J. Aust. Math. Soc.  80 (2006), 367-373
Omitted rays and wedges of fractional Cauchy transforms

R. A. Hibschweiler
  University of New Hampshire
  Department of Mathematics and Statistics
  Durham, NH 03824
  USA
  rah2@cisunix.unh.edu
and
T. H. Macgregor
  Bowdoin College
  Department of Mathematics
  Brunswick, ME 04011
  USA
 


Abstract
For $\alpha>0$ let $\mathcal{F}_{\alpha}$ denote the set of functions which can be expressed
\[ f(z)= \int_{|\zeta|=1} 
 \frac1{(1-\overline{\zeta}z)^{\alpha}}\, d\mu(\zeta) 
 \quad\text{for }\ |z|<1, \]
where $\mu$ is a complex-valued Borel measure on the unit circle. We show that if $f$ is an analytic function in $\Delta=\{z\in\mathbb{C}: |z|<1\}$ and there are two nonparallel rays in $\mathbb{C}\backslash f(\Delta)$ which do not meet, then $f\in \mathcal{F}_{\alpha}$ where $\alpha\pi$ denotes the largest of the two angles determined by the rays. Also if the range of a function analytic in $\Delta$ is contained in an angular wedge of opening $\alpha\pi$ and $1<\alpha<2$, then $f\in \mathcal{F}_{\alpha}$.
Download the article in PDF format (size 64 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS