J. Aust. Math. Soc.  80 (2006), 383-396
Elements of rings and Banach algebras with related spectral idempotents

N. Castro-González
  Facultad de Informática
  Universidad Politécnica de Madrid
  28660 Boadilla del Monte
  Madrid
  Spain
  nieves@fi.upm.es
and
J. Y. Vélez-Cerrada
  Facultad de Informática
  Universidad Politécnica de Madrid
  28660 Boadilla del Monte
  Madrid
  Spain
  jyvelezc@hotmail.com


Abstract
Let $a^{\pi}$ denote the spectral idempotent of a generalized Drazin invertible element $a$ of a ring. We characterize elements $b$ such that $1-(b^{\pi}-a^{\pi})^2$ is invertible. We also apply this result in rings with involution to obtain a characterization of the perturbation of EP elements. In Banach algebras we obtain a characterization in terms of matrix representations and derive error bounds for the perturbation of the Drazin inverse. This work extends recent results for matrices given by the same authors to the setting of rings and Banach algebras. Finally, we characterize generalized Drazin invertible operators $A, B\in \mathcal{B}(X)$ such that $\operatorname{pr}(B^{\pi})=\operatorname{pr}(A^{\pi}+S)$, where pr is the natural homomorphism of $\mathcal{B}(X)$ onto the Calkin algebra and $S\in \mathcal{B}(X)$ is given.
Download the article in PDF format (size 116 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS