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Abstract

We introduce a class of polynomials which induce a permutation on the set of polynomials in one variable
of degree less thanm over a finite field. We call thenAm-permutation polynomials. We also give three
criteria to characterize such polynomials.
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1. Introduction

Various classes of permutation polynomials over finite fields are known [8], but very
little is known about the criteria for permutation polynomials. In some ways the most
useful criterion was first presented by Hermite [5] for finite prime fields and then
generalized by Dickson [3] to finite fields. For comparison with ours, we first state
the well-known Hermite-Dickson criterion.

THEOREM 1.1. A necessary and sufficient condition forf .x/ ∈ Fq[x] to be a
permutation polynomial is that

(1) f has exactly one root inFq;
(2) for each integert with 1 ≤ t ≤ q − 2 such thatt 6≡ 0 .mod p/; the reduction

of f .x/t .mod .xq − x// has degree≤ q − 2; wherep is the characteristic ofFq:

The purpose of this paper is to introduce a class of polynomials which induce a
permutation on the set of polynomials of degree less thanm over a finite field, which
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we call Am-permutation polynomials. Then we give three criteria to characterize such
polynomials, which are reduced to those known for permutation polynomials in finite
fields. Before formulating them, we give some necessary notation and definitions.

LetFq be a finite field ofq elements whereq is a power of a primep, let A = Fq[T]
be a polynomial ring in one variableT overFq andk = Fq.T/ be the quotient field
of A. Throughout we fix an integerm ≥ 1 once and for all. ByAm we denote the set
of polynomials inA of degree less thanm.

Let² : Am → Am be an arbitrary map, then there is a unique polynomialf² ∈ k[x]
of degree less thanqm that represents², in the sense thatf².Þ/ = ².Þ/ for all Þ ∈ Am.
Indeed, such a polynomial is in principle given by the Lagrange interpolation formula
or by the more concise formula involving Carlitz polynomials

f².x/ = .−1/m
∑
Þ∈Am

².Þ/G∗
qm−1.x − Þ/:

For a reference to this notation see the definition in Section2. We say that
f .x/ ∈ k[x] is Am-invariant if f .Am/ ⊂ Am; that is f .Þ/ ∈ Am for all Þ ∈ Am;

and f is called anAm-permutation polynomial iff .Am/ = Am: We are then ready to
formulate the extended Hermite-Dickson criterion forAm-permutation polynomials.

THEOREM 1.2. A necessary and sufficient condition for anAm-invariant f .x/ ∈
k[x] to be anAm-permutation polynomial is that

(1) f has exactly one root inAm;
(2) for each integert with 1 ≤ t ≤ qm − 2 such thatt 6≡ 0 .mod p/; the reduction

of f .x/t .mod em.x/ := ∏
Þ∈Am

.x − Þ// has degree at mostqm − 2.

It is easy to see that Theorem1.2 coincides with Theorem1.1 when m = 1,
sincee1.x/ = xq − x. As a corollary we get a necessary condition for nonlinear
Am-permutation polynomials as in permutation polynomials over finite fields.

COROLLARY 1.3. If d > 1 is a divisor ofqm − 1; then there is noAm-permutation
polynomial ofAm of degreed.

PROOF. Suppose we have anAm-permutation polynomial of degreed dividing
qm − 1. Then degx. f .q

m−1/=d/ = qm − 1, so part (2) of Theorem1.2 is not satisfied
unlessd = 1.

The usefulness ofAm-permutation polynomials is that they induce not only permu-
tations fromAm into itself but also permutations fromFq

m into itself, for the latter,
since elements inAm can be viewed as anm-tuple of elements inFq. So, every single
Am-permutation polynomial could yield the same effectiveness as does an orthogonal
system ofm permutation polynomials in multi-variables over a finite field (see [8]).
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Another potential use ofAm-permutation polynomials: they may have some crypto-
graphic applications as in usual permutation polynomials [6]. Now we state two more
criteria for Am-permutation polynomials parallel to those [2, 7, 8] in finite fields.

THEOREM 1.4. A necessary and sufficient condition for anAm-invariant f .x/ ∈
k[x] to be anAm-permutation polynomial is that

(1) the reduction off .x/q
m−1 .mod em.x// has degreeqm − 1;

(2) for each integert with 1 ≤ t ≤ qm − 2 such thatt 6≡ 0 .mod p/; the reduction
of f .x/t .mod em.x// has degree at mostqm − 2.

THEOREM 1.5. A necessary and sufficient condition for anAm-invariant f .x/ ∈
k[x] to be anAm-permutation polynomial is that

∑
Þ∈Am

�. f .Þ// = 0 for all nontrivial
additive character� of Am.

It is a little bit surprising to see that the proofs of Theorems1.2, 1.4 and 1.5
for m > 1 are modelled on the proofs of three theorems, form = 1, given in [8],
together with using the Carlitz polynomials onA. In Section2, we introduce the
Carlitz polynomials and some numbers inA and then establish three main results in
Section3.

2. Preliminaries

Recall thatq is a power of a primep; Fq is a finite field ofq elements,A = Fq[T]
is a polynomial ring in one variableT overFq with its quotient fieldk = Fq.T/. For
an integern ≥ 0, we denote byAn the set of polynomials inA of degree less thann.
Then it is ann-dimensional vector space overFq, so its cardinality isqn.

In the 1930’s, Carlitz did fundamental works for the arithmetic ofA; nowadays
known as the Carlitz modules. To do so, he introduced the polynomial analogues of
classical objects such as the binomial coefficient polynomials and the factorials and
so on. We refer to [1, 4] for the details on these subject matters.

Let e0.x/ = x; F0 = L0 = 1 and for an integern ≥ 1, let en.x/ = ∏
Þ∈An

.x − Þ/,
Fn = [n][n − 1]q · · · [1]qn−1

andLn = [n][n − 1] · · · [1], where[n] = Tqn − T: It is
well known thaten.x/ is anFq-linear polynomial of degreeqn with coefficients inA
since the rootsAn of en.x/ form anFq-vector space of dimensionn. Moreover, Carlitz
used the Moore determinant to give an explicit expansion foren.x/;

en.x/ =
n∑

i =0

.−1/n−i Fn

Fi Ln−i
qi xqi

:

The properties of the numbersFn and Ln in A are well understood. In fact,
en.Þ/ = Fn for any monic polynomialÞ ∈ A of degreen; so Fn is the product of
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all monic polynomials inA of degreen and Ln is the least common multiple of all
polynomials inA of degreen:

DEFINITION 2.1. (1) LetEn.x/ = en.x/=Fn for any integern > 0 andE0.x/ = x:
(2) For theq-adic expansion oft ≥ 0, given byt = Þ0 + Þ1q + · · · + Þsqs with

0 ≤ Þi < q, put

Gt.x/ :=
s∏

n=0

EÞn
n .x/; t ≥ 1; G0.x/ = 1;

and

G∗
t .x/ :=

s∏
n=0

G∗
Þnqn.x/; t ≥ 1; G∗

0.x/ = 1;

where

G∗
Þqn.x/ =

{
EÞ

n .x/ if 0 ≤ Þ < q − 1;

EÞ
n .x/− 1 if Þ = q − 1:

Both Gt.x/ and G∗
t .x/ are polynomials of degreet in k[x] and satisfy various

identities such as the binomial formula[1]. In particular, one sees that

GÞqn.x/ = G∗
Þqn.x/ = EÞ

n .x/; 0 ≤ Þ < q

and

G∗
qn−1.x/ = .Eq−1

0 .x/− 1/.Eq−1
1 .x/− 1/ · · · .Eq−1

n−1.x/− 1/:

From the definitions, we also see thatG∗
qn−1.x/ kills all elementsÞ ∈ An exclud-

ing 0 for which caseG∗
qn−1.0/ = .−1/n. We now indicate the notational difference

between the Carlitz polynomialsGt.x/ andG∗
t .x/ defined here and Carlitz’s original

polynomialGt.x/=gt andG∗
t .x/=gt defined in [1], wheregt := ∏s

n=0 FÞn
n is an ana-

logue of the classical factorial. Thus the leading coefficient ofGt.x/ andG∗
t .x/ is

1=gt respectively. In particular, we see, from the properties ofFn and Ln, that the
leading coefficient ofG∗

qn−1.x/ is Ln=Fn.
In the context of function field arithmetic, one of the most important results con-

cerning Carlitz polynomials is that both{Gt.x/}t≥0 and{G∗
t .x/}t≥0 form an A-basis

of the ring of all integral-valued polynomialsf defined onA; by which we mean that
f ∈ k[x] mapsA into itself (see [1]).

