefulness oh,-permutation polynomials is that they induce not only permu-
tations fromA,, into itself but also permutations frofi,™ into itself, for the latter,
since elements i\, can be viewed as an-tuple of elements ift,. So, every single
An-permutation polynomial could yield the same effectiveness as does an orthogonal
system ofm permutation polynomials in multi-variables over a finite field (s [
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Another potential use of,-permutation polynomials: they may have some crypto-
graphic applications as in usual permutation polynomiglsjlow we state two more
criteria for A,-permutation polynomials parallel to thosg ¥, 8] in finite fields.

THEOREM 1.4. A necessary and sufficient condition for ag-invariant f (x) €
K[x] to be anAy-permutation polynomial is that

(1) the reduction off (x)9"~* (mod e, (x)) has degreg™ — 1;
(2) for each integet with1 <t < g™ — 2 such that # 0 (mod p), the reduction
of f(x)! (mod ey (x)) has degree at mosf™ — 2.

THEOREM 1.5. A necessary and sufficient condition for Ag-invariant f (x) €
k[x] to be anA,-permutation polynomial is th@aeAm x (f(a)) = Ofor all nontrivial
additive charactery of A..

It is a little bit surprising to see that the proofs of Theoreing 1.4 and 1.5
for m > 1 are modelled on the proofs of three theorems,nfio= 1, given in B],
together with using the Carlitz polynomials da In Section2, we introduce the
Carlitz polynomials and some numbersAnand then establish three main results in
Section3.

2. Preliminaries

Recall thaig is a power of a primep, [, is a finite field ofq elements A = F4[T]
is a polynomial ring in one variabl€ over [, with its quotient fieldk = F,(T). For
an integem > 0, we denote by, the set of polynomials i\ of degree less tham.

Then it is am-dimensional vector space ovEy, so its cardinality is)".

In the 1930’s, Carlitz did fundamental works for the arithmeticAofnowadays
known as the Carlitz modules. To do so, he introduced the polynomial analogues of
classical objects such as the binomial coefficient polynomials and the factorials and
so on. We refer to]], 4] for the details on these subject matters.

Letey(X) = X, Fo = Lo = 1 and for an integen > 1, lete,(X) = [, (X — a),

F, = [n]ln —1]9---[1)9" " andL, = [n][n — 1] --- [1], where[n] = T — T. It is

well known thate, (x) is anfF4-linear polynomial of degreg” with coefficients inA

since the rootg\, of &,(x) form anfF4-vector space of dimension Moreover, Carlitz
used the Moore determinant to give an explicit expansiomefor);

n . Fn ‘
gx) =) (- xt.

i—0 Fi I—n—i 4

The properties of the numbels, and L, in A are well understood. In fact,
e.(x) = F, for any monic polynomiakr € A of degreen, so F, is the product of
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all monic polynomials inA of degreen andL, is the least common multiple of all
polynomials inA of degreen.

DEFINITION 2.1. (1) LetE,(X) = e,(X)/F, foranyintegen > 0andEy(x) = Xx.
(2) For theg-adic expansion of > 0, given byt = ag + a1q + - - - + asg°® with
O0<wo <q,put

GO =[]Ere, t=1 Gy =1
n=0

and

ang"”

Gi) = [[Ghg™. t=1  Gyx) =1
n=0

where
E2(X) if0<a<q-1;

Gl .(X) =
W(){qw—lﬁa:m¢

Both G;(x) and G;(x) are polynomials of degreein k[x] and satisfy various
identities such as the binomial formuld[ In particular, one sees that

Gy (X) = qun(x) =EX), O0<a<q
and
Gy 1) = (B3 00 — D(EF00 — D) -+ (EF700 — D).

From the definitions, we also see ti@}, ,(x) kills all elementsy € A, exclud-
ing O for which casés;, ;(0) = (—1)". We now indicate the notational difference
between the Carlitz polynomiafs; (x) andG; (x) defined here and Carlitz’s original
polynomial G,(x)/g: and G} (x)/g: defined in L], whereg, := [[._, F* is an ana-
logue of the classical factorial. Thus the leading coefficienGaix) and G; (x) is
1/g: respectively. In particular, we see, from the propertiesspaind L, that the
leading coefficient 053, ;(X) is Ln/Fs.

In the context of function field arithmetic, one of the most important results con-
cerning Carlitz polynomials is that bofiG; (X)}i-o and{G;(X)}-o form an A-basis
of the ring of all integral-valued polynomialk defined onA, by which we mean that
f € k[x] mapsA into itself (see I]).

3. Proofs of main results

We shall here employ the Carlitz polynomials to establish the extended Hermite-
Dickson criterion forA,-permutation polynomials, and then to prove Theoréms
andl1.5. To this end we begin by proving two lemmas.
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LEMMA 3.1. Let f, g € k[x], we havef (o) = g(«) for all @ € A, if and only if
f(X) = g(x) (mod ey(x)).

