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Abstract

Let M be a reductive algebraic monoid with zero and unit gr@ip We obtain a description of the
submonoid generated by the idempotent®dofin particular, we find necessary and sufficient conditions
for M\ G to be idempotent generated.

2000Mathematics subject classificatioprimary 20M99; secondary 20G99.

Introduction

Let S be a semigroup. It has long been recognized that an important tool in un-
derstanding the structure &is to consider the semigroufc(S)) generated by the
idempotent seE(S) of S, see, for example 3| 4, 5, 6]. In particular for a regular
semigroupS, Hall [5] constructs from the semigroy&(S)) a universal fundamental
semigrouplge containing the fundamental ima# . of S.

Our interest is in linear algebraic monoil¥s with unit groupG. In earlier papers
[8, 10], we have found sufficient conditions fdd\G to be idempotent generated.
In this paper we find complete answers. We begin by studylBgvi)) for any
irreducible algebraic monoi¥l. For each regular# -classJ of M we associate a
normal subgrous ; of G so that for any idempotemtin J, J N (E(M)) = G;eG;.
When M is a regular irreducible monoid with zero (equivalen@yis reductive),
we find necessary and sufficient conditions fbto be idempotent generated. The
conditions are of a discrete nature, associated with the Weyl groGp of
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1. Preliminaries

Let M be a stronglyr-regular monoid. This means that some power of each

element lies in a subgroup. X € M, let E(X) denote the set of idempotentsh
Let 7 = 2, %, £, 2 denote the usual Green’s relationsn A 7 -classJ is
regularif E(J) # #. M is regular if all_#-classes are regular. Lét (M) denote the
partially ordered set of regulay? -classes oM. If J € % (M), thenJ® = J U {0}
with

ab if abe J;

aob=

0 otherwise
is a completely 0-simple semigroup. We are interested in the products of idempotents.
It has been noted by Halb] Lemma 1] that the property of being a product of
idempotents is local.

PrOPOSITIONL.1. If J € ZZ (M), thend N (E(M)) C (E(J)).
COROLLARY 1.2. (E(M)) is a stronglyr -regular monoid.

PROOF. Leta € (E(M)). Thena™s#a*" for some positive integem. If J is the
7 -class ofa™, thena™ € J N (E(M)) € (E(J)). SinceJ?is completely O-simple,
am7a® in (E(J°%) and hence ifE(M)). O

Let J € 7 (M). We will say thatJ is idempotent generateil J € (E(M)). In
such a casd is a regular # -class of(E(M)). If e ¢ E(J) and if H is the JZ-class
of e (unit group ofeMe), thenJ is idempotent generated if and onlyHf C (E(M))
and any two idempotents id are ¢ -related in(E(M)). The unit group ofM, if
non-trivial, is never idempotent generated. Both the full transformation semigroup
of a finite set and the multiplicative monoid ofx n matrices over a field have the
property that the non-units are products of idempotents, see, for exaByg, [

2. Algebraic monoids

Let M be an algebraic monoid over an algebraically closed kelthis means that
M is an affine variety with the product map being a morphism. Byheorem 3.18],
M is a stronglyr -regular monoid. LeM¢ denote the irreducible component of 1. We
will assume thaM is an irreducible monoid, that i8] = M¢. By [9, Theorem 5.10],
Z (M) is a finite lattice. LetG denote the unit group d¥1. Fore € E(M),

G, ={xeG|xe=¢l, G.={xeG|ex=¢,
Ge={xeG|ex=e=Xxeg}, Cs(e) = {x € G| ex= xe}
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are closed subgroups @ andCg(e) is also connected. Far € % (M), e € E(J),
let

(2.1) G, ={xeG|exe (E(M))}.

THEOREM2.1. (i) Gjis aclosed normal subgroup & and is independent of
the choice of the idempoteat
(i) Ifee EQ),thenG; = (G, G.) and is also equal to the normal subgroup of
G generated byG..
iy IN(EM)) = I NG, = G,eG; is a closed irreducible subset dffor all
eec EQJ).
(iv) Jis idempotent generated if and onlyGf= G .
(V) If ‘]17 J2 € %(M) with J]_ < J2, ther]G'J2 - GJl.
PROOF. Letec E(J), x € G,. If e¥e; € E(J), then
(2.2) ex = eexe e (E(J)) € (E()).
If e#e, € E(J), then
(2.3) ex =eax = (eX)(x 'ex) € e(E(JI)(x terx) € (E(J)).
If f € E(J),thenbyp, Theorem 5.9],
(2.4) eYe#e, st forsomee, e c E(J).
By (2.2—(2.4), we see that
(2.5) E())G, C (E(J)).

It follows that G, is independent of the choice of the idempotenitf g € G, then by
(2.5,

egxg= g '(geg - x)g € gTHE))g = (E()).
Henceg~'xg € G;. Thus
(2.6) g 'G,gc G, forall geG.
Leta,b € G;. Thenea ebe (E(J)). So

eab= (ebb(eab e (E(J))b"HE(I))b = (E(J))2 = (E(J)).
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Henceab € G;. Thus
(2.7) G,G;, € G,

Now E(J) is a closed irreducible subset df by [9, Proposition 5.8]. Hence we have
an ascending chain of closed irreducible getd) € E(J)? € E(J)3 C ---. Hence
for some positive integer,

(2.8) S={E@)) =EQ) = EQ)" =

is an irreducible algebraic semigroup. BY4), J N Sis the _¢#-class ofein S. By
[9, Lemma 3.27]X = {a € M | e € MaM} is closed. Henc&nN J = SeS§X is
irreducible. LetH denote the’#’-class ofein S. SinceH is open ine Se we see that
there exists a non-empty open subdedf H such that € eE(J)'e. SinceH is a
connected groug)? = H. HenceH C (E(J)). By (2.4), JNSC (E(J)). Thus

(2.9) JNS=JN(EW))

is closed inJ. It follows thatG; is closed inG. Hence by 2.6) and @.7), G, is a
closed normal subgroup @, proving (i).

If e e E(J), thenG, C G, and hence byd, Theorem 6.11]e € G, € G,. Thus
E(J) € G;. Soby @.4), NG, isthe_¢-class ofG;. Hence by 7, Theorem 1],

(2.10) JNG, = G,eG,.
If a,b € G;, then by @.5) aebe aea!-abe (E(J)). So,
(2.11) G,eG; C (E(J)) € G..

By (2.9—(2.11) we see that (iii) and (iv) are valid.
ClearlyGL, G, € G;. So(G,G.) € G;. Conversely lex € G;. Thenex =
e e, forsomee, - ,e, € E(J). Thenex =eq ---€,. By]9, Corollary 6.8],
e = yey! for somey € G. Sinceeg € J, eyeie. By [9, Theorem 6.33],
y € GLCs(e)GY, = GLG.Cgs(e). Thus we may assume without loss of generality that
y € GLG.. Soeye= e. Henceeg = ey *. Then

eae =ey ' =ey 'eyy .

As abovege - y'ey = ez ' for somez € GLG.. Soege, = ez'y~’. Continuing
we see that there existse (G, GL) such thaex =eq---e, = eu. Soexu! =-e
andxu~ € GL. It follows thatx € (G., G.). ThusG,; = (G}, Gf).

Let N denote the normal subgroup &f generated bys.. ThenN C G;. Now
e € G, € N. Since all idempotents id are conjugate antN < G, we see that
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E(J) € N. By[7], EQJ) € N'. Leta € G.. Thenae=e. Let f = eac E(J).
Thene#f. So by P, Corollary 6.8], f = ebfor someb € N°¢ with be = e
Soab™ € Ge € N. Soa € N. HenceG, € N. Similarly G. € N. Hence
(GL, G}) € N. ThusN = G, proving (ii).

Let J;, o € Z (M), J; < J,. Then there exists;, € E(J;), & € E(J,) with

e < e&. Letae G,,. Thenga € (E(M)). So
ea = ee&ac e(E(M)) C (E(M)).
Hencea € G,,. ThusG;, € G;,. This proves (v), completing the proof. O

COROLLARY 2.2. If M is a regular irreducible algebraic monoid, theie(M)) is
closed.

PrROOF. LetJ, J' € (M), J > J'. Then by Theorem.],
(2.12) JNG;C I NGy C(E(M)).

Choosee; € E(J), J € Z (M). Then by @.12, G,;eG; € (E(M)). So by
Theorem2.1, (E(M)) = ;4 ) Ga€5G; is closed. O

If M is not irreducible theE(M)) need not be closed.

ExAMPLE 1. Let J consist of all matrices of the form

6o 6o Go (3

wherea € C a # 0. Let

o[ 9o 9)

ThenM is a non-irreducible, regular algebraic monoid witle %7 (M) and

E(J):{(é 8)’(3 é)G 8)’1/2@ m

(E(M)) = {(é 2) , (g 8)} ol JZEQ)

nez

So

is not closed (in the Zariski topology).

The following is extracted from the proof 08, Theorem 6.33].
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LEMMA 2.3. Letx € M ande € E(M). If exe= g, thenx € G'eGre. If exee,
thenx € G,G.Cg(e) = G.Cs(e)G..

PROOF. Supposeexe = e. TheneZex € E(M), soex = ey = y 'ey for
somey € G, by [9, Corollary 6.8]. Henceexy! = e, soxy* € GL. Also
ye= yexe= yy 'eye= eye= exe= g, soy € G, giving x = (xy 1)y € GLGL.
Now supposeexe’e. By [9, Theorem 6.16 (iii)],e = exec= excefor some
c € Cs(e). By the previous partxc € G,G., sox € G,G.Cg(e), and the lemma is

e~ e

proved. O

If E(J) is a semigroup, then it is a rectangular band and heBlcd |s a direct
product ofE(J) and a group.J is then called aectangular group The following
generalizes aresultof Renn&B] Theorem 2] concerning completely regular algebraic
monoids with solvable unit groups.

COROLLARY 2.4. Lete € E(J). ThenJ is a rectangular group if and only if
GrGI — GI G’
e—e e~ e’

PROOF. Suppose] is a rectangular group. Lete Gi, b € G.. Lete; = ea e, =
be e E(J). Soeabe= ae, = e. By Lemma2.3 ab € G,G.. SoG.G, € G.G..
Taking inverses we see th@{G\, = GLGL..

Conversely suppose th&{Gl, = GLG.. Since all idempotents id are conjugate,
GG} = G\ G| forall f € E(J). By [9, Theorem 5.9] there exig;, e, € E(J)
such thaeze,. e, % f. By [9, Corollary 6.8]e = ex, & = ye for somex € I
y € G,. Soxy € G, G, = GG, . Soeixya = e. Hencege = yex € E(J).
The same argument shows tles € E(J). Soee = e,. Similarly,e; f € E(J). So
ef =eef =¢ef € E(J). Hencel is a rectangular group. O

REMARK. For the monoid of all triangular matrices, Bauéf has shown that a
regular_# -class is a rectangular group if and only if the diagonal idempotent in it has
the property that all the 1's are together.

COROLLARY 2.5. Let J;, J, € 7 (M). If J; and J, are rectangular groups, then so
is \]1 A J2.

PROOF. LetJ = J; A Jy. Lete € E(J). Then by P, Theorem 6.7, Corollary 6.10],
there existe;, € E(J;), & € E(J,) such thate = e, = e,6;. Letx € G. Then
exe € J. By Lemma2.3 x € G, Cg(e))G]. Sox = abcfor somea € G,
beCg(e),ceGg. So

exexle = eabcec'bale
= ee;abcgec b late = eebeec b late.
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Nowc *b'a'b € G b'G, b = G G, = G, G . Soc'b'a*b = a'c' for some
aeG,,ceG..So

exexle = eebeec b lalee = eebeeachlee
= eebeeaceb e, = e ebeeb e,
= e ebeb e e = eebeb e,

Now e;be, ¢ e, and hence by Lemma3, b G'eZCG(ez)G;Z. Sob = vwu for some
veG,,we Cgs(e),ucGL. So

ebeble, = evwueutw v e, = weutw v te,.

-1,,-1,,-1 r -1l _ r I | r -1,,-1,,-1 — oy
Nowu*w v w € Gezw Gezw = GE,ZGez = GezGez. Soutwtvtw = v'u for
somev’ € G, U € G}. So

1= wezuf1 = 6.

ebeble, = wevlw e, = wey'uew™
Henceexex'le = eebeblee; = ee6; = e Since all idempotents id are
conjugate, we see th&i(J) is a semigroup. Hencéis a rectangular group. [

3. Reductive monoids

We will assume in this section thad is a regular, irreducible algebraic monoid
with zero. Equivalently the unit grou@ of M is reductive. Then the commutator
subgroup(G, G) is semisimple an® = (G, G)Z, whereZ = Z(G) is the center of
G. Ifdim Z = 1, we say thaiM is asemisimple monoidNow by [9, Theorem 6.20],
all maximal chains irzz (M) have the same length. This gives rise to a rank function
in % (M) and hence oM. By [9, Theorem 7.9], the fundamental imadf/u is
obtained by factoring the maximal subgroupdbby their centers. ByJ, Chapter 9],
there is an idempotent cross-sect®tiJ € %7 (M)) such that ford,, J, € Z (M),

J<J ifandonlyif e; <e,,.

ThenA = {e; | J € Z (M)} is called across-section latticef M and is unique up
to conjugacy. By 9, Chapter 9]B = {g € G | ge = egeforall e € A}is a Borel
subgroup ofG containing the maximal torus

T ={ge Glge=-eg forall ec A}.

Let W = Ng(T)/T denote the Weyl group o& with generating se§ of simple
reflections. The subgroups containiBagre called parabolic subgroups and are of the
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form P, = BW, B, | € S. HereW, is the subgroupVv generated by . LetU, U,
denote respectively the unipotent radicalBadndP,, | € S. If se€ S, | = {s}, then
denoteU, by Xs. ThenXs = k and is called a root subgroup. Léte %7 (M). Asin
[12], thetypeof J is defined as.(J) = {s€ S| se = e;s}. Let

A(J) = mX(J/) and A,(J) = ﬂX(J/).

J'=>J J<J

ThenW, ;) = Wi-5, x W,,45,. Now S has the structure of a Coxeter graph where for
s, t € S sandt are adjacent ift # ts. Let S; denote the union of components $f
not contained in*(J).

THEOREM3.1. If J € % (M), thenW(G§) = Ws,.

PROOF. Lete = e;, | = A(J). Let S be a component 0§. First suppose that
S C S. ThenS € 2*(J). So there exists € S such thats ¢ A*(J). Suppose
s ¢ |. ThenXs € U, and henceXse = {e}. SoXs € G} € G;. ThusXs € G§.
SinceGY < G, it is a reductive group. Se e W(GS). SinceGj <« G, S € W(G9).
Next suppose that € A(J). Sinces ¢ 1*(J), s € A.(J). Sose= e = es SinceGg
is a reductive groupXs € G¢ € GS. So agairs € W(G9) andS € W(GS).

Assume conversely tha8 € W(GY). We claim thatS < S;. Otherwise,
S C x*(J). There exists a closed connected normal subg®upf G contained
in G§ such thatW(G,;) = Ws. SinceG is a reductive group, there exists a closed
connected normal subgroup, of G such thatG = G;G, andG, centralizesG;.
SinceS C A(J) andW(G;) = Wy, we see thaG,; C Cg(e). Soif f € E(J), then
f = xex! for somex € G,. SoG; centralizesf. HenceG; centralizes(E(J)).
SinceG; C Gj, eG; C (E(J)). SoeG; is commutative andV(eG,) = 1. So
S C X1,.(J), a contradiction. ThuS C S;, completing the proof. O

COROLLARY 3.2. Let J € % (M). Then the image of in M/u is idempotent
generated if and only if no component®fs contained im*(J).

COROLLARY 3.3. LetJ € Z (M), e = e;. ThenJ is idempotent generated if and
only if

(i) no component o8is contained in*(J); and

(i) G=(G,06)T..