3. Proofs of main results

We shall here employ the Carlitz polynomials to establish the extended Hermite-
Dickson criterion forAm-permutation polynomials, and then to prove Theorems1.4
and1.5. To this end we begin by proving two lemmas.
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LEMMA 3.1. Let f; g ∈ k[x]; we havef .Þ/ = g.Þ/ for all Þ ∈ Am if and only if
f .x/ ≡ g.x/ .mod em.x//.

PROOF. The result follows from the division algorithm on polynomial rings over
any fields. For completeness sake, we here follow the proof for finite fields given
in [8]. By the division algorithm, we writef .x/ − g.x/ = h.x/em.x/ + r .x/ with
h; r ∈ k[x] and degx r < qm: Then we see thatf .Þ/ = g.Þ/ for all Þ ∈ Am if and only
if r .Þ/ = 0 for all Þ ∈ Am, and then the latter condition is equivalent tor = 0.

LEMMA 3.2. Leta0; a1; : : : ; aqm−1 be elements ofAm, then the following are equiv-
alent:

(1) a0; a1; : : : ; aqm−1 are distinct.

(2)
qm−1∑
i =0

G∗
t .ai / =

{
0 0 ≤ t < qm − 1;

.−1/m t = qm − 1:

(3)
qm−1∑
i =0

Gt.ai / =
{

0 0 ≤ t < qm − 1;

.−1/m t = qm − 1:

(4)
qm−1∑
i =0

at
i =

{
0 0 ≤ t < qm − 1;

.−1/mFm=Lm t = qm − 1:

PROOF. (1) ⇔ (2): To show this equivalence, for fixedi with 0 ≤ i ≤ qm − 1;
consider the polynomial�i .x/ := .−1/mG∗

qm−1.x − ai /. Then it is easy to see that�i

is the characteristic polynomial function atai ∈ Am, that is,�i .ai / = 1 and�i .b/ = 0
for any b ∈ Am with b 6= ai : With these characteristic polynomials we form the
polynomial

�.x/ =
qm−1∑
i =0

�i .x/ = .−1/m

qm−1∑
i =0

G∗
qm−1.x − ai /:

Using the binomial formula [1] for G∗
t .x/, rewrite it as follows

�.x/ = .−1/m

qm−1∑
i =0

qm−1∑
j =0

G∗
qm−1− j .ai /G j .x/

=
qm−1∑
j =0

(
.−1/m

qm−1∑
i =0

G∗
qm−1− j .ai /

)
G j .x/:

We see that�.x/maps each element ofAm into 1 if and only if{a0; : : : ; aqm−1} = Am.
Since degx.�/ < qm, Lemma3.1shows that�.x/ maps each element ofAm into 1 if
and only if�.x/ = 1; which is equivalent to saying.−1/m

∑qm−1
i =0 G∗

qm−1− j .ai / = 0

unlessj = 0 for which case we get
∑qm−1

i =0 G∗
qm−1.ai / = .−1/m:
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(2) ⇔ (3): Fort written inq-adic form as in the Definition2.1(2), write

G∗
t .x/ = .GÞ0

0 .x/− ŽÞ0.q−1// · · · .GÞs
s .x/− ŽÞs.q−1//;

whereŽi j is the Kronecker delta. Expanding out the right hand side of the previous
equation, we get

G∗
t .x/ = Gt.x/+

t−1∑
i =0

C.t/
i Gi .x/;

whereC.t/
i ∈ {−1; 0; 1}. Thus the transition matrix of{G∗

i .x/ : 0 ≤ i ≤ t} to
{Gi .x/ : 0 ≤ i ≤ t} is a lower triangular matrix with diagonal entries all 1, so the
above equivalence follows from invertibility of the transition matrix.

The equivalence of (3) and (4) easily follows by writingxt = ∑t
i =0 c.t/i Gi .x/ and

Gt.x/ = ∑t
i =0 d.t/i xi for each 1≤ t ≤ qm − 1. In case oft = qm − 1, we compare the

leading coefficients of two polynomials on both sides in two respective equations and
get the desired result.

We remark that Lemma3.2is an extension of [7, Lemma 1] toAm, so that parts (2),
(3) and (4) coincide form = 1 and that it is useful to the characterization for non-
polynomial Am-permutation functions in a future work. The following is immediate
from Lemma3.2but we give an alternate proof by computing the logarithmic derivative
of em.x/ in two ways.

COROLLARY 3.3.
∑
Þ∈Am

Þt =
{

0 0 ≤ t < qm − 1;

.−1/mFm=Lm t = qm − 1:

PROOF. We first compute

e′
m.x/

em.x/
=
∑
Þ∈Am

1

.x − Þ/
=
∑
Þ∈Am

x−1 1

1 − Þx−1

=
∑
Þ∈Am

x−1
∞∑

t=0

Þt x−t =
∞∑

t=0

(∑
Þ∈Am

Þt

)
x−t−1:

Using the explicit expansion ofem.x/, we again compute the logarithmic derivative
of em.x/. For simplicity, writeem.x/ = ∑m

i =0 ci xqi
with ci = .−1/m−i Fm=Fi Lm−i

qi

and calculate

e′
m.x/

em.x/
= c0

em.x/
= c0

(
xqm +

m−1∑
i =0

ci x
qi

)−1

= c0x−qm

(
1 +

m−1∑
i =0

ci x
−qm+qi

)−1

= c0x−qm
∞∑
j =0

(
−

m−1∑
i =0

ci x
−.qm−qi /

) j

:
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Equating coefficients of terms of degreet + 1 in two resulting formal power series
in x−1, we get the desired result.

PROOF OF THEOREM 1.2. Suppose that anAm-invariant f ∈ k[x] is an Am-
permutation polynomial. Then part (1) is trivially true. To show part (2) write
f .x/t = ht.x/em.x/ + r t.x/ with ht.x/; rt.x/ ∈ k[x], wherer t.x/ = ∑qm−1

i =0 b.t/i xi :

Then we see, by Corollary3.3, that

∑
Þ∈Am

f .Þ/t =
qm−1∑
i =0

b.t/i

∑
Þ∈Am

Þi = b.t/qm−1.−1/mFm=Lm:

Since f is anAm-permutation polynomial,
∑

Þ∈Am
f .Þ/t = 0 for each 1≤ t ≤ qm−2,

henceb.t/qm−1 = 0 for 1 ≤ t ≤ qm − 2.
Conversely, suppose (1) and (2) hold. It is then easy to see from (1) that∑

Þ∈Am

G∗
qm−1. f .Þ// = .−1/m:

We also see from (2) and Corollary3.3 that for 1 ≤ t ≤ qm − 2 such thatt 6≡ 0
.mod p/, ∑

Þ∈Am

f .Þ/t = 0:

Using ∑
Þ∈Am

f .Þ/tpi =
(∑
Þ∈Am

f .Þ/t
)pi

;

we get
∑

Þ∈Am
. f .Þ//t = 0 for 0 ≤ t ≤ qm − 2 since the caset = 0 is trivially

true. Hence
∑

Þ∈Am
G∗

t . f .Þ// = 0 for 0 ≤ t ≤ qm − 2. Therefore, it follows from
Lemma3.2that f is anAm-permutation polynomial.

PROOF OF THEOREM 1.4. Suppose that anAm-invariant f .x/ ∈ k[x] is an
Am-permutation polynomial. It suffices then to show part (1) since part (2) fol-
lows from Theorem1.2. Using the same notation as in the proof of Theorem1.2, we
get

b.q
m−1/

qm−1 =
∑
Þ∈Am

f .Þ/q
m−1;

which equals.−1/mFm=Lm by Corollary3.3, and so we are done.
Conversely, suppose (1) and (2) hold. Then as in the proof of Theorem1.2we see

that (2) implies that
∑

Þ∈Am
f .Þ/t = 0 for 0 ≤ t ≤ qm−2;hence

∑
Þ∈Am

G∗
t . f .Þ// = 0
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for 0 ≤ t ≤ qm − 2: On the other hand, (1) implies
∑

Þ∈Am
f .Þ/q

m−1 6= 0; hence we
see that

∑
Þ∈Am

G∗
qm−1. f .Þ// 6= 0. Now consider the function

�.x/ =
qm−1∑
j =0

(
.−1/m

∑
Þ∈Am

G∗
qm−1− j . f .Þ//

)
G j .x/:

Indeed,�.x/ = ∑
Þ∈Am

� f .Þ/. We then know that� is a nonzero constant polynomial.
The argument in the proof of Lemma3.2gives that�.þ/ = 0 for someþ ∈ Am unless
an Am-invariant f is an Am-permutation polynomial, which leads to a contradiction.

PROOF OFTHEOREM1.5. Before proceeding to prove Theorem1.5, we note thatAm

is an additive abelian group of orderqm, so that the general theory in [9] of characters
is carried over to the groupAm. For now Âm denotes the group of additive characters
on Am with a trivial character�0 as the identity element.

If f .x/ ∈ k[x] is an Am-permutation polynomial, then for a nontrivial additive
character� of Am we have

∑
Þ∈Am

�. f .Þ// = ∑
Þ∈Am

�.Þ/ = 0 by the orthogonality
formula for characters.

Conversely, assuming that
∑

Þ∈Am
�. f .Þ// = 0 for all nontrivial additive char-

acter� of Am, we denote byNf .b/ the number of solutions inAm of the equation
f .x/ = b for anyb ∈ Am: Then we can easily deriveNf .b/ as follows:

Nf .b/ = 1

qm

∑
Þ∈Am

∑
�∈ Âm

�. f .Þ/− b/ = 1

qm

∑
Þ∈Am

∑
�∈ Âm

�. f .Þ//�.b/

= 1 + 1

qm

∑
� 6=�0

�.b/
∑
Þ∈Am

�. f .Þ// = 1:

Thus f is anAm-permutation polynomial, as desired.

Finally, we close this paper by giving some nontrivial examples ofAm-permutation
polynomials.

EXAMPLE 1. TakeA = F2[T] andm = 3. Then

A3 = {0; 1; T; T + 1; T2; T2 + 1; T2 + T; T2 + T + 1}:
Consider the polynomialf .x/ ∈ k[x] given by

f .x/ = T2G6.x/+ T G5.x/+ G4.x/+ T 2G2.x/+ .T + 1/G1.x/+ G0.x/:

One can use the formula in the introduction and definitions in Section2 to check thatf
induces a permutation onA3 corresponding to

(
0 1 T T + 1

)
. It also induces a
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permutation onF3
2 given by.000/ 7→ .100/ 7→ .010/ 7→ .110/ 7→ .000/ with the

remaining vectors fixed.
Consider the polynomialf .x/ given by

f .x/ = .T3 + T2 + T/G6.x/+ .T3 + T2 + 1/G5.x/+ T2.T2 + T + 1/G4.x/

+ T G3.x/+ .T3 + T2 + 1/G2.x/

+ .T2 + 1/G1.x/+ .T2 + T + 1/G0.x/:

It is then checked thatf induces a permutation onA3 corresponding to(
0 T2 + T + 1

) (
1 T T2

)
:

It also induces a permutation onF3
2 given by

.000/ ↔ .111/; .100/ 7→ .010/ 7→ .001/ 7→ .100/

with the remaining vectors fixed.

EXAMPLE 2. TakeA = F3[T] andm = 2. Then

A2 = {0; 1; 2; T; T + 1; T + 2; 2T; 2T + 1; 2T + 2}:
Consider the polynomialf .x/ ∈ k[x] given by

f .x/ = 2G6.x/+ G1.x/+ G0.x/:

It is then checked thatf induces a permutation onA3 corresponding to.0 1 2/.
It is now easy to see that the polynomial induces a permutation onF2

3 given by
.00/ 7→ .10/ 7→ .20/ 7→ .00/ with the remaining vectors fixed.

Consider the polynomialf .x/ given by

f .x/ = 2T3G6.x/+ 2T2G4.x/+ 2T2G3.x/+ 2T G2.x/

+ .T + 1/G1.x/+ G0.x/:

Then f induces a permutation onA2 corresponding to(
0 1 2 T T + 1 T + 2 2T 2T + 1 2T + 2

)
:

It also induces a permutation onF2
3 given by

.00/ 7→ .10/ 7→ .20/ 7→ .01/ 7→ .11/ 7→ .21/ 7→ .02/

7→ .12/ 7→ .22/ 7→ .00/:
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