PROOF. The result follows from the division algorithm on polynomial rings over
any fields. For completeness sake, we here follow the proof for finite fields given
in [8]. By the division algorithm, we writef (x) — g(x) = h(X)en(X) + r (x) with
h,r € k[x]and degr < g™. Thenwe see that(«) = g(e) for alla € Ay if and only
if r(w) = 0foralla € A, and then the latter condition is equivalent te- 0. O

LEMMA 3.2. Letag, &y, . .., aqn_1 be elements o\, then the following are equiv-
alent

(1) ag, &, ...,agm 1are distinct.
@) qu_lG< )= O0=t<q"~
a =
="

t=q"-1
(&) = —h)" t=qn—1
q_l O<t<gm
. B <
@ 2= {( D"/l ="

PROOF (1) < (2): To show this equivalence, for fixedwith 0 <i < q™ —
consider the polynomiay; (X) := (=D"Ggn_1(X — &). Then it is easy to see thgt
is the characteristic polynomial functionate A, thatis,x;(g) = 1 andy;(b) =0
for anyb € A, with b # g. With these characteristic polynomials we form the

polynomial
qm-1 qm-1

X() = Zx.(x)—( Hr ZGm (X =

Using the binomial formulal] for G;(x), rewrite it as follows

q"-1q9"-1

X0 =(E=D"Y Y Gy (@)G(X)

i=0 j=0
gqm-1 gqm-1
= Z (( " Z Gin g J<a>) G (x).

We see thag (x) maps each element @, into 1 if and only if{ay, ..., agm_1} = An.
Since deg(x) < g™, Lemma3.1shows thaiy (x) maps each element @&, into 1 if
and only if y (x) = 1, which is equwalent to saying—1)" G;m_l (@) =0

unlessj = 0 for which case we gezi:0 qm_l(a.) = (— 1)"‘.
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(2) & (3): Fort written ing-adic form as in the DefinitioR.1(2), write
Gy (X) = (G’ (X) = Bagq-1) * * * (G*(X) = Buy(q-1))

whereg;; is the Kronecker delta. Expanding out the right hand side of the previous
equation, we get

t—1
Gi(¥) = Gi(x) + »_CGi(x),

i=0
whereC" € {~1,0,1}. Thus the transition matrix ofG:(x) : 0 < i < t} to
{Gi(xX) : 0 <i < t}is alower triangular matrix with diagonal entries all 1, so the
above equivalence follows from invertibility of the transition matrix.

The equivalence of (3) and (4) easily follows by writing= >";_, ¢ G;(x) and

G(x) = Y;_,d"x foreach 1<t < q"— 1. In case of = g™ — 1, we compare the
leading coefficients of two polynomials on both sides in two respective equations and
get the desired result. O

We remark that Lemma.2is an extension ofq, Lemma 1] toA,, so that parts (2),
(3) and (4) coincide fom = 1 and that it is useful to the characterization for non-
polynomial A,-permutation functions in a future work. The following is immediate
from Lemma3.2but we give an alternate proof by computing the logarithmic derivative
of e, (X) in two ways.

COROLLARY 3.3. Z ol =

a€Anm

0 O<t<qg"-
(_l)mFm/Lm t= qm -1

PrROOF. We first compute

€00 1
o)~ 2 (x—a)‘ZAmX l

acAn

S e

a€Anm t=0 \aecAn

Using the explicit expansion a,(x), we again compute the logarithmic derivative
of en(x). For simplicity, writeen(x) = 3" ;& x? with ¢ = (=)™ Fp/Fi L@
and calculate

-1 m-1
w CO q q — —-q" 1 .y —a"+d'
en(X)  en(X) ( +qu ) = x| 12 ox
o0 m-1 i
= cox " Z (_ Z Cix(qmq)) '
j=0 i—0

-1
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Equating coefficients of terms of degree 1 in two resulting formal power series
in x~1, we get the desired result. O

PROOF OF THEOREM 1.2 Suppose that amy-invariant f € K[x] is an An-
permutation polynomial. Then part (1) is trivially true. To show part (2) write
f )N = he(X)en(X) + 1 (x) with h(x), ri(x) € k[x], wherer (x) = >" - *bx.
Then we see, by Corollary.3 that

qm-1

Z f(Ol)l — Z bi(l) Z O[i — bé‘trr)x_l(_l)mFm/Lm-

aeAn i=0 aeAn

Sincef is anAn-permutation polynomialy f(a)! =0foreachl<t < gq™-2,

henceby,_, =0for1<t <gm—2.
Conversely, suppose (1) and (2) hold. It is then easy to see from (1) that

Y Gin(f@) = (=™

a€An

o€Am

We also see from (2) and CorollaB/3 that for 1 <t < g™ — 2 such that # 0
(mod p),

Z f(a) = 0.

a€Anm

Using

pi
>t = (Z f<a>t> :

a€Anm a€Anm

we get) ., (f(a))' =0for0 <t < g" — 2 since the case = 0 is trivially
true. Hence)_, . Gi(f(a)) =0for0<t < q™— 2. Therefore, it follows from
Lemma3.2that f is an A,-permutation polynomial. O

PROOF OF THEOREM 1.4. Suppose that am,-invariant f(x) € Kk[x] is an
An-permutation polynomial. It suffices then to show part (1) since part (2) fol-
lows from Theorend.2. Using the same notation as in the proof of Theofiefwe
get

by s =Y f@®

aeAn

which equalg—1)"F, /L, by Corollary3.3, and so we are done.
Conversely, suppose (1) and (2) hold. Then as in the proof of Thebrzwe see

that (2) impliestha} f(x)! =0for0<t < g™—2, hencey_ Gi(f(a)=0

aeAn a€An
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for 0 <t < g™ — 2. On the other hand, (1) impli€s.
see tha)

wen, F(@)¥ 1 £ 0, hence we
Gon_a( f (a)) # 0. Now consider the function

gqm-1
OEDY ((—bm > G;m_l_j<f(a>>> G; ().

j=0 acAn

o€Am

Indeed,x (X) = > _,ca. Xt@- We then know tha is a nonzero constant polynomial.

The argument in the proof of Lemn3a2 gives thaty (8) = O for somes € A, unless

an Ap-invariant f is an A,-permutation polynomial, which leads to a contradiction.
O

PrOOF OFTHEOREM1.5. Before proceeding to prove Theorén®, we note that\,
is an additive abelian group of ordg?, so that the general theory il][of characters
is carried over to the group,,. For nowfbx\m denotes the group of additive characters
on A,, with a trivial charactely, as the identity element.

If f(x) € K[x] is an Ap-permutation polynomial, then for a nontrivial additive
charactery of A, we haved_,_, x(f(a)) =) ,.a, x(a) =0 by the orthogonality
formula for characters.

Conversely, assuming that,_, x(f(«)) = 0O for all nontrivial additive char-
acter y of A, we denote byN; (b) the number of solutions if,, of the equation
f (x) = bforanyb € A,. Then we can easily derivid; (b) as follows:

N¢(b) = im D> x(f@)—b)= qim >0 x(f@)x®d

acAn XGA:\n aeAn Xgﬂ;

=1+qimZWZx<f<a))=1.

X#X0 a€An

Thus f is an A,-permutation polynomial, as desired. O

Finally, we close this paper by giving some nontrivial examples,gfpermutation
polynomials.

ExAMPLE 1. Take A = F,[T] andm = 3. Then
A;=1{0, 1L, T, TH+LTLT?+1,T?+T,T?+T+1}.
Consider the polynomiaf (x) € k[x] given by
f(X) = T?Ge(x) + T Gs(X) + Ga(x) + T?G2(x) + (T 4 1)G1(x) + Go(X).

One can use the formula in the introduction and definitions in Se2tiocheck thatf
induces a permutation of; correspondingtd0 1 T T+ 1). Italso induces a
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permutation orfF3 given by (000) — (100) +— (010) — (110 > (000) with the
remaining vectors fixed.
Consider the polynomiat (x) given by

fX)=(T34+ T2+ T)Ge(X) + (T3 4+ T2+ DGs(X) + TA(T2+ T + 1)G4(X)
+TG3(X) + (T3 + T? 4+ 1)Gy(x)
+(T?+ DG1(X) + (T2 + T + 1)Go(X).

It is then checked that induces a permutation ofy; corresponding to
0O T24+T+1)(1 T T?.
It also induces a permutation &8 given by
(000 < (111, (100 +— (010 +— (001 +— (100
with the remaining vectors fixed.
EXAMPLE 2. Take A = F3[T] andm = 2. Then
A,={0,,2 T, T+1T+22T,2T + 1, 2T + 2}.
Consider the polynomiaf (x) € K[x] given by
f(X) = 2Ge(X) + G1(X) + Go(X).

It is then checked thaf induces a permutation oA; corresponding ta0 1 2).
It is now easy to see that the polynomial induces a permutatiofiZogiven by
(00) — (10) — (20) — (00) with the remaining vectors fixed.

Consider the polynomiat (x) given by

f(X) = 2T3Gg(X) + 2T2G4(X) + 2T2G3(X) + 2T G,(x)
+ (T + DG1(X) + Go(X).

Then f induces a permutation ofy, corresponding to
0 12T T+1 T+2 2T 2T+1 2T +2).
It also induces a permutation &8 given by

(00) — (10) — (20) — (0D — (11 —~ (21) —~ (02
— (12) — (22) — (00).
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