PROOF. Suppose first thad is idempotent generated. Then (i) is true by Theo-
rem3.1 LetH = (G, G)T.. ThenH® = (G, G)T; is a reductive group anele He.
Now Z C T andG = (G, G)Z. Let f € E(J). Thenf is conjugate te and hence
there existx € (G, G) such thatf = x 'ex. Hencef € H¢. ThusE(J) C H¢. Let
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ze Z. Theneze J C (E(J)) C HC. So there exists € H° N T such thaez= et.
Soztte T, < Hand hence € H. ThusZ C H. SinceG = (G, G)Z, we see that
G =H.

Assume conversely that (i), (ii) are valid. Then by Theorérh W(GS) = W.
Hence(G, G) € G;. SinceT, € G;, G = G;. By Theorem2.1, J is idempotent
generated. This completes the proof. O

LetJ € % (M). Then by Theoren.1, the #-classJ NGS5 = JN (E(M)) of G§
is idempotent generated. By Theor@n, (GS, GY) is the unique closed connected
normal subgroup ofG, G) with Weyl groupWs,. We have, by Corollarg.3,

COROLLARY 3.4. LetJ e % (M), e = e;. ThendN(E(M)) = (GS, G$)e(G§, GY).

COROLLARY 3.5. LetJ €  (M). If J is idempotent generated then the dimension
of the center of5 is at most equal to the corank df

PROOF. Let e = e;. ThenrkJ = dimeT and dimT, is the corank ofJ. By
Corollary3.3 G = (G, G)Te. SinceG = (G, G)Z, we see thatdiZ < dimT,. O

Following [11], we will say that a nilpotent elemeatis standardif a™ £ 0, where
m is the rank ofa. We have shown in1[1] that the number of conjugacy classes of
regular nilpotent elements is finite. In the monoid ofralk n matrices, a standard
nilpotent element is one with almost one non-zero Jordan block.

COROLLARY 3.6. LetJ € 7 (M). If J has a standard nilpotent element, then it is
idempotent generated.

PROOF. Lete = e;. By [11], there existx € W such thaexis a standard nilpotent
element. Nowl¢ € G, and by Theorerd.1, E(J) € G_ﬁ We also have the following
maximal chain ofE(T¢) contained inGS:

e>e-xex'!>exexx’ex?s>...

SoG§ contains a maximal chain &(T). HenceT € G;. SinceG; <G, G = G;.
Thus by Theoren2.1, J is idempotent generated. O

We are now able to solvé&]Problem 2.10].

THEOREM3.7. M\ G is idempotent generated if and only if

(i) For any maximal #-classJ # G, no component 0§ is contained in.(J);
and
(i) M is semisimple.



202 Mohan S. Putcha [10]

PROOF. First suppose thaM\G is idempotent generated. Then (i) follows by
Corollary 3.3 and (ii) follows by Corollary3.5. Assume conversely that (i) and
(i) are true. LetJ be a maximal #-class inM\G, e = e;. By Theorem3.1,
(G,G) € Gj. By (i), dmG = 1+ dim(G, G). Now T, € G;. Since(G, G) is
closed inM ande ¢ T_eC we see thal? £ (G, G). SoG = (G, G)T, andG = G;.
By Theorem?2.1 (iv), J is idempotent generated. So by Theor2rh (v), M\G is
idempotent generated. O

EXAMPLE 2. LetG = {c A® BA | A € SLy(k), «, B € k*} and letM denote the
Zariski closure ofG in My(k). ThenS = {(12)}. The non-trivial elements of the
cross-section latticaA are given by

e_10@00 e—loealo _00@10
=10 /%o o) ®*=lo 0o/®lo o) =0 o/®\0 1)
. (10 o 00 ., (0 0 ® 10

“=1o0 0/9\o o) =0 0/®\o o)

Let the corresponding? -classes b@,, J, J,, J;, J;. ThenS C 1*(J1), S C 1*(Jy).
So by Corollary3.2, the images ofl;, J, are not idempotent generatedlf/ .. By
Corollary 3.6, J;, J; are idempotent generated M. Now S Z A*(J) and so by

Corollary 3.2, the image ofJ is idempotent generated M /. However,J is not
idempotent generated M by Corollary3.5. In fact,

JN{EM))={A® Ac M |rkA=1}
whileJ ={A®BeM|rkA=1 B=«aA forsomea € k*}.

Finally, the author would like to thank the referee for many useful suggestions.
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